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1. Introduction

In this paper, we generalize the classical Hardy-Hilbert inequality, which can be stated
as follows: assume that p > 1, % + % =1, f(x),gy) >0, f € LP(Ry), g € L1(Ry),

Il = {/Ooofp(x)dx}; >0,

18]l > 0. We have the following Hardy-Hilbert integral inequality (cf. [1]):

© [ f(x)gy) n
77 B Dy < T Al sl @)

. . 7
with the best possible constant factor Snl/p)

If ay, by > 0,a ={am}5 4 €1F,b={bu}5r, €,

[e)

> o

m=1

lallp = >0,

||b]|4 > 0, then we have the following Hardy-Hilbert inequality with the same best possible

constant factor m (cf. [1]):

o0 o0 mbn
Yy z sl1allp 1ol @)

< =
m=1n=1 m+n Sm(ﬂ/P
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Inequalities (1) and (2) are important in analysis and its applications (cf. [1-12]).
Assuming that y;, v; >0 (i,jeN={12,---1),

m n
Um = Zl,{l, Vfl = ZU] (Trl,l’l € N), (3)
i=1 j=1

we have the following inequality (cf. [1], Theorem 321, replacing y}n/ 0, (resp. v}l/p by,) by

an (resp. by) ):
0 q %
(2 sil) . @

n=1 vn

<=

X & apby 7T © gh
EE ot <L)

For pu; = vj =1 (i,j € N), (4) reduces to (2). Inequality (4) is known as Hardy-Hilbert-
type inequality.

Note. The authors of [1] did not prove that the constant factor in (4) is the best possible.

In 1998, by introducing an independent parameter A € (0,1], Yang [13] provided an
extension of (1) for p = g = 2. Improving upon the method of [13], Yang [6] presented the
following best possible extensions of (1) and (2):

If Aj,Ap € R, A1+ Ay = A,k (x, ) is a nonnegative homogeneous function of degree
—A, with

K(Ay) = ./(;w k(b 1) dE € R,
$(x) = 0N p(x) = 21021, £(2),g(y) 20,
£ € Lup®Ro) = {illllng = { [ 9lf0lPaxyF < oo,
8 € Lygp(R), [l 18]y > 0, then

I7 [ o fgtsdy < ka1 fllyllgllyg. )

where the constant factor k(A1) is the best possible. Moreover, if k) (x,y) keeps a finite
value and k) (x, y)x™ ™1 (ky(x,y)y*27 1) is decreasing with respect to x > 0 (y > 0), then
for ay,b, > 0,

> 1
aclyy=1qallallpe:= {2 ¢(n)an|P}r < oo,
n=1
b= {bu}o 1 € lgy |lallpe 1bllgp > 0, it follows that

[l oe]

Y. Y ka(m n)amby < k(A1)llallppl[bllg,y, (6)

m=1n=1

where the constant factor k(A1) is still the best possible.
Clearly, for
1

A=1, kl(x/]/) = m/

)\1:1//\2:1/
q 4

inequality (5) reduces to (1), while (6) reduces to (2).
Fors e N,0 < A, A <1,A1+ Ay = A, weset
1
[T, (xMs + cyr/s)

ky(x,y) = 0<cp <+ <)
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Then, by (6), we derive that (cf. [14])

Yy b k(A1) [allpgl ] g %

mzln:lnk 1m S+Cn S)

where the constant factor
S s 1
ks(A1) = Z o’ I —— (€ERy) (8)
A Sm( =1k G~ Ok

is the best possible.

Some other kinds of results, such as Hilbert-type integral inequalities, half-discrete
Hilbert-type inequalities, and multidimensional Hilbert-type inequalities are provided
in [15-42].

In the present paper, making use of weight coefficients as well as real/complex
analytic methods, a Hardy-Hilbert-type inequality with a best possible constant factor and
multiparameters is established (for p > 1). This inequality constitutes an extension of (4)
and (7). Equivalent forms, reverses (two cases of 0 < p < 1 and p < 0), operator expression
with the norm, and a few particular cases are also considered.

2. Some Lemmas

In this section we prove the inequalities of the weight functions, which are used to
prove the main results. In the sequel, we assume for the multiparameters that
p € (=00,0)U(0,1) U (1, ),

1 1
5+6:1,0<)\1,/\zgl,)\1+/\2:/\,0<61§"'SCS(SEN),

ks(A1) is indicated by (8), u;, v; >0 (i,j € N), Uy, and V;, are defined by (3), a, by, > 0
(m,n € N),

1 1
o] P q
[lallpo, = (Z <I>A(m)a51> €Ry, |[bllgy, = (Z ¥y (n q) € Ry,
m=1

where we define

p(1-A1)-1 q(1-22)—1
Un , Ya(n) = LA
Hm Up

(D/\(m) =

Lemma 1. If Cis the set of complex numbers and Coo = CU {oo},
zr € C\{z|Re(z) >0, Im(z) =0} (k=1,2,---,n)

are different points, the function f(z) is analytic in Coo except forz; (i =1,2,-- ,n), and z = co
is a zero point of f(z) whose order is not less than 1, then for « € R, we have
n

[ st = 2 Y Re(o) @2 2, ©
k=1

where
0 < Im(lnz) = argz < 2.

In particular, if z, (k=1,--- ,n) are all poles of order 1, setting

¢r(z) = (z = z) f(2) (@r(zx) #0),
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then

n

Y (—z0)* g (zs)-

k=1

/Ooof(x)x"‘_ldx =

sin 7T

Proof. By [43] (p. 118), we obtain (9). We have that

1—e¥™  — 1 — cos27ma — isin27a

= —2isina(cos ma + isin wa) = —2ie'"™ sin 7ta.

In particular, since

it is obvious that

Re(s)[f(2)z" 1, —ar] = z¢* or(zi) = —™ (—z)* i (zk)-

Then, by (9), we obtain (10).
This completes the proof of the lemma. [

Example 1. Fors € N, € > 0, we set

1
szl(x/\/s + CkyA/s)’

ka(x,y) =

and ¢ = ¢+ (k—1)e (k=1,---,s). By (10), we get that
%()\) . _/Ooli[$t)\1*ldt
T Ty g

S oo S 1 sM 1
= — — A d
A /O ]‘:[ U+ Cg " "
S 9)\1 S 1

T v Z [ =—= <R
Asin(#3) j=1(j4

Since we have

—/ m_1clu
AJo (u + cl)
1 sA1

v o
/\Cgs)\z)/)L/O (ZJ—I—])S

S SA1 sAy

Rz

IN

)ER-‘F/

it follows that

ks()\l) = lim k ()\1)

e—0t

TS =+ -1
= — a1l ¢

Asin(51) =1 j=1(2k) G T

(10)
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In particular, for s = 1, we obtain

LA/ - .
) = [ ; an
A u+cy )\C{\Z/A sm(”ﬁl)
for ¢ = - - - = ¢1, we derive that
o0 th—1 s SA1 SA,
k()= | dt = S S22y 12
( 1) 0 (t/\/s + Cl)s )\C_ESAZ)/A ( A A ) ( )
Lemma 2. Define the following weight coefficients:
A
ad 1 U,tv,
wS(AZ/ ; (u/\/s+c V/\/s> Vl )\2 m e N/ (13)
= 1 Va2
@s(Aq, 1) =T n e N. (14)
] m; Ty (Un/® + Vit ®) Uy ™
Then, we have the following inequalities:
wS(/\ZI m) < kS(Al) (0 < /\2 < 1r/\l >0;me N)l (15)
C’Ds(/\1,n) < ks(/\l) (0 <MZLA>0ne N) (16)

Proof. We set

u(t) == pum,t € (m—1,m] (m € N); v(t) := vy, t € (n—1,n] (n € N),

U(x) = /Oxy(t)dt (x> 0),V(y) = /Oyv(t)dt (y > 0).
Then by (3), it follows that
U(m) = Uy, V(n) =V, (mneN).

Forx € (m—1,m],
U'(x) = p(x) = pm (m € N);
fory € (n—1,n],
V'(y) = v(y) = v (n €N).

Since V(y) is strictly increasing in (n — 1,1, % >0and 1 — Ay > 0, in view of the
decreasing property, we obtain that

ws(Ag,m) = i /'” 1 U V' (y)dy
’ =1 I Ty (Un/S + Vi ®) vy 2
o p 1 u;;l ,
< / vV (y)dy.
L T vy Vel DY
Setting
()"
Viy))
we obtain
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and
g X (‘l/l(rz)))»/s 1 771
ws(Ag,m) < == / 7 ldt
V) A ; (g /s TTi—q (£ + ck)
s [ 1 A _q
= 7 —— % T dt
A J(Hmyrss TTi—q (F + k)
1 S/\l 1
< T _ dt = ks(A
<3k e ().
Since U(x) is strictly increasing in (m — 1,m], % > 0and 0 < Ay < 1, similarly,
we have
oun £ [ W,
s\ 1y 1 Hk 1 u/\/S + ¢ V/\/S) U,}f/\l
Aaypt
< Z / 1 7 V"l})’\[ (x) dx (t (ll(x) ))\/5)
-1 I—[k U/\/s(x) +CkVn ) u 1(x) Vn

SA
g1

= S —T!
A Z w1275 T (F+ )

( ))/\/s

. / Vn ))\/s 1 5)‘1 1dt < k (/\ )
T Hizl(t+ck) !

Hence, we deduce (15) and (16).
This completes the proof of the lemma. O

Lemma 3. If mg,ng € N, pm > 1 (m € {mo,mo+1,---}), vy > vy1 (n € {ng,no+
1,---}), U(c0) = V(c0) = o0, then
(i) for m,n € N, we have

ks(/\l)(l — 9()\2,1”1)) < ws(/\z,m) (0 <A <1LA > 0), (17)
ks(/\l)(l—ﬂ(/\l,n)) < (275(/\1,1’1) (0<A1 Sl,)LZ >0), (18)
where
1 1
(ii) for any a > 0, we have
DALY (RSO CY (19)
el u%/l‘Hl a ug/lo 7

Y ot = i(vluvLaé(l)). (20)
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Proof. Since v, > vy4q (n > np),1— Ay > 0and V(eo) = oo, we have

00 1 u)\l
ws(Ag,m) > T Unt
s =, Hiﬂ(umwv,?/% i
1 U
> / V' (y)dy
nzr;o Hk LU/ + e Vs (y)) VIR (y)
)\/s A
= Z / it S L £ g
n=np m )M Hk:l(t+ck)
A ( m YA/s Hk 1(t—|—Ck)
S (\L/ITVZ)MS tT_l
= — ——————dt = ks(A1)(1—60(Ay, ,
b e = RO ez m)
where , .
S o0 1
0(Ay, m) := / 7tT’1dt€ 0,1).
P2 3= ) S s T+ ) @D
We obtain
s i 1 M 4
< il
0 < 0(Aym) < Aks()tl)/wmws st Tt
no
_ ;/oo ; 5}‘/\27]dt: # %) ,
)Lks()\l) (%)A/S /\st(/\l) U,
and then

Hence, we deduce (17). Similarly, we obtain (18).
For a > 0, we have that

[e0]

Z ul-‘rll Z u1+ll m—%Jrl u1+u
= Z u1+a +m %Jrl/l u1+a
< Z u1+a +m ;oJrl/ 1 u1+a
- L [T % 1
u1+a ul+a(x u1+a augm

- 1(uﬂ - zum)

U m—+1 u’
Yoyt y [0 T

m=m m m=m

- i /’"“ ll/(x)dx_/"" du(x) 1

wom dm U (x) S UM (x)  alld,

Hence, we derive (19). Similarly, we also get (20).
This completes the proof of the lemma. [
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3. Main Results and Operator Expressions

In this section, by using Lemma 3, we obtain Theorems 1 and 2.

Theorem 1. For p > 1, we have the following equivalent inequalities:

b

) " <ks(A1)]Ja
=S T (U + Vi)

] L= { 2 lvnp/\z

an

p,fb/\ q,‘I’/\r (21)

e}

Py P
a
Z Am )\] } < ks(A1)llal]p,o,- (22)
m=1[Ti—q (U + Vi)

Proof. By Holder’s inequality with weight (cf. [44]), we have

p

[i s am

i T (US + Vi)
- B () (G|
T U+ ) \ VTl
. 1 yi=Ap/a
£ i v i)
l 1 v,guz)(m)ym] p—1

T (U eV ®) U Mol
(@s(Ag, m))P~1 & 1 uly My,

= ngz—l Z

A A — -1
vn e TG (U + Vs vl

IN

Mg

ah,. (23)

In view of (16), we obtain that

1
[0 oo (1*)‘1)@71) P
1 1 u Uy
J < (ks(Ar))s - a]
s ; ph [Ty (Un/* + Vi) vy oyt
1
[0 o0 (1*)‘1)(1771) P
1 1 u Uy
= (ks(A1))7 - ——a ]
s _mZ:;U; Hi:1(u7)1\1/5 _’_Cer{\/S) V;}*/\z]/lﬁ1 1 m
1 [ oo up(lf)\l)*l %
= (ks(A1)7| Y ws(Ag,m)————aly| . (24)
m=1 Vﬁ
Then, by (15), we have (22).
By Holder’s inequality (cf. [44]), we obtain that
1
o0 1/P o0 a Vﬁi/\z
I = i L b?’l
; |:Vn1 A mzl Hk 1(u)x/s +c V)\/S) ( U}l/p
< JlIbllg¥,- (25)

Then, by (22), we derive (21). On the other hand, assuming that (21) is valid, we set

p—1
,n € N.

(]
. Uy Am
bn T 1—p/\2 [ Z

% o TE_ (Un/S + e Vi)

Then, we get that J¥ = Hb“q‘y)\
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If ] = 0, then (22) is trivially valid; if | = oo, then by (24) and (15), this is impossible.
Suppose that 0 < | < oc. By (21), it follows that

16ll5, = J7=1<ki(M)lla 0¥ (26)

||b||quA = ] <ks(M)llallpe,, (27)

p,(DAHb

and then (22) follows, which is equivalent to (21).
This completes the proof of the theorem. O

Theorem 2. If p > 1,mp,ng € N, piy > piypy1 (m € {mo,mo+1,---}), vy > vy4q
(n€{np,ng+1,---}),U(c0) = V(o0) = o0, then the constant factor ks(A1) in (21) and (22) is
the best possible.

Proof. Fore € (0, pA1), we set

7\1 =M —% (G (0,1)),7\2 = /\2-1—% (> 0),

and 3 AM—E-1 5y Ap—E—1
~ A—1 [ S Ay—e—1 275
Ay = Uy Um = Uy ! WUm, by = V2 vy =V, §

Then, by (19) and (20), we have

Uy (28)

3
N
S|
m
~__—
<=
/-~

e 9]

[allp@, [10llgw, = ( )y
1
£

_ i i Um V;;\Z Un
== Hk 1(U/\/s +o V/\/S) 1,7\1 Vs+l

B oo _ Un oo Un

- nX::lws(/\l’”) V;H X:: 8(Ay,n) Vs+1

If there exists a positive constant K < ks(A1), such that (21) is valid when we replace
ks(A1) by K, then in particular, we have

el < eK||d| [, [0]15¥,,
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namely

1 e0) - 0(1))

ks(A1) e
g

< K(u;m + 80(1)> ,, <Vi£0 + 85(1)> ﬁ.

It follows that ks(A1) < K (e — 01). Hence, K = ks(A1) is the best possible constant
factor of (21).

The constant factor ks (A1) in (22) is still the best possible. Otherwise, we would reach
a contradiction by (25) that the constant factor in (21) is not the best possible.

This completes the proof of the theorem. [J

Forp > 1,
1-p _ Un
TA (7[) Vr}_p)\z 7
we define the following normed spaces:
lp/q>)\ L= {ﬂ = {am}$:1; ||ﬂ| p,Pa < 00},
lq/‘YA = {b = {b” ;l.o:l; ||b 7Y < OO},
s ¢ == {andiplel] grr <o
Assuming thata = {a,, };,_; € [, 0,, setting
= a
c={eulpyoni= ), n ,nEN,

a1 Ty (U + e Vi®)
we can rewrite (22) as:
llell, g0 < ks(AD)lallpe, < oo,

namely,c €1 _1_,.
y p,\IJ/\ p

Definition 1. Define a Hilbert-type operator T : I, o, — lp,‘Y}:p as follows: For any a =
{am}m—_1 € lp®,, there exists a unique representation Ta = ¢ € lp’q,i,p. Define the formal inner

product of Ta and b = {by };7_; € Iy, as follows:

[e9) [e)

(Ta,b):= Y | Y il by (29)

o L T (U 4 Vit e

We can express the above results in operator forms as:

(Ta,b) < ks(A)llallp.e,l10llg ¥,/ (30)
1Tl grr < K(A)lallp @
Define the norm of the operator T as follows:
1Tall 15

||T||:: sup ||a|
ﬂ(#@)el‘y,@/\

P ,(I)/\

Then, by (31), we get that ||T|| < ks(A1). Since the constant factor in (31) is the best
possible, we have ||T|| = ks(A1).
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4. Some Reverses

In the following, we also set

_ up(l_/\l)—l
Ppr(m) = (1-60(Aym))—"———,
Hin
_ V‘?(lf)\Z)*l
Yin) = (1- ﬁ(Al,n))’qu (m,n € N).

For 0 < p < Tor p < 0, we still use the formal symbols ||al|,,, ||b|[4,¥,., ||a||p§>A and

16l 5,
Theorem 3. If0 < p < 1, mg,ng € N, um > sys1 (m € {mo,mg+1,---1}), vy > vy41
(n€{np,ng+1,---}),U(c0) = V(oo) = oo, then we have the following equivalent inequalities
with the best possible constant factor ks(Aq):

I
e

ad amb
)3 s kOw)lall, g, 1l 32)
Lm=1TTi_y (Up + Vi)

] = { 2 1linp)\z

n

o am

Py ®
=1 Vy )] } > ks(A)llall, g, - (33)

)3 e
=1 Ty (U + e Vi

Proof. By the reverse Holder inequality (cf. [44]), we derive the reverses of (23-25). Then,
by (17), we obtain (33). By (33) and the reverse of (25), we have (32). On the other hand,
assuming that (32) is valid, we set b, as in Theorem 1. Then, we get that J¥ = ||b| |Z‘I’A
If | = oo, then (33) is trivially valid; if | = 0, then by the reverse of (24) and (17), this
is impossible.

Suppose that 0 < | < oo. By (32), it follows that

16179, = ' =1>ks(A)llall, g |16l (34)
-1
1llhy, = T>k(A)llall, g, (35)

and then (33) follows, which is equivalent to (32).
Fore € (0, pA1), we set M, Ag, @y and by, as in (28). Then by (19), (20) and (16), we find
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lall, g, 1o

1 1
[} P 0 v q
7.%x = Z (1 o 9(/\2,111)) ‘ul?ie lie
m=1 Um n=1 V’rl

- i ® b
A T (U + Vi)
_ i i Wm V;i\z Up
=t L=t T (Und® + aVi ) gl | viet!

If there exists a positive constant K > ks(A1), such that (32) is valid when we replace
ks(A1) by K, then in particular, we have

el > eK|[d] 5, |

q,¥rr

namely,

==

It follows that ks(A1) > K (e — 01). Hence, K = ks(A1) is the best possible constant
factor of (32). The constant factor ks(A1) in (33) is still the best possible. Otherwise, we
would reach a contradiction by the reverse of (25) that the constant factor in (32) is not the
best possible.

This completes the proof of the theorem. O

Theorem 4. If p < 0,mg,n9 € N,y > ppy1 (m € {mo,mo+1,---}), vy > vy41 (n €
{ng,no+1,---}), U(eo) = V(c0) = o0, then we have the following equivalent inequalities with
the best possible constant factor ks(A1):

o0 00 a b
) O > k() lal e, 81l 5, 36)
n:lm:lHk 1u +CkV)

1
Py »
1 /\l/ )) - =17TT7° % V%
m Hk:l(um + Ck Vi )
|

> ks(A)|lallp@, - (37)
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Proof. By the reverse Holder inequality with weight (cf. [44]), since p < 0, by (18), we have

p

= T (US + e Vi)

p
_ i 1 (u;,}—qu;/pam) (Vn(l—/\z)/i’%ln/q)
B 4 4 1-A 1 - 1
m=1 Hi:l(uﬁ; +CkVns) VTS 2)/7’;”7”/‘7 u151 1)/qvn/p

u(lf)\l)p/q

IN

ad 1
am
m; Hi:l(ur)?;/s + Cer{L/S) 1 ?\2%11’1/‘7
-1
i 1 Vygli/\Z)(qil)ym b
1T ( U)‘/erckV)‘/s) U},[)‘lvz_l
_ @(am)pt ¢ 1 uy "y,
V;f/\z_lvn = H’sc:l(uzx/s _i_ckv}fx/S) an—/\z‘ugfl
1- 19(/\1171))’771
Vr‘f)\271

Am

(ko(Ag))P

IN

Un
) 1 ui(nl_/\l)(l?_l)v

<)

oo TG (Un/S + Vi /s) vl Ay b

1
) (1-2A1)(p-1) r

1 1 U n
<ks<m>>q{2 y i - a%}

A A — -1
n=1m=1 Z:l(um/s + Vi /S) an /\2‘,”!’

m
1
1 ur(nl*)‘l)(Pfl)vn y }l’
— _ m
m=1n=1 izl(ur),\/s—l—ckv,f‘/s) v} Azyr’l

m

n

J1

v

(o a1
= (ks(/\l))ﬂ{Zws(Az,m)mrHaﬁ} ) (38)

Then by (15), we obtain (37).
By the reverse Holder inequality (cf. [44]), we have

). o
1— (A, )V | 2 TR (Un/® 4+ Vi)

n:l

o /\2 pvl/P loo

1

1y
X [(1—19(/\1,”))’7;11/,,5"] = hlIbll, ¢, - (39)
n
Then, by (37), we deduce (36). On the other hand, assuming that (36) is valid, we set
b, as follows:

Ap—1
Vi

[0 9)

b (%71 Z Am
n = —
(1= 8(A,m)P=1 = Ty (U + Vi)

, n€N.

Then, we obtain that J; = ||b| |Z $.- If J; = oo, then (37) is trivially valid; if J; = 0, then
s LA
by (15) and (38), this is impossible. Suppose that 0 < |; < co. By (36), it follows that

||b||q~ = Ji =1>ks(A1)][a

J1 > ks(A)allp,,

poallbll, &,

bl
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and then (37) follows, which is equivalent to (36).
Fore € (0,|p|A1), weset Ay = Aq + §(> 0),Ar = Ay — %(6 (0,1)), and

Then, by (17), (19) and (20), we have

|a

~ © g V[ o, 17
pa bl g, = 217 2 (1= 8, m) o
m=

Uy

a2 S T (US + Vi sy yi=ha | Ut

o > oY Hm Y Hm
= Z ws(/\Z/m) u1+€ < kS()\l) Z urln+€

m=1 m n=1
1, ~ 1
= “ks(Aq +¢0(1) |.
ks ><% <>>

If there exists a positive constant K > ks(A1), such that (36) is valid when we replace
ks(A1) by K, then in particular, we have

el > eK||a

pulIbll, @,

namely,

1

L6 o)

It follows that ks(A1) > K(e — 07). Hence, K = ks(A1) is the best possible constant
factor of (36).

The constant factor ks (A1) in (37) is still the best possible. Otherwise, we would reach
a contradiction by (39) that the constant factor in (36) is not the best possible.

This completes the proof of the theorem. [

Remark 1. (i) For p; = v; = 1(i,j € N), (21) reduces to (7).
(ii) For

7

S:/\:Clzl,)\lzl,/\zz1
q p
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(21) reduces to (4); fors = A =c; =1,A1 = %,Az = %, (21) reduces to the dual form of (4) as
follows:

© o0 b o0 up—2 % V‘? 2 %
ZZU:ZH/" . (Z . P) (Z b”). (40)

m=1n= Sll’l(ﬂ.’/p) m=1 }151 n=1 Un

(iii) For p = q = 2, both (4) and (40) reduce to

S & amby 2 ak S b2\’
<7 — — 1 . 41
D By <m_1wmnz_1vn (41)

m=1n=1

5. Conclusions

In the present paper, making use of weight coefficients as well as real/complex
analytic methods, a Hardy-Hilbert-type inequality with a best possible constant factor and
multiparameters and the equivalent forms are established in Theorems 1 and 2. Reverses,
operator expression with the norm, and a few particular cases are also considered in
Theorems 3 and 4, Definition 1, and Remark 1. The lemmas and theorems provide an
extensive account of this type of inequality.
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