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Abstract: In this paper, a new generalized t (new Gt) distribution based on a distribution construction
approach is proposed and proved to be suitable for fitting both the data with high kurtosis and heavy
tail. The main innovation of this article consists of four parts. First of all, the main characteristics and
properties of this new distribution are outined. Secondly, we derive the explicit expression for the
moments of order statistics as well as its corresponding variance–covariance matrix. Thirdly, we focus
on the parameter estimation of this new Gt distribution and introduce several estimation methods,
such as a modified method of moments (MMOM), a maximum likelihood estimation (MLE) using
the EM algorithm, a novel iterative algorithm to acquire MLE, and improved probability weighted
moments (IPWM). Through simulation studies, it can be concluded that the IPWM estimation
performs better than the MLE using the EM algorithm and the MMOM in general. The newly-
proposed iterative algorithm has better performance than the EM algorithm when the sample
kurtosis is greater than 2.7. For four parameters of the new Gt distribution, a profile maximum
likelihood approach using the EM algorithm is developed to deal with the estimation problem and
obtain acceptable.

Keywords: generalized t distribution; order statistics; EM algorithm; improved PWM; parameter
estimation

1. Introduction

The generalized t (Gt) distribution was first proposed by McDonald and Newey
(1988) [1] to implement a partially adaptive regression models with the following probabil-
ity density function (pdf)

f (x; p, q) =
p

2q1/pB(1/p, q)

(
1 +
|x|p

q

)−(q+1/p)

, p, q > 0, (1)

where B(a, b) denotes the beta function. With the addition of two shape parameters, p, q,
the shape of the distribution becomes more flexibe so that it can fit a wider range of
data. Nadarajah (2008) [2] obtained the analytic expression of the cumulative distribution
function (cdf) through the incomplete beta function presented below

F(x; p, q) =
1
2

[
1 + sign(x)I1−(1+|x|p/q)−1

(
1
p

, q
)]

, (2)

where Ix(a, b) = 1
B(a,b)

∫ x
0 ta−1(1− t)b−1dt denotes the incomplete beta function.

With the passage of time, the generalized t distribution warrants special attention
by scholars and has been widely applied in several research areas. Galbraith and Zhu
(2010) [3] introduced a new class of asymmetric Student t distributions and illustrated their
applications in financial econometrics. Harvey and Lange (2017) [4] applied the generalized
t distribution in autoregressive conditional heteroscedasticity models. Furthermore, the
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generalized t distribution and its extension were involved in extensive research in the fields
of robust estimation and robust statistical models, such as [5–8].

As the types of data become more and more widespread, many different general-
ized t distributions have been proposed and the related properties have been studied in
depth. Arslan and Genç (2009) [9] obtained the skew-generalized t distribution through
the scale mixture of the skew-exponential power and generalized gamma distributions.
Venegas et al. (2012), [10] constructed a more flexible distribution by introducing skew
coefficients ε to fit a wider range of data. Papastathopoulos and and Tawn (2013) [11]
coined an extension of the Student’s t distribution that allows for a negative shape param-
eter. Acitas et al. (2015), [12] introduced an alpha-skew-generalized t distribution based
on a new skewing procedure, and presented the corresponding properties as well as the
estimation methods. Lak et al. (2019), [13] proposed a distribution with a variety of shape
variations, namely, the alpha-beta-skew-generalized t distribution, which contains several
well-known distributions and illustrated its usefulness by means of a real data analysis.
For Student’s t Birnbaum-Saunders distribution, we recommend [14,15].

Although there is plenty of literature on the generalized t distribution, two aspects
still need to be improved: (1) the type of data that previous distributions can be fitted to is
not wide enough; (2) for the flexibility of the shape, the distribution function is often very
complex, imposing limitations on the parameter estimation. To solve these two problems,
the new Gt distribution we propose will fit both the data with a heavier tail and with higher
kurtosis based on different shape parameters, with a more extensive application scope than
the generalized t distributions introduced before. In addition, our new Gt distribution will
make many classical estimation methods suitable for the parameter estimation problem of
this distribution.

In this paper, we coined a new Gt distribution based on the distribution construction
approach and denote it by NGt(µ, σ, α, β). The main innovation of this work consists of
four parts. Firstly, we investigate the main properties of the new Gt distribution, including
moments, skewness coefficients, kurtosis coefficients and random number generation.
Secondly, we derive explicit expressions for moments of order statistics as well as its
corresponding variance–covariance matrix through recurrence relations and distribution
transformation techniques when the shape parameter 1

β is either a real non-integer or an
integer. Thirdly, we established an EM-type algorithm and a novel iterative algorithm to
acquire the maximum likelihood estimation (MLE) of parameters for NGt(0, σ, α, β). The
explicit analytical expressions for the asymptotic variance–covariance matrix of MLE were
also presented based on the EM algorithm. Finally, we introduce improved probability-
weighted moments (IPWM) based on order statistics transformation and obtain the corre-
sponding algorithm to implement this novel method. For four parameters, NGt(µ, σ, α, β),
we propose a profile maximum likelihood approach (PLA) using the EM algorithm to deal
with the estimation problem.

The rest of this article is organized as follows. In Section 2, we investigate the ba-
sic properties of this new distribution and make a comparison with the Gt distribution
introduced by McDonald and Newey (1988) [1]. In Section 3, we derive explicit expres-
sions for moments of order statistics from this distribution. In Section 4, we focus on the
variance–covariance matrix of order statistics. In Section 5, several estimation methods
are considered. In Section 6, we conduct several simulation studies to illustrate the per-
formance of the proposed estimation method and compare these simulation results under
different parameter values and different sample sizes. In Section 7, a real data analysis is
performed to illustrate the feasibility of the new distribution we proposed. Discussions
and conclusions are presented in Section 8 and proofs are given in the Appendix A.

2. Basic Theorems and Properties

In this section, some basic definitions, theorems and properties for the new Gt distri-
bution are elucidated.
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The new Gt distribution contains many common distributions, such as the normal
distribution, the Laplace distribution, and the Pareto distribution. With the addition of two
shape parameters, the shape of the distribution becomes more flexible, which can fit data
having both heavy tails and high kurtosis.

Definition 1. Let the random variable X with the following pdf

fX(x; µ, σ, β) =
β

21+1/βΓ(1/β)σ
exp

{
− |x− µ|β

2σβ

}
, x ∈ R,

where Γ(· ) denotes the gamma function, µ ∈ R is a location parameter, σ > 0 is a scale parameter,
and β > 0 is a shape parameter. Then the random variable X is said to have a generalized normal
distribution and denoted by X ∼ GN(µ, σ, β).

The definition of the new Gt distribution (denoted by NGt(µ, σ, α, β)) is stated as
follows:

Definition 2. Let the random variable X− µ ∼ GN(0, σ, β) and Y ∼ Gamma(α, β). Supposing

X and Y are independent, we shall define T = X/Y
1
β ∼ NGt(µ, σ, α, β), where µ ∈ R is a location

parameter, σ > 0 is a scale parameter, and α, β > 0 are two shape parameters.

Theorem 1. The pdf of NGt(µ, σ, α, β) can be expressed as follows

gT(t; µ, σ, α, β) =
1

( 2
β )

1+ 1
β B(α, 1

β )σ

[
1 +

β|t− µ|β

2σβ

]−(α+ 1
β )

, t ∈ R.

Proof. See Appendix A.1 (Part I).

As is shown in the following two pictures (Figures 1 and 2), two shape parameters (α
and β) have a decisive effect on the shape of the density function. The density function has
a heavier tail with a smaller value of α and β, but it is the opposite when the parameters α
and β are larger. Furthermore, the shape parameter β plays a decisive role in the shape of
the distribution and the change of parameter α can control the tail behavior.

Figure 1. The pdf of the new Gt distribution for different values of β with fixed α = 3.
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Figure 2. The pdf of the new Gt distribution for different values of α with fixed β = 3.

Figures 3 and 4 vividly describe the feature that the new Gt distribution is more
suitable for fitting both the data with high kurtosis and with heavier tail than the Gt
distribution coined by McDonald and Newey (1988) [1] under appropriate parameter range
from two perspectives respectively.

It is well-known that the pdf with a steeper shape is suitable for fitting data with
high kurtosis, while a pdf with a smoother shape can be used for fitting heavy-tailed data.
Since these two distributions we compare are symmetric, we use the maximum value of
the pdf to characterize the steepness of its shape. Let K1(σ, α, β) and K2(σ, p, q) denote the
maximum value of the pdf of Gt distribution and new Gt distribution, respectively.

Since the value of σ has little effect on the value of K1(σ, α, β) and K2(σ, p, q), we may
assume that σ = 1. On the one hand, it is not very difficult to prove that, for a fixed β,
K1(σ, α, β) decreases monotonically with respect to α. Then we have: lim

α−→∞
K1(σ, α, β) −→

+∞, lim
α−→0+

K1(σ, α, β) −→ 0. For K2(σ, p, q), the interval of the shape parameters p, q are

(1, 10) and (0.1, 50), respectively. The reason for choosing these two ranges is that they
include possible values for parameters in practical applications. From Figure 3, we can
obviously find that the range of function K2(σ, p, q) is never greater than 1. This means
that we can only adjust the parameter σ to make the pdf of the Gt distribution have a
steeper shape. On the other hand, for fixed β and p, when α, q −→ 0+, both K1(σ, α, β) and
K2(σ, p, q) tend to 0 but K1(σ, α, β) has a faster convergence. This means that the pdf of
the new Gt distribution proposed by us has a heavier tail when the parameters are within
a reasonable range. Thus, the conclusion stated in the preceding paragraph is therefore
self-evident.

The pdf generated under different shape parameters can be divided into four cate-
gories according to different shapes and the tail behavior, i.e., steep in shape and with a
light tail, flat in shape and with a light tail, steep in shape and with a heavy tail, flat in
shape and with a heavy tail. As is depicted in Figure 4, the solid line denotes the new
Gt distribution, and the dashed line represents the previous Gt distribution defined by
McDonald and Newey (1988) [1]. The subfigure Figure 4a–d depicts the pdf of the Gt
distribution and the new Gt distribution under the above four categories with different
shape parameters, respectively. It can be seen from the figure that, if the parameter value
is in a reasonable range, the shape of the new Gt distribution is more flexible and more
suitable for fitting a wider range of data.
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(a) (b)

Figure 3. 3D plot for K2(1, p, q). (a) 1 ≤ p ≤ 10, 1 ≤ q ≤ 50. (b) 1 ≤ p ≤ 10, 0.1 ≤ q ≤ 1.

(a) (b)

(c) (d)

Figure 4. Comparison with the Gt distribution defined by McDonald and Newey.

Some important properties of the new Gt distribution are stated as follows:

Proposition 1. If Y|U = u ∼ GN(µ, σu−
1
β , β), and U ∼ Gamma(α, β), then Y ∼ NGt(µ, σ, α, β).

U|Y = y ∼ Gamma(α + 1
β , 1

β + |y−µ|β
2σβ ).

Proof. See Appendix A.1 (Part I).
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Proposition 2. If Y|U = u ∼ GN(µ, σ( β
2 u)−

1
β , β) and U ∼ χ2(2α), then Y ∼ NGt(µ, σ, α, β).

U|Y = y ∼ Gamma(α + 1
β , 1

2 + β|y−µ|β
4σβ ).

Proposition 3. If X ∼ Beta( 1
β , α), let Y = µ + σ ·W · (2Z)

1
β and Z = X

β(1−X)
, then Y ∼

NGt(µ, σ, α, β), where W is a random variable that only takes ±1 and satisfies P(W = 1) =
P(W = −1) = 1

2 .

From the above proposition, we can follow the following steps to generate random
samples from NGt(µ, σ, α, β):

1. Generate X ∼ Beta(1/β, α) and set Z = X
β(1−X)

.

2. Generate U ∼ U(0, 1).
if U ≤ 1

2 , set W = 1.
else set W = −1.

3. Set Y = µ + σW(2Z)
1
β and return Y.

Proposition 4. If T ∼ NGt(σ, α, β), we have
1. the 2k-th order moment of T is given by

E(X2k) =

(
2
β

) 2k
β Γ(α− 2k/β)Γ[(2k + 1)/β]

Γ(α)Γ(1/β)
σ2k, k = 1, 2, · · · ,

and the above equation exists for αβ > 2k. Furthermore, from the symmetry of the distribution, we
can conclude that E(X2k−1) = 0, k = 1, 2, . . . ,
2. the kurtosis coefficient of T is given by

G2(α, β) =
Γ(α)Γ(α− 4/β)Γ(1 + 1/β)Γ(5/β)

Γ2(α− 2/β)Γ2(3/β)
− 3 αβ > 4,

3. the mean deviation of T is given by

δ =
2σB(2/β, α− 1/β)

(2/β)1−1/βB(α, 1/β)β
, αβ > 1,

4. the shannon entropy is given by

E[− log(t)] =
(

1 +
1
β

)
log
(

2
β

)
+ log B

(
α,

1
β

)
+ log σ−

(
α +

1
β

)[
ϕ(α)− ϕ(α + 1/β)

]
,

5. the Rényi entropy is given by

ΥR(η) =
2B(1/β, ηα + (η − 1)/β)

(1− η)(2/β)η+(η−1)/β[B(α, 1/β)]ηση−1β
,

where ϕ(· ) denote the digamma function.

3. Moments of Order Statistics

In this section, we derive the explicit expression for moments of order statistics from
this distribution under the independent identically-distributed (IID) case and independent
not identically-distributed (INID) case when the shape parameters 1

β and α are both real

non-integer or 1
β is an integer.

It is well-known that order statistics has always been a significant field in statistical
research, especially in the study of distribution theory. In addition, it is necessary to study
the related properties of order statistics, since many classical parameter estimation methods
are based on the application of order statistics.
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3.1. The IID Case

In this subsection, we obtain explicit expression for moments of order statistics from
NGt(µ, σ, α, β) under IID case based on distribution transformation approach and recur-
rence relations when the shape parameter 1

β is either an integer or a real non-integer.

3.1.1. Shape Parameter 1
β Integer Case

Govindarajulu (1963) [16] pointed out that the k-th order moment of order statistics
from a symmetric distribution can be linearly expressed by the moments of the order
statistics from the corresponding folded distribution

2nδ
(k)
r:n =

r−1

∑
m=0

(
n
m

)
γ
(k)
r−m:n−m + (−1)k

n

∑
m=r

(
n
m

)
γ
(k)
m−r+1:m ,

where δ
(k)
r:n denotes the k-th moments of order statistics from symmetric distribution, while

γ
(k)
r:n denotes the k-th moments of order statistics from the corresponding folded distribution.

Without loss of generality, let µ = 0, σ = 1. Making transformation |T|
β

2 = Z, we can
derive the pdf of the random variable Z as follows

fZ(z; α, β) =
1

( 1
β )

1
β B(α, 1

β )
z

1
β−1

(1 + βz)−(α+
1
β ) , z > 0 (3)

Under the above transformation, the recurrence relations introduced by Govindarajulu
(1963) [16] becomes

Lemma 1.

2n− k
β µ

(k)
r:n =

r−1

∑
m=0

(
n
m

)
ν
(k)
r−m:n−m + (−1)k

n

∑
m=r

(
n
m

)
ν
(k)
m−r+1:m , (4)

where µ
(k)
r:n denotes the k-th moments of order statistics from NGt(0, 1, α, β) and ν

(k)
r:n denotes the

k-th moments of order statistics from the corresponding folded distribution FZ(z).

Proof. See Appendix A.2 (Part II).

Let α
(k)
r:n denote E(Zk

r:n), then ν
(k)
r:n = α

(k/β)
r:n . The cdf of the random variable Z can be

written as
FZ(z; α, β) =

1

( 1
β )

1
β B
(

α, 1
β

) ∫ z

0
y

1
β−1

(1 + βy)−(α+
1
β )dy

=
1

B
(

α, 1
β

) ∫ 1− 1
1+βz

0
y

1
β−1

(1− y)α−1dy ,

by binomial expansion we have

1− FZ(z) =
1

B
(

α, 1
β

) 1
β−1

∑
i=0

Ci
1

(1 + βz)α+i , (5)

where Ci = (−1)i(1/β−1
i ) 1

α+i .
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Let Hv(
1
β , p) denote the coefficient in the expansion of

[ 1
β−1

∑
i=0

Ci
1

(1+βy)i

]p

. Obviously,

the coefficients of this polynomial satisfy the following recursive relation

Hv

(
1
β

, p
)
=

v

∑
i=0

Ci Hv−i

(
1
β

, p− 1
)

,

and with the following constraints

Hv

(
1
β

, 1
)
= Cv , Hv

(
1
β

, 0
)
= 1 ,

we can cauculate every coefficient striaghtly. Then [1− FZ(z)]p can be expressed as

[1− FZ(z)]p =
1[

B
(

α, 1
β

)]p

( 1
β−1)p

∑
v=0

Hv

(
1
β

, p
)

1
(1 + βz)αp+v . (6)

It is noted that Equations (5) and (6) have similar forms, so the distribution FZ(z) is
said to have a minimum domains of attraction. With this conclusion, E(Zk

1:n) is derived
first. Through the traditional way, we obtain

E(Zk
1:n) = n

∫ +∞

0
zk[1− FZ(z)]n−1 f (z)dz

=
n( 1

β )
k[

B
(

α, 1
β

)]n

( 1
β−1)(n−1)

∑
v=0

Hv

(
1
β

, n− 1
)
× B

(
1
β
+ k, αn + v− k

)
,

and the above expression exists for k < αn.
After that, using the well-known recurrence relations from David and Nagaraja

(2003) [17] presented below

(n− r)ν(k)r:n + rν
(k)
r+1:n = nν

(k)
r:n−1 , (7)

where r = 1, · · · , n− 1, and k = 1, 2, · · · .
We acquire the k-th order moment of order statistics from the distribution FZ(z; α, β).

When the sample size is n, the method of obtaining all the k-th moments of order statistics
from NGt(0, 1, α, β) when 1

β is an integer can be briefly described as follows

1. Derive ν
(k)
i,j (1 ≤ i ≤ n, 1 ≤ j ≤ n) by using the above approach.

2. For 1 ≤ r ≤ [ n
2 ], derive µ

(k)
r:n by using the recurrence relations in Equation (4).

3. By using the symmetry of Gt distribution, the k-th moments of the remaining order

statistics can be calculated through µ
(k)
n−r+1:n = −µ

(k)
r:n .

Since this method makes full use of the characteristics of the distribution function and
recursive relations, it is very efficient and can avoid a lot of unnecessary calculations.

3.1.2. Shape Parameter 1
β or α Non-Integer Case

The generalized Kampe de Feriet function from Exton (1978) [18] is defined by
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FA:B
C:D ((a) : (b1); · · · ; (bn); (c) : (d1); · · · , (dn); x1, · · · , xn) =

∞

∑
m1=0

· · ·
∞

∑
mn=0

((a))m1+···+mn((b1))m1 · · · ((bn))mn

((c))m1+···+mn((d1))m1 · · · ((dn))mn

×
xm1

1 · · · x
mn
n

m1! · · ·mn!
,

where a = (a1, a2, · · · , aA), bi = (bi,1, bi,2, · · · , bi,B) for i = 1, 2, · · · , n, c = (c1, · · · , cC),
di = (di,1, · · · , di,D), or i = 1, 2, · · · , n and (( f ))k = (( f1, f2, · · · , fp))k = ( f1)k · · · ( fp)k,
( fi)k = fi( fi + 1) · · · ( fi + k− 1).

By using the above special function, we derive the following theorem:

Theorem 2. If the shape parameter α is a real non-integer, the k-th order moment of order statistics
Xr:n from NGt(0, 1, α, β) can be calculated by the following convergent expression

E(Xk
r:n) = Cr,n

[
I1(k, r− 1, n− r) + I2(k, r− 1, n− r)

]
,

where

I1(k, r− 1, n− r) =
2

k
β−n

( 1
β )

k
β

B
(

1
β , α

) r−1

∑
i=0

n−r

∑
j=0

(−1)j
(

r− 1
i

)(
n− r

j

)
A
(

k + 1
β

, α− k
β
− 1, i + j

)
,

I2(k, r− 1, n− r) = (−1)k
2

k
β−n

( 1
β )

k
β

B
(

1
β , α

) n−r

∑
i=0

r−1

∑
j=0

(−1)j
(

n− r
i

)(
r− 1

j

)
A
(

k + 1
β

, α− k
β
− 1, i + j

)
,

A
(

k + 1
β

, α− k
β
− 1, i + j

)
=

βi+jB
(

k+i+j+1
β , α− k

β

)
[

B
(

α, 1
β

)]i+j × F1:2
1:1

(
(

k + i + j + 1
β

) : (1− α,
1
β
); · · · ;

(1− α,
1
β
) : (α +

i + j + 1
β

) : (
1
β
+ 1); · · · ; (

1
β
+ 1) : 1; · · · ; 1)

)
,

Cr:n =
n!

(r− 1)!(n− r)!
.

Proof. See Appendix A.2 (Part II).

Theorem 3. If the shape parameter 1
β is a real non-integer, A

(
k+1

β , α− k
β − 1, i+ j

)
in Theorem 2

can be calculated by

A(
k + 1

β
, α− k

β
− 1, i + j) =

( 1
β )

k+1
β α−(i+j)[

B
(

α, 1
β

)]i+j B
(

k + 1
β

, α(i + j + 1)− k
β

)
× F1:2

1:1

(
(α(i + j + 1)− k

β
) :

(1− 1
β

, α); · · · ; (1− 1
β

, α) : (α(i + j + 1) +
1
β
) : (α + 1); · · · ; (α + 1) :

1; · · · 1
)

,

Proof. See Appendix A.2 (Part II).
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3.2. The INID Case

Suppose that X1, · · · , Xn are independent but not identical random samples from the
following pdf with the same shape parameter β but the rest of the parameters are different

gi(x) =
1

( 2
β )

1+ 1
β B
(

αi, 1
β

)
σi

[
1 +

β|t− µi|β

2σ
β
i

]−(αi+
1
β )

.

Theorem 4. If the shape parameter 1
β is a real non-integer, the m-th order moment of order statistics

Xr:n from NGt(0, 1, αi, β) can be calculated by the following convergent expression

µm
r:n =

[ n

∑
j=n−r+1

(−1)j−(n−r+1)
(

j− 1
n− r

)
+

n

∑
j=r

(−1)m+j−r
(

j− 1
r− 1

)]
I+j (m) ,

where

I+j (m) =
m2

m
β −1−j

j
∏

t=1
αit B(αit ,

1
β )

(
1
β

)m
β −1

B
(

m
β

,
j

∑
t=1

αit −
m
β

)
× F1:2

1:1

(
(

j

∑
t=1

αit −
m
β
) : (1− 1

β
, αi1); · · ·

; (1− 1
β

, αij) : (
j

∑
t=1

αit) : (αi1 + 1); · · · ; (αij + 1) : 1; · · · ; 1
)

, αit >
m
β

.

(8)

Proof. See Appendix A.2 (Part II).

4. Product Moments and Variance–Covariance Matrix of Order Statistics

In this section, we obtain explicit expressions for product moments and the correspond-
ing variance–covariance matrix of order statistics from this distribution based on recurrence
relations and distribution transformation when the shape parameter 1

β is an integer.
The covariance matrix of order statistics plays a big role in a number of estimation

methods based on order statistics, such as the least square estimation and the BLUE for
location-scale parameters. In addition, obtaining a covariance matrix of order statistics is
usually not an easy task and requires some related skills.

Under transformation |T|β
2 = Z introduced in the previous section, the recursive

relations for the product moment of order statistics from a symmetric distribution between
its corresponding folded distribution becomes

2n− k1+k2
β µ

(k1,k2)
r,s:n =

r−1

∑
m=0

(
n
m

)
ν
(k1,k2)
r−m,s−m:n−m + (−1)k1

s−1

∑
m=r

(
n
m

)
ν
(k1)
m−r+1:mν

(k2)
s−m:n−m

+(−1)k1+k2
n

∑
m=s

(
n
m

)
ν
(k1,k2)
m+1−s,m+1−r:m .

(9)

The cdf of the random variable Z is denoted by FZ(z) and suppose U, V ∼ FZ(z), then
let α

(k1,k2)
r,s:n denote E(Uk1

r:nVk2
s:n) (r ≤ s). Obsiviously, we can write that ν

(k1,k2)
r,s:n = α

(k1/β,k2/β)
r,s:n .

First of all, we decide to derive α
(k1,k2)
r,s:n . Taking the well-known expression of the

product moment of order statistics and then using the binomial expansion, we obtain

α
(k1,k2)
r,r+1:s = Cr,r+1:s

∫∫
0<x<y<+∞

xk1 yk2 [F(x)]r−1[1− F(y)]s−r−1 f (x) f (y)dxdy

= Cr,r+1:s

r−1

∑
i=0

(−1)i
(

r− 1
i

) ∫ +∞

0
xk1 [1− F(x)]i f (x)

( ∫ +∞

x
yk2 [1− F(y)]s−r−1 f (y)dy

)
dx

= Cr,r+1:s

r−1

∑
i=0

(−1)i
(

r− 1
i

)
I(k1, k2, i, s− r− 1) ,

(10)
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where
Cr,s:n =

s!
(r− 1)!(s− r− 1)!

.

After that, we attempt to derive the double integral I(k1, k2, i, s − r − 1). By the
multinomial theorem we have

[1− F(y)]s−r−1 =
1[

B
(

α, 1
β

)]s−r−1

(s−r−1)( 1
β−1)

∑
v=0

Hv

(
1
β

, s− r− 1
)
× (1 + βy)−[α(s−r−1)+v] .

We denote the inner integral
∫ +∞

x yk2 [1− F(y)]s−r−1 f (y)dy of the above double inte-
gral I(k1, k2, i, s− r− 1) by Tx(k2, s− r− 1) and it can be calculated as follows

Tx(k2, s− r− 1) =
( 1

β )
− 1

β[
B
(

α, 1
β

)]s−r

(s−r−1)( 1
β−1)

∑
v=0

Hv

(
1
β
− 1, s− r− 1

)
×
∫ +∞

x
yk2+

1
β−1

(1 + βy)−[α(s−r)+v+ 1
β ]dy

=
( 1

β )
k2[

B
(

α, 1
β

)]s−r

(s−r−1)( 1
β−1)

∑
v=0

Hv

(
1
β

, s− r− 1
)
×
∫ 1

βx
1+βx

wk2+
1
β−1

(1− w)α(s−r)+v−k2−1dw .

Notice that (k2 +
1
β − 1) is still a positive integer, then expanding the integrand on the

right hand side of the above expression in terms of (1− w), we acquire

Tx(k2, s− r− 1) =
( 1

β )
k2[

B
(

α, 1
β

)]s−r

(s−r−1)( 1
β−1)

∑
v=0

Hv

(
1
β

, s− r− 1
) k2+

1
β−1

∑
m=0

(−1)m

×
(

k2 +
1
β − 1

m

)
(1 + βx)−[α(s−r)+m+v−k2]

α(s− r) + m + v− k2
.

(11)

Using the fact that

[1− F(x)]i =
1[

B
(

α, 1
β

)]i

i( 1
β−1)

∑
u=0

Hu

(
1
β

, i
)
× (1 + βy)−(αi+u) , (12)

by putting Equations (11) and (12) into I(k1, k2, i, s− r− 1), we obtain

I(k1, k2, i, s− r− 1) =
( 1

β )
k1+k2[

B
(

α, 1
β

)]s−r+i+1

( 1
β−1)i

∑
u=0

(s−r−1)( 1
β−1)

∑
v=0

Hu

(
1
β

, i
)

Hv

(
1
β

, s− r− 1
)

×
k2+

1
β−1

∑
m=0

(
k2 +

1
β − 1

m

)
(−1)m

α(s− r) + m + v− k2

×B
[

k1 +
1
β

, α(s− r + i + 1) + m + u + v− k1 − k2

]
.

(13)

The above equation will exists for α > (k1 + k2)/2. Finally, using recurrence relations
from Arnold et al. (2008) [19]:

For any arbitray distribution and 1 ≤ p < q ≤ n

α
(k1,k2)
p,q:n =

q−1

∑
r=p

n

∑
s=n−q+r+1

(−1)s+n−p−q+1
(

r− 1
p− 1

)(
s− r− 1

n− q

)(
n
s

)
α
(k1,k2)
r,r+1:s , (14)
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we can derive a closed-form expression for every product moment and the corresponding
variance–covariance matrix of order statistics from FZ(z).

When the sample size is n, the method of obtaining all the product moments and variance–
covariance matrix for order statistics from NGt(µ, σ, α, β) can be briefly described as:

1. Derive ν
(k1,k2)
i,j:n (1 ≤ i ≤ j ≤ n) by using the above approach.

2. For 1 ≤ r ≤ [ n
2 ], r ≤ s ≤ n− r + 1, obtain µ

(k1,k2)
r,s:n by using recurrence relations in

Equation (9) and obtain the covariance σr,s:n by σr,s:n = µr,s:n − µr:nµs:n.
3. By using the symmetry of Gt distribution and the variance–covariance matrix, the

remaining covariance of order statistics can be calculated by σr,s:n = σn−s+1,n−r+1:n
and σr,s:n = σs,r:n.

5. Parameter Estimation

In this section, we propose several parameter estimation methods for the new
Gt distribution.

5.1. Modfied Method of Moments

In this subsection, a modified method of moments (MMOM) for the parameters of
NGt(0, σ, α, β) is proposed.

Let X1, . . . , Xn be a random sample from NGt(σ, α, β). Making transformation Y = |X|2,
the k-th theoretical central moments of Y are given by

E(Yk) =

(
2
β

) 2k
β Γ(α− 2k/β)Γ[(2k + 1)/β]

Γ(α)Γ(1/β)
σ2k, k = 1, 2, · · · ,

The MMEs of the new distribution after transformation can be obtained by equating
the first three theoretical central moments of Y with the corresponding central sample
moments. Eliminating the scale parameter σ, we acquire

[Γ(α)]Γ(α− 4/β)

[Γ(α− 2/β)]2
× [Γ(1/β)]Γ(5/β)

[Γ(3/β)]2
=

n ∑n
i=1 Y2

i
(∑n

i=1 Yi)2 , (15)

[Γ(α)]2Γ(α− 6/β)

[Γ(α− 2/β)]3
× [Γ(1/β)]2Γ(7/β)

[Γ(3/β)]3
=

n2 ∑n
i=1 Y3

i
(∑n

i=1 Yi)3 . (16)

In order to establish an effective algorithm to obtain the numerical solution of the
above equations, we propose the following theorem:

Theorem 5. Let

Gk(α, β) =
[Γ(α)]k−1Γ(α− 2k/β)

[Γ(α− 2/β)]k
× [Γ(1/β)]k−1Γ[(2k + 1)/β]

[Γ(3/β)]k
k > 2,

then we assert that Gk(α, β) is a monotonically-decreasing function of the parameters α and β. In
addition, the function has the following limiting properties

For f ixed α : lim
β−→2k/α+

Gk(α, β) = ∞ , lim
β−→+∞

Gk(α, β) =
3k/2
√

2k + 1
×

k
∏
i=1

Γ[i/(2k + 1)]

[Γ(1/3)]k[Γ(2/3)]k
.

For f ixed β : lim
α−→2k/β+

Gk(α, β) = ∞ , lim
α−→+∞

Gk(α, β) =
[Γ(1/β)]k−1Γ[(2k + 1)/β]

[Γ(3/β)]k
.

Proof. See Appendix A.3 (Part III).

With the above theorem, the steps of the algorithm are presented by the following forms
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1. Assign an initial values α(1), and then substitute α(1) into Equation (15). Since Gk(α, β)
is monotonically-decreasing with respect to parameter β, uniroot in the R function
can be used to derive β̂(1).

2. Substitute β̂(1) into Equation (16), since Gk(α, β) is monotonically-decreasing with
respect to parameter α, using uniroot in R function then we obtain α̂(2).

3. If the norm of vector (α̂(i+1) − α̂(i), β̂(i+1) − β̂(i)) exceed the prescribed value ε > 0,
then 2–3 are repeated. Otherwise, the iteration is broken up and the values generated
in the last iteration are determined to be estimates of the shape parameters α and β.

5.2. MLE Using the EM Algorithm

In this subsection, an EM-type algorithm to determine the MLEs for the parameters of
NGt(0, σ, α, β) is established.

Through the method of distribution construction, the pdf of the new Gt distribution is
treated as a marginal pdf of a bivariate distribution and this bivariate distribution function
can be expressed as the product of two common distributions. After that, we treat one
random variable in the bivariate distribution as an observed variable, while the other
as an unobserved variable, so that the EM algorithm can be applied to obtain the MLE.
At the same time, this idea is also widely used to derive the MLE of other distributions.
See [15,20,21] for more details about recent works in this topic.

First proposed by Dempster (1977) [22], the EM algorithm is a powerful tool to deal
with estimation problem under missing data situation. In this subsection, we are going
to use the EM algorithm to acquire the MLEs of NGt(σ, α, β) based on Proposition 2. Let
Y = (y1, . . . , yn)T denote the observed data, U = (u1, . . . , un)T on behalf of the unobserved
data. Combining Y and U together we derive the complete data denoted by Z = (Y, U).
Besides that, let θ = (σ, α, β)T represent the vector of parameters. Invoking Proposition 2,
the complete log-likelihood function can be expressed as follows

ln L(θ|Z) = n
[(

1 +
1
β

)
ln β−

(
1 +

2
β
+ α

)
ln 2− ln Γ(

1
β
)− ln Γ(α)− ln σ

]
+

(
α +

1
β
− 1
) n

∑
i=1

ln ui −
β

4σβ

n

∑
i=1
|yi|βui −

1
2

n

∑
i=1

ui .
(17)

It is well-known that the EM framework is an iterative algorithm consisting of two
steps; namely, the expectation step (E-step) and the maximization step (M-step).

E-step: Given the observed data set Y = (y1, . . . , yn) and parameter estimation values
θ(h) for the h-th iteration, the conditional expectation of the complete log-likelihood function
can be calculated as follows

Q(θ|θ(h)) = E[ln L(θ|Z)|Y, θ(h)] = n
[(

1 +
1
β

)
ln β−

(
1 +

2
β
+ α

)
ln 2− ln Γ(

1
β
)− ln Γ(α)− ln σ

]
+

(
α +

1
β
− 1
) n

∑
i=1

E[ln ui|yi, θ(h)]−
β

4σβ

n

∑
i=1
|yi|βE[ui|yi, θ(h)]

−1
2

n

∑
i=1

E[ui|yi, θ(h)] ,

where

E[ui|yi, θ(h)] =
4σ

β(h)
(h) (α(h) + 1/β(h))

2σ
β(h)
(h) + β(h)|yi|β(h)

,

E[ln ui|yi, θ(h)] = ϕ

(
α(h) +

1
β(h)

)
− ln

(
1
2
+

β(h)|yi|β(h)

4σ
β(h)
(h)

)
.

In the EM algorithm, the M-step needs to maximize the conditional expectation
obtained by E-step and the suggested framework can be briefly described as follows
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1. Update α(h+1) through the following nonlinear equation and the corresponding
numerical procedures is recommended for uniroot in R program.

∂Q(θ|θ(h))
∂α

= n[ ϕ(α) + ln 2 ]−
n

∑
i=1

E[ln ui|yi, θ(h)] .

2. Update σ(h+1) through the following explicit expression

σ(h+1) =

( β2
(h)

4n

) 1
β(h)
( n

∑
i=1
|yi|β(h)E[ui|yi, σ(h), α(h+1), β(h)]

) 1
β(h)

.

3. Update β(h+1) by maximizing the observed data log-likelihood function

β(h+1) = arg max
β

n

∑
i=1

Q(θ|σ(h+1), α(h+1), β ) .

For the initial values θ0 = (σ0, α0, β0), we recommend conducting numerical proce-
dures such as optim in R program for maximizing the corresponding likelihood function
or using the estimation values from the method of moments.

5.3. Explicit Expressions for Asymptotic Variances and Covariances of the Estimates under the
EM Algorithm

In this subsection, we obtain closed-form expression for the asymptotic variances and
covariances of the estimates under the EM algorithm. Louis (1982) [23] coined the missing
information principle to acquire an information matrix in a situation containing latent
variables. This principle is given by

Observed information = Complete information−Missing information .

In the following paper, we will denote the complete, observed and missing informa-
tion by IZ(θ), IY(θ) and I(U|Y)(θ), respectively. Then the observed information IY(θ) is
calculated by:

IY(θ) = IZ(θ)− I(U|Y)(θ) .

5.3.1. Complete Information Matrix IZ(θ)

Taking the second-order partial derivatives of the complete log-likelihood function
in Equation (17) and applying the definition of the fisher information, then after some
calculation, we obtain

IZ
11 =

nβ

σ2 , IZ
22 = nϕ′(α) , IZ

12 = IZ
21 = IZ

23 = IZ
32 = 0 ,

IZ
13 = IZ

31 = − n
σβ

+
β2

4σ
nT1(α, β) +

nβ
1
β

2
1
β B(α, 1/β)

,

IZ
33 =

2n
β3

[
− ln β + (1 + β) + 2 ln 2 + ϕ(

1
β
)

]
+

n
β2

[
1
β
− 1 +

ϕ( 1
β )

β2

]
− 2

β3 n
[

ϕ(α) +
ln 2
2α

]
+

n
2

T1(α, β) +
βn
4

T2(α, β) ,

where

T1(α, β) =
4
β3

[
ϕ(1 +

1
β
)− ln

β

2
− ϕ(α)

]
,
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T2(α, β) =
2
β3

{[
ϕ

(
1 +

1
β

)]2

+
1
β2 ϕ′

(
1 +

1
β

)}
+

8
β3

[
ϕ

(
1 +

1
β

)
ln

β

2
+ ϕ

(
1 +

1
β

)
ϕ(α)

]}
+

4
β3

{
(

β

2
)2 + [ϕ(α)]2 + ϕ′(α) + 2ϕ(α) ln

β

2

}
.

The second-order partial derivatives of the complete likelihood function and the
calculation method of the complete information are shown in the Appendix A.3 (Part III).

5.3.2. Missing Information Matrix I(U|Y)(θ)

From Proposition 2, the logarithm of the joint density function of latent variable U
given Y can be written as

ln fU|Y(u|y) =
n

∑
i=1

(
α +

1
β

)
ln
(

1
2
+

β|yi|
4σβ

)
− nΓ(α + 1/β) +

(
α +

1
β
− 1
) n

∑
i=1

ln Ui −
n

∑
i=1

(
1
2
+

β|yi|
4σβ

)
Ui .

After taking the second-order partial derivatives with respect to σ, α and β, and
utilizing the results in Section 5.2, the elements of the missing information matrix I(U|Y)(θ)
are presented as follows

I(U|Y)11 = −β(α + 1)
n

∑
i=1

{
|yi|[2(β + 1)σβ + β|yi|2]

2σβ+1 + βσ|yi|2
− |yi|(β + 1)

σ2(2σβ + β|yi|β)

}
,

I(U|Y)12 = I(U|Y)21 = −
n

∑
i=1

β2|yi|
2σβ+1 + βσ|yi|

,

I(U|Y)13 = I(U|Y)31 = −
n

∑
i=1

|yi|
2σβ+1 + βσ|yi|

+ (α +
1
β
)

n

∑
i=1

2β|yi|(2σβ+1 + βσ|yi|)− β2|yi|(2σβ+1 ln σ + σ|yi|)
(2σβ+1 + βσ|yi|)2

+
2β|yi| − β2σ|yi|lnσ

4σβ+1 ,

I(U|Y)22 = n
∂2Γ(α + 1/β)

∂α2 ,

I(U|Y)23 = I(U|Y)32 = −|yi|(1− β ln σ)

2σβ + β|yi|
+

n
β4 ϕ′(α + 1/β) ,

I(U|Y)33 = − 2
β2

n

∑
i=1

ln
(

1
2
+

β|yi|
4σβ

)
+

n

∑
i=1

|yi|
2σβ+1 + βσ|yi|

+
1
β2

n

∑
i=1

|yi|(1− β ln σ)

2σβ + β|yi|
+

(
2n
β3 +

n
β4

)
∂Γ(α + 1/β)

∂β

+

(
α +

1
β

) n

∑
i=1

[
|yi|[(2σβ + β|yi|) ln σ + (2σβ ln σ + |yi|)|yi|(1− β ln σ)]

(2σβ + β|yi|)2 +
|yi|(2− β ln σ)

2σβ + β|yi|β

]
−2n

β3

[
ϕ

(
α +

1
β

)
− ln

(
1
2
+

β|yi|
4σβ

)]
.

5.4. MLE via a New Iterative Algorithm

In this subsection, we propose a new iterative algorithm to obtain the MLEs for the param-
eters of NGt(0, σ, α, β) because of the difficulty of sloving the estimation equations directly.

Let X1, · · · , Xn be a random sample from NGt(0, σ, α, β), and the log-likelihood func-
tion is given by

ln L(X; σ, α, β) = −n(1 + 1/β) ln(2/β)− n ln B(α, 1/β)− n ln σ−
(

α +
1
β

) n

∑
i=1

ln
[

1 +
β|xi|β

2σβ

]
.

With partial derivatives respect to (σ, α, σ), we obtain
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∂ln L(X; σ, α, β)

∂σ
= n− (αβ + 1)

n

∑
i=1

β|xi|β

2σβ + β|xi|β
,

∂ln L(X; σ, α, β)

∂α
= n

[
ϕ(α + 1/β)− ϕ(α)

]
−

n

∑
i=1

ln
[

1 +
β|xi|β

2σβ

]
,

∂ln L(X; σ, α, β)

∂β
= n ln(2/β) + nβ(1 + 1/β)− n

[
ϕ(α + 1/β)− ϕ(1/β)

]
+

n

∑
i=1

ln
[

1 +
β|xi|β

2σβ

]

−β(αβ + 1)
n

∑
i=1

(
|xi|β + β|xi|β ln(|xi|/σ)

)
2σβ + β|xi|β

.

(18)

Instead of sloving all three preceding equations simultaneously, we propose a new algo-
rithm because of the complexity of the third equation of Equation (18). In order to establish
the new approach, the following lemma is necessary

Lemma 2. For any fixed β, the following equations
n− (αβ + 1)

n

∑
i=1

β|xi|β

2σβ + β|xi|β
= 0 ,

n
[

ϕ(α + 1/β)− ϕ(α)

]
−

n

∑
i=1

ln
[

1 +
β|xi|β

2σβ

]
= 0 ,

(19)

always possess a convergent solution of parameter (σ, α) and is independent of the initial values
(σ0, α0).

Proof. See Appendix A.3 (Part III).

Moreover, the algorithm for obtaining the solution of the equation in Lemma 2 is
shown below

1. Given arbitrary initial values (σ(0), α(0)) and σ(0) > 0, α(0) > 0.
2. Substitute α(0) into the first equation of Equation (19), and we obtain σ(1) .
3. Substitute σ(1) into the second equation of Equation (19), and we obtain α(1) .
4. If the norm of vector (σ(h+1) − σ(h), α(h+1) − α(h)) exceed the prescribed value ε > 0,

then 2–3 are repeated. Otherwise, the iteration is broken up and the values generated
in the last iteration are determined to be solution of this equation.

In what follows, the new algorithm to acquire the solution of Equation (18) can be
briefly described as

1. Give an appropriate interval for the shape parameter β, and then generate a set of
values of this parameter at an appropriate distance within the interval and represent
the j-th element of this vector by β(j).

2. Assigning β(j) into the first two equations of Equation (18)and applying Lemma 2,
we can obtain their convergence solution denoted by (σ(j), α(j)).

3. Repeat this procedure and observe the sign-changing in the left-hand side of the third
equation of Equation (18). Then, by interpolating on β values, we derive the final
estimate β̂MLE, which makes the third equation equals to 0 or sufficiently close to 0.
Finally, by substituting β̂MLE into the first two equations of Equation (18), we derive
the final estimates denoted by (σ̂MLE, α̂MLE).

It is noteworthy that this algorithm is applicable when the sample kurtosis is greater
than 2.7. Comparing with other numerical methods, our new algorithm requires less
precision of initial values (σ0, α0) and can obtain convergent solutions.
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5.5. An Improved PWM Estimation

In this subsection, we propose an improved PWM (IPWM) estimation based on order
statistics transformation for NGt(0, σ, α, β) and develop the corresponding algorithm to
implement this novel method.

PWM estimation is a very effective and commonly used method for parameter es-
timation of distributions with heavy tails. Among many parameter estimation methods
proposed so far, PWM and MLE are the two most commonly-used methods that have
similar priority.

Let X1, · · · , Xn be a random sample from NGt(0, σ, α, β) and X1:n ≤ · · · ≤ Xn:n
behalf of the corresponding order statistics. The traditional theoretical PWM was intro-
duced by Greenwood et al. [24] as an alternative to the method of moments given in the
following equation

Mp,r,s(x) = E{Xp[G(x)]r[1− G(x)]s}, r = 0, 1, · · · , s = 0, 1, . . . .

Taking p = 1, s = 0, the moments become M1,r,0(x) denoted by βr. Wang (1990) [25]
obtained an unbiased estimator of βr through linear combination of order statistics as
follows

br =
1
n

(
n− 1

r

)−1 n

∑
i=1

(
i− 1

r

)
xi:n , r = 0, 1, · · · .

However, applying the traditional PWM directly can cause many problems due to the
complexity of the distribution function. For example, intricacy expressions of the theoretical
PWM will make the estimation equation tedious and difficult to be numerically optimized,
thus impeding the use of this estimation method. As a result, we decide to make isotone
transformation Y = σX. After this monotone transformation, the estimation equation
becomes simple and easy to solve by a numerical approach. The improved theoretical
PWM (denoted by MY

1,r,0) under this transformation is given by

βY
r = MY

1,r,0 = E{Y[G(y)]r}, r = 0, 1, · · · . (20)

The corresponding improved sample PWM (denoted by bY
r ) is defined as follows

bY
r =

1
n

(
n− 1

r

)−1 n

∑
i=1

(
i− 1

r

)
yi:n , r = 0, 1, · · · , (21)

where yi:n = σ̃xi:n and σ̃ is an initial guess of the scale parameter σ.
From Equation (20), we can derive the 2–5th improved theoretical PWM as follows

βY
1 =

( 2
β )

1
β

2B(α, 1
β )

∫ 1

0
z

2
β−1

(1− z)α− 1
β−1 Iz

(
1
β

, α

)
dz ,

βY
2 = βY

1 ,

βY
3 =

21/β−3( 1
β )

1
β

B(α, 1
β )

{ ∫ 1

0
z

2
β−1

(1− z)α− 1
β−1 Iz

(
1
β

, α

)
dz + 3

∫ 1

0
z

2
β−1

(1− z)α− 1
β−1
[

Iz

(
1
β

, α

)]3

dz
}

,

βY
4 =

21/β−2( 1
β )

1
β

B(α, 1
β )

{ ∫ 1

0
z

2
β−1

(1− z)α− 1
β−1 Iz

(
1
β

, α

)
dz +

∫ 1

0
z

2
β−1

(1− z)α− 1
β−1
[

Iz

(
1
β

, α

)]3

dz
}

.

According to the traditional idea of the method of moments, let the improved theoretical
PWM βY

3 , βY
4 equal to the corresponding improved sample PWM. Then we can obtain

an equation set whose solution is the estimation of the unknown parameters. Due to the
complexity of these equations, we transform the search for the solution of this equation
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set into an optimization problem and acquire the simultaneous estimation of the shape
parameters denoted by α̂PWM, β̂PWM through minimizing the following expression to
avoid failures during optimization

(α̂PWM, β̂PWM) = arg min
(α,β)

(
βY

3 + βY
4 − bY

3 − bY
4

)2

. (22)

Numerical techniques are recommended, such as the optim function in R program
and the method will be chosen for L− BFGS− B.

Finally, the estimation of the scale parameter σ̂PWM can be obtained through the first
original sample PWM of the random variable X with analytical expression given by the
following equation

σ̂PWM =
2b1B(α̂PWM, 1/β̂PWM)

( 2
β̂PWM

)1/β̂PWM
∫ 1

0 u2/β̂PWM−1(1− u)α̂PWM−β̂PWM−1 Iu(1/β̂PWM, α̂PWM)du
. (23)

In the study, we found that the estimation results are sensitive to the choice of the
initial guess σ̃. Therefore, we introduce the following two methods to discuss the choice of
this parameter.

Method1 (A two step estimation method)

1. Take a consistent estimate of parameter σ as the initial guess of it, such as MLE.
2. Substitute this estimate value σ̂ into Equation (22) then we derive the improved

PWM-estimation of the two shape parameters. The estimation for the scale paramter
σ can be obtained through Equation (23).

Through this method, considering that it is relatively fixed to select the value of
parameter σ̃, and the final estimations are largely dependent on this parameter, sometimes
it is inevitable that the fixed parameter σ̃ does not apply to all samples. As a result,
we establish the following algorithm, which can flexibly select the parameter σ̃ and the
suggested framework can be briefly described as:

Method2 (A selection algorithm)

1. Give an appropriate interval for the parameter σ̃, generate a set of σ̃ at appropriate
distance within the interval and represent the h-th element of the vector by σ̃(h).

2. Substitute each σ̃(h) into Equation (22) to acquire simultaneously estimation for two

shape parameters denoted by α̂
(h)
PWM and β̂

(h)
PWM. After that, cauculate the correspond-

ing original 6th theroetical PWM-kuritosis through the following equation

Tk(α̂
(h)
PWM, β̂

(h)
PWM) =

∫ 1

0
u

2

β̂
(h)
PWM

−1
(1− u)

α̂
(h)
PWM−

1

β̂
(h)
PWM

−1[
Iu

(
1

β̂
(h)
PWM

, α̂
(h)
PWM

)]k

du ,

τ
(h)PWM
6 =

T1(α̂
(h)
PWM, β̂

(h)
PWM) + 2T3(α̂

(h)
PWM, β̂

(h)
PWM) + T5(α̂

(h)
PWM, β̂

(h)
PWM)

T1(α̂
(h)
PWM, β̂

(h)
PWM)

.

3. Repeate 2 and cauculate qPWM(σ̃)(h) = |τ
(h)PWM
6 − M̂X

1,0,5/M̂X
1,0,1| (M̂X

1,0,5 and M̂X
1,0,1

denote the original 6th and 2th sample PWM of the random variable X, respectively).
Then, interpolate on σ̃ values and derive σ̆ that minimize qPWM(σ̃).

4. Substituting σ̆ into Equation (22) we derive the final estimation for two shape param-
eters and final estimation for σ can be obtained form Equation (23).

5.6. Parameter Estimation of NGt(µ, σ, α, β) (µ 6= 0)

In this subsection, we propose a profile maximum likelihood approach (PLA) using
the EM algorithm to cope with parameter estimation for the new Gt distribution with
four parameters.
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In fitting problems with the distribution of data with better symmetry, three factors
are usually comprehensively scrutinized, namely location information, scale parameters,
and shape parameters. Therefore, with the addition of the location parameter, we focus on
parameter estimation problem of NGt(µ, σ, α, β).

Balakrishnan (2019) [20] applied this approach to determine the MLEs for the pa-
rameters of Student’s t Birnbaum-Saunders distribution. As Balakrishnan points out, this
method is an example of an exhaustive search. Due to the addition of location parameter µ,
the estimation equation becomes very complicated. To overcome this difficulty, µ can be
assumed as a natural number through profile likelihood approach, reducing the dimension
of the problem with four parameters to that with three. Then the EM algorithm for the
three-parameter case described in the preceding chapter comes in handy here.

Let Y1, . . . , Yn be a random sample from NGt(µ, σ, α, β). In this case, the log-likelihood
function is given by

ln L(y|µ, σ, α, β) = −n(1 + 1/β) ln(2/β)− n ln B(α, 1/β)− n ln σ−
(

α +
1
β

) n

∑
i=1

ln
[

1 +
β|yi − µ|β

2σβ

]
.

Since β|yi−µ|β
2σβ+β|yi−µ|β < ln(1 + yi) <

β|yi−µ|β
2σβ , we can assert that the likelihood function

L(µ) is bounded when the parameter (σ, α, β) are fixed.
A suggested framework for the PLA using the EM algorithm is briefly described

as follows:

1. Give an appropriate interval for the location parameter µ. Then generate a set of µ at
appropriate distance within the interval and represent the j-th element of the vector
by µ(j).

2. Substitute each µ(j) in the log-likelihood function and implement the EM algorithm
to derive the MLEs of (σ, α, β).

3. Repeating this procedure, and then interpolating on µ values, we obtain a curve of
values of the log-likelihood function and choose the value of µ that maximizes the
curve as µ̂MLE.

4. Substitute µ̂MLE in the log-likelihood function and implement the EM algorithm to
determine the final MLEs denoted by (σ̂MLE, α̂MLE, β̂MLE).

Figure 5. Curve of values of the log-likelihood function under sample size n = 50.

The implementation for the EM algorithm is similar to Section 5.2, just replace all the
|yi| in the partial derivative of σ, α, β and the integral with |yi − µ̂MLE|. The trace of the
log-likelihood function is depicted in Figure 5. Through simulation research, we find that
this algorithm performs well for α > β and is more accurate and stable than using the
sample mean as the estimation of the location parameter µ directly under a small sample
size.
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6. Simulation Study

In this section, we conduct a simulation study to illustrate the performance of the pro-
posed estimation methods and compare these simulation results under different parameter
values and different sample sizes.

According to the actual demand, the sample size will be chosen for 25, 50, 100 and
200. We perform Monte Carlo simulations and evaluate the performance of the considered
methods through relative bias (RB) and relative mean-square errors (RMSE). These two
indicators will be computed with 5000 replications at the same time and they are defined
as follows

RB(θ̂) =
1
N

N

∑
i=1

θ̂i
θi

,

RMSE(θ̂) =
1
N

N

∑
i=1

[
θ̂i
θi
− RB(θ̂)

]
.

This section will be detailed in three parts. First of all, we conduct a comparative
study for three different estimation methods (MMOM, MLE using the EM algorithm and
IPWM) of NGt(0, σ, α, β). We mainly study the influence of shape parameter β on the
performance of these methods. As a result, we fix σ = 1, α = 3, and β will be chosen
for 2, 3, 4, respectively. To show the comparison more vividly, we draw the following
pictures (Figures 6–8) and the estimated values of these three parameters are shown in
Appendix A.4 (Part IV).

It can be seen that the two indicators RB and RMSE of these three estimation methods
gradually decrease with the increase of sample size. As the value of the shape parameter,
β, increases, the estimation accuracy of the IPWM and the MLE using the EM algorithm for
shape parameter α gradually becomes better. Meanwhile, we can conclude that the IPWM
performs best for both accuracy and stability, especially for the distribution has a heavier
tail, while the MLE using the EM algorithm is the second on the whole. The performance
of these two methods is comparable under a large sample size or high theoretical kurtosis.
Furthermore, the IPWM is suitable for distributions with heavy tails and the MLE using the
EM algorithm can become an alternative estimation method for steep-shaped distributions
or under large sample size.

Second, a comparative study of the MLE using the EM algorithm and the MLE via a
new iterative algorithm with sample kurtosis more than 2.7 is considered. The numerical
results are presented in Table 1 for fixed µ = 0, σ = 1, α = 3, β = 3.

Table 1. RB, RMSE and estimated values (in parentheses) of (σ, α, β).

Sample Size
MLE Using the EM Algorithm MLE via a New Iterative Algorithm

RB RB
σ α β σ α β

n = 25 0.8788 (0.879) 1.3800 (4.14) 1.2524 (3.757) 0.7235 (0.724) 0.7337 (2.201) 1.1098 (3.323)
n = 50 0.9371 (0.937) 1.1867 (3.56) 1.2078 (3.624) 0.8101 (0.81) 0.8392 (2.518) 1.0586 (3.176)
n = 100 0.9482 (0.948) 1.1041 (3.312) 1.1861 (3.558) 0.9144 (0.914) 0.9572 (2.872) 0.9989 (2.997)
n = 200 0.9678 (0.968) 0.9555 (2.867) 1.1188 (3.356) 0.9373 (0.937) 1.0052 (3.016) 0.9837(2.951)

RMSE RMSE
σ α β σ α β

n = 25 0.2348 1.2119 0.6866 0.2199 0.9791 0.1478
n = 50 0.1632 0.9105 0.8034 0.1783 0.8141 0.09916
n = 100 0.0874 0.7222 0.7311 0.1269 0.6223 0.0509
n = 200 0.0401 0.2789 0.2175 0.0753 0.3971 0.0211

Table 1 suggests that the new iterative algorithm performs better than the EM al-
gorithm under sample kurtosis that exceeds 2.7 in general, especially for the estimation
accuracy and stability of shape parameter β. For shape parameter α, the iterative algorithm
provides higher estimation accuracy while the EM algorithm is more stable.
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At last, a simulation study for the PLA using the EM algorithm for NGt(µ, σ, α, β)
(µ 6= 0) considered in Section 5.6 will be performed. We mainly focus on the influence
of shape parameter α and sample size on the estimation performance of this method.
Therefore, we fix µ = 1, σ = 1, β = 2 and α will be chosen for 2, 2.5, 3, respectively.
Line graphs of the relationship between RB, RMSE and sample sizes with different value
of shape parameter α were shown below (Figure 9) and the estimated value for these
parameters are given in Table A4.

Figure 9 reveals that as the value of the shape parameter α increases, the estimation
results become better and better. It is concluded that with the increase of the theoretical
kurtosis, the accuracy and stability of the MLEs are gradually improved. In addition, the
estimation effect of location parameter, µ, and shape parameter, β, is less affected by the
change of shape parameter α, while that two indicators for the scale parameter, σ, and
shape parameter, α, are more sensitive to the change of it. This means that it is not very
difficult to estimate the location parameter for a distribution with good symmetry, while
the shape parameters of a heavy tail distribution are more difficult to estimate.

(a) (b)

(c) (d)

(e) (f)

Figure 6. RB and RMSE of (0, σ, α, β) (σ = 1, α = 3, β = 2). (a) RB of scale parameter σ. (b) RMSE
of scale parameter σ. (c) RB of shape parameter α. (d) RMSE of shape parameter α. (e) RB of shape
parameter β. (f) RMSE of shape parameter β.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. RB and RMSE of (0, σ, α, β) (σ = 1, α = 3, β = 3). (a) RB of scale parameter σ. (b) RMSE
of scale parameter σ. (c) RB of shape parameter α. (d) RMSE of shape parameter α. (e) RB of shape
parameter β. (f) RMSE of shape parameter β.

Figure 8. Cont.
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Figure 8. RB and RMSE of (0, σ, α, β) (σ = 1, α = 3, β = 4). (a) RB of scale parameter σ. (b) RMSE
of scale parameter σ. (c) RB of shape parameter α. (d) RMSE of shape parameter α. (e) RB of shape
parameter β. (f) RMSE of shape parameter β.

Figure 9. Cont.
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Figure 9. RB and RMSE of (µ, σ, α, β) under different shape parameter α based on the PLA using
the EM algorithm. (a) RMSE of location parameter µ. (b) RB of location parameter µ. (c) RB of
scale parameter σ. (d) RMSE of scale parameter σ. (e) RB of shape parameter α. (f) RMSE of shape
parameter α. (g) RB of shape parameter β. (h) RMSE of shape parameter β.

7. Real Data Analysis

In this section, a real data analysis is performed to illustrate the feasibility of the new
Gt distribution and a comparison with the Gt distribution is also presented.

These data concerned U.S. stock market and were introduced by Shen et al. (2020), [26].
The basic description of the statistical characteristics of the data set are shown in Table 2,
which containing the sample size n, the mean value Ȳ, the standard deviation S, the
asymmetry coefficient

√
b1, the kurtosis coefficient b2, the minimum value min(Y), and the

maximum value max(Y). It can be seen from the table that the data set has good symmetry
and higher kurtosis.

Table 2. Descriptive statistics for stock data.

n Ȳ S
√

b1 b2 min (Y) max (Y)

4278 −2.295 × 10−3 0.01143 0.09466 5.28822 −0.1039 0.08113

To obtain the MLEs of the unknown parameters, the PLA depicted in Figure 10 is
recommended to avoid possible numerical optimization problems. The fitting results of
these two distributions and the estimated parameter values are presented in Table 3. Based
on the AIC criterion, we can infer from it that the new Gt distribution is slightly more
suitable for fitting this data set than the Gt distribution. The histogram of the considered
data with the two density functions we fitted is drawn in Figure 11. It is clearly seen
that the pdf of the new Gt distribution is steeper in shape with a lighter tail, while the Gt
distribution is the opposite.

Table 3. Estimation value and the fitting index.

Parameter Estimates New Gt Distribution Gt Distribution

σ 0.02143 0.01025
α 5.46063 —
β 1.22367 —
p — 1.92009
q — 1.72641

log-likelihood value 13,563.13 13,543.77
AIC −27,118.26 −27,079.54
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Figure 10. Trace of the PLA based on the new Gt distribution.

Figure 11. Histogram of the stock data and the estimated pdf.

8. Conclusions

In this paper, we coin a new Gt distribution that is suitable for fitting both the data
with high kurtosis and a heavy tail based on a construction approach. Firstly, we have
investigated the main properties of the new distribution including moments, skewness
coefficients, kurtosis coefficients and random number generation. Secondly, we have de-
rived the explicit expression for the moments of order statistics as well as its corresponding
variance–covariance matrix through recurrence relations and the distribution transforma-
tion technique. The so obtained method has high efficiency and can greatly reduce the
computation time. After that, we have focused on the parameter estimation of this new Gt
distribution. Several estimation methods including MMOM, MLE using the EM algorithm,
MLE using a new iterative algorithm and IPWM have been introduced. Among all these
estimation methods, the IPWM performs best on the whole and this novel method makes
the parameter estimation method of this distribution not limited to MLE and MMOM.
Furthermore, the new iterative algorithm to acquire MLE is more suitable than the EM
algorithm when the sample kurtosis is more than 2.7. For four-parameter new Gt distribu-
tion, we have established an EM-type algorithm through the profile maximum likelihood
approach and discovered that the variation of the shape parameter α has a significant effect
on the estimation performance of scale parameter σ and shape parameter α. However,
there are still some limitations and areas to be improved in our research. The parameter
estimation method is limited to PLA using the EM algorithm when the distribution has
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a heavier tail. Therefore, proposing more efficient and accurate estimation methods will
be the focus of our future research. Besides, the new Gt distribution is suitable for fitting
data with good symmetry. In future work, it can be applied for the asymmetric situation
by adding a skew parameter.
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Appendix A

Appendix A.1. Part I

Proof. Proof of Theorem 1
According to the pdf of the quotient of two random variables, we have

gT(t; σ, α, β) =
β

21+1/βΓ(1/β)σ
× 1

Γ(α)βα−1

∫ +∞

0
e−|t−µ|βzβ/(2σβ)zαβe−zβ/βdz

=
1

21+ 1
β Γ(α)Γ( 1

β )σ

∫ +∞

0
zαβe[|t−µ|βzβ/(2σβ)+1/β]zβ

dz .
(A1)

Let u = [|t− µ|βzβ/(2σβ) + 1/β]zβ, we obtain

∫ +∞

0
zαβe[|t−µ|βzβ/(2σβ)+1/β]zβ

dz} =

[
1
β
+
|t− µ|β

2σβ

]−(α+ 1
β ) 1

β

∫ +∞

0
uα+ 1

β−1e−udu

= β
α+ 1

β−1Γ
(

α +
1
β

)[
1 +
|t− µ|β

2σβ

]−(α+ 1
β )

.

by substituting the above expression into (A1) we can derive the pdf of the random variable
T in Theorem 1.

Proof. Proof of Proposition 1

fY(y) =
∫ +∞

0
g(y|u)g(u)du

=
β1−α

21+ 1
β Γ( 1

β )Γ(α)σ

∫ +∞

0
uα+ 1

β−1exp
{
− u|y− µ|β

2σβ
− u

β

}
du

=
1

( 2
β )

1+ 1
β B(α, 1

β )σ

[
1 +

β|y− µ|β

2σβ

]−(α+ 1
β )

.
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Appendix A.2. Part II

Proof. Proof of Lemma 1
Notice that

FZ(z) = 2G(2
1
β z)− 1 and fZ(z) = 21+ 1

β g(2
1
β z),

the follwing steps are similar to Govindarajulu (1963) [16].

Proof. Proof of Theorem 2
Through the traditional way for cauculating the k-th moments of order statistics, we have

E(Xk
r:n) = Cr,n

∫ +∞

−∞
xk[G(x)]r−1[1− G(x)]n−rg(x)dx

= Cr,n

{ ∫ +∞

0
xk[G(x)]r−1[1− G(x)]n−rg(x)dx +

∫ 0

−∞
xk[G(x)]r−1[1− G(x)]n−rg(x)dx

}
= Cr,n

[
I1(k, r− 1, n− r) + I2(k, r− 1, n− r)

]
.

From the symetric properties of this distribution, let u = −x, we have

I2(k, r− 1, n− r) = Cr,n(−1)k
∫ +∞

0
uk[1− G(u)]r−1[G(u)]n−rg(u)du .

We notice that

G[(2u)
1
β ] =

1
2

[
1 + Iβu/(1+βu)

(
1
β

, α

)]
u > 0,

where Ix(a, b) = 1
B(a,b)

∫ x
0 ta−1(1− t)b−1dt denote the incomplete beta function.

I1(k, r− 1, n− r) =
Cr,n

2( 1
β )

1
β B( 1

β , α)

∫ +∞

0
u

k+1
β −1

(1 + βu)−(α+
1
β ){G[(2u)

1
β ]}r−1{1− G[(2u)

1
β ]}n−rdu

let z =
βu

1 + βu

=
2

k
β−1

( 1
β )

k
β

B( 1
β , α)

∫ 1

0
z

k+1
β −1

(1− z)α+ k+2
β −1

[
1 + Iz(

1
β

, α)

]r−1[
1− Iz

(
1
β

, α

)]n−r

dz

=
2

k
β−n

( 1
β )

k
β

B( 1
β , α)

r−1

∑
i=0

n−r

∑
j=0

(−1)j
(

r− 1
i

)(
n− r

j

) ∫ 1

0
z

k+1
β −1

(1− z)α− k
β−1
[

Iz

(
1
β

, α

)]i+j

dz

=
2

k
β−n

( 1
β )

k
β

B( 1
β , α)

r−1

∑
i=0

n−r

∑
j=0

(−1)j
(

r− 1
i

)(
n− r

j

)
A
(

k + 1
β

, α− k
β
− 1, i + j

)
.

When α is a real non-integer, by using generalized multinomial theorem, we obtain

Iz

(
1
β

, α

)
=

z
1
β

B( 1
β , α)

∞

∑
k=0

(1− α)kzk

( 1
β + k)k!

,

[
Iz

(
1
β

, α

)]i+j

=
z

i+j
β

[B( 1
β , α)]i+j

∞

∑
m1+···+mi+j=0

(1− α)m1 · · · (1− α)mi+j

( 1
β + m1) · · · ( 1

β + mi+j)
× zm1+···+mi+j

m1! · · ·mi+j!
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With the above equations A( k+1
β , α− k

β − 1, i + j) can be rewritten as

A
(

k + 1
β

, α− k
β
− 1, i + j

)
=

[
B
(

1
β

, α

)]−(i+j) ∞

∑
m1+···+mi+j=0

(1− α)m1 · · · (1− α)mi+j

( 1
β + m1) · · · ( 1

β + mi+j)

=
βi+jB( k+i+j+1

β , α− k
β )

[B(α, 1
β )]

i+j
× F1:2

1:1

(
(

k + i + j + 1
β

) : (1− α,
1
β
); · · · ;

(1− α,
1
β
) : (α +

i + j + 1
β

) : (
1
β
+ 1); · · · ; (

1
β
+ 1) : 1; · · · ; 1)

)
,

and the above expression exists for αβ > k.
For a suifficent large N, we can bound that

B( k+i+j+1
β , α− k

β )

[B( 1
β , α)]i+j ∑

max(m1,··· ,mn−i+j)>N

∣∣∣∣ (1− α)m1 · · · (1− α)mi+j

( 1
β + m1) · · · (b + mi+j)

× 1
(m1! · · ·mi+j!)

∣∣∣∣
<

Γ( k+i+j+1
β )

[B( 1
β , α)]i+j ∑

max(m1,··· ,mi+j)>N

∣∣∣∣ (1− α)m1 · · · (1− α)mn−i+j

( 1
β + m1) · · · ( 1

β + mi+j)
× 1

m1! · · ·mi+j!

∣∣∣∣
=

Γ( k+i+j+1
β )

[B( 1
β , α)]i+j

[ ∞

∑
m1=0

· · ·
∞

∑
mi+j=0

|(1− α)m1 · · · (1− a)mi+j |
( 1

β + m1) · · · ( 1
β + mi+j)m1! · · ·mi+j!

−
N

∑
m1=0

· · ·
N

∑
mn−i+j=0

|(1− α)m1 · · · (1− α)mi+j |
( 1

β + m1) · · · ( 1
β + mi+j)m1! · · ·mi+j!

]

=
Γ( k+i+j+1

β )

[B( 1
β , α)]i+j

{[ ∞

∑
m=0

|(1− α)m|
(b + m)m!

]i+j

−
[ N

∑
m=0

|(1− α)m|
(b + m)m!

]i+j}
< ∞.

Proof. Proof of Theorem 3
By using the genralized multinomial theorem, we acquire

Iβu/(1+βu)

(
1
β

, α

)
=

1
B(α, 1

β )

∞

∑
k=0

(1− 1
β )k(1 + βu)−(α+k)

(α + k)k!
,

and[
Iβu/(1+βu)

(
1
β

, α

)]i+j

=

[
B
(

α,
1
β

)]−(i+j) ∞

∑
m1···mi+j=0

(1− 1
β )m1 · · · (1− 1

β )mi+j

(α + m1) · · · (α + mi+j)
(1 + βu)−[α(i+j)+∑

i+j
l=1 ml ].

By substituting the above two expressions into A( k+1
β − 1, α + 1

β , i + j), we obtain

A(
k + 1

β
, α +

1
β

, i + j) =
( 1

β )
k+1

β α−(i+j)[
B(α, 1

β )

]i+j B
(

k + 1
β

, α(i + j + 1)− k
β

)
× F1:2

1:1

(
(α(i + j + 1)− k

β
) :

(1− 1
β

, α); · · · ; (1− 1
β

, α) : (α(i + j + 1) +
1
β
) : (α + 1); · · · ; (α + 1) :

1; · · · 1
)

,

this expression exists for α > k
β .
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Proof. Proof of Theorem 4
Let Gi(x) denote the cdf with parameters (µi, σi, β, αi). Barakat and Abdelkader

(2004) [27] proposed the following expression to cauculate the moments of order statistics
for the INID case

µ
(m)+
r:n =

n

∑
j=n−r+1

(−1)j−(n−r+1)
(

j− 1
n− r

)
I+j (m) ,

µ
(m)−
r:n =

n

∑
j=r

(−1)j−r
(

j− 1
r− 1

)
I−j (m) ,

where

I+j (m) = ∑
1≤i1<i2···<ij≤n

m
∫ +∞

0
xm−1

j

∏
t=1

[1− Git(x)]dx ,

I−j (m) = ∑
1≤i1<i2···<ij≤n

m
∫ 0

−∞
xm−1

j

∏
t=1

Git(x)dx .

Let u = −x, from the symetric properties of this distribution we can reexpress I−j (m)
as

I−j (m) = ∑
1≤i1<i2···<ij≤n

m(−1)m
∫ +∞

0
xm−1

j

∏
t=1

[1− Git(x)]dx .

From Section 2 we know that Git [(2u)
1
β ] = 1

2

[
1 + Iβu/(1+βu)(

1
β , αit)

]
. Using series

expansion, we immediately acquire the expressions as follows

1− Git((2u)
1
β ) =

1
2B(αit ,

1
β )

∞

∑
k=0

(1− 1
β )k

(αit + k)k!
(1 + βu)−(αit+k) ,

j

∏
t=1

[
1− Git((2u)

1
β )

]
=

2−j

j
∏

t=1
B(αit ,

1
β )

∞

∑
m1=0

· · ·
∞

∑
mj=0

(1− 1
β )m1 · · · (1− 1

β )mj

(αi1 + m1) · · · (αij + mj)

×(m1! · · ·mj!)−1 × (1 + βu)−(∑
j
t=1 αit+m1+···mj) .

By subsituting the above equation into the expression of I+j (m), we obtain

I+j (m) = ∑
1≤i1<i2···<ij≤n

m
β

[
2j

j

∏
t=1

B(αit ,
1
β
)

]−1 ∫ +∞

0
(2u)

m
β −1

∞

∑
m1=0

· · ·
∞

∑
mj=0

(1− 1
β )m1 · · · (1− 1

β )mj

(αi1 + m1) · · · (αij + mj)
× (1 + βu)−(∑

j
t=1 αit+m1+···mj)

m1! · · ·mj!
du

= ∑
1≤i1<i2···<ij≤n

m2
m
β −1−j

j
∏

t=1
B(αit ,

1
β )

(
1
β
)

m
β −1

∞

∑
m1=0

· · ·
∞

∑
mj=0

(1− 1
β )m1 · · · (1− 1

β )mj

(αi1 + m1) · · · (αij + mj)

× 1
m1! · · ·mj!

B
(

m
β

,
j

∑
t=1

αit + m1 + · · ·mj −
m
β

)
.

By using the defination of the generalized Kampe de Feriet function, the above
equations can be reexpressed as
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I+j (m) =
m2

m
β −1−j

j
∏

t=1
αit B(αit ,

1
β )

(
1
β

)m
β −1

B
(

m
β

,
j

∑
t=1

αit −
m
β

)
× F1:2

1:1

(
(

j

∑
t=1

αit −
m
β
) : (1− 1

β
, αi1); · · ·

; (1− 1
β

, αij) : (
j

∑
t=1

αit) : (αi1 + 1); · · · ; (αij + 1) : 1; · · · ; 1
)

,

and the above expression exists for αit >
m
β .

Appendix A.3. Part III

Proof. Proof of Theorem 5
Let

hk(β) =
[Γ(1/β)]k−1Γ[(2k + 1)/β]

[Γ(3/β)]k
, Ik(α, β) =

[Γ(α)]k−1Γ(α− 2k/β)

[Γ(α− 2/β)]k
(k > 2) .

In order to prove the monotony, we take the logarithms of the above two functions,
respectively. Differentiating with respect to parameter β, we obtain

∂ ln hk(β)

∂β
=− 1

β2

[
(k + 1)ϕ

(
1
β

)
+ (2k + 1)ϕ

(
2k + 1

β

)
− 3kϕ

(
3
β

)]
using the fact that ϕ(z) =

∞

∑
k=0

1
k + z

=− 4k2 − 4k
β3 × n

(n + 1/β)(n + (2k + 1)/β)(n + 3/β)
< 0,

as a result hk(β) is monotonically decreasing with respect to the parameter β.
For Ik(α, β), taking logarithm, we have

ln Ik(α, β) = (k− 1) ln Γ(α) + ln Γ(α− 2k/β)− k ln Γ(α− 2/β) .

Taking partial derivative with respect to parameter α, we have

∂ ln Ik(β)

∂α
=(k− 1)ϕ(α) + ϕ

(
α− 2k

β

)
− kϕ

(
α− 2

β

)
=− 4k(k− 1)

β2

[
1

(n + α)(n + α− 2k/β)(n + α− 2/β)

]
< 0.

Taking partial derivative with respect to parameter β, we obtain

∂ ln Ik(β)

∂α
== 2k[ϕ(α− 2/β)− ϕ(α− 2k/β)] < 0.

From

Γ(nt) =
nnt

(2π)(n−1)/2√n
Γ(t)Γ(t + 1/n) · · · Γ[t + (n− 1)/n],
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we have

lim
β−→0+

hk(β) = lim
t−→+∞

hk(t) let t =
1
β

= lim
t−→+∞

[Γ(t)]k−1Γ(t)Γ[t + 1/(2k + 1)] · · · Γ[t + 2k/(2k + 1)]
[Γ(t)Γ(t + 1/3)Γ(t + 2/3)]k

× (2k + 1)(2k+1)t/((2π)k
√

2k + 1)
33t/(2π

√
3)

since lim
t−→+∞

Γ(t + a)
Γ(t)ta = 1, the above equation can be rewritten as

= lim
t−→+∞

(2k + 1)(2k+1)t/((2π)k
√

2k + 1)
33t/(2π

√
3)

× [Γ(t)]k−1[Γ(t)]2k+1t∑2k
i=1 i/(2k+1)

[Γ(t)]k[Γ(t)t1/3]k[Γ(t)t2/3]k

= lim
t−→+∞

(2k + 1)(2k+1)t
√

2k + 1× (33t)k
= +∞.

On the same way,

lim
β−→+∞

hk(β) = lim
t−→0+

hk(t)

=
3k/2
√

2k + 1
× ∏2k

i=1 Γ[t + i/(2i + 1)]
[Γ(1/3)Γ(2/3)]k

.

Besides that, it is easy to prove that

lim
β−→+∞

Ik(α, β) = 1, lim
α−→+∞

Ik(α, β) = 1, lim
α−→(2k/β)+

Ik(α, β) = +∞.

With the above conclusions, the result of the theorem is obvious.

Cauculation for the asymptotic variances and covariances of the estimates under EM
algorithm

The second partial derivatives of the complete likelihood function is given by

∂2 ln L(θ|Z)
∂σ2 =

n
σ2 −

β2(β + 1)
4σ2

n

∑
i=1

(
|yi|
σ

)
Ui ,

∂2 ln L(θ|Z)
∂σ∂α

= 0 ,

∂2 ln L(θ|Z)
∂β∂σ = β

4σ ∑n
i=1

[
|yi |
σ

]β

Ui −
β2

4σ ∑n
i=1

[
|yi |
σ

]β(
ln |yi |

σ

)
Ui −

β
4 ∑n

i=1

[
|yi |
σ

]β−1(
ln |yi |

σ

)
Ui ,

∂2 ln L(θ|Z)
∂α2 = −nϕ′(α) ,

∂2 ln L(θ|Z)
∂α∂β

= 0 ,

∂2 ln L(θ|Z)
∂β2 =− 2n

β3

[
− ln β + (1 + β) + 2ln2 + ϕ(

1
β
)

]
− n

β2

[
1
β
− 1 +

ϕ( 1
β )

β2

]
+

2
β3

n

∑
i=1

ln Ui

− 1
2

n

∑
i=1

[
|yi|
σ

]β(
ln
|yi|
σ

)
Ui −

β

4

n

∑
i=1

[
|yi|
σ

]β(
ln
|yi|
σ

)2

Ui .

From Proposition 2, let V = Y
σ , the joint density function of (U, V) is given by

hU,V(u, v) =
β

1+ 1
β

2α+ 2
β Γ( 1

β )Γ(α)
uα+ 1

β−1 exp
(
− βuvβ

4
− u

2

)
, u, v > 0.
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then through the above density function, the expectation can be calculated as

E(VβU) =
β

1+ 1
β

2α+ 2
β Γ( 1

β )Γ(α)

∫ +∞

0
uα+ 1

β exp
(
− u

2

) ∫ +∞

0
vβ exp

(
− βuvβ

4

)
dvdu let t =

βuvβ

4

=
4
β2 ,

E(Vβ−1U) =
β

1+ 1
β

2α+ 2
β Γ( 1

β )Γ(α)

∫ +∞

0
uα+ 1

β exp
(
− u

2

) ∫ +∞

0
vβ−1 exp

(
− βuvβ

4

)
dvdu let t =

βuvβ

4

=
nβ

1
β−1

2
1
β−2B(α, 1/β)

,

E[(ln V)VβU] =
β

1+ 1
β

2α+ 2
β Γ( 1

β )Γ(α)

∫ +∞

0
uα+ 1

β exp
(
− u

2

) ∫ +∞

0
(ln v)vβ exp

(
− βuvβ

4

)
dvdu .

The inner integral can be calculated as

∫ +∞

0
(ln v)vβ exp

(
− βuvβ

4

)
dv =

1
β2

(
4

βu

)1+1/β ∫ +∞

0

(
ln

4t
βu

)
t1/βe−tdt let t =

βuvβ

4

=
1
β2

(
4

βu

)1+1/β

[(ln 4− ln β− ln u)Γ(1 + 1/β)− β2Γ′(1 + 1/β)] .

By substituting the above expression into the double integral, we have

E[(ln V)VβU] =
4
β3

[
ln

2
β
− ϕ(α)− β2 ϕ

(
1 +

1
β

)]
On the same way, we obtain

E[(ln V)2VβU] =
β

1+ 1
β

2α+ 2
β Γ( 1

β )Γ(α)

∫ +∞

0
uα+ 1

β exp
(
− u

2

) ∫ +∞

0
(ln v)2vβ exp

(
− βuvβ

4

)
dvdu

=
4
β4

{
(ln 4)2 + (ln 2β)2 + 2ϕ(α) ln 2β + ϕ′(α) + [ϕ(α)]2

}
+ 4
{

ϕ′
(

1 +
1
β

)
+

[
ϕ

(
1 +

1
β

)]2}
− 8ln4

β2

[
ϕ

(
1 +

1
β

)
− ln 2β

β2 −
ϕ(α)

β2

]
+

8
β2 ϕ

(
1 +

1
β

)
[ϕ(α) + ln 2β]

Proof. Proof of Lemma 2
First of all, we decide to prove that the first and the second equation always has a

unique solution for fixed (β, α) and (σ, β), respectively.

Let L1(σ) = n− (αβ + 1)
n
∑

i=1

β|xi |β
2σβ+β|xi |β

.

Obviously, this function is monotonically increasing with respect to σ and lim
σ−→0

L1(σ) =

−nαβ < 0, lim
σ−→+∞

L1(σ) = n > 0. Therefore, there must exist a root for L1(σ) = 0 in

(0,+∞).

On the same way, let L2(α) = n
[

ϕ(α + 1/β)− ϕ(α)

]
−

n
∑

i=1
ln
[

1+ β|xi |β
2σβ

]
and it is easy

to prove that this function is monotonically decreasing with respect to α.
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From Taylor’s theorem we obtain

L2(α) ≈
n
β

ϕ′(α)−
n

∑
i=1

ln
[

1 +
β|xi|β

2σβ

]
,

obviously, for fixedβ and σ, lim
α−→0

L2(α) > 0 and lim
α−→+∞

L2(α) < 0. Therefore, there must

exist a root for L2(α) = 0 in (0,+∞).
After that, we decide to prove the convergence of the iterative algorithm. Assuming that
(σ∗, α∗) denote the solution of the equations and (σ(p), α(p)) represent the values of p-th
iteration, we have

Case I. α(0) < α(1)

The proof is conducted by mathematical induction, for p = 1, the conclusion clearly
holds.
Assume that for p = i, we have: α(i) < α(i+1), σ(i) < σ(i+1), then σ(i+2) and σ(i+1) are
obtained from the following two equations, respectively

n− (α(i+1)β + 1)
n

∑
i=1

β|xi|β

2σ
β

(i+2) + β|xi|β
= 0,

n− (α(i)β + 1)
n

∑
i=1

β|xi|β

2σ
β

(i+1) + β|xi|β
= 0.

Obviously, we can conclude that

(α(i)β + 1)
n

∑
i=1

β|xi|β

2σ
β

(i+1) + β|xi|β
− (α(i)β + 1)

n

∑
i=1

β|xi|β

2σ
β

(i+2) + β|xi|β
> 0,

and this is equivalent to σ(i+1) < σ(i+2).
α(i+1) and α(i+2) are obtained from the following two equations, respectively

n
[

ϕ(α(i+1) + 1/β)− ϕ(α(i+1))

]
−

n

∑
i=1

ln
[

1 +
β|xi|β

2σ
β

(i+1)

]
≈ n

β
ϕ′(α(i+1))−

n

∑
i=1

ln
[

1 +
β|xi|β

2σ
β

(i+1)

]
= 0 ,

n
[

ϕ(α(i+2) + 1/β)− ϕ(α(i+1))

]
−

n

∑
i=1

ln
[

1 +
β|xi|β

2σ
β

(i+2)

]
≈ n

β
ϕ′(α(i+2))−

n

∑
i=1

ln
[

1 +
β|xi|β

2σ
β

(i+2)

]
= 0 ,

and this is equivalent to α(i+1) < α(i+2).
Since the two squences σ(i) α(i) statisfy: 0 < σ(j) < +∞, 0 < α(j) < +∞, the conclusion

holds.

Case II. α(0) < α(1)

The proof in this case is similar to the above case.

In a word, this conclusion can be summarized as follows:

1. if α0 < α∗, the sequence {α(i)} , {σ(i)} are both monotonically increasing and converge
from the left side to the solution,

2. if α0 > α∗, the sequence {α(i)} , {σ(i)} are both monotonically decreasing and converge
from the right side to the solution.
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Appendix A.4. Part IV

Table A1. Estimation value under σ = 1, α = 3, β = 2.

Method Sample Size σ̂ α̂ β̂

n = 25 1.584 7.83 2.314
n = 50 1.528 6.615 2.147

MMOM n = 100 1.463 5.331 2.105
n = 200 1.265 4.584 2.071

n = 25 1.18 5.174 3.228
n = 50 1.132 4.421 2.482

MLE via EM n = 100 1.104 3.814 2.364
n = 200 1.036 3.341 2.201

n = 25 1.109 3.659 3.766
n = 50 1.062 3.49 2.882

IPWM n = 100 1.033 3.3885 2.528
n = 200 1.022 3.308 2.35

Table A2. Estimation value under σ = 1, α = 3, β = 3.

Method Sample Size σ̂ α̂ β̂

n = 25 1.373 7.830 5.339
n = 50 1.314 6.615 3.659

MMOM n = 100 1.263 5.331 3.176
n = 200 1.217 4.584 2.98

n = 25 1.046 5.073 5.207
n = 50 1.032 4.119 4.524

MLE via EM n = 100 1.021 3.531 3.884
n = 200 0.997 3.181 3.481

n = 25 1.059 4.087 2.569
n = 50 1.044 3.408 2.691

IPWM n = 100 1.037 3.182 2.737
n = 200 1.025 3.05 2.825

Table A3. Estimation value under σ = 1, α = 3, β = 4.

Method Sample Size σ̂ α̂ β̂

n = 25 1.298 5.403 6.281
n = 50 1.267 4.933 5.124

MMOM n = 100 1.231 4.508 4.619
n = 200 1.197 3.718 4.358

n = 25 1.067 5.214 7.179
n = 50 1.022 4.155 5.794

MLE via EM n = 100 1.002 3.513 5.039
n = 200 0.999 3.115 4.402

n = 25 0.887 4.056 3.672
n = 50 0.919 3.224 3.496

IPWM n = 100 0.932 3.075 3.318
n = 200 0.954 2.976 3.132
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Table A4. Estimation value for PLA using the EM algorithm under different α (fixed µ = 1, σ = 1,
β = 2).

Value of α Sample Size µ̂ σ̂ α̂ β̂

n = 25 1.0082 1.4411 4.3878 4.8281
n = 50 0.9986 1.3755 3.7841 3.3574

α = 2 n = 100 0.9997 1.2325 3.0712 2.6304
n = 200 0.9999 1.1233 2.5676 2.2731

n = 25 1.0036 1.3598 4.9423 4.6686
n = 50 1.0029 1.2715 4.0851 3.4920

α = 2.5 n = 100 0.9994 1.1692 3.4725 2.6501
n = 200 1.0006 1.0876 2.962 2.3084

n = 25 0.9741 1.2494 5.0373 4.6552
n = 50 0.9896 1.1827 4.3119 3.4574

α = 3 n = 100 1.0005 1.1058 3.7419 2.6380
n = 200 0.954 1.0006 3.3182 2.2532
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