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Abstract: The prerequisite for victory in war is the rapid and accurate identification of the tactical
intention of the target on the battlefield. The efficiency of manual recognition of the combat intention
of air targets is becoming less and less effective with the advent of information warfare. Moreover,
if the traditional method of combat intention of air targets is based only on data from a single moment
in time, the characteristic information on the time-series data is difficult to capture effectively. In this
context, we design a new deep learning method attention mechanism with temporal convolutional
network and bidirectional gated recurrent unit (Attention-TCN-BiGRU) to improve the recognition
of the combat intent of air targets. Specifically, suitable characteristics are selected based on the
combat mission and air posture to construct a characteristic set of air target intentions and encode
them into temporal characteristics. Each characteristic in the characteristic set is given an appropriate
weight through the attention mechanism. In addition, temporal convolutional network (TCN) is
used to mine the data for latent characteristics and bidirectional gated recurrent unit (BiGRU) is used
to capture long-term dependencies in the data. Experiments comparing with other methods and
ablation demonstrate that Attention-TCN-BiGRU outperforms state-of-the-art methods in terms of
accuracy in recognizing target intent in the air.

Keywords: combat intention; bidirectional gated recurrent unit; attention mechanism; aerial target;
temporal convolutional network

1. Introduction

With the development of military technology and aviation technology, information-
ization has gradually become the core of the modern battlefield, and future wars will also
be informationized. At the same time, because the continuous development of modern
technology has led to a dramatic increase in the dynamics and complexity of the environ-
ment of the modern battlefield, it has become increasingly difficult for military experts
to identify the enemy’s combat intentions in a timely and effective manner from the vast
amount of information, especially from the air targets of large-scale electronic countermea-
sures [1]. Therefore, it is urgent to construct a decision-making aided combat system to
improve the accuracy and speed of intention recognition of air target combat, so as to help
decision-makers seize air superiority and even win the war.

In order to meet the needs of decision support system, many researchers have con-
ducted research on the problem of intention identification, and air target tactical intention
recognition has gradually become one of the research hotspots in modern air combat.
The existing studies on the identification of tactical intentions against enemy targets mainly
include evidence theory [2–4], template matching [5], expert systems [6], Bayesian net-
works [7–9], and neural networks [10–17]. The establishment of a standard template base
of template matching technology, the collection of information and the construction of
probability distribution function in evidence theory, the determination of the structure
of Bayesian network and probability distribution parameters, and the construction of
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knowledge base and inference engine of the expert system all need to organize, abstract,
and explicitly describe the empirical knowledge and knowledge representation of experts
in related fields and the great difficulty of engineering implementation. References [10–14]
use different deep learning methods, build and simulate the deep neural network of the
human brain, and use data-driven methods to extract the semantic characteristics from the
original data from low-level to high-level, from concrete to abstract, from general to specific,
simulating the memory mechanism and reasoning mode of commander when judging
the battlefield situation, overcoming the difficulties of traditional models in knowledge
expression [15]. However, the target’s tactical intention is realized through a series of
tactical actions. Therefore, the dynamic attributes and battlefield environment of the target
will show the characteristics of changing with time, and the enemy target has certain con-
cealment and deception when performing combat operations. As a result, it is not sound
enough for the above-mentioned deep learning method to judge the combat intention
of the enemy target by using the characteristic information at a single time. In response
to the drawbacks of the above methods, Liu et al. [16] established an air combat target
intention prediction model based on long short-term memory (LSTM) network with in-
complete information, introduced the cubic spline interpolation function fitting and the
mean padding to repair the incomplete data, and used the adaptive moment estimation
(Adam) optimization algorithm to accelerate the training speed of the target intention
prediction model, so as to effectively prevent the local optimum problem. Xue et al. [17]
designed panoramic convolutional long short-term memory neural network (PCLSTM),
a new deep learning method, to improve the ability of intention recognition, and designed
a time series pooling layer to reduce the parameters of the neural network. The above two
methods based on LSTM network are verified by experiments to have a certain effect on
air target tactical intention recognition. However, because LSTM is a one-way transmission
network, it can only use past information to make judgments and cannot effectively use
future information. At the same time, because the network shares the weight, the weight
of different characteristics in identifying the combat intention of air targets is the same,
which will have certain negative effects. Especially, when the intentions presented by
different characteristics are contradictory, the weight proportion of key characteristics
should be strengthened.

In view of the above problems, we propose an air target tactical intention recogni-
tion model based on Attention-TCN-BiGRU. Attention mechanism can learn the weight
proportion of different characteristics to further highlight the key information affecting
the intention, which has been successfully used in image caption generation, document
classification, etc. In 2018, Bai et al. [18] proposed the model Temporal convolutional net-
work (TCN), which has been shown to achieve state-of-the-art standards in many timing
problems such as natural speech processing and audio synthesis. Compared with standard
recurrent networks such as LSTM network and Gated Recurrent Unit (GRU), TCN has more
accurate output results and a simpler structure. However, LSTM and GRU also have their
advantages. TCN can effectively extract high-frequency and low-frequency information
from the sequence, while LSTM and GRU are good at capturing long-term dependence in
a series [19]. Therefore, our strategy is to explore the advantages of both networks rather
than choose which one of them to use. In addition to this, we replace the GRU network
with the Bidirectional Gated Recurrent Unit (BiGRU). BiGRU compares with GRU and
TCN in its ability to learn not only from historical moment information but also from future
moment information together for the current moment data [20]. The experimental results
show that the Attention-TCN-BiGRU model is superior to other methods in the accuracy
of intention recognition and has theoretical significance and reference value for auxiliary
combat systems.

The rest of this paper is organized as follows: Section 2 describes in detail the air target
intention recognition and how to select the characteristics and types of the tactical intention
of air targets; Section 3 describes in detail the model proposed in this paper; Section 4 gives
the experimental results and analysis; Section 5 concludes the paper.
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2. Description of Aerial Target Combat Intention Recognition Problem

Air target combat intention recognition is a process of judging the enemy’s combat
intentions. The state of enemy air targets will vary with different combat intentions. We use
radar and other sensors to obtain the static attributes and real-time dynamic information of
these targets from the complex battlefield environment. Combining the prior knowledge
and the experience of experts, we analyze the data and propose predictions of combat
intentions [11]. The target representation and reasoning process are shown in Figure 1.
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Air target tactical intention recognition is a typical pattern recognition problem that
can be described as a mapping of characteristics of air target tactical intention to types of
air target tactical intention. Because the environment of the actual air battlefield is complex
and changeable, and the air target will induce the decision-maker to wrong reasoning,
it is easy to be deceived in identifying the enemy’s tactical intention by relying on the
characteristic information of the air target intention at a single moment. Therefore, it is
more accurate and sounder to infer its tactical intention from the characteristic information
of the enemy air target at multiple continuous moments [15]. Define IT as the air combat
target time series feature set composed of T consecutive air combat real-time characteristic
information from t1 to tT , that is, IT =

(
I(t1), I(t2), · · · , I(tT)

)
. Vector Q is defined as the

space set of air target combat intention type, thereby determining the mapping function
from the spatial set to the times series characteristic set of enemy air target tactical intention
types as:

Q = f (IT) = f
(

I(t1), I(t2), · · · , I(tT)
)

(1)

To accurately identify the tactical intention of air targets, it is necessary to combine the
tactical experience and military knowledge of experts in related fields and realize it through
complex thinking activities such as key characteristic extraction, comparative analysis,
association, and reasoning of air battlefield environment, so it is difficult to summarize it
with simple mathematical formulas [13]. We extract the key characteristics of air targets
to form the tactical intention characteristic set and use experts in related fields to label
each sample to train the Attention-TCN-BiGRU network, thereby implicitly establishing
the mapping relationship between the combat intention type space set and the time series
characteristic data set. The whole process of air target combat intention recognition is
shown in Figure 2.

As shown in Figure 2, the reasoning process [21,22] of air target tactical intention is as
follows: Step 1—select and extract data information related to target tactical intention from
real-time battlefield information, including battlefield environment information, target
attribute information, and real-time state information of the target in the corresponding
local time and space domain, and form an initial characteristic set; Step 2—Collect the state
characteristic data of the target at N consecutive moments

(
I(tn) − I(tn+N)

)
and store them

in a stack mode to form a characteristic vector set; Step 3—Integrate the characteristic data
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of
(

I(tn) − I(tn+N)
)

moments, encode and normalize them to form a standardized temporal
characteristic set; Step 4—Divide the times series characteristic set into the training set and
testing set; Step 5—Input the training set to the Attention-TCN-BiGRU network training
model; Step 6—Input the testing set to the trained air target intention recognition model
output to get the intention recognition results.
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2.1. Selection of Tactical Intention Type

For different combat forms, different enemy entities, and different setting contexts,
there are differences in the target combat intention space set corresponding to the target
combat intention set. Therefore, we need to define the combat intention space set of the
enemy target according to the corresponding combat background, the attributes of the
enemy target, and the possible combat missions. For example, in the target intention space
set by Lu et al. [23], the potential threat of underwater target is {evasion, patrol, and attack};
Chen et al. [24] established the combat intent space set for the enemy’s single-group
maritime fleet as {retreat, cover, attack, reconnaissance}. In this paper, taking the enemy air
target near-shore air attack on military buildings as the research background, we establish
the tactical intention space set of enemy targets, including seven intention types {attack,
penetration, surveillance, reconnaissance, feint, retreat, and electronic interference}. Please
see Appendix A Table A1 for a detailed description of the seven intention types.

After determining the enemy’s combat intention space set, how to transform the
human cognitive pattern into labels that intelligent models can train and that correspond
to the intention types in the combat intention space set is the key to applying the intelligent
recognition model proposed in this paper to combat intention recognition [16]. Therefore,
we can encapsulate the cognitive experience of experts in air combat into labels to train the
intelligent recognition model of this paper. For the seven intention types in the enemy target
tactical intention space established in this paper, {0,1,2,3,4,5,6}, a total of seven label values
is set, respectively. The corresponding tactical intention type coding and model analysis
mechanism are shown in Figure 3. For example, if the prediction result of intention output
by the proposed model is 0, it can be considered that the enemy target’s combat intention
against intended target is attacked. Therefore, using the above knowledge encapsulation
and model analysis can clearly and easily describe human experience and knowledge,
which is convenient for model training.
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2.2. Character Selection and Pre-Processing Process

The air target’s tactical intention is related to its combat mission and air situation.
In order to identify different combat missions and air situations and to collect the actual
characteristics of the sensors according to air targets such as radar stations, it is necessary
to select appropriate air target intention characteristics.

From the perspective of a combat mission, when an air target performs a mission,
some characteristic information needs to meet certain requirements. For example, when
performing the task of penetration, it is divided into high-altitude penetration and low-
altitude penetration, with a corresponding height of 10 km–11 km and above 50 m–200 m.
Reconnaissance aircraft generally use low-altitude and high-altitude reconnaissance, with a
corresponding height of 100 m–1000 m and above 15 km. There is also a certain relationship
between radar signal status of air targets and combat missions. For example, air-to-air
radars are usually kept on during air combat, and air-to-air radars and marine radars are
kept on during reconnaissance missions, and the radar status is coded so that 1 means the
radar is on and 0 means the radar is off [11]. Different types of air targets have different
application values and strategic significance. For example, fighter aircraft have strong
offensiveness, and reconnaissance aircraft have strong mobile reconnaissance capabilities.
Therefore, the type of enemy aircraft can also be used as the characteristic of combat
intention. However, because it is difficult to directly identify the type of enemy aircraft,
the radar cross-section (RCS) is used as an alternative to the type of enemy aircraft. RCS can
represent the type of enemy aircraft to a certain extent. Under normal circumstances, the RCS
of stealth aircraft and small aircraft is less than 1 m2, the RCS between 1 m2 and 10 m2 is a
medium-sized aircraft, and the RCS greater than 10 m2 is a large-scale aircraft [17].

From the analysis of the air situation, many factors affect the superiority or inferiority
of the air target. Considering the actual characteristics that can be collected, we mainly
consider the enemy air target flight speed, altitude, acceleration, heading angle, azimuth
angle, and the distance between the enemy, as shown in Figure 4. The air combat capability
factor is also an important factor affecting the air situation. For the air combat capability of
a fighter, a single machine air combat capability threat function is constructed according to
the Reference [25]:

C =
[
lnε1 + ln(ε2 + 1) + ln(∑ ε3 + 1)

]
ε4ε5ε6ε7 (2)

In the formula, ε1− ε7 respectively represent fighter maneuverability, airborne weapon
performance, airborne detection capability, fighter operation performance, fighter sur-
vivability, fighter combat range, and electronic information countermeasure capabilities.
Air combat capability is an inherent attribute of aircraft. The air combat capability factor
of enemy aircraft in a certain period can also be calculated by the above formula and then
stored in the database and updated regularly according to the mastered information [26].

In addition, public opinion analysis is a worthy external characteristic to be se-
lected [27]. When analyzing the target tactical intention, we often only focus on the
attribute factors of the battlefield itself, while ignoring the influence of public opinion
tendency in the war, which leads to inaccurate results of tactical intention analysis. There
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are many sources of public opinion, such as the government, the military, the Ministry of
National Defense, the Ministry of Foreign Affairs, embassies, media, and civil organizations.
Combining public opinion from different sources and considering the public opinion of
combat environment of both sides, according to Miller’s 9-level quantification theory [28],
public opinion information can be quantified into 5 levels, including 1, 3, 5, 7, and 9. To sum
up, we have selected 12 kinds of characteristic information related to combating intention,
including 8 kinds of numerical characteristics and 4 kinds of non-numerical characteristics.
Tables 1 and 2 describe each characteristic in detail, showing 8 numerical data forms and 4
non-numerical data encoding forms of a sample at a certain time.
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Figure 4. Relative geometric position of air combat. H is the flight height, D is the distance, V is the
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Table 1. Numerical air target intelligence data.

Characteristic Description Unit Numerical Value

Distance the distance between enemy plane and
targeted building km 176.0

Velocity the velocity of enemy plane m/s 260.0

RCS the size of the radar reflection
cross-sectional area m2 5.6

Height the height of the enemy plane km 21.2

Azimuth angle

the angle from targeted building to the
direction of the enemy aircraft (the true north is

0 mil, and the clockwise direction is divided
into 6400 mil)

mil 1456.0

Acceleration the acceleration of the enemy plane m/s2 5.6

Heading angle
The flight direction of the enemy plane (the true
north is 0 degrees, and the clockwise direction

is 360 degrees)

◦ 45.3

Capability factor the aerial combat capability of enemy aircraft / 9.4

Because of the different units of various characteristics, their distribution ranges
are quite different, and characteristics with a large variance will have a greater impact,
which leads to the inability to accurately obtain core characteristics from the original
data. In order to eliminate the influence of data dimension and improve the convergence
efficiency and accuracy of the network, we now perform Min–Max Normalization on the
above 12 air target combat intention characteristics. For the i-th type of numerical data
Xi = (xi1, xi2, · · · xir, · · · , xik) (i = 1, 2, · · · , 12); k is the number of data of the i-th type.
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The result of mapping the r-th original data value xir in the i-th characteristic to the interval
[0, 1] is x′ir, and its formula is

x′ir =
xir −minXi

maxXi −minXi
(3)

where minXi is the minimum value of the i-th characteristic Xi; maxXi is the maximum
value of the i-th characteristic Xi.

Table 2. Non-numerical air target intelligence data.

Characteristic Description Categorical Value

Electronic interference status whether the electronic jamming device is
turned on 0

Air-to-air radar state whether the air-to-air radar is
switched on 1

Air-to-surface radar state whether the air-to-surface radar is
switched on 1

Public opinion analysis Current international public
opinion trends 5

3. Model Framework

In this section, we introduce our Attention-TCN-BiGRU model in detail. Attention
mechanism assigns greater weight to key characteristics in the process of intention recogni-
tion. TCN extracts short-term local characteristics, whereas LSTM can capture the long-term
dependence in a series. In addition, BiGRU can effectively use future information to make
up for the shortcomings of the causal sequence in the TCN structure. To take full advan-
tage of their merits, we combine them into a new hybrid model to further improve the
accuracy of intention recognition. We introduce Attention mechanism, TCN, and BiGRU in
Sections 3.1–3.3, respectively, and give the details of the overall framework of the proposed
model in Section 3.4.

3.1. Attention Mechanism

Attention mechanism is a very hot topic at present, and there are various Attention
mechanisms, such as Bottom-up Attention [29], Global attention [30], Self Attention [31],
and so on. The essence of the attention mechanism comes from the human visual attention
mechanism. When people perceive something visually, they generally do not see all of a
scene from beginning to end but tend to observe and pay attention to a specific part of it
according to their needs. Moreover, when people find that something they want to observe
often appears in a certain part of a scene, they will learn and pay attention to that part
when similar scenes appear in the future [32]. The distributed attention mechanism we use
is a hierarchical attention network (HAN) proposed by Yang et al. [33] for text classification
tasks. Not every word in a sentence is useful for classification. For example, when we do
the emotion classification of text, we will focus on the words “happy” and “sad”. In order
to enable the recurrent neural network to automatically focus “attention” on these words,
the author designs a word-based attention model. Firstly, the sentence composed of a
sequence of words is transformed into a word vector through a word embedding matrix,
and then the hidden layer output hi is obtained through BiGRU network. Then a linear
layer is transformed to obtain ui, using the softmax function to get the importance weight
δi of each word, and finally, the information representation of the sentence vector s is
obtained by a weighted average of the output of BiGRU [34]. The formulas are as follows:

ui = Tanh(Wwhi + bi) (4)

δi =
exp
(
ui

Tuw
)

∑i exp(ui
Tuw)

(5)
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s = ∑
i

δihi (6)

Formula (4) is a linear change process, Ww and bi are the parameter vectors of the
hidden layer; formula (5) is defined for softmax function, and uw is a random initializa-
tion vector, which is continuously learned during training. formula (6) is the process of
calculating sentence vector s.

In our proposed network, Attention mechanism is used to weight the contribution
of different air target combat intention characteristics and extend the influence of the key
characteristics, as shown in Figure 5. The implementation process is as follows. First,
define the eigenvector Xt = (x1,t, x2,t, · · · , xm,t) at time step t, and calculate the proportion
of characteristic weight according to the following softmax function formula.

αt =
exp(Xtuw1)

∑ exp(Xtuw1)
(7)

where αt = (α1,t, α2,t, · · · , αm,t), and uw1 is the hidden layer vector to be learned during the
training process. Next, the weight ratio of the i-th characteristics is αi =

(
αi,t1 , αi,t2 , · · · , αi,tn

)
,

and the average weight ratio is

αi =
1
tn

t=t1

∑
t=tn

αi,t (8)
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Finally, the weighted value of the i-th characteristics of the output of Attention mecha-
nism is

Ri = αiXi =
(
αixi,t1 , αixi,t2 , · · · , αixi,tn

)
(9)

3.2. TCN

Temporal convolutional network (TCN) is based on the convolutional neural network
(CNN) model, and its structure combines causal convolution and dilated convolution.
It can be used in a time series model, which can reduce the amount of calculation and
keep a large receptive field for data. The proposed TCN effectively avoids the gradient
disappearance or gradient explosion of RNN and has the advantages of parallel computing
and controlling the sequence memory length by changing the size of the receptive field [35].
The following describes its structural components.

3.2.1. Causal Convolutions

Causal convolution can be visually represented in Figure 6. The output at time t is
only related to the elements at time t and before in the previous layer [36]. Different from
the traditional convolutional neural network, causal convolution cannot see the future data,
and it is a one-way structure, not a two-way one. That is to say, only with the previous
cause can there be the subsequent result, which is a strict time constraint model, so it is
called causal convolution.
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3.2.2. Dilated Convolutions

To address the problem of linear stacking of multiple convolutions in traditional neural
networks to dilate the modeling of time series, TCN reduces the number of convolutional
layers by using dilated convolutions to increase the range of the receptive field of each
layer [37]. The difference between dilated convolutions and ordinary convolutions is
that dilated convolution allows interval sampling of input during convolution, and the
sampling rate depends on dilation factors. The formula of the receptive field is

RF = (k− 1) ∗ d + 1 (10)

where k is the kernel size, and d is the dilation factor. There are two ways to increase
the TCN receptive field: increasing the dilation factor and choosing a larger kernel size,
as shown in Figure 7. In the operation of dilation convolution, the dilation factor will
increase exponentially with the increase of network depth, so the convolution network can
still obtain a large receptive field with fewer layers [38].
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3.2.3. Residual Connections

Another important network structure in the TCN network is the residual module.
The residual module, shown in Figure 8, contains two layers of dilation causal convolution
and nonlinear mapping. Moreover, the residual network has added the identity mapping
of cross-layer connections, so that the network can transmit information in a cross-layer
manner, which can solve the problem of gradient disappearance and make the shallow
network easy to dilate into the deep network [39]. At the same time, Dropout and batch
normalization are added to prevent the model from overfitting and speeding up training.
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3.3. BiGRU

As a variant of Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU) has a
recursive structure similar to RNN and has the “memory” function of processing time-series
data. Meanwhile, GRU can effectively alleviate the gradient disappearance and gradient
explosion that may occur during RNN training, thus effectively solving the problem of
long-term memory. LSTM network is also a variant of RNN [40]. Its performance is almost
the same as that of GRU, but GRU is simpler in structure, which can reduce the amount
of calculation and improve the training efficiency [41]. The internal structure of GRU is
shown in Figure 9. GRU has two inputs: the output state ht−1 of the previous time and
the input sequence value xt of the current time, and the output is the state ht of the current
time. It mainly updates the model state through resetting gate rt and updating gate zt,
and the gate rt reset controls the degree of forgetting of historical state information, so that
the network can lose unimportant information. The gate zt update controls the proportion
of the previous state information brought into the current state, helping the network to
remember long-term information [42]. Its internal calculation formulas are as follows:

rt = σ(Wrxt + Urht−1) (11)

zt = σ(Wzxt + Uzht−1) (12)

h̃t = Tanh(Wh̃xt + Uh̃(rt � ht−1)) (13)

ht = (1− zt)� ht−1 + zt � h̃t (14)
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In the formulas and in Figure 9, σ is the sigmoid activation function, which changes
the intermediate state to the range of [0, 1]; ht−1 and ht are the output states at moments
t − 1 and t, respectively; xt is the input sequence value at moment t; h̃t is the candidate
output state. Wr, Wz, Wh̃, Ur, Uz and Uh̃ are the weight coefficient matrix corresponding
to each part; Tanh is the hyperbolic tangent function; � is the Hadamard product of the
matrix.

The traditional GRU structure usually spreads in one direction along with the se-
quence transmission, and the information it obtains is the historical information before the
current time, which leads to ignoring the future information. However, BiGRU structure is
composed of forward GRU and backward GRU, which can capture the characteristics of
front and back information [43]. Its model structure is shown in Figure 10.

As can be seen from Figure 10, the BiGRU hidden layer state ht at the moment t can

be found in two parts: the forward hidden layer state
→
h t and the backward hidden layer

state
←
h t. The forward hidden layer state

→
h t is determined by the current input xt and

the forward hidden layer state
→
h t−1 at moment t− 1. The backward hidden layer state

←
h t is determined by the current input xt and the backward hidden layer state

→
h t−1 at
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moment t + 1. The calculation formulas are as follows, where wi(i = 1, 2 . . . , 6) represents
the weight from one unit layer to another.

→
h t = f

(
w1xt + w2

→
h t−1

)
(15)

←
h t = f

(
w3xt + w5

←
h t+1

)
(16)

ht = g
(

w4
→
h t + w6

←
h t

)
(17)
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3.4. Attention-TCN-BiGRU

Our strategy is to make full use of these three algorithms to solve our problems: the
ability of Attention mechanism to select key characteristics, the ability of TCN to extract
characteristics, the ability of BiGRU to capture long-term dependence, and the ability to
obtain future information. Therefore, the model is named Attention-TCN-BiGRU. Figure 11
illustrates the general framework of our proposed model.

The input of the model is the data X after data preprocessing in Section 2.2, and its
shape is (sample size, time step, characteristic size). In the first stage, the characteristic
vector Xi of each category in X are given different weights αi(i = 1, 2, · · · , m) through
the attention mechanism in Section 3.1. In the second stage, we perform characteristic
extraction over Tj =

(
α1x1,tj , α2x2,tj , · · · , αmxm,tj

)
(j = 1, 2, · · · , n) through TCN, which

consists of two residual blocks. The first residual module consists of two dilation causal
convolution layers, with kernel size of 4, dilation factor of 1, and filter number of 7.
The dilation factor of the second residual module is 2, and the remaining parameters are
the same as those of the first residual module. In the third stage, we use the output vector
Tj
′ of the TCN as the input of the BiGRU network to extract the long-term correlation in

the time series and the correlation between future information and current information.
We take the output ht64 at the last moment of the second layer of BiGRU network as the
input of the full connection layer and output the intention type label with the highest
probability by the following formula.

y = softmax(wht64 + b) (18)

where y is the intention type label, w is the weight matrix to be learned, and b is the bias
vector.
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4. Experimental Analysis
4.1. Experimental Data and Environment

The experimental data were obtained from the Air Combat Maneuvering Instrumen-
tation (ACMI), whose labels were revised by experts in the field of air warfare. There were
10,500 samples in total, including 8400 training samples and 2100 test samples, with 14.3%
of intentions per category. Time step was 12, and characteristic size was 12.

The experiments were conducted using the Python 3.8 language, in a Quadro RTX
5000/PCle/SSE2 GPU and CUDA11.0 accelerated environment, using the Keras 2.4.3 deep
learning framework, with a computer configuration of an x86-64 CentOS7 PC system,
Intel® Xeon(R) Sliver 4110 CPU @ 2.10GHz, and 64GB of RAM. The number of epochs set
for the experiment was 100, and the batch size was 256.

4.2. Evaluation Metric

We propose the performance of the Attention-TCN-BiGRU air target recognition model
of combat intention for validation. Five metrics are used to evaluate the classification of
the network, namely, Loss, Accuracy, Precision, Recall, and F1-score. They are calculated
as follows.

Loss = −
i=q

∑
i=1

yi1 log ŷi1 + yi2 log ŷi2 + · · ·+ yid log ŷid (19)

Accuracy =
TP + TN

TP + FN + FP + TN
(20)

Precision =
TP

TP + FP
(21)

Recall =
TP

TP + FN
(22)
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F1 score =
2× Precision× Recall

Precision + Recall
(23)

where q is the number of samples, d is the number of categories, yid is the one-hot coded
value (0 or 1), ŷid is the output value of the Softmax function (∑d=7

d=1 ŷid = 1), TP is the True
Positive, FN is the False Negative, FP is the False Positive, and TN is the True Negative.

4.3. Parameter Tuning

There are also many hyperparameters in Attention-TCN-BiGRU that have a significant
impact on intention recognition performance. These include Filter numbers and Kernel
size in the TCN network, Neurons size in the BiGRU network, Optimizer, and Learning
rate of the whole network.

Appropriate size and number of convolutional kernels help to learn the rich charac-
teristics in the data. As can be seen in Tables 3 and 4, the highest accuracy and lowest
loss values are achieved when Filter numbers = 7 and Kernel size = 4, so they are set to
7 and 4, respectively.

Table 3. Comparison of different filter numbers in the Attention-TCN-BiGRU.

Filter Numbers Accuracy Loss

5 93.2 0.186
7 94.6 0.138
10 93.6 0.171
15 92.5 0.207
20 92.3 0.238

Table 4. Comparison of different kernel sizes in the Attention-TCN-BiGRU.

Kernel Size Accuracy Loss

2 92.5 0.209
3 93.7 0.172
4 94.6 0.138
5 92.6 0.210
6 92.3 0.227

The number of neuron nodes is not as good as possible. Too many neuron nodes are
prone to “overfitting”. The appropriate number of BiGRU neurons has a significant impact
on the intention recognition performance of Attention-TCN-BiGRU. We considered both
single-layer and two-layer BiGRU networks and tried different numbers of neurons. As can
be seen from Table 5, the highest accuracy and lowest loss values were achieved when the
BiGRU was set to two layers with 128 and 64 neurons, respectively.

Table 5. Comparison of different neurons size in the Attention-TCN-BiGRU.

Number of Neurons Accuracy Loss

128 94.0 0.162
256 94.0 0.170
512 92.3 0.201

64 64 93.7 0.185
128 64 94.6 0.138

128 128 93.3 0.181

Regarding optimizers, we compared five candidate algorithms; Stochastic Gradient
Descent (SGD) [44], Root Mean Square prop (RMSprop) [45], Adaptive Moment Estima-
tion (Adam) [46], Adamax [46], and Nesterov-accelerated Adaptive Moment Estimation
(Nadam) [47] were used. As can be seen from Table 6, the Nadam optimizer has the highest
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accuracy and lowest loss values compared to the other optimizers. Therefore, Nadam was
chosen for the optimization of our model. The default learning rate of Nadam in the Keras
2.4.3 deep learning framework is 0.002, which we have adjusted. As can be seen from
Table 7, the accuracy and loss value of intention recognition is optimal when the learning
rate is 0.004, so the learning rate we choose is 0.004.

Table 6. Comparison of the different optimizers in the Attention-TCN-BiGRU.

Optimizer Accuracy Loss

Nadam 94.6 0.138
Adam 94.3 0.151

Adamax 92.0 0.203
RMSprop 94.1 0.159

SGD 90.1 0.276

Table 7. Comparison of different learning rates in the Attention-TCN-BiGRU.

Learning Rate Accuracy Loss

0.002 93.9 0.153
0.004 94.6 0.138
0.006 93.2 0.172
0.008 92.8 0.197
0.010 91.0 0.231

The parameter settings for each network layer of our Attention-TCN-BiGRU model
are shown in Table 8.

Table 8. Parameters of each layer of the proposed method.

Layers Parameters

Residual
block 1

Conv1D layer
Activation function

Normalization method
Conv1D layer

Activation function
Normalization method

Conv1D layer

Filter numbers = 7, Kernel size = 4, Dilation_rate = 1, Padding = ‘causal’
Rectified Linear Unit
Batch Normalization

Filter numbers = 7, Kernel size = 4, Dilation_rate = 1, Padding = ‘causal’
Rectified Linear Unit
Batch Normalization

Filter numbers = 7, Kernel size = 1, Dilation_rate = 1, Padding = ‘same’

Residual
block 2

Conv1D layer
Activation function

Normalization method
Conv1D layer

Activation function
Normalization method

Conv1D layer

Filter numbers = 7, Kernel size = 4, Dilation_rate = 2, Padding = ‘causal’
Rectified Linear Unit
Batch Normalization

Filter numbers = 7, Kernel size = 4, Dilation_rate = 2, Padding = ‘causal’
Rectified Linear Unit
Batch Normalization

Filter numbers = 7, Kernel size = 1, Dilation_rate = 2, Padding = ‘same’

Bidirectional GRU 1 Hidden size = 128
Bidirectional GRU 2 Hidden size = 64

Dense Hidden size = 7, activation = ‘softmax’

4.4. Results and Analysis
4.4.1. Attention-TCN-BiGRU Intention Recognition Result Analysis

The experimental results of the Attention-TCN-BiGRU model are shown in Figure 12.
The convergence reached around 40 epochs, and the accuracy of the test set fluctuated
around 94% and could reach up to 94.6%, with a loss value around 0.15 which could reach
as low as 0.138.
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The confusion matrix for the test set was produced to allow further observation of the
relationship between the recognition intentions. The diagonal line indicates the number
of correctly identified samples, as shown in Figure 13. As can be seen from Figure 13,
the accuracy of the model is high for all seven intentions, with the highest accuracy of
98.7% for retreat and the lowest accuracy of 88.7% for the feint. In addition, it can be found
that there are some mutual recognition errors for attack and feint intentions and a few
mutual recognition errors for reconnaissance and surveillance. The network was unable to
learn the obvious difference between the two intentions, which led to the misrecognition of
the two intentions, in line with the actual situation.
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4.4.2. Analysis of Characteristic Weight Proportion

The weights assigned to the aerial target characteristic set after the Attention layer are
now analyzed in order to verify the effectiveness of the Attention mechanism. Its results
are shown in Figure 14, with 12 characteristics on the horizontal axis and 7 intentions on
the vertical axis.

From Figure 14, it is derived that the four characteristics of distance, altitude, speed
and heading angle received the most attention among the characteristics. By reviewing
the relevant reference [48,49] and consulting with relevant experts, it is clear that angle
and altitude play the most critical role in the execution of the mission by warplanes, which
is consistent with the experimental results. Combined with the analysis of the confusion
matrix in Figure 14, there exist three types of intentions with more mutual recognition
errors, attack, feint, and penetration, and many degrees of similarity in the attention given
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to various types of characteristics in their Attention layer, and the same situation exists for
surveillance and reconnaissance. The two corroborate each other, further demonstrating
that the Attention mechanism is indeed effective in focusing on key characteristics.
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4.4.3. GRU, LSTM, BiLSTM, and BiGRU Selection Experiments

The Attention-TCN network was combined with BiGRU, BiLSTM, GRU, and LSTM,
respectively, in order to verify that using the BiGRU network was superior, and the ex-
perimental results are shown in Table 9. The intention recognition accuracy of Attention-
TCN-BiGRU and Attention-TCN-BiLSTM were similar, and both were higher than that
of Attention-TCN-GRU and Attention-TCN-LSTM networks, thus verifying that the in-
troduction of bidirectional propagation mechanism can effectively improve the intention
recognition accuracy. In terms of intention recognition time for a single sample, the lowest
time was 43.2 ms for Attention-TCN-GRU, and the longest time was 54.2 ms for Attention-
TCN-BiLSTM, because the LSTM structure consists of four parts and the GRU structure
consists of three parts, and the number of GRU parameters is about one quarter less than
that of LSTM. Therefore, we chose the Attention-TCN-BiGRU network because it has lower
time complexity when the performance is similar to Attention-TCN-BiLSTM.

Table 9. Comparison of four models.

Model Accuracy (%) Loss Time (ms)

Attention-TCN-BiGRU 94.6 0.138 50.4
Attention-TCN-BiLSTM 94.7 0.129 54.2

Attention-TCN-GRU 93.9 0.148 43.2
Attention-TCN-LSTM 94.1 0.151 46.9

4.4.4. Comparative Analysis of Intention Recognition Methods

In order to verify the superiority of our proposed method, we now compare it with
Zhou et al. [11] proposed the use of ReLU function and Adam algorithm to optimize
the deep back propagation (DBP) neural network air target combat intention recognition
model; Zhai et al. [12] proposed a standardized fully connected residual (BN-FC-RES)
network model for the analysis of air target combat intentions; Liu et al. [13] proposed a
target intention recognition model based on radial basis function (RBF) neural network;
Ou et al. [14] proposed a stack autoencoder (SAE) tactical intent intelligent recognition
model; Liu et al. [16] proposed a long-short-term memory (LSTM) network-based air
combat target intention prediction model under incomplete information, and Xue et al. [17]
proposed a panoramic convolutional long short-term memory network (PCLSTM) for air
target combat intention recognition. The experimental results are shown in Table 10.
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Table 10. Comparison of different intention recognition models.

Model Accuracy (%) Loss

Attention-TCN-BiGRU 94.6 0.138
PCLSTM 88.7 0.338

LSTM 84.5 0.445
BN-FC-RES 81.6 0.498

SAE 76.8 0.553
DBP 75.9 0.548
RBF 71.3 0.632

4.4.5. Ablation Experiment

A comparative experimental analysis was conducted through ablation experiments
and three assessment metrics; Precision, Recall, and F1 Score, were introduced to assess
each type of intention in order to further demonstrate the superiority of our proposed
method. The experimental results are shown in Tables 11 and 12 and Figure 15.

Table 11. Results of ablation experiment.

Model Composition Structure
Accuracy (%) Loss

Attention TCN BiGRU
√ √ √

94.6 0.138√ √
93.3 0.185√ √
93.5 0.173√ √
90.8 0.247√
90.2 0.298√
85.1 0.435

Table 12. Results of evaluation indexes of ablation experiment. 1©, 2©, 3©, 4©, 5©, and 6© respectively represent the Attention-
TCN-BiGRU, Attention-TCN, Attention-BiGRU, TCN-BiGRU, TCN, and BiGRU air target intention recognition models.

Intention Style

Evaluation Index Precision (%) Recall (%) F1 Score (%)

1© 2© 3© 4© 5© 6© 1© 2© 3© 4© 5© 6© 1© 2© 3© 4© 5© 6©

Attack 89.6 87.9 88.2 84.8 83.8 78.4 91.7 90.0 89.7 87.3 86.3 80.0 90.6 89.0 89.0 86.0 85.1 79.2

Penetration 97.0 95.3 93.8 92.7 92.0 84.5 95.7 94.7 95.3 92.7 91.7 87.3 96.3 95.0 94.5 92.7 91.9 85.9

Surveillance 96.3 95.3 95.3 91.3 90.9 82.7 95.3 94.7 95.0 90.7 89.7 86.3 95.8 95.0 95.2 91.0 90.3 84.5

Reconnaissance 93.0 91.7 93.8 88.5 88.1 83.8 97.0 95.3 96.0 92.3 91.0 84.7 95.0 93.5 94.9 90.4 89.5 84.2

Feint 90.8 88.7 88.6 87.4 86.4 80.4 88.7 86.0 85.7 83.3 84.7 76.3 89.7 87.3 87.1 85.3 85.5 78.3

Retreat 98.3 98.0 98.0 96.7 96.3 96.0 98.7 98.7 98.7 97.0 96.7 95.0 98.5 98.3 98.3 96.8 96.5 95.5

Electronic interference 97.3 96.2 96.6 94.5 94.2 90.2 95.0 93.7 94.0 92.3 91.3 86.0 96.1 95.0 95.3 93.4 92.7 88.1

From Tables 11 and 12 and Figure 15, we can see that Attention-TCN-BiGRU is the
most superior, with high accuracy and low loss value low. The accuracy, recall and F1
Score for each type of intention recognition are also the highest, which indicates that
combining the Attention, TCN and BiGRU networks can indeed improve the network’s
ability to recognize intention. TCN is also significantly better than BiGRU, indicating that
the recently developed TCN networks are more capable of learning data characteristics.
The lowest accuracy rate is for attack intention, which is due to the fact that some of the
feint intention samples and surprise intention samples have similar characteristics to attack
intention samples, resulting in too many feint and surprise samples being identified as false
positives. The lowest recall rate for feint intention is due to the fact that feint intention is
too deceptive, and the data characteristics are less easy to learn compared to feint intention.
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The highest accuracy and recall rate was for retreat intentions, which were relatively easy
to learn due to the distinctive characteristics of retreat intention.
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5. Conclusions

A temporal network for improving intention recognition is designed, which addresses
the important role of air target combat intention recognition in modern air warfare. Firstly,
by analyzing the combat characteristics of air targets, 12 easily accessible characteristics
focusing on both the combat mission and the air posture are extracted. Moreover, the non-
numerical characteristics of the 12 characteristics are numerically processed. Secondly,
the Attention mechanism is used to attach attention weights to the various characteristics;
the TCN network is used to extract potential characteristics from the data, and the long-
term dependencies present in the sequence are captured by the BiGRU network. Finally,
generic simulation experiments are conducted to verify the intention recognition capability
of our proposed model.

The higher intention recognition accuracy of our proposed Attention-TCN-BiGRU
generic is validated in comparison with DBP [11], BN-FC-RES [12], RBF [13], SAE [14],
LSTM [16], and PCLSTM [17] methods as well as its ablation experiments. It compares
well with other methods in its ability to perform the task of intent recognition of air
targets, and it has theoretical implications and reference value for combat systems that aid
decision-making.

We will focus on two issues in our future work. The first is the problem of recognizing
intentions with high characteristic similarity and high deceptiveness. The second is how to
effectively recognize intentions when they change in the detected time series.
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Appendix A

Table A1. Detailed description of seven intention types.

Intention Type Description

Attack Attack ground targets by launching bullets, missiles, and bombs from
aerial targets.

Penetration Use earth curvature and terrain as cover to effectively avoid various
threats and achieve sudden attacks on targets.

Surveillance Passively monitor the situation in a certain space through aerial targets,
usually continuously.

Reconnaissance Actively detect a certain space through air targets, which can be
continuous or intermittent.

Feint A military means to deceive the enemy. Only make a limited attack,
making the enemy’s judgment wrong.

Retreat Withdraw from the battlefield or conflict.

Electronic
interference

Air targets interfere with radar and communication systems by carrying
electronic jamming equipment.

Table A2. Symbol description.

Symbol Meaning

Q Air target combat intent space set
I(tn) Real-time feature information of air targets at time tn
IT Real-time characteristic information of air targets at T consecutive times from t1 to tT
C Air combat capability factor
x′ir The r-th data in class i air target characteristics
Xi Type i air target characteristics
ui Linear layer output vector in HAN
δi Importance weight of the i-th word
s Sentence vector obtained after weighted average of hierarchical attention network

αi,t The weight of the i-th type feature at time t
αt Importance weight at time t
αi The average value of the weight of the i-th type feature
Ri The weighted value of the i-th type feature output by the Attention mechanism
RF Receptive field
k Kernel size
d Dilation factor
xt Input sequence value at time t
rt Reset gate at time t
σ Sigmoid activation function
� Hadamard product of the matrix
zt Update gate at time t
h̃t Candidate output state at time t
ht Hidden state at time t
→
h t BiGRU forward hidden layer state at time t
←
h t BiGRU backward hidden layer state at time t
y Air target intent type label
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