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Abstract: Degradation of services arises in practice due to a variety of reasons including wear-and-tear
of machinery and fatigue. In this paper, we look at MAP/PH/1-type queueing models in which
degradation is introduced. There are several ways to incorporate degradation into a service system.
Here, we model the degradation in the form of the service rate declining (i.e., the service rate decreases
with the number of services offered) until the degradation is addressed. The service rate is reset to
the original rate either after a fixed number of services is offered or when the server becomes idle.
We look at two models. In the first, we assume that the degradation is instantaneously fixed, and
in the second model, there is a random time that is needed to address the degradation issue. These
models are analyzed in steady state using the classical matrix-analytic methods. Illustrative numerical
examples are provided. Comparisons of both the models are drawn.

Keywords: queueing model; degrading service rate; server vacation; Markovian arrivals; phase type service

1. Introduction

It is common to see services get degraded for a variety of reasons including wear-and-
tear, fatigue, and other inherent issues. Machines are the integral part of industrial systems
as well as in our daily life. To address the issue of degrading service maintenance, strategies
are required, and a condition-based maintenance for a single-server queueing system is
analyzed by Ejaz et al. [1]. Due to the nature of offering continuous services to customers,
one could expect some form of degradation to the service provided. While degradation
is addressed in the context of (condition-based) maintenance in the literature (see in [1])
to the best of our knowledge the degradation of services in the context of a more general
queueing model has not been addressed so far. queueing models play an important role in
the study of service systems. In this paper, we incorporate the degradation of services in
the context of a single server, Markovian arrival process (MAP), and phase type (PH−)
services. We look at two models. In the first model, we assume that the degradation is
instantaneously fixed, and in the second model, there is a random time that is needed to
address the degradation issue. This random duration can be thought of as a maintenance
time or a vacation time during which the degradation issues are addressed and fixed.

When instantaneous fixing (such as new server/machine replacing the existing one) of
the degrading issues is not possible, it is natural to introduce a random duration to address
such issues. queueing models where there is a discontinuity in providing services have
been studied under the theme of queueing systems with vacations. Such models have been
studied extensively in the literature. We refer to the survey paper by Doshi [2] and the
book by Tian and Zhang [3] for vacation queueing models. A working vacation means that
the server works with a lower service rate than the normal rate provided during the busy
period of the server. This type of working vacation model was introduced by Servi and
Finn [4]. Kim et al. [5] generalized the working vacation concept for M/G/1 queue and
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analyzed the queue length distribution in steady state. Multiple working vacations were
studied by Baba [6] for the GI/M/1 queueing system. Li and Tian [7] studied the working
vacation for the M/M/1 model and introduced the vacation interruption in which due to
some conditions the server will be back without completing the ongoing vacation. In the
context of a multiple server queueing system, Chakravarthy [8,9] studied the synchronous
vacations and phase type distributed vacation periods. He discussed an optimization
problem and did the steady-state analysis of the model. A survey emphasizing on the
matrix-analytic method and the working vacation in the queueing models is presented in
Tian et al. [10]. Working vacations and vacation interruptions in the context of an MAP/G/1
model were studied by Zhang and Hou [11]. Using supplementary method and matrix-
analytic method, they obtained the queue length distribution in steady state. In [12,13],
Chakravarthy studied queueing models in which vacations and optional secondary services
were used. Sreenivasan et al. [14] studied queueing models with MAP arrivals, phase type
services and with working vacations, N-policy, and vacation interruptions. The vacation is
interrupted whenever the number of customers in the queue reaches a threshold number N.
Alfa [15] studied vacations for the MAP/PH/1 model using the classical matrix-analytic
method and established decomposition results for the rate matrices R and G. He extended
his theory to BMAP/PH/1 queues, and also showed the results for the models Geo/PH/1
and M/PH/1. Cost optimization in the context of M/M/1 queueing model was analyzed
by Yang and Wu [16] considering the vacation of the server and the server breakdown.
The vacation of the server is also interrupted when the number of customers reaches a
predetermined threshold. The concept of a back-up server (during the times the main server
is under repair) serving at a lower rate, in the context of MAP/PH/1 queueing model was
analyzed by Chakravarthy et al. [17]. Recently, Jain et al. [18] analyzed the working vacation
queue with imperfect service and impatient customers. Using the simulation approach,
Chakravarthy [19] did a comparative study of the queueing models with various vacation
policies and obtained some interesting results.

In this study, we incorporate the degradation of services in the context of MAP/PH/1-type
queues. The organization of the paper is as follows. In Section 2, we analyze the first model
in steady state including establishing the stability condition and list some key performance
measures. In Section 3, the second model is explained along with the stability condition,
the steady-state solutions, and key performance measures. In Section 4, we discuss a few
illustrative numerical examples. Concluding remarks are provided in Section 5.

In the sequel, we set the following notations.

• All bold-faced letters will indicate either row or column vectors which will be clear
from context.

• e is the column vector with 1’s, of appropriate dimension. Where clarifications on the
dimensions are needed, we will indicate accordingly.

• ei(m) is a column vector of dimension m with all but one entries are zero and the

nonzero entry in the ith position is taken to be 1. That is, ei(m) =
(
0 · · · 1 · · · 0

)t,
where the notation ‘t’ denotes the transpose notation.

• I is the identity matrix of appropriate order.
• The symbols ⊗ and ⊕ stand for the Kronecker product and the Kronecker sum,

respectively. Note that these play a major role in stochastic modeling. For more
information, one can refer to the works in [20,21].

2. MAP/PH/1 Model with Degradation Restored Instantaneously (Model 1)

We assume that the customers arrive according to a Markovian arrival process (MAP)
which was introduced by Neuts [22] in a more general context. Modeling of the customers’
arrivals with MAP is very useful and natural in the context of both independent and
correlated nature of the arrival processes. Let D = D0 + D1 be the generator of MAP,
where D0 governs transitions for no arrival, whereas D1 governs transitions for an arrival
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in the system, and both D0 and D1 are of dimension m. If π denotes the stationary vector
of D, then we have

π D = 0, and π e = 1.

The arrival rate is then given by, λ = π D1 e.
The system is studied on a first-come-first-served (FCFS) basis. The service times are

modeled using PH−distribution, which was introduced by Neuts [23]. We assume that the
PH-distribution has an irreducible representation given by (β, S) of order n. The average
service rate, µ, is given by µ =

[
β(−S)−1 e

]−1. For more details on PH−distributions and
MAP, we refer the reader to the works in [24–29] and the recent book by Dudin et al. [30].

The service rate degrades after completion of each service. Let the initial service rate
be µ and the service rate of the ith service be µi such that µ = µ1 ≥ µ2 ≥ µ3 ≥ · · · ≥ µL,
where µi = θi µ, and 0 < θi ≤ 1, for all i = 1, 2, 3, · · · , L. The degraded service rate is
restored to the original rate of µ instantaneously after completion of L services or whenever
the server becomes idle. Note that θ1 = 1 so that the service rate of the first customer after
addressing the degradation is always µ.

2.1. Generator of the Model

At any time t, we define the following random variables so as to keep track of the
status of the system.

• N1(t) is the number of customers in the system,
• N2(t) is the phase of service, if any,
• N3(t) is the phase of arrival process.
• N4(t) is the type of service, if any.

Therefore, {(N1(t), N2(t), N3(t), N4(t)), t ≥ 0} forms a Markov process on state space:
Ω = {(0, k) : 1 ≤ k ≤ m} ∪ {(i, j, k, l) : 1 ≤ j ≤ n, 1 ≤ k ≤ m, 1 ≤ l ≤ L, i ≥ 1}. Define

θ = (θ1, θ2, · · · , θL)
t, and ∆(θ) =


θ1

θ2
. . .

θL

. Then, the generator governing the

system under study is given by

Q(1) =


D0 e′1 ⊗ β⊗ D1 0 0 · · ·

θ⊗ S0 ⊗ I A1 A0 0 · · ·
0 A2 A1 A0 · · ·
...

. . . . . . . . .

,

where

A0 = I ⊗ D1, A1 = (∆(θ)⊗ S)⊕ D0,

and

A2 =


0 θ1 S0β⊗ I 0 · · · 0
0 0 θ2 S0 β⊗ I · · · 0
...

...
...

. . .
...

0 0 0 · · · θL−1 S0 β⊗ I
θL S0 β⊗ I 0 0 · · · 0

.

Note that A0, A1, and A2 are square matrices of order Lmn. The dimensions of the
other matrices appearing in Q(1) should be self-explanatory.

2.2. Stability Analysis

Here, we will derive the stability condition in terms of the input parameters.
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Result 1. The queueing system, namely, Model 1, under study is stable if and only if

λ < µ L

[
L

∑
j=1

1
θj

]−1

. (1)

Proof. Letting A = A0 + A1 + A2, we get

A =


θ1 S⊕ D θ1 S0 β⊗ I 0 · · · 0

0 θ2 S⊕ D θ2 S0 β⊗ I · · · 0
...

. . . . . . . . .
...

0 0 0 · · · θL−1 S0 β⊗ I
θL S0 β⊗ I 0 0 · · · θL S⊕ D

.

Define, δ = (δ1, δ2, · · · , δL) with δj, 1 ≤ j ≤ L, of dimension 1×mn to be the steady-
state probability vector of the matrix A. Then, δ A = 0, and δ e = 1. Therefore,

δ1(θ1 S⊕ D) + δL(θL S0β⊗ I) = 0,

δj−1(θj−1S0 β⊗ I) + δj(θj S⊕ D) = 0, 2 ≤ j ≤ L− 1,

δL−1(θL−1 S0 β⊗ I) + δL (θL S⊕ D) = 0,

(2)

with
L

∑
j=1

δj e = 1. (3)

Summing up the equations in (2) over j, we get

L

∑
j=1

δj

[
(θj S + θj S0 β)⊕ D

]
= 0.

Using the uniqueness of the invariant vector µ β (−S)−1 of the generator (S + S0 β),
along with the fact that, if b and c are the invariant vectors of B and C, then b⊗ c is the
invariant vector of B⊕ C, we get

δj =
d
θj
(β (−S)−1 ⊗π), (4)

where d is the normalizing constant to satisfy Equation (3) and is given by

d = µ

[
L

∑
j=1

1
θj

]−1

. (5)

As the above model is a quasi-birth-and-death (QBD) model, the stability condition
for this model is given by δ A0 e < δ A2 e (see in [31]),

λ <
L

∑
j=1

θj δj (S0 ⊗ e),

=⇒ λ < µ L

[
L

∑
j=1

1
θj

]−1

.
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Remark 1. When θj = 1 for all j, 1 ≤ j ≤ L, then the stability condition reduces to that of the
corresponding classical queueing model, that is, λ < µ. This is due to the fact that in Model 1 the
server remains available after becoming idle to serve at the normal rate of µ.

2.3. Steady-State Probability Vector

Assuming that the stability condition given in Equation (1) holds good, the steady-
state probability vector of Q(1) exists. Let x = (x0, x1, · · · ) be the steady-state probability
vector such that

xQ(1) = 0, and xe = 1.

Then, due to the nature of Q(1), which is a QBD− process, the steady-state probabili-
ties are (see in [31]) obtained as

xi = x1 Ri−1, i ≥ 1,

where x0 and x1 are obtained by solving

x0 D0 + x1 (θ⊗ S0 ⊗ I) = 0,

x0 (e′1 ⊗ β⊗ D1) + x1(A1 + R A2) = 0,

x0 e + x1 (I − R)−1 e = 1,

(6)

and the rate matrix R is the minimal non-negative solution to the matrix-quadratic equation
R2 A2 + R A1 + A0 = 0.

2.4. Performance Measures

For the qualitative study of the model, we look at the following key system perfor-
mance measures.

1. Mean number of the customers in the system Ls = ∑∞
i=1 i xi e = x1 (I − R)−2 e.

2. Mean waiting time of the customer in the system Ws =
Ls
λ .

3. Probability of the server being in busy state Pbusy = ∑∞
i=1 xi e.

4. Probability of the server being in idle state Pidle = x0 e.

3. MAP/PH/1 Model with Degradation Restored after a Random Time (a.k.a.
Vacation)—Model 2

In this model, the degraded system is restored to a normal one after a random time.
This random time is referred to as a vacation time for the server. Like in Model 1, the sys-
tem is restored to a normal one either when the server becomes idle or after L service
completions. However, here the restoration time is random. We will henceforth refer to this
as vacation time. Note that once the random time expires, the server returns and at that
time the system is restored to its original state. One can view this as the server is recalled
at the instant of the restoration of the system. We assume that the vacation time follows a
PH-distribution with an irreducible representation given by (r, V)ν. Let V0 be such that

V e + V0 = 0 and Ṽ = V + V0 r. Then, the average vacation rate µν =
[
r (−V)−1 e

]−1.
The arrivals and the services are according to MAP and PH-type, respectively, same
as considered for the previous model. All the processes considered in this model are
mutually independent.

3.1. Generator of the Model

Let us define the random variables, at any time t as,

• N1(t) is the number of customers in the system,
• N2(t) is the phase of vacation or service depending on the server being idle or busy,
• N3(t) is the phase of arrival process,
• N4(t) is the type of service when the server is busy.
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Then, {(N1(t), N2(t), N3(t), N4(t)), t ≥ 0} forms a Markov process on the state space,
Ω = {0} ∪ {i}, where 0 = {(0, j1, k) : 1 ≤ j1 ≤ ν, 1 ≤ k ≤ m}, and i = {(i, j2, k, l) : 1 ≤
j2 ≤ n, 1 ≤ k ≤ m, 1 ≤ l ≤ L} ∪ {(i, j1, k) : 1 ≤ j1 ≤ ν, 1 ≤ k ≤ m}, i ≥ 1.

Therefore, the generator of the system governing Model 2 is given by

Q(2) =


Ṽ ⊕ D0 B1 0 0 · · ·

θ⊗ S0 r⊗ I A1
(v) A0

(v) 0 · · ·
0 A2

(v) A1
(v) A0

(v) · · ·
...

. . . . . . . . .

,

where
B1 = (O, I ⊗ D1), A0

(v) = I ⊗ D1,

A1
(v) =

(
A1 O

e′1(L)⊗ V0 β⊗ I V ⊕ D0

)
, A2

(v) =

(
Â2 eL ⊗ θLS0r⊗ I
O O

)
,

and Â2 =


0 θ1 S0β⊗ I 0 · · · 0
0 0 θ2 S0 β⊗ I · · · 0
...

...
...

. . .
...

0 0 0 · · · θL−1 S0 β⊗ I
0 0 0 · · · 0

.

3.2. Stability Analysis

Result 2. The system governing Model 2 is stable if and only if

λ < L

[
1
µ

L

∑
j=1

1
θj

+ (r⊗π)(−(V ⊕ D)−1) e

]−1

. (7)

Proof. Let the invariant probability vector δ(v) = (δ
(v)
1 , δ

(v)
2 , · · · , δ

(v)
L , δ∗) of A(v) = A(v)

0 +

A(v)
1 + A(v)

2 be such that
δ(v) A(v) = 0, and δ(v)e = 1.

Then, we have

δ
(v)
1 (θ1 S⊕ D) + δ∗(V0 β⊗ I) = 0, (8)

δ
(v)
j−1 (θj−1 S0 β⊗ I) + δ

(v)
j (θj S⊕ D) = 0, 2 ≤ j ≤ L, (9)

δ∗(V ⊕ D) + δ
(v)
L (θL S0 r⊗ I) = 0. (10)

Using Equation (10), we get

δ∗ = δ
(v)
L (θL S0 r⊗ I) (−(V ⊕ D)−1).

Now, after multiplying Equation (10) by (e β⊗ I), we get

− δ∗ (V0 β⊗ I) + δ∗(e β⊗ D) + δ
(v)
L (θL S0 β⊗ I) = 0. (11)

Substituting (11) in (8) and adding the resulting equation to Equation (10) and the one
obtained by summing over 1 ≤ j ≤ L, of those equations in (9), we get

L

∑
j=1

δ
(v)
j

[
(θj S + θj S0 β)⊕ D

]
+ δ∗(eβ⊗ D) = 0. (12)
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Furthermore, we have

L

∑
j=1

δ
(v)
j (e⊗ I) + δ∗ (e⊗ I) = π. (13)

Now, after multiplying Equation (13) by (e β⊗ D), we get

L

∑
j=1

δ
(v)
j (e β⊗ D) + δ∗ (e β⊗ D) = 0. (14)

Now, using δ
(v)
j (e β⊗ D) = 0, ∀j, we get

δ∗ (e β⊗ D) = 0. (15)

Then, from Equation (12), we get

δ
(v)
j =

d
θj

(β (−S)−1 ⊗π) and δ∗(e β⊗ D) = 0,

where d is the normalizing constant appearing in the following equation:

d

[
1
µ

L

∑
1

1
θj

+ (r⊗π) (−(V ⊕ D)−1) e

]
= 1. (16)

Now using the stability condition δ(v) A(v)
0 e < δ(v) A(v)

2 e, we get

λ <
L

∑
j=1

θj δ
(v)
j (S0 ⊗ e),

=⇒ λ < L

[
1
µ

L

∑
j=1

1
θj

+ (r⊗π)(−(V ⊕ D)−1) e

]−1

.

3.3. Steady-State Probability Vector

The stability condition (7) ensures that the steady-state probability vector exists for
the current model. Let x(v) = (x(v)0 , x(v)1 , · · · ) be the steady-state probability vector such
that x(v) Q(2) = 0, and x(v) e = 1.

Then, applying Neuts’ result on QBD-process, we get

x(v)i = x(v)1 Ri−1
v , i ≥ 1,

where x(v)0 and x(v)1 are obtained by solving

x(v)0 (Ṽ ⊕ D0) + x(v)1 (θ⊗ S0 r⊗ I) = 0,

x(v)0 B1 + x(v)1 (A(v)
1 + Rv A(v)

2 ) = 0,

x(v)0 e + x(v)1 (I − Rv)
−1 e = 1.

(17)

and Rv is the minimal nonnegative solution to R2
v A(v)

2 + Rv A(v)
1 + A(v)

0 = 0.

3.4. Performance Measures

Following are the performance measures for the model under study in this section.
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1. Mean number of customers in the system L(v)
s = ∑∞

i=1 i x(v)i e = x(v)1 (I − Rv)−2 e.

2. Mean waiting time of the customer in the system W(v)
s = L(v)

s
λ .

3. Probability of the server being in busy state Pbusy = ∑∞
i=1 x(v)i

(
e
0

)
.

4. (a) Probability of the server being on vacation with no customer in the system

PNCvacation = x(v)0 e.
(b) Probability of the server being on vacation with at least one customer in the

system POCvacation = ∑∞
i=1 x(v)i

(
0
e

)
.

(c) Probability of the server being on vacation Pvacation = x(v)0 e + ∑∞
i=1 x(v)i

(
0
e

)
.

4. Numerical Examples

In this section, we will discuss a few illustrative numerical examples of the two models
under study in this paper. For the arrival process, we include five different MAP processes
as Erlang, exponential, hyperexponential, negatively correlated, and positively correlated
arrivals having independent and identical distribution of inter-arrival times.

Notations for all the arrival processes are fixed as follows.

(i) ErA—This is the Erlang distribution of order 5 for the arrival process. Here

• D0 =


−5 5 0 0 0
0 −5 5 0 0
0 0 −5 5 0
0 0 0 −5 5
0 0 0 0 −5

 and D1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
5 0 0 0 0

.

• The standard deviation for this process is 0.4472.

(ii) ExA—This is the exponential distribution for the arrival process for which

• D0 = −1 and D1 = 1.
• The standard deviation for this process is 1.

(iii) HeA—This is the hyperexponential distribution for the arrival process for which

• D0 =


−68.5 0 0 0

0 −6.85 0 0

0 0 −0.685 0

0 0 0 −0.0685

 and D1 =


34.2500 20.5500 10.2750 3.4250

3.425 2.0550 1.0275 0.3425

0.3425 0.2055 0.1028 0.0343

0.0343 0.0206 0.0103 0.0034

.

• The standard deviation for this process is 4.5787.

(iv) NeA—It is the negatively correlated distribution for the arrival process, for which

• D0 =

−1.25 1.25 0
0 −1.25 0
0 0 −2.5

 and D1 =

 0 0 0
0.0125 0 1.2375
2.4750 0 0.0250

.

• The standard deviation for this process is 1.0392 and since this arrival process is
correlated, it can be verified that the 1-lag correlation is given by −0.3267.

(v) PoA—It is the positively correlated distribution for the arrival process, for which

• D0 =

−1.25 1.25 0
0 −1.25 0
0 0 −2.5

 and D1 =

 0 0 0
1.2375 0 0.0125
0.0250 0 2.4750

.

• The standard deviation for this process is 1.0392 and here the 1-lag correlation is
given by 0.3267.

PH-distribution for services and vacations
We will consider here 3 types of PH-distributions for service and vacation processes.

These are given as follows.
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(i) Erlang distribution (E). For this

β = (1 0 0 0 0) and S =


−5 a1 5 a1 0 0 0

0 −5 a1 5 a1 0 0
0 0 −5 a1 5 a1 0
0 0 0 −5 a1 5 a1
0 0 0 0 −5 a1

.

(ii) Exponential distribution (X). For this
β = 1 and S = −a1.

(iii) Hyperexponential distribution (H). For this

β = (0.7 0.25 0.05) and S =

−8.2 a1 0 0
0 −0.82 a1 0
0 0 −0.082 a1

.

The value of a1 will be chosen so as to arrive at a desired service rate. Note that these
three distributions are qualitatively different.

Example 1. In this example, we look at Model 1 under various scenarios. Note that in this model,
there is no vacation and the restoration of the system to its original mode is instantaneous. The graphs
of various measures for this model are plotted in Figures 1–3. We fix λ = 1, µ = 1.3, and θ =
(1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.87, 0.84, 0.81, 0.78, 0.75, 0.72, 0.69, 0.66, 0.63, 0.60, 0.57, 0.54, 0.52,
0.5)t unless these are varied. We look at three sets of values for the θ values. These are as follows:

• θ(1) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)t,
• θ(2) = (1, 0.99, 0.98, 0.97, 0.96, 0.95, 0.94, 0.92, 0.90, 0.88, 0.86, 0.84, 0.82, 0.80, 0.78, 0.76,

0.74, 0.72)t,
• θ(3) = (1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.87, 0.84, 0.81, 0.78, 0.75, 0.72, 0.69, 0.66, 0.63, 0.60,

0.57, 0.54)t.
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Figure 1. Mean number of customers in the system (Model 1).
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Figure 2. Probability of the server being in busy state (Model 1).
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Figure 3. Probability of the server being in idle state (Model 1).

From these figures, we notice the following observations.

1. As is to be expected, the mean number of customers in the system increases as L is
increased. This is due to the fact that as L is increased, the rate of service is decreased
and thus an increase in the mean number of customers in the system. However,
the rate of increase (as a function of L) is higher as µ is decreased.
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2. Ls increases as the arrival rate is increased. Furthermore, the rate of increase of Ls
(with respect to L) is higher as λ is increased.

3. First observe that θ(3) gives a higher degradation in service rates as compared to θ(1)

and θ(2). We see from the third graph of Figures 1–3 that more degradation in service
rate gives more Ls and more Pbusy but less Pidle.

4. The server will be more busy if there are more customers in the system and so is the
measure Pbusy. Also, an increase in L and in λ will result in an increase in Pbusy and
similarly an increase in µ will decrease the measure Pbusy.

5. Obviously, a higher degradation in the services provided will lead to the server being
more busy and this is seen in the measure Pbusy.

Example 2. In this example, we look at Model 2 under various scenarios. Note that in this model,
there is a vacation for the server. Thus, the vacation distribution is also varied. Where we need to
denote the type of service and the type of vacation used, we will denote by EE to indicate that both
service and vacation times have Erlang (E) distribution; similarly, EX will denote that the service
time is Erlang and the vacation duration is exponential. Thus, the first letter represents the service
process and the second one represents the vacation process.

First, we compare the degrading system with vacation with that of the classical vacation
model. To compare properly, we will take the service rate for the classical vacation model to be
the average of the service rates in the corresponding degrading system. That is, for the classical

vacation model the service rate is taken to be
µ

L

L
∑

i=1
θi. In the following we fix λ = 1, unless it is

varied. Using the same arrival and service processes of Example 1, and looking at the vacation
times to follow one of the three PH-distributions listed above, fixing L = 10, µ = 1.9, µv = 10,
and taking θ = (1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.87, 0.84, 0.81, 0.78)t, we display the mean
number of customers in the system under various scenarios in Figure 4. The figure contains the
plots for both degradation system as well as for the corresponding classical queueing model with
vacation. As the average service rate in the degradation system is (1.9)(0.9) = 1.71, the classical
vacation model will have the service rate fixed at 1.71.

Following are the key observations from these two figures.

• Both the degradation and the corresponding classical vacation models have almost
the same mean number of customers in the system, and also follow the same pattern
as we change the service and vacation processes.

• Furthermore, the positively correlated arrival process gives the highest mean num-
ber of customers among all the considered arrival processes which reflects the role
of correlation.

• The hyperexponential service gives more mean number of customers than the Erlang
and exponential service.

• Erlang, exponential, and negatively correlated arrivals have the same pattern as the
service and the vacation processes are varied. Similarly, the hyperexponential and
positively correlated arrivals have the same pattern.

Example 3. Next, to see the effects of positive and negative correlated arrivals, we look at more
arrival processes with negative and positive correlations. Towards this end, we look at eight
negatively correlated and eight positively correlated arrival processes. The correlation coefficients
for the positively correlated arrivals P1, P2, · · ·, P8 are 0.3267, 0.4804, 0.5786, 0.6454, 0.6935,
0.7296, 0.7577, and 0.7802, respectively. The correlation coefficients for the negatively correlated
ones, N1, N2, · · ·, N8, have the same values in magnitude. The standard deviations for Ni′s and
Pi′s, i = 1, 2, · · ·, 8, are the same and are given by 1.0392, 1.0202, 1.0123, 1.0082, 1.0059, 1.0044,
1.0035, and 1.0028.
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Figure 4. Mean number of customers in the system for Model 2 under various scenarios.

In Figure 5, we plot the mean number of customers in the system for the degrada-
tion system.

Following are some key observations from Figure 5.

• For the negatively correlated arrivals, as the magnitude of the correlation coefficient
decreases, the mean number of costumers in the system increases.

• For the positively correlated arrivals, as the magnitude of correlation coefficient
increases, the mean number in the system increases.

• Furthermore, the effect of the positively correlated arrivals is seen more than the
negatively correlated arrivals as the magnitude of the correlation is varied.

Example 4. Furthermore, the graphs of various measures for Model 2 are plotted in Figures 6–8 to
see the effects of the number of services done before vacation, under various scenarios. In Figures 6–8,
we fix λ = 1, µ = 1.3, µv = 5, and θ = (1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.87, 0.84, 0.81, 0.78, 0.75,
0.72, 0.69, 0.66, 0.63, 0.60, 0.57, 0.54, 0.52, 0.5)t unless these are varied. θ(1), θ(2), and θ(3) are
same as the Example 1. For the third and the fourth graphs, namely, the ones that are displayed in
the second row, seen in Figures 6–8, µ is fixed to be 1.9.

Some key observations from these figures are summarized below.

1. For the mean number of customers in the system L(v)
s :

• L(v)
s decreases if there is an increase in µ as well as in µv.

• An increase in λ results in an increase in L(v)
s .
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• More degradation in the service rate will result in a higher value for L(v)
s .

• An increase in L will decrease the L(v)
s initially but after a certain point we notice

an increase in L(v)
s . The value of L for which the L(v)

s is smallest depends on all
the system parameters.

2. For the probability of the server being in busy state (Pbusy):

• An increase in µ will decrease the probability, Pbusy, but an increase in λ in-
creases Pbusy.

• The more degradation is present in the services, the busier the server is.
• The parameter µv has a negligible effect on Pbusy as compared to other parameters.

However, an increment in µv will decrease the Pbusy.
• Increment in L will increase the Pbusy.

3. The probability of the server being in vacation state (Pvacation) behaves opposite to the
Pbusy as the system parameters are varied.

Finally, we compare Model 1 and Model 2 by looking at the figures displayed for these
two models in Examples 1 and 4. In both the models, we see that all the system parameters
have a similar effect on the performance measures of Model 1 as the performance measures
of Model 2 have. However, Model 1 has less mean number of customers in the system as
compared to Model 2. This is due to the fact that the degraded services are instantaneously
fixed in Model 1, whereas in Model 2 it takes a random time to fix the same. We displayed
graphs only for the positively correlated arrivals and the exponential distribution for
both service and vacation processes as we observed all the processes of arrival, service,
and vacation have a similar effect as the system parameters are varied.

Example 5. In this example, we compare Model 1 to the classical MAP/PH/1 model. For this
we consider negatively and positively correlated arrivals with the same D0 and D1 provided
in Example 1. For the service process, we consider Erlang distribution and hyperexponential
distribution same as in Example 1. For Model 1, we consider µ = 1.4, L = 10, and θ =
(1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.87, 0.84, 0.81, 0.78)t. For the classical MAP/PH/1 model,
service rate is taken to be the average of the service rates of Model 1, which is 1.26.

Figure 5. Mean number of customer in the system for negatively correlated and positively correlated
arrivals (Model 2).
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Figure 6. Mean number of customer in the system (Model 2).
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Figure 7. Probability of the server being in busy state (Model 2).
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Figure 8. Probability of the server being in vacation state (Model 2).

In Table 1, we display some key measures for the classical MAP/PH/1 and the two
models studied here. We observe that Model 1 has higher values for Ls and Pbusy than the
corresponding classical MAP/PH/1 model which is obvious and shows the impact of
the degrading services.. We see that for the processes NeA and ErS, Model 1 has less Ls
and less Pbusy than the classical MAP/PH/1 model. This is because the server becomes
frequently idle in Model 1 and the service rate is instantaneously restored to the original
rate, which results in having a lower Ls. To compare it with Model 2, we consider the
exponential distribution of vacation process with mean rate µv = 5. Model 2 has the highest
mean number of customers in the system due to being on vacation for a random time.

Table 1. Performance measures for classical MAP/PH/1 model, Model 1, and Model 2.

Model Processes Ls Pbusy Pidle/Pvacation

Classical
MAP/PH/1

model

NeA, ErS 2.22305 0.790528 0.206349
NeA, HyS 58.92956 0.82926 0.206349
PoA, ErS 24.16811 0.791647 0.206349
PoA, HyS 82.19010 0.848347 0.206349

Model 1

NeA, ErS 2.07631 0.762403 0.237597
NeA, HyS 60.92105 0.779311 0.220689
PoA, ErS 23.63030 0.773938 0.226062
PoA, HyS 84.05024 0.782954 0.217046

Model 2

NeA, ErS 2.45311 0.768110 0.231890
NeA, HyS 71.03092 0.781503 0.218497
PoA, ErS 26.56992 0.777106 0.222894
PoA, HyS 96.61144 0.784809 0.215191
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5. Conclusions

In this paper, we studied the degradation that commonly occurs in many industries,
notably in service sectors, in the context of MAP/PH/1-type queues. We studied two types
of models. In Model 1, the degrading service rate is reset to its initial rate instantaneously
after a fixed number of services or when the server becomes idle. In Model 2, it requires
some random time to fix the service rate to resume to its normal rate. Stability conditions
for both the models are derived and some important performance measures are also given.
Numerical examples are provided and the comparison of both the models is also done. This
study can be extended to include breakdowns and repairs of the server, and for multiple
server systems. These are currently being investigated.
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