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Abstract: The formalism of a bone cell population model is generalised to be of the form of an
S-System. This is a system of nonlinear coupled ordinary differential equations (ODEs), each with
the same structure: the change in a variable is equal to a difference in the product of a power-law
functions with a specific variable. The variables are the densities of a variety of biological populations
involved in bone remodelling. They will be specified concretely in the cases of a specific periodically
forced system to describe the osteocyte mechanotransduction activities. Previously, such models
have only been deterministically simulated causing the populations to form a continuum. Thus,
very little is known about how sensitive the model of mechanotransduction is to perturbations in
parameters and noise. Here, we revisit this assumption using a Stochastic Simulation Algorithm
(SSA), which allows us to directly simulate the discrete nature of the problem and encapsulate the
noisy features of individual cell division and death. Critically, these stochastic features are able to
cause unforeseen dynamics in the system, as well as completely change the viable parameter region,
which produces biologically realistic results.

Keywords: mathematical model of osteocyte mechanobiology; external periodic excitation; mechan-
otransduction; bone remodelling; population model; autocrine/paracrine signalling

1. Introduction

The architecture and quality of bone tissue in an adult organism predominantly de-
pends on bone cellular organisation and communication processes that are highly driven by
external mechanical loading. One major interest of mechanobiology is how physical forces
and changes in the mechanical properties of cells and tissues contribute to development,
cell differentiation, physiology, and disease. Critically, bone-adaptive mechanobiological
processes are governed by multiple cellular populations, namely, osteoblasts, osteoclasts,
and osteocytes, which all work in concert and capable of transducing mechanical strain
signals into biochemical cues for osteogenesis [1,2]. The abundant presence of osteocytes
(OcY) in bone lacunae makes them predominant, with 90–95% presence compared to all
other bone cellular lineages. They are also the longest living bone cell. This high proportion
of osteocytes is important, because not only have they recently been shown to be the most
mechanosensitive bone cell type, but they have also been observed to direct osteogenesis in
other bone cell types [3,4]. Thus, it has been suggested that osteocytes are able to combine
these two properties and orchestrate adaptive bone remodelling that is dependent upon
their mechanical sensitivity [5]. Unfortunately, direct, in vivo experimental observation
of osteocytes has proven extremely challenging because they exist deep within the bone
matrix. Thus, how osteocytes experience, sense, and transmit mechanical stimuli is an open
question. Specifically, although we can quantify tissue-level changes to mechanical loading,
we currently have no connection between these macroscopic effects and the microscopic
molecular mechanisms that give rise to these changes.
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Here, we focus on bone remodelling, a cyclic process that is performed by groups of
bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) that are combined
together in “basic multi-cellular units” (BMUs). Essentially, these two cellular families
must work together to ensure that neither too much nor too little bone is being created. If
this balance of formation and resorption is not correctly regulated, bone disorders can form,
such as bone cancer, osteoporosis, and Paget’s disease. Since there are still many questions
relating to how the large number of interconnected components (e.g., hormone, tumour
cells, immune cell) signal to one another [3,5], mathematical models have been created to
allow us to highlight what is known and hypothesise about what is consistent with the
available data [6–10]. These mathematical models consist of ordinary differential equations
and allow us to dynamically track cell numbers, components interrelations, and the bone
volume over time. The idea is that once we are able to produce a simulated system that
can be used to understand a homeostatic system, we would then be able to investigate
the model and predict therapeutic strategies that could aid in cases where problems are
seen [8].

The development and function of the BMUs depend as much on cellular communica-
tion processes as on the physical forces acting upon and transmitted by its constituent cells.
However, a whole concept of how the cells and the mechanical signals interact, and how
the local cellular and global loading processes are interrelated, is still a developing field of
mechanobiology [1,11–14]. Modern imaginative and refined experimental strategies using
genetics, imaging, quantitative (real-time) measurements and biophysical approaches,
such as bone-on-chip devices or bioreactors, combined with mathematical modelling are
necessary to understand the cellular and developmental processes of mechanosensitivity
and adaptivity.

Bone tissue remodelling is a highly multiscale process, as such a single in vitro, or
in silico, model would not be able to capture this entire complexity. Thus, we must focus
on specific aspects of the bone remodelling process and ensure that our questions are
specific enough that the model we use is able to accurately investigate them. Equally,
parameterization of an established accompanying mathematical model is difficult, given
its dependency on the accuracy and availability of data [9]. Critically, our models generate
continuum trajectories of the evolving populations, whereas the current available data from
in-vitro experiments provides only discrete time snapshots of a few measurable variables.
However, having in mind the presence of noise, stochastic influence, and high sensitivity of
these systems, the dynamics between certain points may differ from the one that is directly
predicted by interpolations. For example, our analysis shows the presence of relatively
large fluctuations over a short time span. Therefore, although models may match data
at specific time points, due to numerical adjustment algorithms, models between these
measurements may report behaviours not yet detected by biological experiments.

Equally, the ability to extrapolate our mathematical understanding must be considered.
For example, in vitro experiments can last up to fourteen days in controlled conditions.
However, the bone remodelling period can last up to 120 days, as suggested in [15], and
mathematical models can give predictions on even longer time scales. However, although
interpolation and extrapolation may be possible, we need to ensure that any results we
generate through appropriate analytical procedures [16] are robust to the addition of new,
more realistic features. Specifically, proposed key results in previous literature should not
be sensitive to an increase in complexity of our mathematical model. As such, we seek to
extend the current models of bone remodelling [6–9,15,17,18] to include stochastic features,
which have been ignored until now.

Here, we use mathematical models to improve our current understanding of mechanobi-
ology and its specific role in bone remodelling. Critically, whilst our model maintains those
fundamental mechanisms highlighted in previous work [6–9,15,17], we include additional
features of mechanosensitivity and, simultaneously, simulate these models under the un-
derstanding that the populations are discrete-valued, rather than continua. Specifically, we
include osteocytes mechanobiology, which, apart from the biochemical processes of osteo-
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cytes and their interactions with other bone remodelling cells, includes external periodic
signal transduction and influences that represent a significant advance in the field.

The generalized form of an earlier stated cell population model consisting of a system
of ordinary differential equations (ODEs) is presented together with a summarized expla-
nation of all the parameters involved for the particular case of five ODEs. The extension of
this system is presented in the form of additional periodic terms in the equation of OcY
time changes, which extends the mathematical modelling of bone mechanobiology. Using
a Stochastic Simulation Algorithm (SSA) to simulate the creation and degradation, which
encapsulates the noisy features of individual cell division and death, we create statistically
exact realizations of the system. The realizations are statistically exact in the sense that the
simulated ensemble data converges to the distribution that solves the underlying stochastic
problem. The SSAs are done by generating two random variables, one to define the time
at which the next reaction occurs and one to specify the reaction that occurs. Critically,
we use the Law of Mass Action to provide a correspondence between the deterministic
rates of reaction (seen in the differential equations) and the probabilistic rates used in the
SSA. Thus, we suppose that there are N reactions involving n species. The probability of a
reaction firing is proportional to the product of the input populations. Intuitively, reactions
with higher rates are more likely to occur. Following this stochastic formulation, we define
a probability distribution for parameters of external excitation through fitting the model to
data. These distributions allow us to investigate the sensitivity of the model formulation.
Finally, the derivation and simulation of corresponding stochastic models allows us to
question the utility of the deterministic simulations.

Our model is a time-dependent description of biological parameters and mechanical
stimuli that influence bone remodelling by mechanotransduction of the received and sent
signals by OcYs. Due to the microscopic/discrete view of the population, we are only
interested in a small length scale where diffusion is irrelevant. It allows us to represent and
explain as many parameters as are known from biological experimentation and to reveal
their influence and importance. Furthermore, the stochastic analogue that we introduce
shows that incorporated reception and transduction of signals changes the underlying
dynamics of the cell communication processes.

Although we ignore spatial effects, there are researchers considering the wider view
of bone remodelling [14,19], who include space–time displaced effects that are involved in
the bone reconstruction process. These approaches, mainly based on an integro-differential
system of diffusion–reaction equations, allows us to investigate the spatial aspects of the
problem such as how far can mechanical signals travel? Moreover, how long do such signals
take to travel these distances? Even though several possible simplifying assumptions have
been proposed to give an answer to these questions [19], stochastic spatially extended
systems need further investigation. Critically, extending diffusive movement to include
stochastic effects is fairly simple [20] and is an avenue for later investigation.

2. Methods and Mathematical Models

The formalism of a cell population model can be generalised to be of the form of an
S-System of n equations [21], with n corresponding to the number of included cellular
lineages:

dui
dt

=
n

∑
k=1

αk

n

∏
j=1

u
γijk
j − βiui; i = 1, 2, . . . , n, (1)

This is a system of nonlinear ordinary differential equations (ODEs), each with the
same structure: the change in a variable is equal to a difference of a product of power-law
functions with a specific variable. The ui are the concentrations of a variety of biological
populations involved in bone remodelling (e.g., cell lineages, proteins, and other gene
products). They will be specified concretely in the case of the specific system as considered
in Table 1. The αi are the creation rates that express how each population differentiates
and/or proliferates. The βi represent the degradation rate of each signalling population.
The γij represent the nonlinearities present in the population interactions. If we include



Mathematics 2021, 9, 2422 4 of 18

OcY, OB, OC, and pre-osteoblastic (pOB) lineages of cells together with a bone mass
equation, it will be a system of five equations (n = 5). System (1) is a homogeneous system
of coupled ordinary nonlinear differential equations that is more specifically described in
Table 1, where the coupling means that the variables appear in each other’s equations. The
table also contains explanations of all the parameters. In one cycle of targeted remodelling,
the number of activator cells inside one basic bone multicellular unit (BMU), both resorbing
and forming, is bounded above by approximately 10 OCs and up to 300 OBs. Critically, the
continuum formulation of system (1) suggests that non-integer cellular population values
can be obtained. Normally, such ODEs represent concentrations and densities, which
themselves represent many individuals. In such cases, non-integer values are simply seen
as approximations to the true underlying values because the resulting errors are small.
However, in our case of small population numbers, such non-integer results are no longer
valid approximations to the discrete values the biological populations can take.

Table 1. Mathematical model (1) with the description of all parameters, taken from [9] and also very similar to [6].

Equation Interpretation Variable and Parameter Explanation

dS
dt = α1︸︷︷︸

OB embbeding rate

Bγ31
(

1− S
Ks

)
+
− δ S︸︷︷︸
apoptosis

(2)

change in osteocyte = increase due to embedded osteoblasts − apoptosis
Sclerostin is produced by osteocytes and inhibits the Wnt/β −catenin
pathway. Wnt is known to promote osteoblastic proliferation and
differentiation. We incorporate the effects of sclerostin and the Wnt/β −
catenin pathway into the mathematical model through a term of the form(

1− S
Ks

)
+

, where (x)+ = max(x, 0) and Ks is a parameter that

describes the relation between osteocyte apoptosis and decrease in
sclerostin inhibition. The idea is that, for a threshold level Ks of osteocytes,
there is sufficient sclerostin production to inhibit local Wnt signaling. When
osteocytes die, the sclerostin level decreases. This releases osteoblast
precursor cells from Wnt inhibition, thereby initiating a cycle of targeted
bone remodelling.

S number of OcYs and
B number of OB at a given time t

OcYs are mature OBs that become em-bedded in extracellular
matrix at a giv-en rate α1

γ31 effectiveness of OB autocrine signalling

Ks critical value of OcY population

γ31 effectiveness of OB autocrine signalling

δ rate of OcY apoptosis,
δ = 0 over the time scale of single event of targeted remodelling; the
most significant influence on osteocyte apoptosis is the initial
biomechanical action that begins remodelling (initial condition).

dBP
dt = α2Sγ21

(
1− S

Ks

)γ22

︸ ︷︷ ︸
paracrine promotion

+ α3Bγ32
P

(
1− S

Ks

)
+︸ ︷︷ ︸

autocrine promotion︸ ︷︷ ︸
pre−osteoblast dif ferentiation and proliferation

−

β1BP
ϕ12 Cϕ14︸ ︷︷ ︸

pre−osteoblast dif ferentiation to mature osteoblast

− δBP︸︷︷︸
apoptosis

(3)

change in pre− osteoblast = increase due to differentiation of stromal cells
(released fromsclerostin or exposure to growth factors) + proliferation of
pre− osteoblasts(autocrine signalling of Wnt and growth factor)
− differentiation to osteoblasts (growth factor) −apoptosis

BP number of pre-osteoblast (pOB) at a given time t

α2 differentiation rate of pre-osteoblast precursors from the large
pool of stem cells in response to signalling molecules produced
by OcY

α3 pre-osteoblast proliferation rate

β1 differentiation rate of pre-osteoblasts to become mature OBs

γ21 effectiveness of OcY paracrine signalling of pre-osteoblasts

γ22 effectiveness of sclerostin regulation of osteoblastogenesis

γ32 effectiveness of pre-osteoblast autocrine signalling

ϕ12 effectiveness of pre-osteoblast autocrine signalling of osteoblasts

ϕ14 effectiveness of OC paracrine signalling of pre−
osteoblasts (for example the effect of TGF− β on pre-osteoblasts)

δ rate of pre-osteoblasts apoptosis

dB
dt = β1BP

ϕ12 Cϕ14︸ ︷︷ ︸
pre− osteoblast di f f erentiated

to mature osteoblast

− β2Bϕ23︸ ︷︷ ︸
apoptosis

− α1Bγ31

(
1− S

Ks

)
+︸ ︷︷ ︸

embedding as osteocytes

(4)

change in osteoblast = increase due to differentiation of pre-osteoblast
(growth factors) — apoptosis — embedding as osteocytes

B number of OB at a given time t

ϕ23 effectiveness of OB autocrine signalling for apoptosis

β2 rate of OBs apoptosis
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Table 1. Cont.

Equation Interpretation Variable and Parameter Explanation

dC
dt = α4Sγ41 BP

γ42 (ε + B)γ43

(
1− S

Ks

)γ44

+︸ ︷︷ ︸
paracrine promotion

− β3Cϕ34︸ ︷︷ ︸
apoptosis

(5)

change in osteoclast = increase due to differentiation of pre−
osteoclast (due to RANKL and limited by OPG) − apoptosis.
The term (ε + B)γ43 represents the effect of OPG acting as a decoy receptor
for RANKL. In models of [6] without pre−
osteoblasts (BP = 0) , the parameter γ43 takes on a negative value, and
since for that case B has 0 as steady state value it is necessary to add a
sufficiently small number ε to avoid dividing by zero. This represents the
factor of production when B = 0.

ε(x) = 1+sgn(x)
2 =

 0 , i f x < 0
1/2, i f x = 0
1 , i f x > 0

 The Heaviside function is a

non-continuous function whose value is zero for a negative input and one
for a positive input. This explanation is from [9], however we did not use
this function in our stochastic system.

C number of OCs at a given time t

γ41 effectiveness of OcY paracrine signalling of OCs derived by
RANKL

γ42 effectiveness of pre-osteoblast paracrine signalling of osteoclasts

γ43 effectiveness of OB paracrine signalling of OCs

γ44 effectiveness of sclerostin regulation of osteoclastogenesis

β3 rate of OC cell death

ϕ34 effectiveness of OC autocrine signalling for apoptosis

ε Heaviside function

α4 differentiation rate of OCs precursor
dz
dt = k1v1 − k2v2 f or

vi =

{
ui − ui , i f ui > ui

0, i f ui ≤ ui

}
; u1 = B; u2 = C; i = 1, 2 (6)

Changes in bone mass = increase due to activity of osteoblasts−activity
of osteoclasts

z changes in bone mass (the total new bone content) over time
relative to the initial value of 100%

k1 normalized activities of bone formation and k2 normalized
activities of bone resorption

Critically, the problem stems from the direct use of differential equations that assume
a modelled population is large enough for a continuum hypothesis to approximately hold.
This hypothesis is obviously invalid at such small population sizes. Thus, for such low
numbers of cells, it is more correct to produce a discrete interaction model. Specifically, we
use a stochastic framework to simulate the creation and degradation, which encapsulates
the noisy features of individual cell division and death [22–26].

We could model the system using a chemical master equation (CME), which provides
an exact description of the evolution of the probabilities of the active species being in
a certain state. By deriving the CME, we ignore an individual’s specific positions and
velocity as the system is reduced to specifying only the populations and interactions
between them. Namely, we assume that space is not an issue we need to consider. As
such, the model explicitly assumes that any cellular population is within contact range of
any other; thus, interactions are rate limited, not diffusion limited. Although the general
CME can be derived, in most cases it has a high dimension and is nonlinear; thus, exact
solutions exist only in rare cases. However, it can be solved in the sense of using Stochastic
Simulation Algorithms (SSAs) to create statistically exact realizations of the system, where
averaging over many simulations is equivalent to solving the CME. Here, the solutions are
“statistically exact” in the sense that the ensemble distribution, produced through a very
large number of simulations, converges to a probability distribution that would be an exact
solution of the stochastic system.

The basic premise of an SSA is to sample paths from a derived probability distribution.
This is done by generating two random variables, one to define the time at which the next
reaction occurs and one to specify the reaction that occurs. Critically, we use the Law of
Mass Action to provide a correspondence between the deterministic rates of reaction (as
expressed by the differential equations) and the probabilistic rates used in the SSA. Thus,
we suppose that there are N reactions involving n species. The probability of a reaction
firing is proportional to the product of the sizes of the input populations. We consider here
the input populations of only those involved in the specific reaction. Intuitively, reactions
with higher rates are more likely to occur [26]. The reaction probabilities are known as
propensity functions, aj(u1, u2, . . . un), j = 1, . . . , N.

To calculate which reaction is going to fire individual reaction rates are normalized
by the total of all reaction rates, a0 = ∑N

j=1 aj, which converts the rate of each reaction
into a probability; thus, the cumulative sum of all reaction probabilities is 1. A uniformly
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distributed random number, U, is chosen from the interval [0, 1] and this number is
compared to the cumulative sum of the propensity functions. The reaction J (1 ≤ J ≤ N)
that is chosen to fire is defined to be the one that causes the cumulative sum of the
propensity functions to breach the random number (see Figure 1), in the following manner:

1
a0

∑ J−1
j=1 aj < U ≤ 1

a0
∑ J

j=1aj, (7)

Figure 1. Schematic diagram of how the next action in a stochastic simulation is calculated, a visual
representation of Equation (7). The rates of all actions (creation and degradation of OC and OB,
and/or OcY embedding) are calculated using the Law of Mass Action. These rates are then converted
to probabilities by dividing each one by their sum. While a uniformly distributed random number U
is chosen between zero and one it will allow the next action to occur, namely, “Degradation of OC”.

A similar manipulation, involving sampling from an appropriate Poisson distribution
that is created from the reaction rates, provides a probability distribution when this next
reaction occurs [23,25–29], namely, if we are currently at time t then the next reaction fires
at t + ∆t, where

∆t =
1
a0

ln
(

1
r

)
,

and r is a random number sampled from a uniform distribution on the interval (0,1). The
populations are then updated in accordance with the action that has occurred, the system
time is increased by the random time step, ∆t [23,26–29]. This process is then repeated
until the system time has reached a specified limit.

From system (1) we can extract the stochiometric creation and degradation relations,
and present their probabilistic analogues:

γi1u1 + γi2u2 + . . . + γinun
αi→ γi1u1 + γi2u2 + . . . + (γii + 1)ui + . . . + γinun, (8a)

ui
βi→ ∅, i = 1, 2, . . . , n, (8b)

where now we are considering the ui to be representatives of a population of discrete
individuals, rather than a continuous quantity. Further, the ∅ in Equation (8b) represents
degradation to a population that is not being considered, i.e., the population is being
eliminated. Note that the transition arrows used in Equations (8a) and (8b) do not represent
limits of functions. Rather, the arrows represent a change from one biological species to
another [29].

We use Equations (8a) and (8b) as examples of how to generate propensity functions.
Namely, the creation and degradation propensities would, respectively, be

ac
i = αi

n

∏
j=1

uj
(
uj − 1

)
. . .
(
uj − γij + 1

)
and ad

i = βui; i, j = 1, 2, . . . , n. (9)

In the next section, we present the results of stochastic simulations to demonstrate
that the model captures the required autocrine, paracrine, and synergistic characteristics of
bone remodelling.

The γij exponents are defined in terms of effectiveness in Table 1. However, in case
that a number of interacting cells is effective in producing a new cell of some type, this
is expressed as a factor, not as an exponent. Exponents usually model the number of
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interactions (or meetings or collisions etc.) involved in a transition. So, the γij’s model the
number of cells that (are required to) interact in order to produce a new cell, representing
in that way the effectiveness of the auto/paracrine signalling (interactions).

If we assume there is no external stimuli, then system (1) should eventually tend to a
stable steady state. Namely, the osteoclast and osteoblast populations are approximately
constant over time and the populations stay close to these steady states after any subsequent
small perturbations to the population sizes. Simultaneously, we want the system to be
sensitive to external influences. Thus, we would expect the parameterisation of the system
to cause it to lie near a bifurcation point, such that under standard conditions the system
would replicate the desired stability of the steady states, but under perturbed parameters
this stability to small perturbations would be lost [18]. However, operating near to a
bifurcation does pose risks that unexpected stimuli will cause the system’s steady states to
tend in pathological directions. Thus, in such a biological system there has to be a balance
of sensitivity, robustness, and state buffering.

Since it has been experimentally shown [30] that system (1) operates close to a region
of instability, it is reasonable to perform stochastic simulations of system (7), not only
because the dynamics are more accurate but also highlight how the noise can generate
fundamentally different dynamic behaviours.

Although parameter values exist in the literature, they are approximate and are
proposed to simplify and justify the model. Further, in all the literature, it is assumed
that the γij parameters are constant. However, in real bone remodeling processes, the
γij parameters may depend on time and other factors. Unfortunately, these parameters
cannot be directly measured and must be estimated. Thus, although initially we consider
constant parameters (which simplifies the mathematical treatment and gives a high level
of approximation but is useful as a benchmark for model validation), we later extend the
equation’s constant parameters to include an oscillatory temporal dependence. The idea of
this extension is based on the in vitro experiment of loaded OcYs cell cultures. Osteocytes
express RANKL (the ligand of receptor activator of nuclear factor κβ protein (RANK)) and a
macrophage-colony stimulating factor (M-CSF) to promote, and osteoprotegerin (OPG) and
nitric oxide (NO) to inhibit, OC formation and activity. OcYs also regulate bone formation
via the secretion of modulators of the Wnt signalling pathway. Prostaglandin E2 (PGE2),
NO, and adenosine triphosphate (ATP) act to activate wingless and Int-1 (Wnt) signalling,
whereas sclerostin, DKK1 (negative regulators of the Wnt/β-catenin pathway such as
Dick-Wnt/β–catenin Kopf 1-related protein 1 (DKK1)), and SFRP1 (secreted frizzled-
related protein 1, which is a competitive antagonist of Wnt ligand binding) all inhibit
Wnt signalling and subsequent osteoblast activity [6,12,13]. There is strong evidence
from in vitro experiments with single cells exposed to fluid shear flow and simultaneous
monitoring of Ca2+ [13] that mechanical stimulation of osteocytes activates Ca2+-dependent
contractions and enhances the production and release of extracellular vesicles containing
these bone regulatory proteins, suggesting a critical role for Ca2+-mediated OcYs signalling
in bone adaptation. Furthermore, it was reported that the frequencies of the load-induced
Ca2+ transients and cell actin contractions have not been found significantly different,
suggesting their coordination in response to mechanical load.

Based on these recent findings, we introduce the modification of the model by edit-
ing the power term γ31 to time-dependent oscillatory function γ31(1 + sin(θt)), which
represents a transduced signal of OcY, and inserting the mechanical periodic excitation
A(1− cos(θt)) to the responding OcYs into the following form:

dS
dt

= α1︸︷︷︸
OB embbeding rate

Bγ31(1+sin θt)
(

1− S
Ks

)
+
+ A(1− cos θt), (10)

Critically, the parameter values, which were derived using the deterministic equations,
defined in Table 2, often provide cellular populations that breach the expected upper
population limits in the stochastic simulations (that is 300 cells of OBs) (see the yellow
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lines in Figure 2A–C and Figure 3A). To counter this, we alter the equations in Table 1,
such that the B terms on the right-hand side of all equations are adapted to become 2B,
which usually (stochastically speaking) reduces the populations down to a biologically
expected size. Equivalent variations to the parameter values, rather than the kinetics, are
equally possible, namely, the factor of 2 would be combined with other parameters, leading
to slightly altered values. Here, however, we move forward with the simpler version of
altering the kinetics. Critically, the rescaling of B to 2B comes from an anthropic argument
of this is what is required to fit the data (or at least the order of magnitude). Thus, it
becomes a prediction of the model.

Table 2. Parameter values for the system in Table 1. Unless otherwise stated, these values are fixed across all simulations
and are taken from [9]. The unit of each parameter is taken to ensure that the output rate is on the scale of cells/day.

Parameter
Name α1

α2,α3,α4, β1,
β2, β3,δ Ks k1 k2

γ31, γ21, γ22 ,
γ32, γ41, γ42, γ44

γ43
ϕ12, ϕ14,
ϕ23, ϕ34

Parameter
value 0.5 0.1 200 0.7 0.015445 1 −1 1

Figure 2. (A) The number of osteocytes (OcY) is restricted to a maximum of 200 cells. (B) The number
of OcY is unrestricted and has small oscillations around a number of 200 but the number of OB has
unexpected increases up to 1200 cells, which is unrealistic during one cycle of bone remodelling.
(C) The same as (B), but the equations have been altered to ensure that OB does not spike beyond
600 such that the B terms on the right-hand side of all equations are adapted to become 2B. All
diagrams correspond to the same system of equations without external signalling. The same legend
shown in (A) left corresponds to all left diagrams, where S (blue line) represents OcYs dynamics,
P (red line) represents pOBs dynamics, B (yellow) represents OBs dynamics, and C (purple line)
represents OCs dynamics.
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Figure 3. External excitation disturbed the source of OcY numbers describing the number of affected
responding OcY in the BMU. (A) External periodic source (light blue line) that affects number of
active OcY (S line). (B) The equations have been altered to ensure that OB does not spike beyond 600,
such that the B terms on the right-hand side of all equations are adapted to become 2B. The same
legend shown at (A) left corresponds to the left diagram at (B), where S (blue line) represents OcYs
dynamics, P (red line) represents pOBs dynamics, B (yellow) represents OBs dynamics, C (purple
line) represents OCs dynamics, and Source function (pale blue line) corresponds to the external signal
that the responding OcYs receive.

We should note that we are note really interested in the role of specific parameter
values; rather, we are considering the influence of noise on models. The subject of our
next manuscript will be following this stochastic formulation as we will be able to then
define a probability distribution for each parameter value through fitting the model to
data. There are many ways that such distributions can be extracted [31], but our preferred
method would be to use a Bayesian approach, which supplies the confidence distribution
of a parameter dependent on the evidence we have [32]. These distributions will then allow
us to investigate the sensitivity of the model formulation. However, such work is outside
of our current scope.

The frequencies, θ, of the received and transduced signal are the same in both func-
tions but with some delay, represented as the phase shifting of π/2 or π in the following
simulations.

3. Results

The numerical calculation in deterministic system (1), i.e., (2)–(6), and the SSA of (7)
was performed firstly with the system of parameter values given in Table 2. These particular
values were chosen as they put the system in an “excitable state”, namely, the system undergoes
a large transient jump in population, before tending to the steady state values: OBss = (Bss) =
OCss = (Css) = pOBss = (BPss) = 1, OcYss = Sss = Ks = 180 after approximately one
hundred days. Using the algebraic computation software package, Maple [33], there are
no other real steady states within the parameter region of interest. Since there are no
interesting bifurcations near our point of interest, suggested by biological events, we do not
include a parameter sweep analysis. However, a more global investigation of theoretical
bifurcations is going to be investigated in future work. We got the same results with both
the deterministic and stochastic calculations, Figure 2A, as it was exactly illustrated in [9].
Figure 2A shows the dynamics of bone volume (green line, z% in time (days)) during a
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single event of targeted bone remodelling. Starting with zss = 100%, we notice that there is
first a resorption phase (decrease in zss) due to an increase in the osteoclast cell numbers; in
turn, this leads to a decrease in bone volume. The brief decrease phase is followed by a bone
formation phase because of increases in osteoblast cell number, so that we notice increase of
total bone content up to 100.1% (see Figure 2A). The bone turnover is completely balanced
if the amount of new bone formed equals the amount resorbed and z reaches 100%.

Mathematically, this corresponds to a steady-state value of bone mass. The steady-
state value for bone volume, denoted zssss, depends significantly on the parameter values as
it was claimed and shown in [9]. For instance, if the parameter values are such that there is
an imbalance of OBs and OCs, in favour of OBs, then there will be over remodelling. Since
this particular choice of values is more intuitive to describe the biological model of bone
remodelling and far from real experimental readouts, we continue with the same model
and in silico experiments but choosing different conditions, which better describe the same
biological event. We introduce OcY mechanosensitivity features and find that they also
considerably influence the dynamic of bone turnover. For instance, we ignore the positivity
restriction of the (1− S/Ks)+ term, where Ks is the osteocyte carrying capacity. The idea
in [9] was that there exists a threshold level, Ks, of osteocytes, such that, at this point, there
is sufficient sclerostin production to inhibit local Wnt signalling. When osteocytes die, due
to the micro damage, the sclerostin level decreases [3,5]. Hence, OcY apoptosis can be a
trigger for the next cycle to happen, as it was originally assumed in [9]. Specifically, in
Figure 2B, the simulations eventually stop when S = Ks, because the term (1− S/Ks)+ in
Equation (2) evaluates to zero and all dynamics stop, which is highly artificial. However,
going forward, we simply consider the production rate of S proportional to (1− S/Ks),
whether positive or negative. This means that the number of OcY is unrestricted and the
simulations are observed to have small oscillations around Ks = 200 cells per remodeling
cycle (blue line on diagrams of Figure 2B,C).

Basically, this means that we assume there are a certain number of OcY ready to
receive and send external signals and to open cell signalling channels in response to
loading [4,11,12]. Similarly, we showed that the total bone content, in general, can also be
controlled by considering the behaviour of OcYs mechanosensitivity (for instance, green
line rapidly increases in Figure 2B,C).

We extended our investigations and considered the modification of Equation (2) in
the form (10), i.e., by introducing OcYs reception and transduction of the external periodic
signal. We explored firstly the independent influence of the additional terms:

(1) The intensity A in Equation (10) that represents an external activator signal that
the responding OcY receives (Figure 3A,B);

(2) The periodic signalling that OcY send/receive and transduce from/to OB (Figure 4A,B).
An external source applied to OcY, the first case, introduced almost regular oscillatory

behaviour of the OcY (S, blue line; Figure 3A,B) and OB (B, yellow line; Figure 3A,B),
which is approximately in synchrony with the external signal (light blue line); however
the bone content represents over remodelling since it constantly increases beyond 100%.
The oscillatory changes in signalling parameter γ31(1 + sin θt), in the second case, cause
the modulation of the OcY signalling with increased amplification (amplitude boosts) that
corresponds to the maximal amplitude of the signalling changes (Figure 4).

Both additions of oscillatory phenomena give an increase of the total new bone content
z (green line on all diagrams), but in the first case, Figure 3, the increase is quite rapid
and biologically inexplicable. More realistic and acceptable is bone content increase in
the second case (Figure 4A,B), but in this case the behaviour of OBs (yellow line) and
preosteoblasts pOBs (red line) are unpredictable and unexpected. Furthermore, the bone
mass has a resorption phase (z% below 100%) of almost 70 days, which is not observed in
the case of biological experiments, where the resorption phase lasts for 20 days.

The aforementioned oscillations happen together in the real event of receiving, trans-
ducing, and sending signals, so we apply both signals at the same time (Figures 5–7). The
controlling parameter is the delay between receiving and transducing signals by the OcY
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so that Figure 5 corresponds to maximal delay (a phase difference of π), such that when the
external receiving signal is maximal there is no transduced signal and vice versa.

The simulation shown in Figure 6 is without a phase difference, the case when both
signals are simultaneous; Figure 7 represents the case with a small delay (a phase difference
of π/2) in the transduced signal, which is closer to real situation measured in the in vitro,
single-cell experiments [13]. In any of these three cases, the behaviour changes of OcY
are amplified periodically and followed with almost regular and synchronous changes in
OB behaviour; however, the total bone content still permanently increases. These changes
prove that signals sent to and from OcY enhance total bone mass, but still the engaged
number of present active OB is considerably large, above 400, which cannot be taken as
correct as we restricted our model to the size of the population active inside one BMU.

Figure 4. Oscillations in the external excitation effectiveness of OB autocrine signalling. (A) The
maroon-coloured line illustrates the signalling parameter changes with magnitude γ31 and causes
synchronized boosts (amplitude modulated signal) in the OcY numbers (S line). (B) The equations
have been altered to ensure that OB does not spike beyond 600 such that the B terms on the right-hand
side of all equations are adapted to become 2B. The same legend shown in (A) left corresponds
to the left diagram at (B), where S (blue line) represents OcYs dynamics, P (red line) represents
pOBs dynamics, B (yellow) represents OBs dynamics, C (purple line) represents OCs dynamics, and
Parameter function (Bordeaux line) corresponds to the signal that OcYs send to OB.
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Figure 5. External excitation to both the parameter and the source. (A) External periodic source (light
blue line) and parameter changes of magnitude γ31 (dark red line) with phase difference π. (B) The
equations have been altered to ensure that OB does not spike beyond 600, such that the B terms on
the right-hand side of all equations are adapted to become 2B. The same legends from Figures 3 and
4A are applicable to these left diagrams.

Figure 6. External excitation disturbed both to the parameter and to the source. (A) External periodic
source light blue line and parameter γ31 dark red line with phase difference 0. (B) The equations have
been altered to ensure that OB does not spike beyond 600, such that the B terms on the right-hand side
of all equations are adapted to become 2B. The same legends from Figures 3 and 4A are applicable to
these left diagrams.
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1 
 

 
Figure 7. External excitation to both the parameter and to the source. (A) External periodic source
light blue line and parameter γ31 dark red line with phase difference π/2. (B) The equations have
been altered to ensure that OB does not spike beyond 600, such that the B terms on the right-hand
side of all equations are adapted to become 2B.

Further, numerical experiments in Figure 8 demonstrate that we could control the
number of presented active cells by changing only the strength of the received signal.
Changes from A = 50, the value used for all simulations presented in Figures 2–7, to
A = 10, the simulation presented at Figure 8, allow us to control the number of involved
OB cells. Specifically, the value of OB cells density is around 200 per day in the biological
model of a single, targeted bone remodelling event; this is the exact value around which
OBs densities oscillates in Figure 8. Furthermore, to control the value of total bone content
changes, we can count on small changes in the normalized activities of the bone resorption
parameter k2. If the green line goes beyond its stationary value, zss = 100, we refer to it as
“over formation”, which is when the new bone content exceeds the amount of resorbed
old bone. This was the case in all in silico experiments presented in Figures 2–7. The green
line goes beyond zss = 100, except in the specific case when we changed the normalized
activities of bone resorption parameter k2 in the system. The value was changed only a
little, from k2 = 0.015445, taken from [9]. to k2 = 0.014.

These specific values of the parameters represent the situation of greater activity of
the OC at the starting stage of the bone formation process (purple line Figure 8C), followed
with the activity of the OB (yellow line), which illustrates a period of decline of z below
100% for about 50 days and after bone mass grows above 100%, which represents the
preferable influence of the appropriate transduction of an external periodic signal. These
results link us to an expected behaviour of bone cellular communication during one cycle
of forced bone remodelling.
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Figure 8. External excitation to both the parameter and the source with a reduced source strength A.
The equations have been altered to ensure that OB does not spike beyond 600, such that the B terms
on the right-hand side of all equations are adapted to become 2B. Previously, to all Figures 2–7, we
had a source strength of A = 50, multiplied by the sinusoidal wave. In this image the source strength
is A = 10. (A) Oscillatory external excitation in the source and transduced parameter γ31 with no
delay between signals. (B) External periodic source (light blue line) and parameter γ31 (dark red line)
out of synchronization by a factor of π/2. (C) Effect of reducing k2 from k2 = 0.015445 taken from [9]
to value k2 = 0.014, whilst keeping all other values the same.
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4. Discussion of Sensitivity

Keeping the same direction and continuing the previous analysis, we are now investi-
gating the sensitivity of the model to the changes in the amplitude of external excitation
applied to the osteocyte population in Equation (10), where we represent the additional
term of periodic excitation in the following form:

A
(

1 + sin (
2πt

F
− S)

)
(11)

where the amplitude A is varied from 10 to 70 in steps of 10, as it is shown in Figure 9,
from top to bottom, respectively. Generally, the frequency is F = 20 and the offset is S = 0;
the other parameters are the same as these of the system presented in Figure 8C. In this
section, we vary A to illustrate its effect on the output solutions. Having already established
stochastic analogue (8a) and (8b) of our deterministic model, we can find regions in the
state space of OB-OC for which the model output meets the optimum criterion of their
balanced activity. In the state space of interest, it should be represented as a limit cycle or
closed loop of number eight shape, indicating doubling of a period. Essentially, the same
sensitivity analysis can be performed with an analysis of variance (ANOVA), which is the
basis for the quasi Monte Carlo method of system output estimations of the uncertainties
of variables [34]. However, the variance-based methods take long processing time with
high computational costs for total effects indices [35]; our approach is much more effective
and efficient.

In Figure 9, each row represents a different parameter A value and the values are
stated on the y-axis of the graphs in the first column on the left. The left column illustrates
a single simulation of all trajectories. The next four columns show results obtained from
100 simulations. The second column from the left illustrates the evolution z when averaged
over the 100 simulations. The bold line is the mean and the error bars represent the results
plus, or minus, one standard error. The next three graphs illustrate the phase dynamics
of (OCy, OB), (OCy, OC), and (OC, OB), respectively. Specifically, each graph shows a
two-dimensional histogram representing all 100 simulations. The colour of the images
illustrates the density of the trajectories, namely, if a region is blue, the solution hardly
ever achieves these values. However, if a region is green, then the solution often visits
the values in this region. Critically, we note that if there are consistent oscillations (yellow
regions), we would expect to see loops appearing in the phase planes (doubling of yellow
regions). Equally, multiple ‘hot spots’ or green patches illustrate that the system can often
be found in different states, i.e., the system is not approximately stationary.

We observe that increasing A provides three dominant effects. Firstly, it causes z to
increase quicker over the 200 days (second column of Figure 9). Secondly, it causes the
range of OCy and OB values to increase (third column of Figure 9). Thirdly, it causes the
system to become more heavily entrained in the underlying oscillations, as we observe the
loop in the third column of Figure 9 becomes larger and clearer. Thus, not all magnitudes
of external loading are adequate for regular bone cell lineages activity. For instance, we can
find a local bone volume fraction increase beyond 106%, as in Figure 5 from [10], due to
the prostate-cancer induced biochemical changes. Such an increase in total bone content in
our simulations is present for the amplitude parameter larger than 30.

From the conducted analysis, for example shown in Figure 8, it is clear that the
frequency, F, and offset, S, can play a determining role in the deposition of new, remodelled
bone tissue. Having established our model of bone cell mechanotransduction, it is possible
to find an appropriate set of parameters that satisfy the necessary real conditions of the
biological event.
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Figure 9. A hundred simulations of the stochastic analogue of the bone remodelling
model focussing on varying the amplitude parameter of the external loading over the values
Aε{10, 20, 30, 40, 50, 60, 70}.

5. Conclusions

Osteocytes are recognized as playing a significant role in mechanosensation and
transduction of external signals to bone cells, which are engaged in bone remodelling.
Mathematical models of bone remodelling have been developed by several authors over the
last twenty years [6–9]. Critically, none of the homogenous S-System ODE models account
for the presence of external excitation signals. However, the evidence of external signals
reception, transduction, delivery, and importance are already experimentally detected
and partially clarified. Using the experimental evidence of Ca2+ periodical signalling of
OcYs [13], we presented a mathematical model of bone mechanobiology, which includes
externally periodic forced turnover. Further, we approached the modelling through both
deterministic and stochastic methods, which allow us to consider the intrinsic noisiness of
the discrete process.

We discovered that including oscillatory signals with small delays between the re-
ceived and send signal by OcY provides the closest matches between mathematical theory
and biology data. It is straightforward to conclude from Figure 8C where, after the period
of resorption (the depression of the green line below the steady-state), we observe a sig-
nificant activation of osteoblasts that results in a formation period (the green line is above
100%). Comparing the green line in Figure 8C with the green line in Figure 2A (which has
no over-formation), we demonstrate that under the influence of the external periodic signal,
the local formation of the newly remodelled bone will exceed the amount of resorbed old
bone. Furthermore, we investigated the relation between the strength of these two signals
and got satisfactory results when the received signal has a smaller value of amplitude. This
is our prediction from the model, which must be addressed experimentally. Namely, we
require experiments that explore the magnitudes of information that OcY receives and
exports. However, we showed that the steady-state value of total bone content changes
depending on the external excitation and also on the interplay of other parameter values
that influence the dynamics of the process. Using the algebraic computation software pack-
age, Maple, we obtained that used steady-state values are the only real steady states within
the parameter region of interest. However, it would be interesting and worthwhile to
explore the multiple steady states of the presented system with an equation with five ODEs
as the base parameters. This will be interesting to discuss in our next in silico research,
where we can also investigate the bifurcation regions and the interesting properties of the
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nonlinear dynamics of the forced S-System. This would give a suggestion for the region of
parameters for an applied external signal in a real biological experiment.
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