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Abstract: The derivation of Runge–Kutta pairs of orders five and four that effectively uses six stages
per step is considered. The coefficients provided by such a method are 27 and have to satisfy a system
of 25 nonlinear equations. Traditionally, various solutions have been tried. Each of these solutions
makes use of some simplified assumptions and offers different families of methods. Here, we make
use of the most celebrated family to appear in the literature, where we may use as the last stage the
first function evaluation from the next step (FSAL property). The family under consideration has the
advantage of being solved explicitly. Actually, we arrive at a subsystem where all the coefficients are
found with respect to five free parameters. These free parameters are adjusted (trained) in order to
deliver a pair that outperforms other similar pairs of orders 5(4) in Keplerian type orbits, e.g., Kepler,
perturbed Kepler, Arenstorf orbit or Pleiades. The training uses differential evolution technique.
The finally proposed pair has a remarkable performance and offers on average more than a digit of
accuracy in a variety of orbits.

Keywords: initial value problem; Runge–Kutta pairs; differential evolution; Kepler orbits

MSC: 65L05; 65L06; 90C26; 90C30

1. Introduction

A system of ordinary differential equations of the form

x′ = f (t, x), x(t0) = x0 (1)

with t0 ∈ R, x, x′ ∈ Rm and f : R×Rm → Rm, is called Initial Value problem (IVP).
For addressing the above problem (1), we usually try Runge–Kutta (RK) pairs, which is

perhaps the most popular choice among the numerical methods. These pairs are compactly
presented by the Butcher tableau [1,2] that follows,

q D
w
ŵ
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with wT , ŵT , q ∈ Rs and D ∈ Rs×s. This method spends s function evaluations per step
that are evaluated explicitly when D is a strictly lower triangular. The estimate of the
solution steps from (tk, xk) to tk+1 = tk + hk after producing two approximations for
x(tk+1). Namely, xk+1 and x̂k+1, given by

xk+1 = xk + hk

s

∑
i=1

wi fi

and

x̂k+1 = xk + hk

s

∑
i=1

ŵi fi

with

fi = f (tk + qihk, xk + hk

i−1

∑
j=1

dij f j),

for i = 1, · · · , s. These two estimations xk+1 and x̂k+1 are, respectively, of algebraic orders
p1 and p2 < p1. Thus, in every step, we form the quantity

εk = hp1−p2−1
k · ‖xk+1 − x̂k+1‖,

and it is supposed to be an estimate of the local error. Actually, it is used in a step-size
changing algorithm

hk+1 = 0.9 · hk · (
κ

εk
)1/p1 ,

where κ is a small enough positive tolerance set by the user. Whenever εk < κ we use the
above formula for setting the length of the next step forward, i.e., from tk+1 to tk+2. On
the contrary, the same formula is used, but then hk+1 is changed with hk since we have to
estimate a new smaller step size for advancing from the current point tk to a new point
tk + hk. Details in this subject are given in [3]. An abbreviation for these methods is the
terminology RKp1(p2) pairs.

Runge was the first to present a second order RK method by combining a sequence
of Euler formulas [4]. Some years later, Kutta managed to construct a four stages fourth
order method [5]. Since the system of order conditions required to be solved (see [6]) is too
complicated, there was a rather slow progress in the issue. Nyström showed the correct
coefficients of a six stages method of fifth order [7]. Higher order methods appeared in the
50s. Huta gave a sixth order method at a cost of eight stages per step [8]. RK pairs were
introduced in the 60s. It was E. Fehlberg who constructed at first a series of celebrated
pairs of orders 5(4), 6(5) and 8(7), [9,10]. His pioneering work followed in the early 80s by
Dormand and Prince who presented their famous pairs [11,12]. Our research group has
also derived a series of interesting RK pairs [13–16].

Almost every non-stiff problem of the form (1) may be solved effectively with RK
pairs. The accuracy required explains the wide range of pairs. As a result, the lowest RK
pairs are more efficient the lower the accuracy on demand. A high order pair, on the other
hand, should be chosen for demanding accuracies at quadruple precision [17].

We’ll concentrate on RK5(4) pairs, which are best for intermediate accuracies. Prob-
lems (1) with structure similar to Keplerian forms are of particular interest to us. As a
result, we shall offer a specific RK5(4) pair for dealing with this type of cases.

2. Families of Runge–Kutta Pairs of Orders 5(4)

Runge–Kutta pairs of algebraic orders five and four are perhaps the most famed. Their
coefficients have to satisfy 25 order conditions. As a result, over time, families of solutions
have been developed. The minimum number of stages required to construct a fifth-order
RK method or a 5(4) pair is known to be six [1].

Usually these pairs are constructed according to various types of simplifications. After
these simplified assumptions applied to the original equations (order conditions), we arrive
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at a simpler system where some coefficients remain as free parameters. The values of these
free parameters were chosen by Fehlberg for minimization the truncation error coefficients
of the pair’s fourth-order formula. After considerable numerical testing, Shampine in [18]
concluded that propagating the higher-order solution (i.e., here, the fifth order) of a pair is
desirable from a numerical standpoint. This technique is called Local Extrapolation.

Dormand and Prince went on to expand a family of fifth-order methods already pre-
sented by Butcher in [1]. They suggested a family that borrows the first function evaluation
from the next step to embed a fourth-order method within a fifth-order method at no
additional cost [11]. For a long time, the best fifth-order pair was commonly considered to
be DP5(4), an individual pair in their four-parameter family with small truncation error
coefficients of its fifth-order formula. Later on, Papakostas and Papageorgiou extended this
family by adding a parameter more [19]. The later authors presented a pair with minimal
truncation coefficients and claimed that its performance was in average about 15.8% more
efficient than DP5(4) in the standard IVP test set named DETEST [20].

Ten years ago, Tsitouras presented a new family that makes use of the least simplifying
assumptions possible [15]. Only the assumptions

D · e = q, and w · (D + Q− Is) = 0 ∈ R1×s,

with e = [1, 1, · · · , 1] ∈ Rs, Q = diag(q), Is ∈ Rs×s the identity matrix, were made there.
The common set of simplifications

D · q =
q2

2
and w2 = 0,

is not used. In the above, we set as

qτ = q ∗ q ∗ · · · ∗ q︸ ︷︷ ︸
τ times

,

the component-wise multiplication among the elements of q. Generally, in the following,
by v ∗ u we mean the component by component multiplication among matrices with the
same number of rows.

Here, we will make use of the five parameters family introduced in [19]. The choice is
justified, since this family of solutions is a superset of the solutions given by [11]. Besides,
the derivation of the coefficients is explicit and therefore cheap. Meanwhile, the family
given in [15], although groundbreaking, is implicit. Thus, the later technique of solutions is
somewhat expensive for our goals here.

In the following, we describe the derivation of the coefficients according to the guide-
lines given in [19].

Notice that, at first, q1 = 0, q6 = q7 = 1, w2 = ŵ2 = w7 = 0 and dij = 0 for i ≥ j.
Set arbitrary values for q2 6= 0, q3, c4, q5, ŵ7 6= 0. q3, q4, q5 has to be different from each

other and not equal to 1.

1. Solve w · e = 1, w · q = 1
2 , w · q2 = 1

3 , w · q3 = 1
4 , w · q4 = 1

5 , for w1, w3, w4, w5, w6.

2. Set ŵ6 =

(
35q2

3q4 − 26q3q4
−3q3 + 6q4

)
·
(

30q3q4q5 − 20q3q4 − 20q3q5 + 15q3
−20q4q5 + 15q4 + 15q5 − 12

)
{

300(q3 − 1)(q4 − 1)(q5 − 1)·(
10q2

3q4 − 8q3q4 − q3 + 2q4
) } .

3. Solve ŵ · e = 1, ŵ · q = 1
2 , ŵ · q2 = 1

3 , ŵ · q3 = 1
4 , for ŵ1, ŵ3, ŵ4, ŵ5.
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4. Solve



(D · q)3 = 0, (D · q)4 = 0, (D · q)5 = 0,

(D · q)6 = 0, w · (D + Q− I)5 = 0, (w · D)2 = 0,

w · (q ∗ D)2 = 0, (ŵ · D)2 = 0, w · D · q3 = 1
20 ,

w · (q ∗ D) · q2 = 1
15 ,


for d32, d42, d43, d52, d53, d54, d62, d63, d64 and d65. By (·)j is meant the j−th component

of the underlying vector.

Then set d21 = q2, d31 = q3 − d32, d41 = q4 − d42 − d43, d51 = q5 − d52 − d53 − d54 and
d61 = q6 − d62 − d63 − d64 − d65.

Finally, the FSAL (First Stage As Last) property holds, and

d7j = wj, j = 1, 2, · · · , 6.

Because the seventh stage is used as the initial stage of the following step, even if s = 7, the
family only spends six stages every step.

The challenge now is how to choose the free parameters. The norm of the principal
coefficients of the local truncation error is traditionally minimized. i.e., the terms of h6

in the residual of Taylor error expansions corresponding to the fifth order method of the
underlying RK pair [13].

Since our concern here is to deal with Keplerian type orbits, we shall try another
approach and train these free parameters in order for the resulting pair to perform best in
our problems of interest.

3. Comparison of the Results among Pairs

Comparison of the results observed by various pairs is an interesting issue. It is of
crucial importance in our present work. So, let us work on Kepler problem. This has the
following form:

1x′ = 3x,
2x′ = 4x,

3x′ = −
1x(√

(1x)2 + (2x)2
)3 ,

4x′ = −
2x(√

(1x)2 + (2x)2
)3 ,

with t ∈ [0, 10π], x(0) =
[
1− γ, 0, 0,

√
1+γ
1−γ

]T
and the theoretical solution

1x(t) = cos(v)− γ, 2x(t) = sin(v)
√

1− γ2.

In the above, v = γ · sin(u) + x, γ is the eccentricity, and the the left superscript
denotes the components of x. They shall not be confused with x1 =

[1x1,2 x1,3 x1,4 x1
]T ,

x2 =
[1x2,2 x2,3 x2,4 x2

]T , x3, · · · , that correspond to the vectors approximating the solution
at t1, t2, t3, · · · .

When running DP5(4) for γ = 0.6 and tolerances 10−5, 10−6, · · · , 10−11, we get the
results summarized in Table 1. There we recorded the error observed at the end-point as
long as the function evaluations are taken by the pair.
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Table 1. Results of DP5(4) over Kepler orbit for γ = 0.6.

Tolerance Stages End-Point Error

10−5 1033 2.0× 10−2

10−6 1471 9.7× 10−5

10−7 2107 7.85× 10−5

10−8 2689 8.4× 10−6

10−9 4261 1.3× 10−6

10−10 6775 1.4× 10−7

10−11 10,681 1.4× 10−8

Then, we try T5(4) pair given in [15] and get the results presented in Table 2.

Table 2. Results of T5(4) over Kepler orbit for γ = 0.6.

Tolerance Stages End-Point Error

10−5 1225 5.0× 10−3

10−6 1795 6.3× 10−4

10−7 2365 7.0× 10−5

10−8 3181 8.8× 10−6

10−9 4963 9.4× 10−7

10−10 7861 9.5× 10−8

10−11 12,451 9.5× 10−9

Which pair is more efficient? How can we derive this? Of course, we may not simply
check the errors after each tolerance since the number of stages differ. We want to eliminate
the presence of tolerances. They do not offer something in comparing the results. We
proceed in a way similar to that proposed in [20].

Thus, we form a linear least squares fit on the logarithms of data (i.e., stages and errors).
Then, we arrive at a slope that justifies the order of the method. These parallel slopes for
DP5(4) and PP5(4) can be seen in Figure 1. See ([2], p. 214) for details in the issue.

10
3

10
4

function evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

e
rr

o
r

DP54

DP54 fit

T54

T54 fit

Figure 1. Results for DP5(4) and T5(4) as given in Tables 1 and 2 and their corresponding log-
linear fits.
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Now, we are able to compare the results of the pairs in the selected problem.
In Table 3, we present the functions evaluations that might have been spend for

achieving various errors by both pairs. These numbers come after the linear fit as explained
in [20], while the constant ratio is explained by the parallel slopes among methods of the
same order. The later observation might not be present for every problem. Some special
characteristics of various problems may exploited differently by various pairs of the same
orders and thus may give steeper slopes than expected. Thus, the numbers in the second
column of Table 3 are evaluated as

stages ≈ 10−0.1728·log10(expected error)+2.6121,

while the stages in the third column can be found by the relation

stages ≈ 10−0.1736·log10(expected error)+2.6705.

In conclusion, DP5(4) is considered to be 13–14% cheaper than T5(4) in the problem under
consideration. After this, we may ask for free parameters that may produce a new pair that
is cheaper in a wider class of Keplerian type orbits.

Both methods outperformed their order expectations for this problem. According to
theoretical aspects, a fifth order method is expected to perform as

stages = 10−
1
5 ·log10(expected error)+constand,

since the global error behaves as h5, then, with h a constant step through the integration,
([21], p. 162).

Table 3. Stages that might have been spent for achieving various errors by both pairs for Keplerian
orbit with eccentricity γ = 0.6. Stars indicate unavailability of data to attain the perspective errors.

Expected
End-Point Error

DP5(4) T5(4) Efficiency Ratio

10−1 609.34 ∗ ∗

10−2 907.08 1041.53 0.87

10−3 1350.31 1553.40 0.87

10−4 2010.11 2316.84 0.87

10−5 2992.11 3455.47 0.87

10−6 4454.45 5133.70 0.86

10−7 6631.02 7686.53 0.86

10−8 9871.14 11,464.14 0.86

10−9 ∗ 17,098.30 ∗

4. Performance of Pairs in a Wide Set of Keplerian-like Problems

We indent to construct a specific RK5(4) pair from the above mentioned family. The
resulting pair has to perform best on Keplerian type problems. Thus, we have chosen the
following problems.

1. The Kepler problem
This problem has already been discussed above. We ran it for five different eccentrici-

ties (i.e., γ = 0, 0.2, 0.4, 0.6, 0.8), while we recorded the stages used and the endpoint errors
for xend = 10π. These problems are referred to with numbers 1–5, respectively, in the tables
with the results below.
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2. The perturbed Kepler
The Schwarzschild potential is used to explain the motion of a planet according to

Einstein’s general relativity theory. The equations are:

1x′′ = −
1x√

(1x)2 + (2x)23 − (2 + δ)δ
1x√

(1x)2 + (2x)25 ,

2x′′ = −
2x√

(1x)2 + (2x)23 − (2 + δ)δ
2x√

(1x)2 + (2x)25 ,

and the analytical solution is

1x = cos(t + δt), 2x = sin(t + δt).

We solved this problem through tend = 10π, by converting it into a system of four first-
order equations. We run this problem for δ = 0.01, 0.02, 0.03, 0.04, 0.05 and referred with
numbers 6–10, respectively, in the tables with the results below.

3. The Arenstorf orbit
Another fascinating orbit depicts a spacecraft’s stable travel around the Earth and

moon ([21], p. 129).

1x′′ = 1x + 2 · 2x
′ − ζ ′ ·

1x + ζ

P1
− ζ ·

1x− ζ ′

P2
,

2x′′ = 2x + 2 · 1x
′ − ζ ′ ·

2x
P1
− ζ ·

2x
P2

,

with

P1 =

√
(1x + ζ)

2
+ 2x2

3
, P2 =

√
(1x− ζ ′)2

+ 2x2
3
,

ζ = 0.012277471, ζ ′ = 0.987722529,

initial values

1x(0) = 0.994, 1x
′
(0) = 0, 2x(0) = 0, 2x

′
(0) = −2.00158510637908252,

and with tA = 17.0652165601579625589, 2tA, 3tA, · · · the solution is periodic.
We also transformed this problem to a system of four first-order equations and solved

it to tA and 2tA. Similarly, we recorded the endpoint errors and the costs and used numbers
11 and 12 for these two runs in the tables with the numerical results.

4. The Pleiades
Finally, we considered the problem “Pleiades” as given in ([21], p. 245).

ix′′ = ∑
i 6=j

µj
(jx− ix

)
ρij

, iz
′′
= ∑

i 6=j

µj
(jz−i z

)
ρij

,

with

ρij =

√(
ix− jx

)2
+
(

iz− jz
)2

3
, i, j = 1, · · · , 7.

The initial values are

1x(0) = 3, 2x(0) = 3, 3x(0) = −1, 4x(0) = −3, 5x(0) = 2, 6x(0) = −2, 7x(0) = 2,

1z(0) = 3, 2z(0) = −3, 3z(0) = 2, 4z(0) = 0, 5z(0) = 0, 6z(0) = −4, 7z(0) = 4,
1x′(0) = 0, 2x′(0) = 0, 3x′(0) = 0, 4x′(0) = 0, 5x′(0) = 0, 6x′(0) = 1.75, 7x′(0) = −1.5,

1z′(0) = 0, 2z′(0) = 0, 3z′(0) = 0, 4z′(0) = −1.25, 5z′(0) = 1, 6z′(0) = 0, 7z′(0) = 0,
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We set µj = j, j = 1, · · · , 7. We solved the problem by transforming it into a system
of fourteen first-order equations once more. As end points, we used to tend = 3 and 4.
After estimating the solution with Mathematica [22] and quadruple precision, we recorded
the endpoint errors made by the RK5(4) pairs. Similarly we recorded the endpoint errors
and the costs and used numbers 13 and 14 for these two runs in the tables with the
numerical results.

In conclusion, we set 14 problems (i.e., five Keplerian, five perturbed Kepler, two
Arenstorf orbits and two Pleiades) run for 7 tolerances each (i.e., 10−5, 10−6, · · · , 10−11).

At first we record the corresponding ratios (as those recorded in the rightmost column
of Table 3) of DP5(4) vs. T5(4) in Table 4. In the first column, we list the expected errors. In
the last row we see the average performances over all runs (i.e., tolerances used) for each
problem. Numbers greater than 1 ar in favor of the second pair. The overall average of
these means is 1.04, which means that DP5(4) was in average about 4% more expensive
than T5(4) in all these 14× 7 = 98 runs.

Table 4. Efficiency ratios of DP5(4) vs. T5(4) for various problems and end-point errors achieved. Stars indicate unavailability
of data to attain the perspective errors.

Error︸ ︷︷ ︸ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

100 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.05 ∗ ∗
10−1 ∗ ∗ ∗ ∗ 0.94 ∗ ∗ ∗ ∗ ∗ 0.96 1.17 ∗ ∗
10−2 ∗ ∗ ∗ 0.87 0.93 ∗ ∗ ∗ ∗ 1.26 1.05 1.31 ∗ ∗
10−3 1.22 1.29 1.05 0.87 0.92 1.22 1.20 1.20 1.20 1.19 1.14 1.46 ∗ 1.19
10−4 1.14 1.19 1.01 0.87 0.92 1.12 1.12 1.13 1.13 1.13 1.25 1.63 1.28 1.16
10−5 1.06 1.10 0.97 0.87 0.91 1.03 1.05 1.06 1.07 1.07 1.36 1.82 1.23 1.12
10−6 0.99 1.02 0.93 0.86 0.90 0.95 0.97 1.00 1.01 1.01 1.49 ∗ 1.17 1.09
10−7 0.92 0.94 0.89 0.86 0.90 0.87 0.91 0.94 0.95 0.96 1.62 ∗ 1.12 1.06
10−8 0.86 0.87 0.86 0.86 0.89 0.80 0.85 0.88 0.90 0.91 ∗ ∗ 1.07 1.04
10−9 0.80 0.80 0.82 ∗ ∗ 0.74 0.79 0.83 0.85 0.86 ∗ ∗ 1.02 1.01
10−10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.97 0.98

mean-> 1.00 1.03 0.93 0.87 0.91 0.96 0.98 1.00 1.01 1.05 1.27 1.41 1.12 1.08

Thus, our question is to find free parameters in the algorithm given in the previous
section that furnish a pair doing much better than 1.04 as it can be.

5. Training the Free Parameters in a Wide Set of Keplerian-like Problems

The original idea of our present work is based in [23]. After choosing the free parame-
ters q2, q3, q4, q5, b̂7, we get pairs named NEW5(4) and form tables like Table 4. There, we
record the efficiency ratios of DP5(4) vs. NEW5(4) and calculate the average of means. This
later value is a fitness measure and meant to be maximized. For the maximization process
we applied Differential Evolution technique [24]. We used MATLAB Software DeMat [25]
for implementing the latter technique.

The differential evolution process has already used by us for producing numerical
methods for solving IVP problems and obtaining very interesting results. However, until
now, we tried optimization in one or two problems. Notice that here we actually operate
on runs for 98 problems! In [26], we produced Nyström pairs of orders 4(3) and 6(4),
while in [27], we derived Numerov type algorithms of sixth orders for integration of orbits.
Lately, we have tried this technique for Runge–Kutta pairs of orders 6(5) [28,29].

The optimization through differential evolution furnished various quintuplets for the
parameters and we present the selected one in double precision below,

q2 =
21,262,143
151,629,400

, q3 =
35,679,992

104,132,629
, q4 =

274,354,625
247,316,802

, q5 =
200,712,968
197,386,935

, ŵ7 =
1

200
.

The resulting pair is presented in Table 5. Coefficients not appearing there are zero.
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Table 5. Coefficients of the proposed here NEW5(4) pair, accurate for double precision computations.

q2 = 0.14022440898664771, q3 = 0.3426398847569670, q4 = 1.1093246507368311,
q5 = 1.01685031990592488, q6 = q7 = 1, w1 = 0.1023659690365102,
w3 = 0.5224013850127148, w4 = 0.6073190283934926, w5 = −7.1585072358744018,
w6 = 6.9264208534316842, ŵ1 = 0.1011697031721691, ŵ3 = 0.5263726397826966,
ŵ4 = 0.5535457487059638, ŵ5 = −6.7256950583938850, ŵ6 = 6.5396069667330555,

ŵ7 = 0.005, d21 = 0.14022440898664771, d31 = −0.0759822776564498,
d32 = 0.4186221624134168, d41 = 8.3218998874618880, d42 = −15.2489157586992278,
d43 = 8.0363405219741709, d51 = 5.222667097410808, d52 = −9.5852933284904335,
d53 = 5.35617994486048108, d54 = 0.02329660612506932, d61 = 4.68849813729819414,
d62 = −8.6009968215078711, d63 = 4.88059228918943447, d64 = 0.0144914646361612,
d65 = 0.0174149303840813, d7j = wj, j = 1, · · · , 6.

We fixed ŵ7 = 1
200 , since this coefficient actually affects only the tolerance. Indeed we

may choose

ŵ = λ · 1
200 , λ 6= 0,

and a new ŵ = λŵ + (1− λ)w. Then, the tolerance κ simply becomes λκ. A small value of
λ shifts the results towards stringent tolerances. We have to choose ŵ7 (or λ) with some
care. Here we tried to get tables of the form given in Table 4, as full as possible.

The norm of the principal truncation error coefficients is ‖T(7)‖2 ≈ 1.17× 10−4, which
is a little smaller than the corresponding value ‖T(7)‖2 ≈ 3.99× 10−4 of DP5(4). On the
other hand, it is of the same magnitude with ‖T(7)‖2 ≈ 1.38× 10−4 observed for T5(4). The
interval of absolute stability is (−3.62, 0], and it is not extended. No extra phase-lag order
is observed since bA4c 6= 1

840 [30].
In conclusion, no extra property seems to hold. The pair given in Table 5 does not

possess something interesting. It is hard to believe a special performance after seeing its
traditional characteristics.

For the above selection of free parameters, we obtained the efficiency rations tabulated
in Table 6.

Table 6. Efficiency ratios of DP5(4) vs. NEW(4) for various problems and end-point errors achieved. Stars indicate
unavailability of data to attain the perspective errors.

Error︸ ︷︷ ︸ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

100 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.25 ∗ ∗
10−1 ∗ ∗ ∗ ∗ 1.10 ∗ ∗ ∗ ∗ ∗ ∗ 1.51 ∗ ∗
10−2 ∗ ∗ 1.04 0.96 1.14 ∗ ∗ ∗ ∗ 2.04 1.07 1.81 ∗ ∗
10−3 1.65 1.92 1.11 1.04 1.18 1.51 1.71 1.83 1.95 2.04 1.23 2.18 1.51 1.62
10−4 1.70 1.96 1.18 1.14 1.22 1.62 1.79 1.89 1.98 2.04 1.41 2.62 1.42 1.49
10−5 1.76 2.00 1.25 1.25 1.26 1.75 1.86 1.96 2.00 2.04 1.61 3.16 1.33 1.38
10−6 1.83 2.04 1.33 1.36 1.30 1.88 1.94 2.02 2.03 2.04 1.85 ∗ 1.26 1.27
10−7 1.89 2.08 1.41 1.49 1.34 2.02 2.03 2.08 2.05 2.05 2.12 ∗ 1.18 1.17
10−8 1.96 2.12 1.50 1.63 1.38 2.18 2.11 2.15 2.08 2.05 ∗ ∗ 1.11 1.08
10−9 2.03 2.16 1.60 ∗ ∗ 2.34 2.21 2.22 2.11 2.05 ∗ ∗ 1.05 1.00
10−10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.99 0.92

mean-> 1.83 2.04 1.30 1.27 1.24 1.90 1.95 2.02 2.03 2.04 1.55 2.09 1.23 1.24

The average efficiency is 1.70, i.e., DP5(4) is about 70% more expensive for these 98 runs
over the selected 14 orbital problems. In reverse, this means that about log10 1.75 ≈ 1.15
digits were gained on average for NEW5(4) at the same costs.

6. Numerical Tests

We tested NEW5(4), presented here along with DP5(4) pair, given in [11]. The latter
pair is by far the most used Runge–Kutta pair. Everything else presented until now is hardly
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more efficient [15,19]. Both pairs were run for tolerances of 10−5, 10−6, · · · , 10−11. We set
NEW5(4) as the reference pair and thus numbers greater than 1 indicate that NEW5(4) is
more efficient. Thus, we can interpret the number 1.20 as DP5(4) being 0.2 = 20% more
expensive than NEW5(4) while an entry of 2.00 means that DP5(4) is 100% more expensive
(i.e., has twice the cost for achieving the same accuracy).

In the numerical tests, the errors are measured over the whole mesh on the integration
interval. An estimation of the true solution is made every step by a parallel integration at
stringent tolerance using an eighth order pair [31]. Thus, the almost true global error is
recorded. In the previous sections and for optimization, we preferred using the end point
error since this reduced considerably the evaluation times. Thus, we repeat Table 6 using
global errors and report the results in Table 7. The average is 1.68 justifying the results over
the end-point only.

Table 7. Efficiency ratios of DP5(4) vs. NEW(4) for various problems and global errors achieved over the whole integra-
tion interval. Stars indicate unavailability of data to attain the perspective errors.

Error︸ ︷︷ ︸ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

100 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.40 ∗ ∗
10−1 ∗ ∗ ∗ ∗ 1.10 ∗ ∗ ∗ ∗ ∗ ∗ 1.57 1.28 1.34
10−2 ∗ ∗ 1.04 1.01 1.13 ∗ ∗ ∗ ∗ ∗ 1.07 1.76 1.29 1.34
10−3 1.61 1.74 1.11 1.09 1.17 1.67 1.80 1.88 1.98 2.07 1.23 1.98 1.30 1.34
10−4 1.70 1.79 1.18 1.19 1.20 1.76 1.85 1.91 1.99 2.05 1.41 2.22 1.31 1.35
10−5 1.80 1.84 1.26 1.29 1.24 1.87 1.91 1.95 1.99 2.04 1.62 2.49 1.32 1.35
10−6 1.90 1.89 1.34 1.40 1.28 1.97 1.97 1.98 2.00 2.03 1.85 ∗ 1.33 1.35
10−7 2.01 1.94 1.43 1.52 1.32 2.09 2.03 2.02 2.00 2.02 2.12 ∗ 1.35 1.36
10−8 2.13 1.99 1.52 1.65 1.36 2.21 2.09 2.05 2.00 2.00 ∗ ∗ 1.36 1.36
10−9 2.35 2.04 1.62 ∗ ∗ 2.34 2.16 2.09 2.01 1.99 ∗ ∗ ∗ ∗
10−10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

mean-> 1.92 1.89 1.31 1.31 1.22 1.99 1.97 1.98 2.00 2.03 1.55 1.81 1.32 1.35

We proceed presenting in Table 8 ratios for global errors for Kepler and perturbed Ke-
pler (i.e., problems 1–10) in the interval [0, 20π]. We almost observe a slightly improvement
in the results in comparison to the previous Table 7. The overall average observed was 1.79
for problems 1–10.

Table 8. Efficiency ratios of DP5(4) vs. NEW(4) for problems 1–10 in the interval [0, 20π] and global
errors achieved over the whole integration interval. Stars indicate unavailability of data to attain the
perspective errors.

Error︸ ︷︷ ︸ 1 2 3 4 5 6 7 8 9 10

100 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
10−1 ∗ ∗ ∗ 1.10 1.32 ∗ ∗ ∗ ∗ ∗
10−2 ∗ 1.55 1.20 1.12 1.31 ∗ ∗ ∗ ∗ ∗
10−3 1.70 1.63 1.22 1.15 1.30 1.76 1.89 1.98 2.06 2.11
10−4 1.79 1.71 1.24 1.18 1.28 1.87 1.96 2.03 2.07 2.10
10−5 1.89 1.80 1.26 1.20 1.27 1.98 2.03 2.09 2.09 2.09
10−6 2.00 1.89 1.28 1.23 1.26 2.10 2.11 2.14 2.11 2.07
10−7 2.11 1.98 1.30 1.26 1.25 2.22 2.18 2.20 2.12 2.06
10−8 2.23 2.08 1.32 1.29 ∗ 2.35 2.26 2.26 2.14 2.05
10−9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
10−10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

mean-> 1.95 1.80 1.26 1.19 1.28 2.05 2.07 2.12 2.10 2.08

We conclude by running Kepler and perturbed Kepler with different parameters. Thus,
let us name as problems 1a, 2a, 3a, 4a, 5a Kepler orbits with eccentricities γ = 0.1, 0.3, 0.5, 0.7
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and 0.9, respectively. We also name as problems 6a, 7a, 8a, 9a, 10a the perturbed Kepler
orbits with parameters δ = 0.015, 0.025, 0.035, 0.045, 0.055, respectively. The efficiency ratios
for these 10 problems are presented in Table 9.

Table 9. Efficiency ratios of DP5(4) vs. NEW(4) for problems 1a–10a in the interval [0, 20π] and global
errors achieved over the whole integration interval. Stars indicate unavailability of data to attain the
perspective errors.

Error︸ ︷︷ ︸ 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a

100 ∗ ∗ ∗ ∗ 1.17 ∗ ∗ ∗ ∗ ∗
10−1 ∗ ∗ 1.05 1.10 1.13 ∗ ∗ ∗ ∗ ∗
10−2 1.66 1.33 1.08 1.16 1.10 ∗ ∗ ∗ ∗ ∗
10−3 1.72 1.37 1.11 1.23 1.07 1.78 1.95 2.00 2.08 2.14
10−4 1.78 1.40 1.14 1.30 1.04 1.89 2.00 2.05 2.08 2.12
10−5 1.84 1.44 1.17 1.38 1.01 2.01 2.06 2.10 2.08 2.10
10−6 1.90 1.47 1.20 1.45 0.98 2.14 2.11 2.15 2.08 2.07
10−7 1.96 1.51 1.23 1.54 0.95 2.28 2.16 2.20 2.08 2.05
10−8 2.02 1.55 1.26 1.63 ∗ 2.42 2.22 2.25 2.08 2.03
10−9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
10−10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

mean-> 1.84 1.44 1.15 1.35 1.06 2.09 2.08 2.13 2.08 2.09

The overall average observed was 1.73 for problems 1a–10a, which is also a quite
positive result.

Finally, we mention that we manage to construct various pairs with coefficients near
the one presented. By this, we mean that the distance was no more than, say 10−3. These
pairs also gave good results. Perhaps 5–10% worse than the one presented. This means that
no strict property holds for the pair, i.e., no equations like order conditions, conservation
laws or some symplectic property holds. Our new proposed pair lies within an area of
coefficients where it seems good for the kind of Keplerian-type obits we are interested here.

7. Conclusions

Training the coefficients of a Runge–Kutta pair for addressing a certain kind problems
is considered. We concentrated on problems of Keplerian-type orbits and an extensively
studied family of Runge–Kutta pairs of orders five and four. After optimizing the free
parameters (coefficients) in an extensive set of problems and tolerances we concluded to a
certain pair. This pair is found to outperform other representatives from this family in a
wide range of relevant problems, intervals and tolerances.
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