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Abstract: Countably recognizable group classes were introduced by Reinhold Baer and provide a
very ingenious way to study large groups through the properties of their countable subgroups. This
is the reason we have chosen the countable recognizability to start this series of survey papers on
infinite group theory.
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1. Introduction

In 1950, Sergei N. Černikov [1] proved that a group G is hypercentral if and only
if for each sequence x1, x2, . . . , xn, . . . of elements of G there exists a positive integer k
such that [g, x1, . . . , xk] = 1 for all g ∈ G. It follows that a group is hypercentral if
and only if all its countable subgroups are hypercentral. A few years later, Reinhold
Baer [2] obtained a corresponding characterization of the class of hyperabelian groups: a
group G is hyperabelian if and only if for all sequences of elements x1, x2, . . . , xn, . . . and
y1, y2, . . . , yn, . . . such that [xi, yi, xi] = xi+1, there is a positive integer k such that xk = 1
(and hence xm = 1 for every m ≥ k). Also in this case, this result implies that the property
of being hyperabelian can be detected from the behaviour of countable subgroups. This
kind of results is motivated by the fact that certain relevant group classes, such as the above
ones, cannot be characterized “in the small” (im kleinen, following Baer [3]), i.e., in terms of
finitely generated subgroups. On the other hand, there are also important group classes
that can be locally described. For instance, it is obvious that a group is abelian if and only
if all its 2-generator subgroups are abelian, and for each positive integer c a similar local
characterization can be given for nilpotent groups of class at most c, although it cannot
be given for nilpotency in general. However, it is easy to see that nilpotent groups can
be at least recognized from the behaviour of countable subgroups: in fact, Baer remarked
that the union of any countable collection of countably recognizable group classes is likewise
countably recognizable. Notice here that the celebrated local theorem of A.I. Mal’cev
(see [4] Part 2, Section 8.2) provides a method to prove that many relevant group classes
are local. All local classes are countably recognizable and in this survey we have chosen to
focus on countably recognizable group classes that are not local.

The most obvious example of a group class which is not countably detectable is that
of countable groups. A less trivial example is given by the class of free abelian groups,
since the cartesian product of any infinite collection of infinite cyclic groups cannot be
decomposed into a direct product of infinite cyclic groups, while all its countable subgroups
are free abelian (see [5], Theorem 19.2). We mention also that Graham Higman proved that
also free groups form a class which is not countably recognizable (see [6]).

In recent years, the increasing interest for group classes which are not defined by
finiteness conditions led to a renewed attention towards countable recognizability as a
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method to derive information on the structure of large groups by means of the behaviour
of their small subgroups.

This paper aims to give an updated exposition on countable recognizability. It is
supposed to be the first in a series of surveys dedicated to relevant topics in the theory of
infinite groups, with the hope that it will be useful to young researchers approaching one
of the most fascinating parts of mathematics: the theory of groups, of course.

2. General Properties

A group class X is said to be countably recognizable if, whenever all countable subgroups
of a group G belong to X, then G itself is an X-group. Among the countably recognizable
group classes there are of course the so-called local classes: a group class X is local if it
contains all groups in which every finite subset lies in some X-subgroup. The classes S of
soluble groups and N of nilpotent groups are examples of countably recognizable group
classes which are not local.

Lemma 1. (R. Baer [3], see also [7])

(a) The intersection of any collection of countably recognizable group classes is countably recognizable.
(b) The union of countably many subgroups closed and countably recognizable group classes is

countably recognizable.

Notice that part (b) of the above statement cannot be extended to uncountable collec-
tions of countably recognizable group classes. In fact, if p is any prime number and σ is an
ordinal, Baer proved that the class A(σ) of all abelian p-groups of Ulm length at most σ is
countably recognizable if and only if σ < ℵ1 (see [3], Bemerkung 1.2); on the other hand,
the group class ⋃

σ<ℵ1

A(σ)

cannot be countably recognizable since it is well known that there exist abelian p-groups
of Ulm length ℵ1. Recall here that the Ulm length of an abelian p-group A is the smallest
ordinal σ such Apσ

= Apσ+1
.

Moreover, if we restrict to the union of countably many local group classes, it is
possible to say something even on finite extensions. Recall that if X is any group class, the
symbol XF denotes the class of all groups containing a normal X-subgroup of finite index.

Theorem 1 (FdG–MT [7], Theorem 3.2). Let (Xn)n∈N be a collection of group classes which are
local and subgroup closed, and let

X =
⋃

n∈N
Xn.

Then the class XF is countably recognizable.

Corollary 1. Let X be a subgroup closed group class. Then the class (LX)F is countably recognizable.

A crucial role in the proof of Theorem 1 is played by the following result due to Baer,
for a proof of which we refer to [8], Proposition 1.K.2.

Lemma 2. Let X be a subgroup closed group class and let G be a group in which every finitely
generated subgroup contains an X-subgroup of index at most k, where k is a fixed positive integer.
Then G contains a subgroup of index at most k which is locally X.

Our next result deals with the dual case of groups which are close to be in X up to a
finite section on the bottom; more precisely, it concerns with the class FX of all groups G
admitting a finite normal subgroup N such that G/N is in X.
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Theorem 2 (FdG – MT [7], Theorem 3.6). Let X be a countably recognizable group class which
contains all subgroups of direct products of finitely many X-groups. Then the class FX is count-
ably recognizable.

Let X be a group class. It is very easy to see that X is countably recognizable if and only
if the largest subgroup closed subclass XS of X is countably recognizable. Moreover, it has
been proved in [9] that if X is countably recognizable, then also its subclass XQ, consisting
of all groups whose homomorphic images are in X, is countably recognizable. On the other
hand, if we choose as X the class of free abelian groups, then X is not countably recognizable
but XQ is the class of trivial groups (and so it is obviously countably recognizable).

In contrast to the above remarks, it turns out that there are no connections between
the countable recognizability of a group class X and that of the classes SX, consisting of
all groups isomorphic to subgroups of X-groups, and QX, formed by all groups which are
homomorphic images of X-groups. This is proved by the following examples.

• X countably recognizable ; SX countably recognizable
Choose as X the class of groups which are either trivial or free abelian of countably
infinite rank

• SX countably recognizable ; X countably recognizable
Let p and q be different prime numbers and choose as X the class consisting of all count-
able p-groups and all groups that are direct product of a p-group and a group of order q

• X countably recognizable ; QX countably recognizable
Choose again as X the class of groups which are either trivial or free abelian of countably
infinite rank

• QX countably recognizable ; X countably recognizable
Choose as X the class of all free groups

We now turn our attention to classes of groups that can be defined by the existence of
certain ascending chains of subgroups. To this aim, we first look at the countable character
of the existence of (non-trivial) normal subgroups with a given property.

LetW be a set of words on the alphabet

a1, b1, a2, b2, . . . , an, bn, an+1, bn+1, . . .

and let X and Y be group classes. We say that a normal subgroup N of a group G is
(X,Y,W)-embedded in G if it satisfies the following conditions:

• N belongs to X;
• G/CG(N) belongs to Y;
• w(x1, . . . ; g1, . . .) = 1 for any word w ∈ W and any choice of elements x1, . . . in N and

g1, . . . in G.

Theorem 3 (R. Baer [3], Satz 3.1). Let X be a subgroup closed group class, Y a quotient closed
group class andW a set of words on the alphabet

a1, b1, a2, b2, . . . , an, bn, an+1, bn+1, . . .

If X and Y are countably recognizable and G is a group such that every countable non-trivial
subgroup X contains a non-trivial subgroup which is (X,Y,W)-embedded in X, then also G has a
non-trivial (X,Y,W)-embedded subgroup.

The composition of Theorem 3 with the following easy remark (also due to Baer)
provides several relevant countably recognizable group classes.

Lemma 3. Let χ be a property pertaining to subgroups, and suppose that the class X of all groups
which either are trivial or contain a non-trivial χ-subgroup is countably recognizable. Then the
class of all groups all whose homomorphic images belong to X is countably recognizable.
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If X is a group class, we say that a group G is hyper-X if it has an ascending normal
series whose factors belong to X. For instance, if X is chosen to be one of the classes A of
abelian groups, C of cyclic groups and F of finite groups, this definition gives the important
concepts of a hyperabelian group, a hypercyclic group and a hyperfinite group, respectively. It
is well known that if the class X is quotient closed, then G is hyper-X if and only if every
non-trivial homomorphic image of G has a non-trivial normal X-subgroup.

Corollary 2. Let X be a countably recognizable group class which is subgroup and quotient closed.
Then the class of hyper-X groups is countably recognizable.

Of course, Corollary 2 proves in particular that hyperfinite groups form a countably
recognizable class. On the other hand, K.K. Hickin and R.E. Phillips [10] constructed an
uncountable locally finite p-group which is not a Specht group. Recall here that a group G
is called a Specht group if it admits an ascending chain

{1} = G0 < G1 < . . . Gα < Gα+1 < . . . Gτ = G

such that Gα has finite index in Gα+1 for all α < τ. Since any countable locally finite p-group
admits an ascending series whose factors have order p, the above example shows that
the class of Specht groups, as well as the classes ṔF and ṔC, is not countably recognizable
(where ṔX denotes the class of groups admitting an ascending series with X-factors).

Our next result extends Corollary 2 to the class of groups containing a hyper-X
subgroup of finite index.

Theorem 4. Let X be a countably recognizable group class which is subgroup and quotient closed.
If in any group the product of finitely many normal X-subgroups admits an ascending characteristic
series with X-factors, then the class of all groups containing a hyper-X subgroup of finite index is
countably recognizable.

Proof. Suppose the statement is false and let G be a counterexample, so all countable
subgroups of G are (hyper-X)-by-finite, while G is not. Let X be any countable subgroup
of G. Using the hypotheses on X, it is easy to see that X admits an ascending normal series

{1} = H0 < H1 < . . . Hα < Hα+1 < . . . Hτ(X) ≤ X

such that ρ(X) = |X : Hτ(X)| is finite, Hα+1/Hα is in X for all ordinals α, and every normal
hyper-X subgroup of X is contained in Hτ(X). Assume that for each positive integer k there
is a countable subgroup Xk of G such that ρ(Xk) ≥ k. Then the subgroup generated by all
Xk’s is countable and cannot contain hyper-X subgroups of finite index, which is of course a
contradiction. Thus, there exists a countable subgroup M such that ρ(M) is largest possible.
IfM is the set of all countable subgroups of G containing M, it follows that ρ(M) = ρ(U)
for every U ∈ M and so Hτ(U) ≤ Hτ(V) whenever U and V belong toM. Put

H = 〈Hτ(U) | U ∈ M〉

and let L be any countable subgroup of H. For each x ∈ L there is a countable subgroup
Lx ∈ M such that x ∈ Hτ(Lx). Then L ≤ Hτ(W), where W = 〈Lx | x ∈ L〉 and so L is
hyper-X. Thus, H is hyper-X by Corollary 2. On the other hand, G/H must be finite since
all its countable subgroups are finite and hence G is (hyper-X)-by-finite. This contradiction
completes the proof.

There are many relevant group classes which are not subgroup closed and to which
of course Theorem 3 does not apply; this is for instance the case of the class of finitely
generated metabelian groups. Baer overcame such difficulty by proving the following
corresponding result. Notice here that any group class consisting only of finitely generated
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groups is obviously countably recognizable, because every group which is not finitely
generated must contain a countable subgroup which is not finitely generated.

Theorem 5 (R. Baer [3], Satz 3.2). Let X be a class consisting of finitely generated groups, Y a
subgroup closed countably recognizable group class andW a set of words on the alphabet

a1, b1, a2, b2, . . . , an, bn, an+1, bn+1, . . .

If G is a group such that every countable non-trivial subgroup X contains a non-trivial subgroup
which is (X,Y,W)-embedded in X, then also G has a non-trivial (X,Y,W)-embedded subgroup.

In analogy to Corollary 2, we note the following consequence of Theorem 5.

Corollary 3. Let X be a quotient closed group class consisting of finitely generated groups. Then
the class of hyper-X groups is countably recognizable.

Other general theorems concerning the countable recognizability of classes of groups
defined by ascending chains of subgroups can be found in Section 4 of [7] and Section 8.3
of [4], where it is proved in particular that if X is any countably recognizable group class
which is subgroup and quotient closed, then also the class of all groups admitting an
ascending subnormal series with factors in X is countably recognizable (see [4] Part 2,
Theorem 8.36). Notice here that in such a case, this latter class is actually the smallest
radical class containing X (a group class is called radical if it is closed with respect to
forming quotients, extensions and arbitrary products of normal subgroups).

Mal’cev proved that both the class of groups with abelian chief factors and the class
of groups with central chief factors are local (see [4] Part 1, Theorem 5.27). Next theorem
deals with conditions of this type.

Theorem 6 (R.E. Phillips [11,12]). Let X be a subgroup closed group class which is countably rec-
ognizable.

(a) The class of all groups whose simple sections belong to X is countably recognizable.
(b) The class of all groups whose chief factors belong to X is countably recognizable.
(c) The class of all groups G such that X/MX belongs to X, whenever M is a maximal subgroup

of X ≤ G, is countably recognizable.

We point out that in part (a) of the above statement ‘simple’ may be replaced by
‘characteristically simple’ and similarly in part (b) ‘chief factor’ can be substituted by
‘characteristic chief factor’. Notice also that, differently from Mal’cev’s local theorem, the
above result gives several countably recognizable group classes which are not local. For
instance, the choice X = F yields that the class of groups with finite chief factors, as well as
that of groups whose maximal subgroups have finite index, is countably recognizable while
they are not local, as shown by the consideration of the alternating group on a countably
infinite set.

To prove the first part of Theorem 6, Phillips obtained a result of independent interest,
showing in particular that the class of groups which are not (characteristically) simple is
countably recognizable (see also [13], where a generalization of this result can be found).

Theorem 7. Let G be a (characteristically) simple group and let X be any countable subgroup of G.
Then there exists a countable (characteristically) simple subgroup of G containing X.

It should also be mentioned that Phillips’ proof of the second part of Theorem 6
depends on the following useful result, which rests ultimately on a method introduced by
D.H. McLain in [14].
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Lemma 4. Let M be a minimal normal subgroup of a group G and let X be any countable subgroup
of M. Then there exists a countable subgroup Y of G such that X embeds into a chief factor of Y.

The last theorem of this section should be seen in connection with the above result.

Theorem 8. Let X be a subgroup closed and countably recognizable group class. Then the class of
groups whose minimal normal subgroups are in X is countably recognizable.

Proof. Let G be a group admitting a minimal normal subgroup M which is not in X. Since
X is countably recognizable, M contains a countable subgroup X which is not in X. For
each element x of X, choose a countable subgroup Y1,x of G containing x and such that
X ≤ 〈x〉Y1,x . Put

Y1 = 〈Y1,x | x ∈ X〉 and X1 = Y1 ∩M.

Then X1 is countable and the above argument can be iterated to define sequences of subgroups

Y1, Y2, . . . , Yn, . . . and X ≤ X1 ≤ X2 ≤ . . . ≤ Xn ≤ . . .

such that Xn ≤ 〈x〉Yn+1 for each x ∈ Xn and Xn = 〈Y1, . . . , Yn〉 ∩M, for all n. It is easy to
see that

Xω =
⋃

n∈N
Xn

is a minimal normal subgroup of the countable group

Yω = 〈Yn | n ∈ N〉

and Xω is not in X, because X is subgroup closed. The statement is proved.

Corollary 4. The class of all groups whose minimal normal subgroups are finite is countably recognizable.

3. Nilpotency

This section deals with the countable detection of nilpotency and its generalizations.
Of course, for each positive integer k, the group class Nk, made by all nilpotent groups of
class at most k, is local and so also countably recognizable. Thus, the countably recogniz-
ability of N follows at once from Lemma 1.

Theorem 9 (R. Baer [3], Bemerkung 1.3). The class N of nilpotent groups is countably recognizable.

Moreover, application of Corollary 1 yields that both the class NF of all nilpotent-by-
finite groups and the class (LN)F of all (locally nilpotent)-by-finite groups are countably
recognizable. Notice that by Theorem 2 also the class FN of all finite-by-nilpotent groups is
countably recognizable.

Two relevant theorems of Baer and Philip Hall prove that for a group G there exists a
positive integer h such that the subgroup γh(G) is finite if and only if the index |G : ζk(G)|
is finite for some integer k ≥ 0 (see [4] Part 1, p. 113 and p. 117). Therefore, also the
property of being finite over some term with finite ordinal type of the upper central
series is countably recognizable. As a consequence of a general result, it turns out that
the class of all groups G which are finite over ζk(G) for some fixed positive integer k is
countably recognizable.

Let B be a variety and let W be a set of words such that B(W) = B. Recall that a
normal subgroup N of a group G is said to be B-marginal if

θ(g1, . . . , gi−1, gix, gi+1, . . . , gn) = θ(g1, . . . , gi−1, gi, gi+1, . . . , gn)
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for each word θ ∈W in n variables and for all elements g1, . . . , gn of G and x of N. Every
group G contains a largest B-marginal subgroup, which is denoted by W∗(G), and G
belongs to B if and only if W∗(G) = G.

Theorem 10 (FdG–MT [7], Theorem 3.8). If B is any variety, the class of groups containing a
B-marginal subgroup of finite index is countably recognizable.

If k is any positive integer and Wk is the set consisting of the single word [x1, . . . , xk],
then W∗k (G) = ζk(G) for any group G and hence Theorem 10 has the following consequence.

Corollary 5. If k is any positive integer, the class of groups which are finite over the k-th term of
their upper central series is countably recognizable.

It has been recently proved that a group G is finite over its hypercentre ζ(G) if and
only if G contains a finite normal subgroup N such that G/N is hypercentral (see [15]). As
the class of hypercentral groups is countably recognizable, it follows from Theorem 2 that
also the class of groups which are finite over the hypercentre is countably recognizable
(even if the upper central series stops only after infinitely many steps).

Recall that if n is any integer and G is a group, the set ζ(G; n) of all elements z of G such
that (zg)n = zngn and (gz)n = gnzn for all g ∈ G is a subgroup, and G is called n-abelian
if ζ(G; n) = G, or equivalently if (xy)n = xnyn for all x, y ∈ G. Clearly, ζ(G;−1) = ζ(G)
and so G is (−1)-abelian if and only if it is abelian. The upper n-central series of G can now
be defined in analogy to the ordinary upper central series and a group is n-nilpotent if its
n-upper central series reaches G after finitely many steps. These concepts were introduced
and studied by Baer (see [16,17]). It is not difficult to see that n-nilpotent groups of class
at most k (with the obvious meaning) form a local class, so that the class of n-nilpotent
groups is countably recognizable. Moreover, it follows in particular from Theorem 3 that
if G is a non-trivial group and ζ(X; n) 6= {1} for every countable non-trivial subgroup X
of G, then ζ(G; n) 6= {1}. In particular, for n = −1, we observe that any non-trivial group
whose non-trivial countable subgroups have non-trivial centre has a non-trivial centre itself.
Consequently, we obtain the countable recognizability of the class of hypercentral groups,
through methods which are different from those used by Černikov.

Let G be a group and let X be a subgroup of G. Recall that the series of normal closures

{XG,n | n ∈ No}

of X in G is defined by putting XG,0 = G and

XG,n+1 = XXG,n

for each non-negative integer n. In particular, XG,1 = XG and X ≤ XG,n for all n. Notice
that X is subnormal in G of defect at most k if and only if XG,k = X. Moreover, if U is any
subgroup of G, we put XU,n = X〈X,U〉,n for all n ≥ 0.

Let P be a group of type p∞ for some prime number p and let x be the automorphism
of P defined by putting ax = a1+p for all a ∈ P; then the semidirect product G = 〈x〉n P is
a locally nilpotent group, but 〈x〉 is not subnormal in G. On the other hand, it was proved
by Baer in [3] that if X is a subgroup of a group G which is subnormal of defect at most
k in 〈X, U〉 for each countable subgroup U of G, then X is subnormal in G with defect at
most k + 1. Actually, the next result shows that the defect of the subnormal subgroup X is
even bounded by k; according to Baer, this fact was already observed by E. Wirsing but
never published.

Theorem 11 (FdG–MT [7], Theorem 2.4). Let G be a group, and let X be a subgroup of G.

(a) If X is subnormal in 〈X, U〉 for each countable subgroup U of G, then X is subnormal in G.
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(b) If k is a positive integer and X is subnormal in 〈X, U〉 of defect at most k for each countable
subgroup U of G, then X is subnormal in G of defect at most k.

Notice that the above theorem essentially depends on the following interesting result.

Lemma 5. Let G be a group, and let X be a subgroup of G which is properly contained in XG,n

for some positive integer n. Then there exists a countable subgroup U of G such that X is a proper
subgroup of XU,n.

For every group G, let Ξ(G) be a set of subgroups of G containing the identity sub-
group {1}; the elements of Ξ(G) are called Ξ-subgroups of G. We shall say that Ξ is an
embedding subgroup property if the following conditions are satisfied:

(i)
(
Ξ(G)

)ϕ
= Ξ(G∗) for every group isomorphism ϕ from G onto a group G∗;

(ii) X belongs to Ξ(Y), whenever X ≤ Y ≤ G and X ∈ Ξ(G).

An embedding property Ξ is called absolute if for each group G the set Ξ(G) contains
all subgroups which are isomorphic to a Ξ-subgroup of some group; in particular, if X is
any group class, the property for a subgroup to belong to X is an absolute property. On the
other hand, there are many relevant embedding properties (like for instance normality and
subnormality) which are not absolute.

An embedding property Ξ is said to have countable character when a subgroup X of an
arbitrary group G is a Ξ-subgroup if and only if Ξ holds for all countable subgroups of X. In
particular, if Ξ is an embedding property of countable character, and X is a Ξ-subgroup of
a group G, then all subgroups of X have the property Ξ. Notice also that if X is a subgroup
closed group class, the property for a subgroup to be in X is an absolute property which
has countable character if and only if X is countably recognizable.

Next statement shows in particular that if Ξ is an embedding property of countable
character, then the class of groups with a non-trivial normal Ξ-subgroup is countably
recognizable.

Theorem 12 (FdG–MT [7], Lemmas 4.1 and 4.2). Let Ξ be an embedding property of countable
character (and let k be a positive integer). Then the class of all groups which either are trivial or
contain a non-trivial subnormal Ξ-subgroup (of defect at most k) is countably recognizable.

The celebrated theorem of Hans Fitting on the nilpotency of the product of finitely
many nilpotent normal subgroups yields that in any group G the Fitting subgroup, i.e.,
the subgroup generated by all nilpotent normal subgroups, is at least locally nilpotent,
although easy examples show that the Fitting subgroup of an infinite group need not be
nilpotent. Theorem 12 has the following consequence when k = 1 and Ξ is the property of
being nilpotent.

Corollary 6. Let G be a non-trivial group. If every countable non-trivial subgroup of G has a
non-trivial Fitting subgroup, then the Fitting subgroup of G is not trivial.

A group G is called a Fitting group if it coincides with its Fitting subgroup, or equiva-
lently if G is generated by its nilpotent normal subgroups.

Theorem 13 (FdG–MT [7], Theorem 2.6). The class of Fitting groups is countably recognizable.

The most natural generalization of Fitting’s theorem has been obtained by
K.A. Hirsch and B.I. Plotkin, who proved that the subgroup generated by any collec-
tion of ascendant locally nilpotent subgroups is likewise ascendant and locally nilpotent.
Thus, any group G contains a largest locally nilpotent normal subgroup, the so-called
Hirsch-Plotkin radical of G. Application of Theorem 12 for k = 1 and Ξ the property of being
locally nilpotent yields the following result.
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Corollary 7. Let G be a non-trivial group. If every countable non-trivial subgroup of G has a
non-trivial Hirsch-Plotkin radical, then the Hirsch-Plotkin radical of G is not trivial.

Obviously, the class of cyclic groups is countably recognizable and hence Theorem 12
shows in particular that if every countable non-trivial subgroup of a group G contains a
non-trivial cyclic subnormal subgroup, then the same property holds for G (see also [3],
Anwendung 2.5). Since the subgroup generated by all cyclic subnormal subgroups of
a group G is the so-called Baer radical of G, the above remark can be rephrased in the
following way.

Corollary 8. Let G be a non-trivial group. If every countable non-trivial subgroup of G has a
non-trivial Baer radical, then the Baer radical of G is not trivial.

A group G is called a Baer group if it coincides with its Baer radical, i.e., if G is generated
by its abelian subnormal subgroups.

Theorem 14 (FdG–MT [7], Corollary 2.5). The class of Baer groups is countably recognizable.

In 1940, Baer [18] introduced and studied the class of groups in which every proper sub-
group is properly contained in its normalizer; these groups are nowadays called N-groups
and can be characterized as those groups in which all subgroups are ascendant, so that in
particular they are locally nilpotent.

Theorem 15 (R. Baer [3], Satz 2.6). The class of N-groups is countably recognizable.

A relevant theorem of J.E. Roseblade shows that if all subgroups of a group G are
subnormal of bounded defect, then G is nilpotent of bounded class (see [4] Part 2, The-
orem 7.42). This result is far from being true if the hypothesis that the subgroups have
bounded defect is omitted; in fact, H. Heineken and I.J. Mohamed constructed in [19] a
countably infinite p-group with trivial centre in which every proper subgroup is subnormal
and nilpotent. The structure of groups with only subnormal subgroups, the so-called
N1-groups, was later investigated by several researchers; in particular, W. Möhres, a student
of Heineken, wrote some deep papers on the subject, culminating in the beautiful theo-
rem stating that any N1-group is at least soluble (see [20]). More recently, Howard Smith
proved in [21] that torsion-free N1-groups are even nilpotent, improving a previous result
of Möhres (see [22]). Of course, N1-groups form a proper subclass of the class of N-groups
that can be as well recognized from the behaviour of countable subgroups.

Theorem 16 (FdG–MT [7], Theorem 2.7). The class of N1-groups is countably recognizable.

The concept of Baer radical was generalized in 1959 by Karl Gruenberg [23], who
proved that in any group G the elements generating a cyclic ascendant subgroup form
a subgroup, which is now called the Gruenberg radical of G. A group G is said to be
a Gruenberg group if it coincides with its Gruenberg radical, or equivalently if it is generated
by abelian ascendant subgroups. Of course, groups with the N-property are Gruenberg
groups and it follows from the Hirsch-Plotkin theorem that Gruenberg groups are locally
nilpotent; it is also easy to see that any countable locally nilpotent group is Gruenberg. In
contrast to Corollaries 7 and 8, it turns out that the Gruenberg radical cannot be countably
detected, since M.I. Kargapolov [24] constructed a locally nilpotent uncountable group
with no cyclic ascendant non-trivial subgroups. The same example proves that the class
of Gruenberg groups is not countably recognizable and that in the statement of Theorem 12
subnormality cannot be replaced by ascendancy.

There are many further nilpotency conditions we did not deal with, being local ones,
and we refer to [4,7] for an overview of most of them.
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4. Solubility

In this section, we deal with solubility and its more relevant generalizations. Of course,
the first statement provides the countable character of the class of soluble groups.

Proposition 1 (R. Baer [3], Bemerkung 1.3). The class S of soluble groups is countably recognizable.

Since for any positive integer k the class of soluble groups of derived length at most k
is local, it follows from Theorem 1 that the class SF of soluble-by-finite groups is countably
recognizable. Moreover, application of Corollary 1 yields that also the class of (locally
soluble)-by-finite groups can be countably detected, a fact that was already proved in [25],
Lemma 3.5. Notice that even the class FS of all finite-by-soluble groups is countably
recognizable by Theorem 2.

The following statement is a special case of Corollary 2.

Theorem 17. The class of hyperabelian is countably recognizable.

It follows directly from Theorem 4 that hyperabelian-by-finite groups form a countably
recognizable class, a result that was also proved in [26].

As with the case of hyperabelian groups, it turns out that the dual concept of a
hypoabelian group, i.e., a group admitting a descending (normal) series with abelian factors,
determines a countably recognizable group class. This is for instance a consequence of the
fact that the class of groups which either are trivial or properly contain their commutator
subgroup is countably recognizable (see [7], Lemma 4.10). Observe in this context that the
class of perfect groups is local and so also countably recognizable.

Recall that a group is subsoluble if it admits an ascending series consisting of subnormal
subgroups in which all factors are abelian. Thus, a group G is subsoluble if and only if every
non-trivial homomorphic image of G has a non-trivial Baer radical and hence Corollary 8
has the following application.

Proposition 2. The class of subsoluble groups is countably recognizable.

A group G is called an SN∗-group if it has an ascending series with abelian factors
and it is known that any group has a largest ascendant SN∗-subgroup (the so-called
SN∗-radical), which is of course characteristic. It was proved by Gruenberg [23] that for a
locally nilpotent group the SN∗-property and the property of being a Gruenberg group
coincide. It follows now either from Kargapolov’s example quoted in Section 3 (or also from
the example of Hickin and Phillips after Corollary 2) that neither the class of SN∗-groups is
countably recognizable nor the SN∗-radical is countably detectable.

Recall finally that a group G is radical if it has an ascending (normal) series with locally
nilpotent factors, while G is called generalized radical if it admits an ascending (normal)
series each of whose factors is either locally nilpotent or locally finite. Since the classes LN
and LN∪LF are local, it follows from Corollary 2 that radical groups, as well as generalized
radical groups, form a countably recognizable group class.

There are many other solubility conditions we did not deal with, being local ones,
and we refer to [4,7] for an overview of most of them. Here we just observe that the only
problem concerning the countable recognizability of the main classes of generalized soluble
groups which seems to be still open concerns the class SJ of groups admitting a subnormal
series with arbitrary ordinal type and abelian factors (see Question ADV-2B in Adv. Group
Theory Appl. 2 (2016), p.127–128).

5. Chain Conditions

It is easy to see that both the class of groups satisfying the minimal condition and
that of groups satisfying the maximal condition are countably recognizable. Since the
class of abelian-by-finite groups is countably recognizable by Corollary 1, we have in
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particular that Černikov groups form a countably recognizable class, a result that was
first proved by Baer (see [27], Zusatz 2.5). It also follows from the above fact that any
group class whose countable members are finitely generated is countably recognizable
(see [3], Folgerung 1.5); in particular, polycyclic groups and polycyclic-by-finite groups
form countably recognizable classes. On the other hand, a similar remark cannot be done
for the minimal condition, since there exists an uncountable group satisfying the minimal
condition (see [28]) and so the class of countable groups with the minimal condition is not
countably recognizable.

A group G is said to satisfy the weak minimal condition on subgroups if it has no infinite
descending chains of subgroups

X1 > X2 > . . . > Xn > . . .

such that the index |Xn : Xn+1| is infinite for all n. The weak maximal condition on subgroups
is defined replacing descending chains by ascending chains. It was independently proved
by Baer [29] and Zaicev [30] that for soluble groups the weak minimal condition, the weak
maximal condition and the property of being minimax are equivalent. It turns out that also
the class of groups satisfying the weak minimal condition and that of groups satisfying the
weak maximal condition on subgroups are countably recognizable. It follows in particular
that the class of soluble minimax groups is countably recognizable, and it has recently been
proved that the solubility assumption can be dropped out. Recall here that a group is said
to be minimax if it admits a finite series each of whose factors satisfies either the minimal or
the maximal condition on subgroups.

Theorem 18 (FdG–MT [31]). The class of minimax groups is countably recognizable.

The crucial point in the proof of the above result is the analysis of groups whose
countable subgroups admit a fixed minimax type according to the following definition:
if ∨ and ∧ denote the minimal and the maximal condition on subgroups, respectively, a
sequence σ = (σ1, . . . , σn) whose entries belong to the set {∨, ∧} is called a minimax type for
a minimax group G if G has a finite series

{1} = G0 ≤ G1 ≤ . . . ≤ Gn = G

of length n such that the factor group Gi/Gi−1 satisfies σi for each positive integer i ≤ n.
Hyperminimax groups, i.e., groups admitting an ascending normal series with minimax

factors, have been considered in [32], as a natural generalization of both minimax groups
and FC-hypercentral groups (see the next section for the definition). In view of Corollary 2,
the above theorem has the following consequence.

Corollary 9. The class of hyperminimax groups is countably recognizable.

The last part of this section is devoted to some final remarks about the countable
character of chain conditions. For the sake of brevity, we discuss only classes of groups
connected to the maximal and minimal conditions, but our remarks can be generalized to
encompass essentially any chain condition. Let χ be any embedding subgroup property
such that if H is a χ-subgroup of a group G and X is any subgroup of G, then H ∩ X is a
χ-subgroup of X. A group is said to satisfy the minimal (maximal, respectively) condition
on χ-subgroups if it does not admit any descending (ascending, respectively) chain of
χ-subgroups. The usual proof that the class of groups satisfying the minimal (maximal)
condition is countably recognizable can be slightly modified to prove that groups satisfying
the minimal (maximal) condition on χ-subgroups also form a countably recognizable class
(see [4], Part 2, Theorem 8.32). This is for instance the case of subnormality, so the class of
groups satisfying the minimal (maximal) condition on subnormal subgroups is countably
recognizable. The situation is a little more complicated if we look at groups satisfying the
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minimal (maximal) condition on subgroups which do not possess the χ-property. Here,
further assumptions on the property χ must be required; we prove the following result in
the case of subnormality and the maximal condition, leaving the reader with the task of
deriving the conditions on χ which are necessary to the proof.

Theorem 19. Let G be a group whose countable subgroups satisfy the maximal condition on non-
subnormal subgroups. Then G itself satisfies the maximal condition on non-subnormal subgroups.

Proof. Suppose the statement is false and let

X1 < X2 < . . . < Xn < Xn+1 < . . .

be an ascending chain of non-subnormal subgroups of G. For each positive integer i choose
an element xi ∈ Xi+1 \ Xi and a countable subgroup Ui of G such that [Ui ∩ Xi,n Ui] is not
contained in Xi for each n ∈ N. Put Y = 〈xi, Ui | i ∈ N〉 and notice that

X1 ∩Y < X2 ∩Y < . . . < Xn ∩Y < Xn+1 ∩Y < . . .

is an ascending chain of non-subnormal subgroups of Y, a contradiction.

6. Conjugacy Classes

In this section, we deal with the countable detection of the most relevant classes of
generalized FC-groups. Recall that a group G is an FC-group if it has finite conjugacy
classes of elements, or equivalently if the centralizer of each element has finite index in G;
moreover, an FC-group G is said to be a BFC-group if there is a bound on the sizes of
conjugacy classes of its elements. A well-known result of B.H. Neumann shows that a
group is BFC if and only if it has a finite commutator subgroup, and it is straightforward to
note that FC-groups, as well as BFC-groups, form a countably recognizable class, although
these classes are not local. Thus Corollary 1 cannot be applied to prove that the class FAF
of all finite-by-abelian-by-finite groups is countably recognizable. On the other hand,
both FA and FAF can be obtained as union of a countable collection of local classes (see for
instance [33–35]) and hence it is countably recognizable by Theorem 1. Notice here that
similar remarks hold if the class A is replaced by the class Q consisting of all quasihamiltonian
groups, i.e., groups in which XY = YX for all subgroups X and Y, so that the classes FQ

and FQF are countably recognizable (see [36,37]).
More generally, the set FC(G) of all elements of a group G with only finitely many

conjugates is a characteristic subgroup of G, called the FC-centre. Clearly, G is an FC-group
if and only if FC(G) = G. If in the statement of Theorem 3 we choose as X the class of
groups satisfying the maximal condition, as Y the class of finite groups andW = ∅, we
obtain the following result.

Lemma 6. Let G be a non-trivial group. If every countable non-trivial subgroup of G has a
non-trivial FC-centre, then FC(G) 6= {1}.

If G is a group, the upper FC-central series of G is the ascending characteristic series
{FCα(G)}α defined by setting FC0(G) = {1},

FCα+1(G)/FCα(G) = FC
(
G/FCα(G)

)
for each ordinal α and

FCλ(G) =
⋃

α<λ

FCα(G)

if λ is a limit ordinal. The group G is said to be FC-hypercentral if FCτ(G) = G for
some ordinal τ. Clearly, a group G is FC-hypercentral if and only if every non-trivial
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homomorphic image of G has a non-trivial FC-centre, and hence Corollary 6 has the
following consequence.

Theorem 20. The class of FC-hypercentral groups is countably recognizable.

Notice that hypercyclic groups generalize supersoluble groups and form a very relevant
subclass of the class of FC-hypercentral groups. As a consequence of Corollary 2, we have
that the class of hypercyclic groups is countably recognizable.

In relation to Theorem 20, we observe that also groups admitting an ascending normal
series whose factors are either central or finite form a countably recognizable class; this is a
special case of Corollary 4.7 of [7].

If a group G coincides with some term with finite ordinal type of its upper FC-central
series, then it is called FC-nilpotent and the FC-nilpotency class of G is the least non-negative
integer k such that FCk(G) = G. The class of FC-nilpotent groups strictly lies between the
class of nilpotent-by-finite groups and that of FC-hypercentral groups.

Theorem 21 (FdG–MT [35], Theorem 3.2). For each positive integer k, the class of FC-nilpotent
groups of class at most k is countably recognizable.

The following statement follows from a combination of Theorem 21 and Lemma 1.

Corollary 10 (FdG–MT [35], Corollary 3.4). The class of FC-nilpotent groups is countably
recognizable.

We point out that the proof of Theorem 4 can be adapted to prove, for instance, the
following result, which is analogous to Corollary 5.

Corollary 11. If k is any positive integer, the class of groups which are finite over the k-th term of
their upper FC-central series is countably recognizable.

In the last part of this section, we deal with the countable character of certain group
classes which generalize that of FC-groups, recalling first their definitions. Let X be any
group class. We denote by MX the class of all groups in which every finite subset lies in
a normal X-subgroup; so, the well-known Dietzmann’s lemma actually states that MF

coincides with the class of periodic FC-groups and in particular MF is countably recogniz-
able. Moreover, we say that a group G is an XC-group (or that G has X-conjugacy classes)
if G/CG

(
〈g〉G

)
belongs to X for each element g of G. Then FC-groups are just groups

with the FC-property. Next result shows that many classes of the form MX and XC are
countably recognizable.

Theorem 22 (FdG–MT [35], Theorems 3.6 and 3.7). If X is any subgroup closed and countably
recognizable group class, then the classes MX and XC are countably recognizable.

If we put FC0 = F and recursively FCk =
(

FCk−1)C for each positive integer k, we
obtain an increasing sequence of classes of generalized FC-groups that were introduced
in [38]. It follows by induction from Theorem 22 that the class FCk is countably recognizable
for each non-negative integer k.

For further information on the subject, we refer to [35], where it is proved in particular
that the class SDF of all groups which are isomorphic to subgroups of direct products of
finite groups is not countably recognizable.

7. Residual Properties

This section deals with the countable character of certain relevant residual properties.
Recall that for any group class X, the X-residual of a group G is the intersection of all
normal subgroups N of G such that G/N belongs to X, and G is called residually X if its
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X-residual is trivial. In particular, a group is residually finite if the intersection of all its
(normal) subgroups of finite index is trivial. Residually finite groups form a large class,
containing in particular all free groups. It was proved by B.H. Neumann in [13] that the
class of residually finite groups is countably recognizable. This result was widely extended
in the following way.

Theorem 23 (FdG–MT [9], Theorem B). Let X be a subgroup closed and countably recognizable
group class. Then the class of all groups whose finite residual belongs to X is countably recognizable.

Corollary 12 (FdG–MT [9], Corollary 3.1). The class of all groups admitting a finite (normal)
series with residually finite factors is countably recognizable.

In relation to Corollary 12, we also notice that groups admitting a descending series
with residually finite factors form a countably recognizable class. In fact, it has been proved
that the class of groups which either are trivial or contain a proper (normal) subgroup of
finite index is countably recognizable (see [9], Theorem 3.2), so that the class of groups
admitting a descending series with finite factors is countably recognizable and it is easy to
show that a group has such a series if and only if it admits a descending (normal) series
with residually finite factors. It is also easy to see that the class of groups which have no
proper subgroups of finite index (F-perfect groups) is local and so countably recognizable.
Finally, it seems to be an open question whether hypofinite groups, i.e., groups admitting a
descending normal series with finite factors, are countably detectable or not.

Neumann’s theorem admits other types of generalization, such as for instance the
following two results.

Theorem 24 (FdG–MT [9], Corollary 2.7). Let X be a subgroup closed class of finite groups.
Then the class of residually X groups is countably recognizable.

Theorem 25 (FdG–MT [9], Corollary 2.8). Let X be a group class which is subgroup and
quotient closed. If every X-group is residually finite, then the class of residually X groups is
countably recognizable.

Further results related to Neumann’s theorem can be found in [9], where it is proved
for instance that the class of profinite groups is not countably recognizable.

The class of residually nilpotent groups was discovered to be countably recognizable
by Phillips [12], and this is a special case of a result on collections of varieties that was
obtained in [7].

Let W be a set of words on a countably infinite alphabet. If G is any group, the
verbal subgroup of G determined by W is defined as the subgroup W(G) generated by all
values of words in W on elements of G. Recall also that the variety determined by W is the
class B(W) consisting of all groups G such that each word in W reduces to the identity
when the variables are replaced by arbitrary elements of G. Thus, a group G belongs
to B(W) if and only if W(G) = {1}. Clearly, every variety is S, Q, L and R-closed, and
in particular is countably recognizable. Moreover, it is well known that a group class is a
variety if and only if it is Q and R-closed (see for instance [4] Part 1, Theorem 1.13).

Theorem 26 (FdG–MT [7], Lemma 2.10). Let (Bn)n∈N be a countable collection of varieties of
groups, and let

B =
⋃

n∈N
Bn.

Then the class RB of residually B-groups is countably recognizable.

Corollary 13. The class of residually nilpotent groups and the class of residually soluble groups
are countably recognizable.
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8. Further Properties

This section is devoted to discussing group classes that do not fit any of the previous
topics and for which the status of art can be summarized in a few lines.

Complementation
A subgroup X of a group G is complemented in G if it admits a complement, i.e., if there

is a subgroup Y of G such that G = 〈X, Y〉 and X ∩Y = {1}. A group G is called a K-group
if all its subgroups are complemented in G, while G is a C-group if each subgroup X of G
admits a complement Y such that XY = YX. It turns out that there exists a metabelian
group G such that each countable subgroup of G is a C-group but G′ does not admit any
complement, so that the class of K-groups and the class of C-groups are not countably
recognizable. This and other results on the local and countable character of group classes
related to complementation properties can be found in [39].

f -Subnormality
A subgroup X of a group G is said to be f -subnormal if there is a finite chain

X = X0 ≤ X1 ≤ . . . ≤ Xk = G

of subgroups such that for i = 1, 2, . . . , k either Xi−1 is normal in Xi or the index |Xi : Xi−1|
is finite. This concept was introduced by Phillips in [40] and later studied by various
authors. As for subnormality, it turns out that many classes of groups which are connected
to f -subnormality are countably recognizable. This is for instance the case of the class of
groups in which all subgroups all f -subnormal (see [41]) and the group classes described
in [42–44]. These results can be all obtained as consequences of a general theorem which,
in turn, depends on a generalization of the ideas behind Mal’cev’s local theorem (see [45]).

Finally, we remark that in [46] it is proved that there is an equivalence between
certain chain conditions on subnormal subgroups and the corresponding restrictions on
f -subnormal subgroups. In particular, we have that the class of groups satisfying the
minimal (maximal) condition on f -subnormal subgroups is countably recognizable.

Linearity
A classical theorem of Mal’cev shows that for each positive integer n, the class of linear

groups of degree n (even of a fixed characteristic) is local and so also countably recognizable
(see for instance [47], Theorem 2.7). Then it follows from Lemma 1 that the class of all
linear groups and that of linear groups of a fixed characteristic are countably recognizable.
The case of finitary linear groups is much more complicated, since ultraproduct methods
employed by Mal’cev do not work in general for finitary linear groups. Actually, an
example of a periodic group which is not finitary linear although all its countable subgroups
are such was given by F. Leinen and O. Puglisi in [48]; this example is based on a previous
one due to Leinen ([49], Example 3.5). The problem seems to be still open in the case of
primary groups, although B.A.F. Wehrfritz provided in [50] a partial positive solution in the
case of hypercentral groups of central height at most ω. We also mention that J.I. Hall [51]
proved that any simple group which is not finitary linear contains a countable subgroup
that has no finitary linear representation. Further interesting results on this topic can be
found in [48,52].

Pronormality
Recall that a subgroup X of a group G is called pronormal if X and Xg are conjugate

in 〈X, Xg〉 for every g ∈ G. Of course, normal subgroups and maximal subgroups of
arbitrary groups are pronormal, as well as Sylow subgroups of finite groups and Hall
subgroups of finite soluble groups. Pronormality is strictly related to groups in which
normality is a transitive relation (the so-called T-groups), for instance groups with only
pronormal subgroups have the T-property. It is well known that the class of these groups
is local and so also countably recognizable. Although the class of groups in which all
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subgroups are pronormal is not local, it is at least countably recognizable. This and other
facts connected to the countable character of pronormality and its generalizations can be
found in [53,54]. For instance, it turns out that if X is a subgroup of a group G and all its
countable subgroups are pronormal in G, then X itself is a pronormal subgroup.

Rank Conditions
Recall that a group G has finite rank r if every finitely generated subgroup of G can

be generated by r elements and r it the smallest positive integer with such a property. Of
course, for each positive integer r, the class of groups of rank at most r is local and so it
follows from Lemma 1 that groups of finite rank form a countably recognizable class R.
It was proved in [55] that for all choices k and r of positive integers, the class of groups G
such that γk+1(G) has rank at most r is local, and that a similar theorem holds for the
class of groups G for which G(k) has rank at most r. From these results it follows that the
classes RN and RS are countably recognizable.

In the same paper, an example is constructed to show that the class of groups which
are extension of an abelian group by a group of rank 1 is not local (see [55], Theorem E),
although it seems to be unknown if this class is at least countably recognizable. On
the other hand, it is at least true that the classes NR and SR are countably recogniza-
ble (see [55], Theorems B and C). Further interesting results of this type can be found
in [55,56], where in particular it is proved that the classes R(LS), R(LN) and (LN)R are
countably recognizable.
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