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Abstract: Superixel is one of the most efficient of the image segmentation approaches that are widely
used for different applications. In this paper, we developed an image segmentation based on super-
pixel and an automatic clustering using q-Generalized Pareto distribution under linear normalization
(q-GPDL), called ASCQPHGS. The proposed method uses the superpixel algorithm to segment the
given image, then the Density Peaks clustering (DPC) is employed to the results obtained from the
superpixel algorithm to produce a decision graph. The Hunger games search (HGS) algorithm is
employed as a clustering method to segment the image. The proposed method is evaluated using
two different datasets, collected form Berkeley segmentation dataset and benchmark (BSDS500)
and standford background dataset (SBD). More so, the proposed method is compared to several
methods to verify its performance and efficiency. Overall, the proposed method showed significant
performance and it outperformed all compared methods using well-known performance metrics.

Keywords: superpixel; image segmentation; hunger games search (HGS); density peaks clustering;
q-generalized pareto distribution under linear normalization (q-GPDL)

1. Introduction

Image Segmentation is a key component of various computer vision applications. It
aims to divide a given image into perceptual regions, in which pixels in each region belong
to a same visual object with small feature variations. Image segmentation approaches
have been widely implemented in various applications, such as object detection [1,2],
remote sensing images [3,4], medical images [5], agriculture image [6] and many other
applications.

One of the most effective segmentation methods is called superpixel segmentation,
which implements an over-segmentation on input images. The process of superpixel seg-
mentation is to divide a given image into small, compact and regular regions, that contain
pixels with similar texture, spatial positions brightness, color, and so on [7]. In contrast
to other segmentation approaches, in general superpixel has strong boundary coherence
and it is easy to control the produced segments [7]. Therefore, superpixel segmentation ap-
proach has received wide attentions and have been adopted in different applications, such
as object tracking [8,9], boundary detection [10], object detection [11], and others [12–16].

Earlier, various methods have been adopted for image segmentation with superpixels.
Levinshtein et al. [17] proposed a geometric flow algorithm depending on the local gradient
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of the image to initiate superpixels with uniform sizes and compactness. In [18], a method
called USEQ was proposed for superpixel extraction. The spatial and color information
were utilized to represent pixels and superpixels, and to reduce computational cost. After
that they adopted a maximum posteriori estimation to generate superpixels. Di et al. [19]
proposed a superpixel image segmentation method using a hierarchical multi-level seg-
mentation scheme. They applied simple liner iterative clustering approach to segment the
input image, and then they applied simple liner iterative clustering to further segment the
generated superpixels. Finally, adjacent superpixels are merged depending on probability
distribution similarity. More so, different images were considered to evaluate the proposed
method, including Berkeley and 3Dircadb datasets. In literature, different machine learning
and deep learning approaches have been adopted with superpixels for image segmen-
tations. For example, in [20], superpixels method based on the unsupervised learning
technique was employed for oropharyngeal cancer image segmentation. Mi and Chen [21]
presented a superpixel-enhanced Deep Neural Forest (DNF) for semantic segmentation
of remote sensing images. The DNF was developed to enhance classification accuracy,
and a Superpixel-enhanced Region Module was developed to reduce noise. Huang and
Ding [22] developed a generic image segmentation algorithm using the properties of a
fully convolutional network and superpixels. Most recently, metaheuristic optimization
algorithms also have been adopted in a few studies for superpixel segmentation, and
they showed prominent performance. For example, Mittal and Saraswat [23] applied a
modified gravitational search algorithm with superpixel clustering for nuclei segmentation.
Moreover, Chakraborty and Mali [24] proposed superpixel based image segmentation for
COVID-19 CT scan images using a modified flower pollination algorithm (FPA) with type
2 fuzzy clustering.

In general, the superpixel image segmentation based on clustering techniques have
been established their performance in comparison with the other image segmentation
methods. However, the main drawbacks of these clustering image segmentation method
is the process of determine the number of clusters and their cluster centers. To tackling
this limitation, several automatic clustering image segmentation have been developed. For
example, the automatic fuzzy clustering method is presented in [25]. It is depends on
using Density peaks clustering (DPC) to determine the number of clusters. In , authors
presented a robust self-sparse fuzzy clustering and applied it to segmented the image using
clustering techniques. These methods provided results better than those methods that
required to determine the number of clusters.

However, these methods have some limitations that influence on its quality and still
require more enhancements. For example, they are use the traditional DPC that depends on
the linear generalized extreme value (GEV) distribution [26] to determine the cluster center.
This traditional GEV is not more accurate since the estimation of the distribution based on
extracted blocks maxima, considered by this approach, involves a loss of information.

Therefore, this motivated us to propose an alternative clustering method based on
modified DPC using q-Generalized Pareto distribution under linear normalization (q-
GPDL). In addition, using the Hunger Games Search (HGS) [27] to determine the cluster
centers. HGS was inspired by the social animals’ characteristics in searching for food. For
each iteration, the HGS searches for an optimal location, similar to animals forage, and
hunger values or weights simulate the impact of animals’ hunger. It was evaluated with
different optimization problems, and it achieved prominent performance compared to
other swarm intelligence and MH algorithms.

In this study, we propose superpixel-Based automatic clustering method for color
image segmentation. The developed method, named ASCQPHGS, starts by applying
superpixel algorithm to presegmented the image. Followed by using the modified DPC
based on GEVL to automatic determine the number of clusters. Then, the HGS generates a
set of solutions and each of them represents the clustering centers. To evaluate the quality
of each solution, the fitness function that uses CS-index is computed and the best of them
is determined. The next process is to update the solutions using the operators of HGS
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and check the stop conditions and in case they are met then the best solution is used to
segmented the image and compute the performance measures.

Therefore, the summary of the main contributions and novelty of this study are:

• Proposed an superpixel-based automatic clustering method and applied it for color
image segmentation.

• Present an extension for Generalized Pareto distribution under linear normalization
(GPDL), named q-GPDL. In addition, deduce its quantile function and estimate its
parameters using Maximum Likelihood Estimation.

• Improve the behavior of DPC by using q-GPDL.
• Apply Hunger Games Search (HGS) as clustering method to determine the center of

each cluster then segmented the image.
• Evaluate the performance of the developed method using real-world datasets and

compared it with other MH techniques and state-of-the-art methods.

The rest of this study is introduced as: In Section 2, preliminaries of Clustering
problem formulation for image segmentation, q-Generalized Pareto distribution under
linear normalization, and Hunger Games Search are introduced. Section 3 presents the
proposed automatic superpixel clustering method for color image segmentation, and
Section 4 introduces the comparison results and discussion of the developed method with
other methods. Section 5 presents the conclusion and future work of this study.

2. Background
2.1. Clustering Problem Formulation for Image Segmentation

With this section, the general formulation of the automatic clustering (AC) problem for
image segmentation is introduced. The AC is defined as the process of dividing the image
(I), which contains NX samples, into different Kmax clusters. This can be performed by
maximizing the between-cluster variation simultaneous with minimizing the within-cluster
variation [28].

So, the mathematical definition of AC problem can be formulated by assuming the
image I contains NX samples X = [X1, X2, . . . , XNX ]. In addition, Xi = [Xi1, Xi2, . . . , XiD]
where D is the total number of pixels. Then clustering approach aims to divid X into Kmax
cluster (i.e., C1, C2, . . . , CKmax ) subject to [28]:

∪Kmax
l=1 Cl = X, Cl 6= φ, l = 1, . . . , Kmax (1)

Cl ∩ Cl1 = φ, l, l1 = 1, 2, . . . , Kmax, l 6= l1 (2)

Density Peaks clustering (DPC) [29] is one of the most popular clustering techniques
that can be used to solve different cluster problems. The main goal of DPC is to find the
points that have the largest peaks of density. DPC assumes the cluster centers are those
points that have density higher than others in their neighbors. As well as, the distance
between the clustering centers is larger than the distance between them and other points.

The mathematical representation of DPC is given as: consider the given image (data)
X = [X1, X2, . . . , Xn] (where n is the number of samples belongs to X). The DPC starts by
calculating the distance (dij) between Xi and Xj (i, j = 1, 2, . . . , n, and i 6= j). Then calculate
the density ρi of Xi as:

ρi =
N

∑
i=1

ξ
(
dij − dc

)
, (3)

where dc is the cut-off distance and ξ is the kernel function which defined as:

ξ(β) =

{
1, β > 0

0, otherwise
, (4)

where β represents the parameter of ξ function. The next process is find the minimum
distance (δi) as:
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δi =

{
minj:ρj>ρi (dij), ∃ρj > ρi

maxj(dij), otherwise
, (5)

From Equations (3) and (5), the clustering centers are those pixels that have high ρ
and large δ. In addition, DPC has ability to avoid limitations of other techniques when the
one cluster has two pixels that have high ρ with a small distance between them. Actually,
the lead to divide the cluster into sub-clusters. So, DPC using the following formula to
avoid this situation by considering the clustering centers are those have higher θ value
than other pixels.

θ = min(ρ∗, δ∗) (6)

where
ρ∗ =

ρ− ρmin
ρmax − ρmin

, δ∗ =
δ− δmin

δmax− δmin
(7)

2.2. Generalized Pareto Distribution under Linear Normalization (GPDL)

For extreme order statistics, the maximum of independent and identically distributed
(i.i.d) random variables has one of the three types: Frichet type with heavy tail, Gumbel
type, whose upper tail, and Weibull type with finite upper tail.

The generalized extreme value (GEVL) is a generalized family of the Gumbel, Frichet
and Weibull depends on only one and it is formulated as:

H(x; k, σ, µ) = exp {−(1 + k(
x− µ

σ
))−

1
k }, (1 + k(

x− µ

σ
)) > 0 (8)

In Equation (8), k, σ and µ denote the shape, scale and location parameter, respectively.
GEVL in Equation (8) has been applied to find the value of threshold to determine

the optimal number of clustering centers. This main aim of this process is to enhance the
quality of image segmentation [5].

Provost et al. [30] introduced the Cumulative Distribution Functions (cdf) and Prob-
ability Density Functions (pdf) of the q-GEVL and q-Gumbel (by setting ξ → 0 in the
q-GEVL) are defined as in Equations (9) and (10), respectively:

G(x; µ, σ, k, q) =

{
[1 + q(k(sx−m) + 1)−

1
k ]
− 1

q , k 6= 0, q 6= 0

(1 + qe−(sx−m))
− 1

q , k→ 0, q 6= 0
(9)

and

g(x; µ, σ, k, q) =

{
s(1 + k(sx−m))−

1
k−1 × [1 + q(k(sx−m) + 1)−

1
k ]
− 1

q−1 k 6= 0, q 6= 0

(1 + qe−(sx−m))
− 1

q−1se−(sx−m) k→ 0, q 6= 0
(10)

where s = 1
σ and m = µ

σ .
The generalized Pareto distribution under linear normalization (GPDL) is considered

as a foremost pillar of the POT approach. The GPDL is the limit distribution of scaled
excesses over high thresholds, which has the form 1 + log H(x; k, σ, µ).

2.3. Hunger Games Search

Hunger Games Search (HGS) is is a novel optimization algorithm enhanced by Yutao
and Huiling [27].The algorithm emulates the animals conducts and hunger actions, where
Hunger has the responsibility of one of the most crucial homeostatic motivations for
decisions, behaviours, and actions in the life of animals.

HGS can be modeled as following, start with a population Z which has a number
of solutions N for each of them, the objective function noted as Fiti as well as the finest
solution noted as Zb. After initialization stage, modernization stage comes in which the
previous solutions are modernized by utilizing the Equation (11), where through such
stage, a cooperation among animals for reaching food is perfected.
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Z(t + 1) =


Z(t)× (1 + rand), r1 < l

W1 × Zb + R×W2 × |Zb − Z(t)|, r1 > l, r2 > E
W1 × Zb − R×W2 × |Zb − Z(t)|, r1 > l, r2 < E

(11)

where in the previous equation, r1 and r2 exemplify arbitrary numbers in addition to rand
which exemplifies random normal distribution. The parameter R represents a number
updated in the interval [−a, a] which is able to decide the searching interval where it
depends on the entire iterations as:

R = 2× s× rand− s, s = 2×
(

1− t
T

)
(12)

In Equation (12), T is the number of iterations. E exemplifies a coefficient, clarified in
Equation (11), which corresponds the variation control for X and defined as:

E = sech(|Fiti − Fitb|) (13)

where Fitb is the best fitness value and Sech denotes the hyperbolic function (i.e.,
sech(x) = 2

ex−e−x ).
Furthermore, W1 and W2 represent the weights of hunger clarified in Equations (14)

and (15).

W1 =

{
Hi × N

SH × r4, r3 < l
1, r3 > l

(14)

W2 = 2
(

1− e(−|Hi−SH|)
)
× r5 (15)

The parameters r3, r4 and r5 exemplifies arbitrary number in the range [0,1]. SH
identifies the hungers feeling for all solutions sum given by:

SH = ∑
i

Hi (16)

As well as, Hi corresponds the hunger of each solution Hi:

Hi =

{
0, Fiti = Fitb

Hi + Hn, otherwise
(17)

The coefficient Fitb corresponds the finest objective value and Fiti corresponds the
fitness of current solution Xi. In addition, Hn represents a new hunger given as:

Hn =

{
LH × (1 + r), TH < LH

TH, otherwise
(18)

TH = 2
Fiti − Fitb
Fitw − Fitb

× r6 × (UB− LB) (19)

In Equation (18), hunger sensation H is restricted with lower boundary (LW). The
last parameter Fitw corresponds the worst objective value and r6 ∈ [0, 1] is arbitrary value
corresponding to the negative or positive effects on hunger occurred by some factors. The
steps of HGS are given in Algorithm 1.
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Algorithm 1 Steps of HGS.

1: Insert the iterations number given by T, the solutions number given by N
2: initialize the population Z.
3: while t ≤ T do
4: calculate the objective value for the solutions Zi.
5: Identify the finest solution Zb, Fitb, FitW
6: Modernize the value of Hi using Equation (17)
7: Modernize W1 and W2 using Equations (14) and (15), respectively.
8: for i = 1 : N do
9: Modernize R using Equation (12).

10: Modernize E using Equation (13).
11: Update Zi using Equation (11).
12: end for
13: t = t + 1
14: end while
15: Get Zb

3. Proposed Method

In this section, we introduce the developed method for color image segmentation
based on superpixel and automatic clustering using q-Generalized Pareto distribution
under linear normalization (q-GPDL) and Hunger Games Search. However, in the begin-
ning we introduces the modified version of Generalized Pareto distribution under linear
normalization that named q-GPDL. Since, it has been used to improve the behavior of
DPC algorithm.

3.1. q-Generalized Pareto Distribution under Linear Normalization (q-GPDL)

In this paper, we introduce the q− GPDL which has the form 1 + log G(x; k, σ, µ, q).
Then, the cdf and pdf of q− GPDL are respectively:

Ψ(x; µ, σ, k, q) =


1 + log

(
[1 + q(k(sx−m) + 1)−

1
k ]
− 1

q

)
, k 6= 0, q 6= 0

1 + log
(

1 + qe−(sx−m))
− 1

q

)
, k→ 0, q 6= 0

(20)

and

ψ(x; µ, σ, k, q) =


s(1+k(sx−m))

− 1
k−1

1+q(k(sx−m)+1)−
1
k

k 6= 0, q 6= 0

se−(sx−m)

1+qe−(sx−m) k→ 0, q 6= 0
(21)

where k is the shape parameter, µ is the threshold value and σ is the scale parameter.

3.1.1. The Quantile Function

The quantile function of the q− GPDL(k 6= 0) and q− GPDL(k→ 0 ) can be readily
formulated as:

xp = Ψ−1(q, k, σ, µ) =

{
σ
k (q

k(e−q(p−1) − 1)−k − 1) + µ k 6= 0, q 6= 0
σ log q

eq(1−p)−1
+ µ k→ 0, q 6= 0 (22)

In Equation (22), p is the probability of quantile. So, the point xi is assumed to be a
clustering center in the case the the following criteria is met.

θ > x̂p (23)
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3.1.2. Maximum Likelihood Estimation (MLE)

To identify the parameters of the q-GPDL whose density functions are in Equation (21),
one has to maximize log-likelihood function subject to its parameters. Suppose the obser-
vations xi, i = 1, . . . , n, so the log-likelihood of q-GPDL model is given by

`(x; µ, σ, k, q) = −n log σ− (1 + 1
k )∑n

i=1 log(1 + k( xi−µ
σ ))−∑n

i=1 log(1 + q(k( xi−µ
σ ) + 1)−

1
k ) (24)

The system of the log-likelihood is given as:

∂`

∂µ
= (k + 1)

n

∑
i=1

1
1 + Ai

− q
n

∑
i=1

(1 + Ai)
−1− 1

k

1 + q(1 + Ai)
− 1

k
= 0 (25)

∂`

∂σ
= (k + 1)

n

∑
i=1

Ai
1 + Ai

− q
n

∑
i=1

Ai(1 + Ai)
−1− 1

k

1 + q(1 + Ai)
− 1

k
− nk = 0 (26)

∂`

∂k
=

n

∑
i=1

log(1 + Ai)− (k + 1)
n

∑
i=1

Ai
1 + Ai

− q
n

∑
i=1

(1 + Ai)
− 1

k (log(Ai + 1)− Ai
Ai+1 )

1 + q(1 + Ai)
− 1

k
= 0 (27)

and
∂`

∂q
= −

n

∑
i=1

(1 + Ai)
− 1

k

1 + q(1 + Ai)
− 1

k
= 0 (28)

where Ai = k( xi−µ
σ ) in Equation (24).

3.2. Framework of the Developed ASCQPHGS Method

The stages of the developed method are given in Figure 1. First, the developed
ASCQPHGS method performs a presegmentation for the given image using a superpixel
algorithm since the time computational of using superpixel image is less than the using
the pixel in original image. Then the DPC method is applied to the results obtained from
superpixel algorithm to produce a decision-graph. The output of using decision-graph
is two groups and those ones that have the largest ρ and δ are considered as centers of
clustering. Finally, the proposed HGS as clustering method is used to segment the image.
In this stage, HGS starts by producing a set of N agents which contains the cluster centers.
Then the fitness value for each agent is computed and the best of them is determined. The
next step is to update the agents using the operators of HGS as discussed in Section 2.3
until reached to the stop conditions. Thereafter, the best solution that represents the cluster
center is used to segmented the image and the quality of segmented image is computed
using different performance metrics.

The details of each stages of the developed ASCQPHGS as a image segmentation
approach are given in the following.

3.2.1. Initial Stage

Within this stage, the developed methods starts by receiving the tested image (I).
Then the DPC is applied since it performs clustering nearly in semiautomatic form and
the number of clusters can be determined based on decision-graph (DG). However, the
DPC produces similarity matrix with large size that leads to high computational cost
and memory overflow, in addition to forget the spatial information of I. To tackling this
problems, the superpixel methods can be used to reduce the similarity matrix since they
have ability to maintain the structuring information and the texture of image. After that,
the DPC based on QGEVL is used to automatically determine the number of cluster.
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Figure 1. The steps of developed ASCQPHGS for color image segmentation.

In the first step of this stage, we following [31] by applying the multiscale morpho-
logical gradient reconstruction based watershed transform (MMGRWT) as a superpixel
algorithm, since it established its efficiency as discussed in [25]. The output of MMGRWT
is an image superpixel matrix with smaller size than original image. The next step is to
calculate the value of ρ using Equation (3) and the value of δ using Equation (5). The
third step is to determine the value of θ as defined in Equation (6) based on the maximum
likelihood approach to identify the the parameters of QGEVL using θ as input. Then the
number of cluster centers (Kmax) are determined by using Equation (23).

3.2.2. Encoding of Solution in HGS

The HGS starts by setting the initial value for a set of N agents and each of them
represent the cluster centers. For the input matrix (S ∈ RNS×D), that obtained from using
superpixel algorithm, the dimension (DX) of each agent Zi is Kmax × D. Therefore, the
encoding of each agent can be formulated as:

Zi = [Ci1, Ci2, . . . , CiKmax ] = rand× (UBij − LBij) + LBij, j = 1, 2, . . . , Kmax × D (29)

where Cij is the jth cluster center of the solution i. For clarity, consider S ∈ R2 (i.e., 2D
dataset) and Kmax = 4, and Zi = [15.8, 11.1, 3.5, 9.3, 2.4, 5.7, 12.3, 8.9]. This indicates that the
centers of the first cluster is (15.8, 11.1), second cluster is (3.5, 9.3), third cluster is (2.4, 5.7),
and fourth cluster is (12.3, 8.9).

3.2.3. Compute Fitness Value

To compute the fitness value for each agent Zi ∈ Z, we using the CS-index (CSI) that
defined as [32]:

Figure 1. The steps of developed ASCQPHGS for color image segmentation.

In the first step of this stage, we following [31] by applying the multiscale morpho-
logical gradient reconstruction based watershed transform (MMGRWT) as a superpixel
algorithm, since it established its efficiency as discussed in [25]. The output of MMGRWT
is an image superpixel matrix with smaller size than original image. The next step is to
calculate the value of ρ using Equation (3) and the value of δ using Equation (5). The
third step is to determine the value of θ as defined in Equation (6) based on the maximum
likelihood approach to identify the the parameters of QGEVL using θ as input. Then the
number of cluster centers (Kmax) are determined by using Equation (23).

3.2.2. Encoding of Solution in HGS

The HGS starts by setting the initial value for a set of N agents and each of them
represent the cluster centers. For the input matrix (S ∈ RNS×D), that obtained from using
superpixel algorithm, the dimension (DX) of each agent Zi is Kmax × D. Therefore, the
encoding of each agent can be formulated as:

Zi = [Ci1, Ci2, . . . , CiKmax ] = rand× (UBij − LBij) + LBij, j = 1, 2, . . . , Kmax × D (29)

where Cij is the jth cluster center of the solution i. For clarity, consider S ∈ R2 (i.e., 2D
dataset) and Kmax = 4, and Zi = [15.8, 11.1, 3.5, 9.3, 2.4, 5.7, 12.3, 8.9]. This indicates that the
centers of the first cluster is (15.8, 11.1), second cluster is (3.5, 9.3), third cluster is (2.4, 5.7),
and fourth cluster is (12.3, 8.9).

3.2.3. Compute Fitness Value

To compute the fitness value for each agent Zi ∈ Z, we using the CS-index (CSI) that
defined as [32]:
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CSI =
1

Kmax
∑Kmax

k=1
1
|Ck | ∑Zi∈CK

maxXj∈Ck d(Zi, Xj)

1
Kmax

∑Kmax
k=1 mink,k 6=k′ d(Ck, Ck′)

(30)

In Equation (30), |Ck| denotes the total samples in Ck. k′ = [1, 2, . . . , Kmax] denotes the
index of cluster center that doesn’t equal to k.

3.2.4. Update Population

The first step in this phase, is to find the best agent Zb that has the smallest CSI. Then
using the operators of HGS to update the value of agents Z as given in Algorithm 2. The
steps of updating the agents are repeated gain till reached to the terminal conditions and
returning Zb. Thereafter, image is segmented based on the value of Zb and the quality of
segmentation is computed using different the performance measures.

Algorithm 2 Steps of developed ASCQPHGS clustering for color segmentation.

1: Insert the color image I, determine total number of iterations T, total number of
solutions N

2: Apply the superpixel MMGRWT algorithm to reduce the size of original image I.
3: Compute the value of ρ using Equation (3) and δ using Equation (5).
4: Determine the value of θ using Equation (6) and the MLE to identify the parameters of

QGEVL using θ as input.
5: Determine the number of clusters (Kmax) using Equation (23).
6: Generate population Z according to (Kmax) as defined in Equation (29).
7: t = 1
8: while t ≤ T do
9: Compute fitness value for Zi, i = 1, 2, . . . , N as defined in Equation (30).

10: Find the finest solution Zb, which has the smallest Fitb and determine the worst
fitness FitW .

11: Update Hi using Equation (17)
12: Update W1 and W2 using Equations (14) and (15), respectively.
13: Update Zi using Equation (11)
14: t = t + 1
15: end while
16: Return Zb
17: Segment I based on Zb and compute the performance.

4. Experimental and Results

To evaluate the performance of the developed method, a set of different MH techniques
are used in the comparison. For example, Slime mould algorithm (SMA) [33], Barnacles
mating optimizer (BMO) [34], atom search optimization (ASO) [35], ASO based on particle
swarm optimization (ASOPSO) [36], Hunger games search (HGS) [37]. In addition, the
automatic fuzzy clustering framework (FCM) [25], and Density Peaks clustering (DPC) [29].
In addition, we compare the results of developed method with the modified version
of FCM and DPC using the QGEV and this modifications given as FCMQGPDL and
DPCQGPDL, respectively. The parameter setting of these algorithms depends on the
original implementation of each of them. In addition, there are three parameters for FCM
namely maximal number of iterations (is 50), minimal error threshold (10−5) and the
weighting exponent (is 2).

4.1. Datasets Description

Within this section, we used two real-world dataset images to assess the performance
of the developed method. The images in the first dataset are collected from Berkeley
segmentation dataset and benchmark (BSDS500) [38]. These images are divided into testing
and training sets which consists of 200 and 300 images, respectively each of them has size
481 × 321. An example of BSDS500 is given in Figure 2 shows an example of four images
from this type of images. Moreover, there is a set of ground truth for each image variant
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from four to nine and each of these ground truth is obtained by one human subject. The
Stanford background dataset (SBD) [39] is the second dataset and it contains 715 images
which represents an outdoor images. Figure 3 shows an example of four images from
this type of images. In these images, there are objects with vague foreground boundaries,
multiple foreground objects and the accommodation of detailed background regions in
ground truth segmentations. This makes these images are more challenging when applied
to evaluate the superpixels segmentation methods.

(a) I1BSDS500 (b) I2BSDS500

(c) I3BSDS500 (d) I4BSDS500

Figure 2. Examples of BSDS500 images.

(a) I1BSD (b) I2BSD

Figure 3. Cont.
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(c) I3BSD (d) I4BSD

Figure 3. Examples of SBD images.

4.2. Performance Metrics

A set of performance metrics are used to measure the quality of the competitive
segmentation approaches. These metrics are probabilistic rand index (PRI), the variation of
information (VI), the global consistency error (GCE), and the boundary displacement error
(BDE) [40]. The definition of these metrics are given in the following:

1. probabilistic rand index (PRI): It computes the the similarity of labels and it is applied
to compute the classification of pixel-wise.

PRI(S, Sg) =
1
T ∑

i<j
[cij pij + (1− cij)(1− pij)] (31)

where cij and pij denote the event that pixels i and j have the same label and its probability.
2. variation of information (VOI): is applied for clustering comparison and it depends

on the distance of the conditional entropy between results of two clusters.

VOI(S, Sg) = H(S|Sg) + H(Sg|S) (32)

where H(S|Sg) and H(Sg|S) are the conditional entropies.
3. global consistency error (GCE): It measures the global error between two segmented

images that are mutually consistent.
4. boundary displacement error (BDE): It computes the average of the displacement

error of pixels between two segmented images.

In general, the algorithm that provides higher PRI with low value of VOI, BDE, and
GCE is considered the best one.

4.3. Results and Discussion

The comparison results between the developed method and other methods using
BSDS500 are given in Table 1. It can be observed that the developed HGS provides better
results than other methods in terms of performance measures. In terms of RI, VOI, and
BDE, the ASOPSO allocates the second rank, followed HGS, which provides results better
than other MH techniques. However, the BMO provides better results than other MH
methods in terms of GCE.

Moreover, the comparative results of the developed HGS with other models using
SBD dataset are given in Table 2. One can be seen from these results that HGS provides
better results in terms of RI, VOI, and BDE. However, the FCM based on QGEV provides
results better than other methods in terms of GCE.

Figure 4 depicts the average of the developed method and other methods among the
tested two real-world images datasets. From these results it can be seen that the developed
ASCQPHGS image segmentation method provides better average among the two datasets
in terms of all performance measures.
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Table 1. Results of competitive techniques for the BSDS500.

RI VOI GCE BDE

DPCQGPDL 0.8173 1.9702 0.2587 8.6165
DPC 0.8184 1.9679 0.2592 8.5876

FCMQGPDL 0.8184 1.9686 0.2593 8.5914
FCM 0.7537 2.0523 0.2198 12.9771
SMA 0.8276 1.8685 0.2223 8.9728
BMO 0.8232 1.8743 0.2198 9.4888
ASO 0.8296 1.8700 0.2264 9.0037

ASOPSO 0.8339 1.8614 0.2270 8.5360
ASCQPHGS 0.8361 1.8561 0.2077 8.3777

Table 2. Results of competitive techniques for the SBD.

RI VOI GCE BDE

DPCQGPDL 0.6540 1.8808 0.2447 15.6244
DPC 0.6517 1.8864 0.2443 15.8201

FCMQGPDL 0.6545 1.8804 0.2049 15.6116
FCM 0.6142 1.8602 0.2068 17.7728
SMA 0.6227 1.8825 0.2213 16.9126
BMO 0.6179 1.8843 0.2188 17.1358
ASO 0.6269 1.8819 0.2253 16.8736

ASOPSO 0.6281 1.8858 0.2264 16.5644
ASCQPHGS 0.6688 1.8541 0.2169 15.5535

(a) value of PRI (b) value of VOI

(c) value of GCE (d) value of BDE

Figure 4. Comparison results between ASCQPHGS and other models in terms of PRI, VOI, GCE, and BDE.

For further analysis the performance of the developed method, the non-parametric
Friedman test is applied to the obtained results. This test is used to determine if there is a
significant difference between ASCQPHGS and other algorithms or not. This decision is
taken based on the p-value obtained by Friedman test and in case of the p-value is less than



Mathematics 2021, 9, 2383 13 of 18

0.05, then there is a significant difference. Otherwise (i.e., p-value > 0.05), this indicates
there is no a significant difference between ASCQPHGS and competitive algorithms.

Table 3 depicts the mean rank obtained by Friedman test for each algorithm over
the two tested datasets (i.e., SBD and BSD500). It can be observed from these results that
the developed ASCQPHGS has the largest mean rank in terms of RI, and smallest mean
rank in terms of VOI, GCE, and BDE. In addition, ASOPSO allocates the second rank in
terms of RI, followed by modified version of FCM (i.e., FCMQGPDL). Meanwhile, in terms
of VOI, each of SMA and ASO allocates the second rank, followed by DPCQGPDL and
ASOPSO. In terms of GCE, FCM, BMO, and SMA allocate the second, third, and fourth
rank, respectively. Finally, the FCMQGPDL, ASOPSO, and DPCQGPDL acheive the second,
third, and fourth rank, respectively.

Table 3. Friedman test results of the developed ASCQPHGS and other methods using SBD and BSD500 datasets.

DPCQGPDL DPC FCMQGPDL FCM SMA BMO ASO ASOPSO ASCQPHGS

RI 4.5 4.75 5.75 1 4.5 3.5 5.5 6.5 9
VOI 6 7.5 5 5.5 4.5 6 4.5 5 1
GCE 7.5 7.5 9 1.75 4 2.75 5 6 1.5
BDE 4 3.5 3 9 6.5 8 6.5 3.5 1

Figures 5 and 6 depict the segmentation of I4BSDS500 and I1BSD from BSDS500 and
BSD datasets. It can be seen from this segmentation, the high ability of the developed
method to split the objects inside the image. In addition, the influence of q-GPDL is better
than other traditional GEV.

(a) DPC (b) DPCQGPDL

(c) FCM (d) FCMQGPDL

Figure 5. Cont.
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(e) SMA (f) ASO

(g) ASOPSO (h) ASCQPHGS

Figure 5. Segmentation of image I4BSDS500 from BSDS500 datasets using the competitive algorithms.

(a) DPC (b) DPCQGPDL

(c) FCM (d) FCMQGPDL
Figure 6. Cont.
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(e) SMA (f) ASO

(g) ASOPSO (h) ASCQPHGS

Figure 6. Segmentation of image I1BSD from BSD datasets using the competitive algorithms.

4.4. Comparison with Literature Works

The results of the ASCQPHGS method is compared with a set of well-known super-
pixel cluster methods that have been applied to segmented the BSDS500 dataset. The
methods including FCM [41], Superpixel-based fast FCM (SFFCM) [31], Significantly fast
and robust FCM (FRFCM) [42], Neighbourhood weighted FCM (NWFCM) [43], Adaptive
FCM based on local noise detecting (NDFCM) [44], A fuzzy clustering approach toward
hidden Markov random field models for enhanced spatially constrained (HMRF-FCM) [45],
fast and robust FCM algorithms incorporating local information (FGFCM) [46], A robust
fuzzy local information C-means clustering (FLICM) [47], A possibilistic FCM (PFCM) [48],
General type-2 FCM for uncertain fuzzy clustering (MSFCM) [49], FCM with local informa-
tion and kernel metric (KWFLICM) [50], A novel type-2 FCM (AWSFCM) [51].

Table 4 shows the comparison between the results of developed method and the col-
lected results of other literature works. From these results, we observed that the developed
ASCQPHGS has better results than other methods in terms of performance measures. The
main reason of this high quality of the developed ASCQPHGS is combining the behaviour
of superpixel algorithm that leads to decrease the computational time and memory require-
ments. As well as, using the modified version of DPC based on Generalized Extreme Types
Under Linear Normalization (GEVL).
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Table 4. Comparison with other literature works.

PRI” VI GCE BDE

FCM 0.7 2.87 0.37 14.01
FGFCM 0.69 2.92 0.38 14.29

HMRF-FCM 0.72 2.59 0.33 14.22
FLICM 0.71 2.73 0.35 13.47

NWFCM 0.71 2.79 0.36 13.7
NDFCM 0.69 2.93 0.38 12.95
FRFCM 0.76 2.67 0.37 -
SFFCM 0.73 2.18 0.25 14.13

PFCM [48] 0.72 2.97 0.42 -
KWFLICM [50] 0.74 2.83 0.4 -

RSFFCA 0.78 2.12 0.28 -
AWSFCM [51] 0.75 2.74 0.38 -
MSFCM [49] 0.74 2.85 0.4 -
ASCQPHGS 0.8361 1.8561 0.2077 8.3777

5. Conclusions

In this paper, an alternative color image segmentation method has been developed.
This method depends on using the superixel algorithm to reduce the memory requirements.
In addition, to determine the number of clusters, a modified version of density peak
clustering algorithm has been introduced based on a definition of Generalized Pareto
distribution under linear normalization (GPDL), named q-GPDL. This distribution avoid
the limitations of traditional generalized extreme value that used in DPC. Finally, to
determine the cluster centers, the Hunger Games Search has been used since it has high
ability to explore the search space which leads to enhance the convergence towards the
optimal solution. The comparison results between the developed method and other
methods based on metaheuristic techniques have been conducted using two real image
datasets named BSDS500 and Stanford background dataset (SBD). These results provide
evident about the superiority of the developed method over either the MH techniques or
the state-of-the-art methods.

Besides, the developed method can be applied in future to different clustering-based
image segmentation problems. In addition, it can be extent as multi-objective clustering
optimization problems. Also, it can applied to different applications such as remote sensing,
medical image classification and others.
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