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Abstract: Due to its simplicity, efficiency, and effectiveness, multinomial naive Bayes (MNB) has
been widely used for text classification. As in naive Bayes (NB), its assumption of the conditional
independence of features is often violated and, therefore, reduces its classification performance. Of
the numerous approaches to alleviating its assumption of the conditional independence of features,
structure extension has attracted less attention from researchers. To the best of our knowledge, only
structure-extended MNB (SEMNB) has been proposed so far. SEMNB averages all weighted super-
parent one-dependence multinomial estimators; therefore, it is an ensemble learning model. In this
paper, we propose a single model called hidden MNB (HMNB) by adapting the well-known hidden
NB (HNB). HMNB creates a hidden parent for each feature, which synthesizes all the other qualified
features’ influences. For HMNB to learn, we propose a simple but effective learning algorithm
without incurring a high-computational-complexity structure-learning process. Our improved idea
can also be used to improve complement NB (CNB) and the one-versus-all-but-one model (OVA),
and the resulting models are simply denoted as HCNB and HOVA, respectively. The extensive
experiments on eleven benchmark text classification datasets validate the effectiveness of HMNB,
HCNB, and HOVA.

Keywords: text classification; multinomial naive Bayes; hidden multinomial naive Bayes; attribute
conditional independence assumption; structure extension

1. Introduction

Due to its simplicity, efficiency, and effectiveness, naive Bayes (NB) has been widely
used to analyze and solve many scientific and engineering problems, such as text
classification [1,2], resistance of buildings [3], identification of areas susceptible to flood-
ing [4], and urban flooding prediction [5]. Text classification is the task of assigning a
text document to a pre-specified class, and it has been widely used in many real-world
fields, such as spam filtering and short message service (SMS) filtering [2,6]. With the
exponential growth of text data in various fields, text classification has attracted more and
more attention from researchers in recent years. To address text classification tasks, text
documents are generally featured by all of the words that occur in them. Because of the
large numbers of documents, large numbers of words, and strong dependencies among
these words, accurate and faster text classification presents unique challenges.

Beyond all questions, treating each word as a boolean variable is the simplest approach
to applying machine learning for text classification. Based on this idea, multi-variate
Bernoulli naive Bayes (BNB) [7] was proposed as the first statistical language model. BNB
represents a document using a vector of binary feature variables, which indicates whether or
not each word occurs in the document and, thus, ignores the frequency information of each
word occurring in the document. To capture the frequency information of each occurring
word, multinomial naive Bayes (MNB) [8] was proposed. Ref. [8] proved that MNB
achieves, on average, a 27% reduction in the error rate compared to BNB at any vocabulary
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size. However, when the number of training documents of one class is much greater than
those of the others, MNB tends to select poor weights for the decision boundary. To balance
the number of training documents and to address the problem of skewed training data,
a complement variant of MNB called complement NB (CNB) was proposed [9]. As a
combination of MNB and CNB, OVA [9] was proposed.

Given a test document d, which is generally represented by a word vector < w1, w2, · · · ,
wm >, MNB, CNB, and OVA classify it with Equations (1)–(3), respectively.

c(d) = arg max
c∈C

(
P(c)

m

∏
i=1

P(wi|c) fi

)
(1)

c(d) = arg max
c∈C

(
−P(c)

m

∏
i=1

P(wi|c) fi

)
(2)

c(d) = arg max
c∈C

(
P(c)

m

∏
i=1

P(wi|c) fi − P(c)
m

∏
i=1

P(wi|c) fi

)
(3)

where c is each possible class label, C is the set of all classes, c is the complement classes of c,
m is the number of different words in the text collection, wi (i = 1, 2, · · · , m) is the ith word
that occurs in d, and fi is the frequency count of the word wi in d. The prior probabilities
P(c) and P(c) are computed in Equations (4) and (5), respectively, and the conditional
probabilities P(wi|c) and P(wi|c) are computed in Equations (6) and (7), respectively.

P(c) =
∑n

j=1 δ(cj, c) + 1

n + s
(4)

P(c) =
∑n

j=1 δ(cj, c) + 1

n + s
(5)

P(wi|c) =
∑n

j=1 f jiδ(cj, c) + 1

∑m
i=1 ∑n

j=1 f jiδ(cj, c) + m
(6)

P(wi|c) =
∑n

j=1 f jiδ(cj, c) + 1

∑m
i=1 ∑n

j=1 f jiδ(cj, c) + m
(7)

where s is the number of classes, n is the number of training documents, cj is the class label
of the jth training document, f ji is the frequency count of the ith word in the jth training
document, and δ(cj, c) and δ(cj, c) are two indicator functions defined by:

δ(cj, c) =
{

1, i f cj = c
0, otherwise

(8)

δ(cj, c) =
{

1, i f cj ∈ c, namely cj 6= c
0, otherwise

(9)

Due to their simplicity, efficiency, and efficacy, MNB and its variants, including CNB
and OVA, have been widely used for text classification. However, as in naive Bayes
(NB), the assumption of the attributes’ (i.e., features) conditional independence that they
need is usually violated and, therefore, reduces their classification accuracy. To alleviate
their assumption of features’ conditional independence, many approaches have been pro-
posed. These approaches can be divided into five categories [10,11]: (1) feature weighting;
(2) feature selection; (3) instance weighting; (4) instance selection; (5) structure extension.

Among these approaches, structure extension has attracted far less attention from
researchers. To the best of our knowledge, only structure-extended multinomial naive
Bayes (SEMNB) [12] has been proposed so far. SEMNB averages all weighted super-
parent one-dependence multinomial estimators and, therefore, is an ensemble learning
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model. In this paper, we propose a single model called hidden multinomial naive Bayes
(HMNB). HMNB creates a hidden parent for each feature, which synthesizes all the other
qualified features’ influences. To learn HMNB, we proposed a simple but effective learning
algorithm without incurring a high-computational-complexity structure-learning process.
Our improved idea can also be used to improve CNB and OVA, and the resulting models
are simply denoted as HCNB and HOVA, respectively. The extensive experiments on
eleven benchmark text classification datasets show that the proposed HMNB, HCNB, and
HOVA significantly outperform their state-of-the-art competitors.

To sum up, the main contributions of our work include the following:

• We conducted a comprehensive survey on MNB extensions. Based on the survey,
existing work can be divided into five categories: feature weighting, feature selection,
instance weighting, instance selection, and structure extension.

• We found that structure extension has attracted much less attention from researchers,
and only SEMNB was proposed so far. However, it is an ensemble learning model.

• We proposed a single model called hidden MNB (HMNB) by adapting the well-known
hidden NB (HNB). HMNB creates a hidden parent for each feature, which synthesizes
all of the other qualified features’ influences. To learn HMNB, we proposed a simple
but effective learning algorithm without incurring a high-computational-complexity
structure-learning process. At the same time, we proposed HCNB and HOVA.

• The extensive experiments on eleven benchmark text classification datasets validate
the effectiveness of HMNB, HCNB, and HOVA.

The remainder of this paper is organized as follows. Section 2 conducts a compact
survey on five categories of existing approaches. Section 3 describes our proposed models
in detail. Section 4 presents the experimental setup and results. Section 5 draws conclusions
and outlines the main directions.

2. Related Work
2.1. Feature Weighting

The feature weighting approach assigns different weights Wi (i = 1, 2, · · · , m) to differ-
ent features (i.e., attributes) in building MNB, CNB, and OVA. To learn Wi
(i = 1, 2, · · · , m), Ref. [13] proposed χ2 statistic-based feature weighting, which is denoted
by Rw,c. When Rw,c is used to improve MNB, CNB, and OVA, the resulting models are
simply denoted by Rw,cMNB, Rw,cCNB, and Rw,cOVA, respectively. In addition, Ref. [14]
proposed a deep feature weighting approach, simply denoted by DFW, which incorporates
the learned weight Wi (i = 1, 2, · · · , m) into not only the classification of the formula, but
also the conditional probability estimates. When DFW is applied to MNB, CNB, and OVA,
the resulting models are simply denoted by DFWMNB, DFWCNB and DFWOVA, respec-
tively.

Based on the idea of deep feature weighting, Ref. [15] adapted two other deep feature
weighting approaches: gain-ratio-based feature weighting (GRW) and decision-tree-based
feature weighting (DTW). GRW sets the weight of each feature to its gain ratio relative to
the average gain ratio across all features. When GRW is applied to MNB, CNB, and OVA,
the resulting models are denoted by GRWMNB, GRWCNB, and GRWOVA, respectively.
DTW sets the weight of each feature to be inversely proportional to the minimum depth
at which it is tested in the built tree. When DTW is applied to MNB, CNB, and OVA, the
resulting models are denoted by DTWMNB, DTWCNB, and DTWOVA, respectively.

2.2. Feature Selection

The feature selection approach trains MNB, CNB, and OVA on only the selected
features instead of all features. In the machine learning community, feature selection is
not new. In this paper, we focus our attention on text classification problems. In text
classification problems, the dimensionality of features is very high, which is a major
characteristic and difficulty. Even a moderate-sized text collection may have many unique
words. This is too high for many machine learning algorithms. Therefore, it is indeed
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desirable to reduce the dimensionality without harming the classification accuracy. To
execute feature selection, many approaches have been proposed. Ref. [16] conducted a
comparative survey on five feature selection approaches. In addition, Ref. [17] proposed
another feature selection approach based on a two-stage Markov blanket.

Generally, wrapper approaches have superior accuracy compared to filter approaches,
but filter approaches always run faster than wrapper approaches. To integrate their advan-
tages, Ref. [18] proposed gain-ratio-based feature selection (GRS). GRS takes advantage
of base classifiers to evaluate the selected feature subsets like wrappers, but it does not
need to repeatedly search feature subsets and train base classifiers. When GRS is applied
to MNB, CNB, and OVA, the resulting models are simply denoted by GRSMNB, GRSCNB,
and GRSOVA, respectively.

2.3. Instance Weighting

The instance weighting approach assigns different weights Wj (j = 1, 2, · · · , n) to
different instances (i.e., documents) in building MNB, CNB and OVA. To learn Wj (j =
1, 2, · · · , n), the simplest way maybe boosting [19]. More specifically, the weights of the
training instances misclassified by the base classifiers trained in the last iteration are
increased, and then the base classifiers are trained from the re-weighted instances in the
next iteration. After predefined rounds, this iteration process is stopped.

Different from boosting [19], Ref. [20] proposed a discriminative instance weighting
approach, simply denoted by DW. In each iteration of DW, each different training instance
is discriminatively assigned a different weight according to the computed conditional
probability loss. This iteration process is repeated for predefined rounds. When DW is
applied to MNB, CNB and OVA, the resulting models are simply denoted by DWMNB,
DWCNB and DWOVA, respectively.

2.4. Instance Selection

The instance selection approach builds MNB, CNB, and OVA on the selected training
instances rather than on all of the training instances. For conducting instance selection
processes, the k-nearest neighbor algorithm (KNN) is the most well accepted. KNN selects
training instances that drop into the neighborhood of a test instance, and it helps to alleviate
the assumption of features’ conditional independence required by MNB, CNB, and OVA.
Therefore, combining KNN with MNB, CNB, and OVA is quite direct. When an instance is
required for classification, a local MNB, CNB, or OVA is built on the k-nearest neighbors of
the test instance, and then it is used to classify the test instance. Based on this improved
idea, Ref. [21] proposed locally weighted MNB, CNB, and OVA; the resulting models are
simply denoted by LWWMNB, LWCNB, and LWOVA, respectively.

Instead of the k-nearest neighbor algorithm, Ref. [22] applied the decision tree learning
algorithm to find test instances’ nearest neighbors, and then deployed MNB, CNB, or OVA
on each leaf node of the built decision trees. The resulting models are simply denoted by
MNBTree, CNBTree, and OVATree, respectively. MNBTree, CNBTree, and OVATree build
binary trees, in which the split features’ values are viewed as zero and nonzero. In addition,
to reduce the time consumption, the information gain measure is used to build decision
trees. Differently from LWWMNB, LWCNB, and LWOVA, which are lazy learning models,
MNBTree, CNBTree, and OVATree are all eager learning models.

2.5. Structure Extension

The structure extension approach uses directed arcs to explicitly represent the depen-
dencies among features. That is to say, we need to find an optimal feature parent set Πwi for
each feature wi. However, learning an optimal feature parent set Πwi for each wi is almost
an NP-hard problem [23]. In addition, when the training data are limited, the variance of a
complex Bayesian network is high [24], and therefore, its probability estimations are poor.
Thus, a multinomial Bayesian network without structure learning that can also represent
feature dependencies is desirable.
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Inspired by the weighted average of one-dependence estimators (WAODE) [25],
Ref. [12] proposed structure-extended multinomial naive Bayes (SEMNB). SEMNB builds
a one-dependence multinomial estimator for each present word, i.e., this word is all of
the other present words’ parent. Then, SEMNB averages all weighted super-parent one-
dependence multinomial estimators, and therefore, it is an ensemble learning model. If
we apply the structure extension approach to CNB and OVA, we can easily obtain their
structure-extended versions. For the sake of convenience, we denote them as SECNB and
SEOVA, respectively.

3. The Proposed Models

Structure extension is not new to the Bayesian learning community, and especially not
to the semi-naive Bayesian learning community [26,27]. Researchers have proposed many
state-of-the-art structure-extended naive Bayes models, such as tree-augmented naive Bayes
(TAN) [24] and its variants [28,29]. However, When the structure extension approach comes
to high-dimensional text classification data, a key issue that must be addressed is its high-
computational-complexity structure learning process. This is the reason for why structure
extension has attracted less attention from researchers. To the best of our knowledge,
only structure-extended multinomial naive Bayes (SEMNB) [12] has been proposed so
far. SEMNB averages all weighted super-parent one-dependence multinomial estimators
and, thus, skillfully avoids high-computational-complexity structure-learning processes.
The extensive experiments on a large number of text classification datasets validate its
effectiveness. However, beyond all questions, SEMNB is an ensemble learning model.
Therefore, a simple but effective single model that does not incur a high-computational-
complexity structure-learning process is still desirable. This is our paper’s main motivation.

To maintain NB’s simplicity and efficiency while alleviating its assumption of at-
tributes’ conditional independence, hidden naive Bayes (HNB) [30] has achieved remark-
able classification performance. Inspired by the success of HNB, in this paper, we ex-
pected to adapt it to text classification tasks. We call our adapted model hidden multi-
nomial naive Bayes (HMNB). In HMNB, a hidden parent whpi is created for each present
word wi, which combines the influences from all of the other present qualified words wt
(t = 1, 2, · · · , m ∧ t 6= i). Now, given a test document d, HMNB classifies it by using
Equation (10).

c(d) = arg max
c∈C

(
P(c)

m

∏
i=1∧ fi>0

P(wi|whpi, c) fi

)
(10)

where P(wi|whpi, c) is computed by:

P(wi|whpi, c) =
∑m

t=1∧t 6=i∧ ft>0∧Wt≥aveGR WtP(wi|wt, c)

∑m
t=1∧t 6=i∧ ft>0∧Wt≥aveGR Wt

(11)

where Wt (t = 1, 2, · · · , m ∧ t 6= i) indicates the importance of each possible parent word
wt in the hidden parent whpi. Therefore, for simplicity, we define it as the gain ratio
GainRatio(wt) of the word wt that splits the training data D. However, at the same time,
we only select the word wt whose gain ratio is above the average aveGR of all words as the
potential parent. The detailed calculation formulas are:

Wt = GainRatio(wt) =

∑
ft∈{0,0},c

P( ft, c) log P( ft ,c)
P( ft)P(c)

− ∑
fi∈{0,0}

P( ft) log P( ft)
(12)

aveGR =
1
m

m

∑
t=1

GainRatio(wt) (13)
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where ft ∈ {0, 0}. ft = 0 indicates the absence of wt, and ft = 0 indicates the presence
of wt.

Now, the only thing left is the efficient calculation of P(wi|wt, c); the conditional
probability wi appears given wt and c. It is well known that the space complexity of
estimating P(wi|wt, c) directly from D is O(sm2). To our knowledge, for text classification
tasks, m (the vocabulary size in the text collection) is often too large to save the tables of each
joint pair of words and class frequencies from which the conditional probability P(wi|wt, c)
is estimated. At the same time, text data are usually in the form of a sparse matrix, and
therefore, the number of different words present in a given document d—simply denoted
by |d|—is much smaller than m. Therefore, as in SEMNB [12], we also transform a part of
the training space consumption into classification time consumption. In more detail, we
remove the step of computing P(wi|wt, c) from the training stage to the classification stage.
At the classification stage, when a test document d is predicted, P(wi|wt, c) is computed
according to D and d. More specifically, given a word wt in d, we only select the documents
in which wt occurs to compute P(wi|wt, c) by using Equation (14), which has the space
complexity of O(s|d|) only.

P(wi|wt, c) =
∑n

j=1∧ f jt>0 f jiδ(cj, c) + 1

∑m
i=1 ∑n

j=1∧ f jt>0 f jiδ(cj, c) + m
(14)

In summary, the whole algorithm for learning HMNB is partitioned into a training
algorithm (HMNB-Training) and a classification algorithm (HMNB-Classification). They
are described by Algorithms 1 and 2, respectively. Algorithm 1 takes the time complexity of
O(nm + sm), and Algorithm 2 takes the time complexity of O(n|d|2 + s|d|2 + s|d|), where
n is the number of training documents, m is the number of different words in the text
collection, s is the number of classes, and |d| is the number of different words present in a
given document d.

Algorithm 1: HMNB-Training (D).
Input: D—training data
Output: P(c) and Wt (t = 1, 2, · · · , m)
1: for each class c do
2: Use Equation (4) to compute P(c) from D;
3: end for
4: for For each word wt (t = 1, 2, · · · , m) from D do
5: Compute Wt using Equation (12);
6: end for
7: Compute the averaged gain ratio aveGR of all words using Equation (13);
8: if GainRatio(wt) ≥ aveGR then
9: Wt = GainRatio(wt)

10: else
11: Wt = 0
12: end if
13: Return P(c) and Wt (t = 1, 2, · · · , m)

Algorithm 2: HMNB-Classification (d, D, P(c), Wt).
Input: d—a test document, D—training data, and the computed P(c) and Wt
Output: c(d)
1: for For each word wi (i = 1, 2, · · · , |d|) in d do
2: for For each word wt (t = 1, 2, · · · , |d| ∧ t 6= i) in d do
3: Denote all training documents in which wt occurs as Dwt ;
4: for each class c do
5: Compute P(wi |wt, c) from Dwt using Equation (14);
6: end for
7: end for
8: end for
9: Use Wt and P(wi |wt, c) to compute P(wi |whpi , c) with Equation (11);

10: Use P(c) and P(wi |whpi , c) to predict the class label of d with Equation (10);
11: Return the predicted class label c(d)
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Our improved idea can also be used to improve CNB and OVA. The resulting models
are denoted as HCNB and HOVA, respectively. Given a test document d, HCNB and HOVA
use Equations (15) and (16) to classify it.

c(d) = arg max
c∈C

(
−P(c)

m

∏
i=1∧ fi>0

P(wi|whpi, c) fi

)
(15)

c(d) = arg max
c∈C

(
P(c)

m

∏
i=1∧ fi>0

P(wi|whpi, c) fi − P(c)
m

∏
i=1∧ fi>0

P(wi|whpi, c) fi

)
(16)

where P(wi|whpi, c) is computed by:

P(wi|whpi, c) =
∑m

t=1∧t 6=i∧ ft>0∧Wt≥aveGR WtP(wi|wt, c)

∑m
t=1∧t 6=i∧ ft>0∧Wt≥aveGR Wt

(17)

where P(wi|wt, c) is computed by:

P(wi|wt, c) =
∑n

j=1∧ f jt>0 f jiδ(cj, c) + 1

∑m
i=1 ∑n

j=1∧ f jt>0 f jiδ(cj, c) + m
(18)

Similarly to HMNB, the algorithms for learning HCNB and HOVA are also par-
titioned into training algorithms (HCNB-Training and HOVA-Training) and classifica-
tion algorithms (HCNB-Classification and HOVA-Classification). They are described by
Algorithms 3–6, respectively. From Algorithms 3–6, we can see that the time complexities
of HCNB and HOVA are almost the same as that of HMNB.

Algorithm 3: HCNB-Training (D).
Input: D—training data
Output: P(c) and Wt (t = 1, 2, · · · , m)
1: for each class c do
2: Use Equation (5) to compute P(c) from D;
3: end for
4: for For each word wt (t = 1, 2, · · · , m) from D do
5: Compute Wt using Equation (12);
6: end for
7: Compute the averaged gain ratio aveGR of all words using Equation (13);
8: if GainRatio(wt) ≥ aveGR then
9: Wt = GainRatio(wt)

10: else
11: Wt = 0
12: end if
13: Return P(c) and Wt (t = 1, 2, · · · , m)

Algorithm 4: HCNB-Classification (d, D, P(c), Wt).
Input: d—a test document, D—training data, and the computed P(c) and Wt
Output: c(d)
1: for For each word wi (i = 1, 2, · · · , |d|) in d do
2: for For each word wt (t = 1, 2, · · · , |d| ∧ t 6= i) in d do
3: Denote all training documents in which wt occurs as Dwt ;
4: for each class c do
5: Compute P(wi |wt, c) from Dwt using Equation (18);
6: end for
7: end for
8: end for
9: Use Wt and P(wi |wt, c) to compute P(wi |whpi , c) with Equation (17);

10: Use P(c) and P(wi |whpi , c) to predict the class label of d with Equation (15);
11: Return the predicted class label c(d)
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Algorithm 5: HOVA-Training (D).
Input: D—training data
Output: P(c), P(c), and Wt (t = 1, 2, · · · , m)
1: for each class c do
2: Use Equation (4) to compute P(c) from D;
3: Use Equation (5) to compute P(c) from D;
4: end for
5: for For each word wt (t = 1, 2, · · · , m) from D do
6: Compute Wt using Equation (12);
7: end for
8: Compute the averaged gain ratio aveGR of all words using Equation (13);
9: if GainRatio(wt) ≥ aveGR then

10: Wt = GainRatio(wt)
11: else
12: Wt = 0
13: end if
14: Return P(c), P(c), and Wt (t = 1, 2, · · · , m)

Algorithm 6: HOVA-Classification (d, D, P(c), P(c), Wt).
Input: d—a test document, D—training data, and the computed P(c), P(c), and Wt
Output: c(d)
1: for For each word wi (i = 1, 2, · · · , |d|) in d do
2: for For each word wt (t = 1, 2, · · · , |d| ∧ t 6= i) in d do
3: Denote all training documents in which wt occurs as Dwt ;
4: for each class c do
5: Compute P(wi |wt, c) from Dwt using Equation (14);
6: Compute P(wi |wt, c) from Dwt using Equation (18);
7: end for
8: end for
9: end for

10: Use Wt and P(wi |wt, c) to compute P(wi |whpi , c) with Equation (11);
11: Use Wt and P(wi |wt, c) to compute P(wi |whpi , c) with Equation (17);
12: Use P(c), P(c), P(wi |whpi , c), and P(wi |whpi , c) to predict the class label of d with Equation (16);
13: Return the predicted class label c(d)

4. Experiments and Results

To validate the effectiveness of the proposed HMNB, HCNB, and HOVA, we designed
and completed three groups of experiments. The first group of experiments compared
HMNB with MNB, Rw,cMNB, GRSMNB, DWMNB, MNBTree, and SEMNB. The second
group of experiments compared HCNB with CNB, Rw,cCNB, GRSCNB, DWCNB, CNBTree,
and SECNB. The third group of experiments compared HOVA with OVA, Rw,cOVA,
GRSOVA, DWOVA, OVATree, and SEOVA. We used the existing implementations of MNB
and CNB in the platform of the Waikato environment for knowledge analysis (WEKA) [31]
and implemented all of the other models by using the WEKA platform [31].

We conducted our three groups of experiments on eleven well-known text classifi-
cation tasks published on the homepage of the WEKA platform [31], which cover a wide
range of text classification characteristics. Table 1 lists the detailed data information of
these eleven datasets. All of these eleven datasets were obtained from OHSUMED-233445,
Reuters-21578, TREC, and the WebACE project. Ref. [32] originally converted them into
term counts.

Tables 2–4 show the results of a comparison of the accuracy of each model on each
dataset after averaging the classification accuracies from ten runs of 10-fold cross-validation,
respectively. Then, we use two-tailed t-tests at 95% significance level [33] to compare
the proposed HMNB, HCNB and HOVA to each of their competitors. In these tables,
the symbols • and ◦ denote statistically significant improvement or degradation with
respect to the competitors, respectively. The averaged classification accuracies and the
Win/Tie/Lose (W/T/L) values are summarized at the bottom of the tables. The averaged
classification accuracy of each model across all datasets provides a gross indicator of the
relative classification performance in addition to the other statistics. Each W/T/L value in
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these tables indicates that, compared to their competitors, HMNB, HCNB, and HOVA won
on W datasets, tied on T datasets, and lost on L datasets.

Table 1. Text classification datasets in our experiments.

Dataset #Documents #Words #Classes #Min
Class

#Max
Class

#Avg
Class

fbis 2463 2000 17 38 506 144.9
la1s 3204 31,472 6 273 943 534.0
la2s 3075 31,472 6 248 905 512.5
oh0 1003 3182 10 51 194 100.3

oh10 1050 3238 10 52 165 105.0
oh15 913 3100 10 53 157 91.3
oh5 918 3012 10 59 149 91.8

ohscal 11,162 11,465 10 709 1621 1116.2
re0 1504 2886 13 11 608 115.7
re1 1657 3758 25 10 371 66.3

wap 1560 8460 20 5 341 78.0

Table 2. Comparisons of the classification accuracy for HMNB versus MNB, Rw,cMNB, GRSMNB,
DWMNB, MNBTree, and SEMNB.

Dataset HMNB MNB Rw,cMNB GRSMNB DWMNB MNBTree SEMNB

fbis 81.42 77.11 • 79.87 • 79.61 • 80.39 79.06 • 83.27 ◦
la1s 89.20 88.41 87.88 • 88.40 • 88.85 87.22 • 89.15
la2s 90.73 89.88 • 88.72 • 89.33 • 90.14 87.34 • 91.01
oh0 91.70 89.55 • 89.05 • 90.18 89.64 • 88.93 • 88.87 •

oh10 83.87 80.60 • 80.41 • 81.10 • 80.64 • 83.25 80.66 •
oh15 86.51 83.60 • 83.61 • 84.38 83.29 • 79.01 • 83.36 •
oh5 90.00 86.63 • 86.46 • 89.72 86.87 • 88.74 87.55 •

ohscal 79.88 74.70 • 74.18 • 76.84 • 74.30 • 78.00 • 76.40 •
re0 83.29 80.02 • 77.07 • 80.56 • 81.81 77.30 • 82.73
re1 84.60 83.31 82.72 • 86.12 ◦ 83.13 84.26 82.22 •

wap 80.40 81.22 76.33 • 80.34 81.83 ◦ 75.42 • 80.53

Average 85.60 83.18 82.39 84.23 83.72 82.59 84.16

W/T/L - 8/3/0 11/0/0 6/4/1 5/5/1 8/3/0 6/4/1

Table 3. Comparisons of the classification accuracy for HCNB vs. CNB, Rw,cCNB, GRSCNB, DWCNB,
CNBTree, and SECNB.

Dataset HCNB CNB Rw,cCNB GRSCNB DWCNB CNBTree SECNB

fbis 82.24 76.78 • 78.27 • 76.91 • 83.74 ◦ 79.32 • 81.42
la1s 88.12 86.30 • 87.33 • 85.99 • 88.48 87.21 87.82
la2s 89.86 88.26 • 88.94 • 87.69 • 89.61 88.08 • 89.47
oh0 92.73 92.31 92.49 91.41 92.36 90.76 89.82 •

oh10 84.88 81.76 • 82.20 • 80.13 • 82.36 • 85.16 81.24 •
oh15 88.19 84.38 • 85.32 • 85.36 • 84.27 • 81.74 • 83.81 •
oh5 91.34 90.58 90.96 89.96 90.51 89.99 88.18 •

ohscal 79.85 76.50 • 76.69 • 75.34 • 76.39 • 76.94 • 76.61 •
re0 84.71 82.37 • 80.74 • 81.48 • 85.35 79.62 • 83.79
re1 86.18 84.99 86.16 86.38 86.88 86.43 84.76 •

wap 79.74 77.53 • 78.10 • 76.31 • 79.32 76.69 • 80.13

Average 86.17 83.80 84.29 83.36 85.39 83.81 84.28

W/T/L - 8/3/0 8/3/0 8/3/0 3/7/1 6/5/0 6/5/0
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Table 4. Comparisons of the classification accuracy for HOVA versus OVA, Rw,cOVA, GRSOVA,
DWOVA, OVATree, and SEOVA.

Dataset HOVA OVA Rw,cOVA GRSOVA DWOVA OVATree SEOVA

fbis 82.21 80.94 • 80.80 • 80.95 • 82.68 81.72 80.80 •
la1s 88.91 88.52 88.11 88.36 88.83 87.69 • 86.94 •
la2s 90.22 90.23 89.32 89.90 90.36 87.94 • 88.56 •
oh0 91.70 91.49 90.12 91.09 91.53 90.05 91.51

oh10 84.25 81.86 • 81.51 • 81.39 • 81.94 • 84.20 84.04
oh15 86.86 84.39 • 84.50 • 85.51 84.07 • 80.35 • 85.95
oh5 89.65 89.44 88.31 90.16 89.75 89.46 90.03

ohscal 78.29 75.81 • 75.15 • 76.91 • 75.45 • 78.27 77.02 •
re0 83.08 81.54 78.81 • 81.18 • 83.41 78.11 • 81.35 •
re1 85.70 84.77 85.37 86.51 84.97 85.21 84.46 •

wap 78.93 80.65 ◦ 77.21 • 79.72 81.64 ◦ 75.90 • 74.71 •

Average 85.44 84.51 83.56 84.70 84.97 83.54 84.12

W/T/L - 4/6/1 6/5/0 4/7/0 3/7/1 5/6/0 7/4/0

Based on the accuracy comparisons presented inTables 2–4, we then used the KEEL
software [34] to complete the Wilcoxon signed-rank test [35,36] in order to thoroughly
compare each pair of models. The Wilcoxon signed-rank test ranks the differences in the
performance of two classification models for each dataset, ignoring the signs, and compares
the ranks for the positive R+ and the negative R− differences [35,36]. According to the
table of the exact critical values for the Wilcoxon test, for a confidence level of α = 0.05 and
N = 11 datasets, we speak of two classification models as being “significantly different” if
the smaller of R+ and R− is equal to or less than 11, and thus, we reject the null hypothesis.
Tables 5–7 summarize the related comparison results. In these tables, ◦ denotes that the
model in the column improves the model in the corresponding row, and • denotes that the
model in the row improves the model in the corresponding column. In the lower diagonal,
the significance level is α = 0.05. In the upper diagonal, the significance level is α = 0.1.
From all of the above comparison results, we can draw the following highlights:

1. The average accuracy of HMNB on eleven datasets is 85.60%, which is notably
higher than those of MNB (83.18%), Rw,cMNB (82.39%), GRSMNB (84.23%), DWMNB
(83.72%), MNBTree (82.59%), and SEMNB (84.16%). HMNB substantially outperforms
MNB (eight wins and zero losses), Rw,cMNB (11 wins and zero losses), GRSMNB (six
wins and one loss), DWMNB (five wins and one loss), MNBTree (eight wins and zero
losses), and SEMNB (six wins and one loss).

2. The average accuracy of HCNB on eleven datasets is 86.17%, which is notably higher
than those of CNB (83.8%), Rw,cCNB (84.29%), GRSCNB (83.36%), DWCNB (85.39%),
CNBTree (83.81%), and SECNB (84.28%). HCNB substantially outperforms CNB
(eight wins and zero losses), Rw,cCNB (eight wins and zero losses), GRSCNB (eight
wins and zero losses), DWCNB (three wins and one loss), CNBTree (six wins and zero
losses), and SECNB (six wins and zero losses).

3. The average accuracy of HOVA on eleven datasets is 85.44%, which is notably higher
than those of OVA (84.51%), Rw,cOVA (83.56%), GRSOVA (84.7%), DWOVA (84.97%),
OVATree (83.54%), and SEOVA (84.12%). HOVA substantially outperformsOVA (four
wins and one loss), Rw,cOVA (six wins and zero losses), GRSOVA (four wins and zero
losses), DWOVA (three wins and one loss), OVATree (five wins and zero losses), and
SEOVA (seven wins and zero losses).

4. In addition, according to the results of the Wilcoxon test, HMNB significantly outper-
forms MNB, Rw,cMNB, GRSMNB, DWMNB, MNBTree, and SEMNB. HCNB signifi-
cantly outperforms CNB, Rw,cCNB, GRSCNB, CNBTree, and SECNB. HOVA signifi-
cantly outperforms OVA, Rw,cOVA, OVATree, and SEOVA. All of these comparison
results validate the effectiveness of the proposed HMNB, HCNB, and HOVA.
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Table 5. Results of the Wilcoxon test with regard to HMNB.

Algorithm HMNB MNB Rw,cMNB GRSMNB DWMNB MNBTree SEMNB

HMNB - • • • • • •
MNB ◦ - • ◦

Rw,cMNB ◦ ◦ - ◦ ◦ ◦
GRSMNB ◦ • - •
DWMNB ◦ • -
MNBTree ◦ -
SEMNB ◦ • -

Table 6. Results of the Wilcoxon test with regard to HCNB.

Algorithm HCNB CNB Rw,cCNB GRSCNB DWCNB MCBTree SECNB

HCNB - • • • • •
CNB ◦ - ◦ ◦

Rw,cCNB ◦ - •
GRSCNB ◦ ◦ - ◦
DWCNB • • - • •
CNBTree ◦ -
SECNB ◦ ◦ -

Table 7. Results of the Wilcoxon test with regard to HOVA.

Algorithm HOVA OVA Rw,cOVA GRSOVA DWOVA OVATree SEOVA

HOVA - • • • • •
OVA ◦ - •

Rw,cOVA ◦ ◦ - ◦ ◦
GRSOVA • -
DWOVA • -
OVATree ◦ -
SEOVA ◦ -

Finally, we conducted the Wilcoxon signed-rank test [35,36] to compare each pair of
HMNB, HCNB, and HOVA. The detailed comparison results are shown in Table 8. From
these, we can see that HMNB almost tied with HCNB and HOVA, and HCNB was notably
better than HOVA. Considering the simplicity of the models, HMNB and HCNB could be
appropriate choices.

Table 8. Results of the Wilcoxon test for HMNB, HCNB, and HOVA.

Algorithm HMNB HCNB HOVA

HMNB -
HCNB - •
HOVA ◦ -

5. Conclusions and Future Study

To alleviate MNB’s assumption of features’ conditional independence, this paper
proposed a single model called hidden MNB (HMNB) by adapting the well-known hidden
NB (HNB). HMNB creates a hidden parent for each feature that synthesizes all of the other
qualified features’ influences. For HMNB to learn, we proposed a simple but effective
learning algorithm that does not incurring a high-computational-complexity structure-
learning process. Our improved idea can also be used to improve CNB and OVA, and the
resulting models are simply denoted as HCNB and HOVA, respectively. The extensive
experiments show that the proposed HMNB, HCNB, and HOVA significantly outperform
their state-of-the-art competitors.



Mathematics 2021, 9, 2378 12 of 14

In the proposed HMNB, HCNB, and HOVA, how the weight (importance) of each
possible parent word is defined is crucial. Currently, we directly use the gain ratio of
each possible parent word that splits the training data in order to define the weight,
which is somewhat rough. We believe that using more sophisticated methods, such
as the expectation-maximum (EM) algorithm, could further improve their classification
performance and make their superiority stronger. This is a main topic for future study.
In addition, to reduce the training space complexity, we transform a part of the training
space consumption into classification time consumption, which leads to a relatively high
classification time complexity. Therefore, the improvement of the efficiency of the proposed
models is another interesting topic for future study.
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Abbreviations
The following abbreviations are used in our paper:

NB Naive Bayes
BNB Bernoulli NB
MNB Multinomial NB
CNB Complement NB
OVA One-versus-all-but-one model
HMNB Hidden MNB
HCNB Hidden CNB
HOVA Hidden OVA
SMS Short message service
Rw,c χ2 statistic-based feature weighting
Rw,cMNB MNB with Rw,c
Rw,cCNB CNB with Rw,c
Rw,cOVA OVA with Rw,c
DFW Deep feature weighting
DFWMNB MNB with DFW
DFWCNB CNB with DFW
DFWOVA OVA with DFW
GRW Gain-ratio-based feature weighting
GRWMNB MNB with GRW
GRWCNB CNB with GRW
GRWOVA OVA with GRW
DTW Decision-tree-based feature weighting
DTWMNB MNB with DTW
DTWCNB CNB with DTW
DTWOVA OVA with DTW
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GRS Gain ratio-based hybrid feature selection
GRSMNB MNB with GRS
GRSCNB CNB with GRS
GRSOVA OVA with GRS
DW Discriminative instance weighting
DWMNB MNB with DW
DWCNB CNB with DW
DWOVA OVA with DW
LWWMNB Locally weighted MNB
LWWCNB Locally weighted CNB
LWWOVA Locally weighted OVA
MNBTree MNB tree
CNBTree CNB tree
OVATree OVA tree
SEMNB Structure-extended MNB
SECNB Structure-extended CNB
SEOVA Structure-extended OVA
TAN Tree-augmented NB
WAODE Weighted average of one-dependence estimators
HNB Hidden NB
WEKA Waikato environment for knowledge analysis
KEEL Knowledge extraction based on evolutionary learning
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