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Abstract: The accurate localization of the rolling element failure is very important to ensure the
reliability of rotating machinery. This paper proposes an efficient and anti-noise fault diagnosis model
for rolling elements. The proposed model is composed of feature extraction, feature selection and
fault classification. Feature extraction is composed of signal processing and signal noise reduction.
Signal processing is carried out by local mean decomposition (LMD), and signal noise reduction is
performed by product function (PF) selection and wavelet packet decomposition (WPD). Through
the steps of signal noise reduction, high-frequency noise can be effectively removed, and the fault
information hidden under the noise can be extracted. To further improve the effectiveness of the
diagnostic model, an improved binary particle swarm optimization (IBPSO) is proposed to find the
most important features from the feature space. In IBPSO, cycling time-varying inertia weight is
introduced to balance exploitation and exploration and improve the capability to escape from local
solutions, and crossover and mutation operations are also introduced to improve exploration and
exploitation capabilities, respectively. The main contributions of this research are briefly described as
follows: (1) The feature extraction process applied in this research can effectively remove noise and
establish a high-accuracy feature set. (2) The proposed feature selection algorithm has higher accuracy
than the other state-of-the-art feature selection algorithms. (3) In a strong noise environment, the
proposed rolling element fault diagnosis model is compared with the state-of-the-art fault diagnosis
model in terms of classification accuracy. Experimental results show that the model can maintain
high classification accuracy in a strong noise environment. Therefore, it can be proved that the fault
diagnosis model proposed in this paper can be effectively applied to the fault diagnosis of rotating
machinery.

Keywords: rolling element; fault diagnosis model; local mean decomposition; wavelet packet
decomposition; binary particle swarm optimization

1. Introduction

With the improvement of industrial automation levels, the development of rotating
machinery is more precise than ever. Therefore, the monitoring and fault diagnosis methods
of rotating machinery have always been the field that researchers are committed to devel-
oping [1]. M. Van and H.J. Kang [2] proposed a bearing fault diagnosis model. The model
combines a new feature extraction technology based on non-local mean denoising and
empirical mode decomposition (EMD), and a two-stage feature selection technology based
on hybrid distance evaluation technology (DET) and particle swarm optimization (PSO).
The model proved its effectiveness in bearing failure experiments. F. Alvarez-Gonzalez
et al. [3] proposed an online statistical analysis method based on Hilbert–Huang transform
(HHT) to detect permanent magnet synchronous motor (PMSM) stator short-circuit faults
and proved reliable fault detection through simulation results. S. Haroun et al. [4] proposed
multiple feature extraction techniques to detect stator winding faults of induction motors.
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First, the three-phase stator current is analyzed using Park transform, zero-crossing time
signal and envelope. Then, the time domain and frequency domain statistical features are
extracted from the analysis results. Experimental results show that the proposed method
can detect stator winding faults and identify fault phases under various faulty cases and
different load variations. The above results prove that fault diagnosis can greatly improve
system reliability, reduce maintenance costs and even avoid major production losses caused
by failures. In addition, in the statistics of the Electric Power Research Institute (EPRI),
rolling element failures accounted for 41% of all rotating machinery failures, the highest
proportion of failure types [5]. Moreover, even early rolling element fault can quickly
develop into serious fault [6]. Therefore, this study focuses on constructing an efficient
rolling element fault diagnostic model.

In recent years, with the advent of accelerometers, it is easy to measure vibration
signals and generally provide a wide frequency range, so fault diagnosis models based
on vibration signals have been widely proposed. Z. Wang et al. proposed an efficient and
robust hybrid model, using wavelet packet decomposition (WPD) and mutual dimension-
less indexing to extract the best features, and random forest for classification [7]. Y. Shao
et al. proposed a rolling element fault diagnosis model based on the principle of coherent
demodulation. By extracting the feature frequencies of different fault types, the fault type
can be accurately classified [8]. Z. Huo et al. proposed a rolling element fault diagnosis
model, which can be effectively applied to multi-speed environments. The model uses
particle swarm optimization and quasi-Newton minimization algorithm to optimize the
parameters of the continuous wavelet transform (WT) model. Then, it performs feature
extraction in the 3-D feature space and the k-nearest neighbor (k-NN) classifier for fault
classification [9]. S. Wei et al. proposed a time-varying envelope filtering (TVEF) to extract
the features of rolling element faults. Using the instantaneous frequency and instantaneous
amplitude extracted by this method to reconstruct the high-resolution time-frequency
distribution can more accurately extract the fault features [10].

The fault diagnosis model based on vibration signals is usually divided into three
stages: feature extraction, feature selection and fault classification. Among them, feature
extraction and fault classification are key stages. The signal processing technology in
feature extraction [9] is an important step in reducing the dimensionality of vibration
signals and extracting key fault messages. Due to the complex working environment of
rotating machinery, the measured vibration signal contains non-stationary components and
noise. Signal processing techniques based only on the time domain or frequency domain
may not be effective. Therefore, some time-frequency analysis signal processing techniques
such as fast Fourier transform (FFT), short-time Fourier transform (STFT) and continuous
wavelet transform (CWT) are widely used. The classification of signal analysis results by
neural network (NN) or machine learning (ML) is the final stage. Feature selection [11] is
an option of the model, and its function is to solve the diagnosis performance degradation
caused by redundant or irrelevant fault features.

However, the above-mentioned time-frequency analysis signal processing techniques
still have their own limitations. For example, FFT and STFT affect the decomposition
performance due to the use of fixed-length windows [12]. CWT solves the problems of FFT
and STFT with an adjustable window size [13]. However, once the decomposition scale of
CWT is defined, CWT can only decompose signals in the defined frequency band, which
makes CWT non-adaptive [14]. Based on the above analysis, adaptive signal processing
technology may be able to analyze vibration signals more effectively [15]. Local mean
decomposition (LMD) [16] is a new adaptive signal processing technology and has many
advantages that can be applied to rolling element fault diagnosis. First, the decomposition
process of LMD does not need to use Hilbert transformation (HT), so it will not encounter
negative frequencies [17]. Secondly, LMD can decompose and demodulate signals at
the same time. Third, LMD can decompose the amplitude and frequency modulation
characteristics of the vibration signal when the rolling element fails [18,19].
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However, in the actual working environment, the features of rolling element faults are usually
masked by noise or other rotating machinery components’ disturbing vibrations [20,21], causing
LMD to decompose redundant or irrelevant product function (PF) components. Therefore, this
study used a denoising technique combining PF selection and WPD. First, the PF selection method
removes redundant or irrelevant PF components and selects the most valuable PF components
for further denoising. Then, WPD denoising technology can effectively remove noise and present
fault information in wavelet packet coefficients [22,23]. Finally, the fault features are extracted
from these wavelet packet coefficients.

Although the hard work in the feature extraction stage extracts the fault features in
the original signal, there may still be redundant or irrelevant fault features in the feature
set, resulting in a decrease in diagnostic performance [11]. Therefore, feature selection is
applied to prevent overfitting and improve model performance [11]. Feature selection can
be divided into filter methods and wrapper methods. The filter method mainly uses correla-
tion coefficient (CC) or univariate mutual information (MI) to calculate the linear intensity
between each input and the target, and sorts according to their intensity and removes irrel-
evant features [24]. The wrapper method combined with a specific classifier for accurate
evaluation can usually achieve better performance than the filter method [11,24]. Therefore,
some optimization algorithms such as binary particle swarm optimization (BPSO) [25],
genetic algorithm (GA) [26] and binary chicken swarm optimization (BCSO) [27] are widely
used in feature selection. However, the above algorithms generally have many defects,
such as premature convergence [28,29] and falling into local optima [28–30]. Although
there is no optimization algorithm that can guarantee the best feature subset, PSO has
successfully solved many nonlinear optimization problems in the engineering field due
to its excellent computational efficiency and simple operation [31,32]. Therefore, PSO is
still an optimization algorithm that many researchers are dedicated to researching [33–35].
Therefore, this study proposes an improved binary particle swarm optimization (IBPSO) as
the feature selection task of the fault diagnosis model. In this study, three mechanisms are
proposed to improve the performance of PSO. First, cycling time-varying inertia weights
are introduced to balance exploration and exploitation and enhance the capability to avoid
local optima. Considering the crossover and mutation mechanism can improve the explo-
ration and exploitation capabilities of PSO and solve the problem of premature convergence
of PSO.

Fault classification is another important stage that constitutes a rolling element fault
diagnosis model. Researchers have widely used NN and ML in the fault diagnosis of rolling
elements [36,37]. Traditional NN such as multilayers perceptron (MLP) has the problem of a
complex structure and difficult training process [38]. ML has the advantage of being simple
and easy to implement, and the classification results are better, especially the support vector
machine (SVM) algorithm, which has many papers to prove its classification efficiency
and anti-noise capability [39,40]. In recent years, a new type of NN, fully connected
neural network (FCNN), achieves powerful performance through a new way of connecting
neurons. FCNN has the following advantages: (1) The complexity of FCNN is like that
of traditional single hidden layer NN, but the performance is very powerful [38]. (2) The
addition of too many neurons in the traditional single hidden layer NN leads to overfitting
and poor generalization of the model [41]. FCNN needs fewer neurons to achieve powerful
performance and good generalization [42]. (3) In [42], the author proved that FCNN has
excellent anti-noise capability and can complete classification under low signal-to-noise
ratio (SNR). (4) In [38], the author showed the excellent performance of FCNN, and its
classification performance is better than SVM. Therefore, in this study, we adjusted the
number of layers and the number of neurons and compared the performance of five
FCNNs to establish the most robust rolling element fault diagnosis model. The advantages
of the above feature extraction, feature selection and fault classification motivate us to
propose a robust rolling element diagnosis model with both classification accuracy and
anti-noise capability.
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The organization of this paper is as follows: Section 2 introduces the basic methods of
the proposed model, including feature extraction process, binary particle swarm algorithm
and fully connected neural network. Section 3 introduces the detailed description of
the improved binary particle swarm algorithm and the flow of the rolling element fault
diagnosis model. Section 4 discusses the experimental results of the University of California,
Irvine (UCI) feature selection dataset and Case Western Reserve University (CWRU) rolling
element failure dataset. Section 5 evaluates the diagnostic model and future work. Finally,
Section 6 explains the conclusion.

2. Methodology

In this section, three important stages in fault diagnosis are presented: feature extrac-
tion, feature selection and classification.

2.1. Feature Extraction

In actual cases, the fault features are usually masked by a lot of noise (e.g., background
noise and Gaussian noise). Therefore, the most important step in the fault diagnosis model
is the denoising and extraction of fault features. In the feature extraction process of this
study, first, local mean decomposition (LMD) decomposes the vibration signal into a set
of product function (PF) components. Second, it uses PF selection to select the PF that
contains the most fault information. Then, wavelet packet decomposition (WPD) is used
for analysis further of fault information and denoising. Finally, the potential features of
bearing fault features are extracted.

2.1.1. Local Mean Decomposition

The LMD is an effective technique that usually adopts to decompose non-stationary
signals [16]. LMD can decompose non-stationary signals into simple PFs. Each PF is the
product of the envelope signal and the pure frequency modulated (FM) signal. Then, the
time-frequency distribution of the original signal can be easily derived. The process of
LMD decomposing the vibration signal v(t) is shown as following a loop.

Step 1. Calculate all local extrema (e1, e2, . . . , ei, . . . ) from v(t).
Step 2. All the local mean value mi and local envelope value ai can be determined by two

successive local extrema ei and ei+1.

mi =
(e i+ei+1)

2
(1)

ai =
|ei − ei+1|

2
. (2)

Step 3. Apply the moving averaging (MA) method to smooth the local mean function
m11(t) and local envelope function a11(t). m11(t) and a11(t) are the straight lines
extending between the successive local extrema of the signal.

Step 4. The residue signal r11(t) can be subtracted by the local mean function m11(t) from
the original signal v(t).

r11(t) = v(t) − m11(t) (3)

Step 5. The FM signal f11(t) can be obtained from r11(t) and a11(t):

f11(t) =
r11(t)
a11(t)

. (4)

Step 6. Take f11(t) as a new signal and Step 1 to 5 will be repeated until f11(t) is a purely
FM signal. Then, go to Step 7.
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Step 7. The instantaneous envelope function a1(t) is obtained by all local envelope func-
tions produced during iteration.

a1(t) = a11(t)a12(t) . . . a1n(t) =
n

∏
q=1

a1q(t) (5)

Then, the first product function PF1 is generated by multiplying the instantaneous
envelope function and the final FM signal:

PF1= a1(t) f 1n(t). (6)

Step 8. The new signal u1 is treated as v(t) minus PF1. Then, the above process is repeated
from Step 1 to 7 until ui(t) = ui−1(t)− PFi(t) is a monotonic function. Finally, v(t)
is decomposed into a set of PF components.

v(t) =
p

∑
i=1

PFi(t) + up(t). (7)

2.1.2. Product Function Selection

The second step is to remove redundant components and extract the components that
contain most of the fault information. Some parameters are used to extract those effective
components, such as kurtosis [23], root mean square (RMS) [43] and correlation coefficient
(CC) [44]. Kurtosis is very sensitive to early or weak failures, but when the failures become
more severe, kurtosis cannot maintain an increasing trend [43]. RMS is not sensitive to early
failure [45]. CC is used to evaluate the similarity of components, but it is not sensitive to
early failures [17]. Therefore, a single parameter cannot effectively select components. This
study uses weights to balance the statistical values of the above parameters and effectively
select the PF component.

2.1.3. Wavelet Packet Decomposition

The third step is to use WPD to further analyze and remove high-frequency noise
to extract the fault features that are hidden under the noise. WPD is a powerful noise
reduction tool due to its high resolution at both high and low frequencies [22].

The wavelet packet coefficients (WPC) of a signal can be described as follows:

WPCj,n,k(t) =
∫

x(t)WPTn
j,k(t)dt (8)

where x(t) is the signal, WPTn
j,k(t) denotes the wavelet packet function, j and k are scale

and translation values, respectively, and n = 1, 2, . . . , 2j is the oscillation parameter.

2.2. Binary Particle Swarm Optimization for Feature Selection

The traditional particle swarm optimization (PSO) is based on the concept of swarm
exploration of the search space to find solutions. Each particle moves in the search space at
a certain velocity and updates the velocity according to its own search experience and the
group’s search experience in each iteration, as shown in Equation (9) [25]. In Equation (9),
each particle will update its velocity according to the best position it has searched (personal
best) and the best position searched by the group (global best).

vi+1 = wvi + ac1Rand(pbi − pi) + ac2Rand(gb− pi) (9)

where i represents the current iteration; w denotes the inertia weight; ac1 and ac2 denote
the acceleration coefficients to control the strength of exploration and exploitation; vi and pi
are current velocity and current position of particle, respectively; and pbi and gb represent
the personal best position and global best position, respectively.
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In binary particle swarm optimization (BPSO) [25] for feature selection, each particle
is converted from a continuous position to a position in the binary search space through a
transfer function. The converted position is represented as a bit string (i.e., feature subset),
which means that the corresponding feature is selected (1) or not selected (0). The sigmoid
function is used as a transfer function in this study. The position of each particle is updated
based on the velocity of each particle. The steps to transfer from a continuous position to a
binary position are described as follows:

sig(vi+1) =
1

1 + e−vi+1
(10)

pi+1 =

{
1
0

i f
else

Rand < sig(vi+1) (11)

3. Proposed Rolling Element Fault Diagnosis Model

This section details the proposed rolling element fault diagnosis model based on three
main stages: feature extraction, improved binary particle swarm optimization for feature
selection and classifier.

3.1. Feature Extraction Process

In the feature extraction process, first, the motor signal is decomposed into PF compo-
nents using LMD. Second, the PF selection is used to select the effective PF components
which contain the most failure information. In this study, we choose two effective PF
components. Third, WPD is used to denoise the effective PF components and extract failure
information further. In this study, a two-level WPD is used to decompose the effective PF
components into four wavelet packet coefficients. Finally, eight statistical fault features
such as max value, min value, root mean square, mean square error, standard deviation,
kurtosis, crest factor and clearance factor are extracted from each WPC and extract a total
of 64 (2 × 4 × 8) features. Figure 1 illustrates the detail of feature extraction process.
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3.2. Improved Binary Particle Swarm Optimization

In this subsection, two mechanisms and one parameter are introduced to enhance
the BPSO. First, cycling time-varying inertia weight can not only balance exploration
and exploitation but also enhance the capability to escape the local optima. Second, the
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position update formula based on crossover operation can select high-potential solutions
to generate better solutions and improve the exploration capability. Finally, the position
update formula based on mutation operation can improve the capability to escape the local
optima without increasing the computational cost.

3.2.1. Cycling Time-Varying Inertia Weight

In BPSO, the inertia weight is an important parameter responsible for balancing
exploitation and exploration in the algorithm. The inertia reduction of the weight value
can make the algorithm transition from exploration to exploitation smoothly. However,
BPSO still has the problem of premature convergence, and the algorithm cannot continue to
find a better solution in the later stages of the iteration. In this study, cycling time-varying
inertia weight is applied to not only balance exploitation and exploration but also improve
the algorithm’s capability to escape local solutions [46]. The cycling time-varying inertia
weight will cycle the number of cycles set by the user, so that the weight value linearly
decreases from the maximum weight value (2) to the minimum weight value (0), and
linearly increases from the minimum weight value (0) to the maximum weight value (2)
until the number of cycles set by the user is met. The cycling time-varying inertia weight
defined in Equation (12) is calculated as follows:

w =

∣∣∣∣2− (t modT/C)
T/(4C)

∣∣∣∣ (12)

where C is user defined cycling time and t and T denote the current iteration and maximum
number of iterations, respectively.

3.2.2. Improve the Exploration Capability Based on Crossover Operation

In genetic algorithms, crossover operations can explore new areas in the search space,
avoid premature convergence and further improve convergence accuracy. In this study, the
three-point crossover operation is combined with BPSO. During the iteration process, when
the best solution of the current population matches the best solution of the population
obtained in the previous iteration, it may indicate that the overall evolution is slow, and
a three-point crossover operation will be performed to create a high-potential solution.
The three-point crossover operation formula is shown in Equation (13). First, a pair of
solutions are randomly selected from the individual best solutions of each particle. Next,
the three-point crossover operation randomly selects three positions to cut the pair of
solutions. Then, the pair of solutions swaps segments to create two new solutions. Finally,
one of the new solutions is randomly selected as the current solution.

pi = Crossover(pbrand1, pbrand2) (13)

where Crossover is the three-point crossover operation applied in this study, and pbrand1 and
pbrand2 are randomly selected particles from the individual best solutions.

3.2.3. Escape the Local Trap Based on Mutation Operation

Introducing the mutation operation in the genetic algorithm, this operation enables
the solution to move slightly in the search space, increases the capability of escaping from
the local solution and increases the diversity of the population further. In this study, the
mutation probability MR is introduced to specify whether to change the position of each
particle in the specified dimension. The mutation operation formula is shown in Equation
(14). If Rand(i) (i = 1, 2, . . . , n) < MR, one dimension of the ith particle is selected randomly,
and its value is mutated.

pi+1 =

{
1− pi

pi

i f
else

Rand(i) < MR
(14)

where pi is current position of ith particle.
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3.3. Rolling Element Fault Diagnosis Model

The proposed rolling element fault diagnosis model can be divided into three stages,
including feature extraction, feature selection and classification.

In the feature extraction stage, as shown in Section 3.1, the measured signal is decom-
posed into a set of PF components through LMD. Next, the most important PF components
are selected. Then, wavelet packet decomposition is used to extract further the fault in-
formation and denoise the most important PF components. Finally, eight statistical fault
features are extracted through each wavelet packet coefficient.

In the feature selection stage, as shown in Section 3.2, the improved binary particle
swarm optimization (IBPSO) optimizes the fault feature set obtained in the feature extrac-
tion stage to remove redundant features. This stage can improve the classification accuracy
of the rolling element fault diagnosis model. The process of IBPSO is shown in Figure 2.
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Figure 2. The procedure of IBPSO.

In the fault classification stage, the best feature subset obtained in the feature se-
lection stage is classified through the fully connected neural network. In this study, the
hyperparameters of the fully connected neural network will be adjusted to obtain the best
classification accuracy to obtain the best rolling element fault diagnosis model.

4. Results

In this study, the results can be divided into two experiments, namely, the Uni-
versity of California, Irvine (UCI) feature selection dataset [47] and the Case Western
Reserve University (CWRU) bearing failure dataset [48], and the experiments were sim-
ulated on Intel(R) Core (TM) i7-3930K CPU @ 3.20 GHz 3.60 GHz, 24 GB RAM and
MATLAB platform.
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4.1. Experiment 1: UCI Feature Selection Datasets
4.1.1. Experiment Setup and Parameter Setting

To evaluate the effectiveness of IBPSO in the field of feature selection, nine UCI feature
selection datasets were used in this experiment, including BreastCancer, Wine, CongressEW,
SpectEW, BreastEW, Ionosphere, krvskp, WaveformEW and Sonar. Table 1 describes the
nine UCI feature selection data sets used in this experiment. In this experiment, the results
of feature selection by IBPSO for nine UCI feature selection data sets are shown and
compared with three basic feature selection algorithms, including BPSO, GA and BCSO.
Finally, IBPSO is compared with other state-of-the-art feature selection models.

Table 1. Description of UCI benchmark datasets used in this case study.

Datasets Features Instances Classes

BreastCancer 10 699 2
Wine 13 178 3

CongressEW 16 435 2
SpectEW 22 267 2
BreastEW 30 569 2

Ionosphere 34 351 2
krvskp 36 3196 2

WaveformEW 40 5000 3
Sonar 60 208 2

In this experiment, the k-nearest neighbors (k-NN) classifier is used as the classifier of
the wrapper feature selection model. Table 2 is the parameter setting of this experiment.
T is regarded as the convergence criterion. Each model performed 30 independent feature
selections on all datasets and collected experimental results, including the average classi-
fication accuracy, the average number of selected features, the standard deviation of the
classification error and the average computational time. Based on the requirements of a
high-accuracy fault diagnosis model, minimizing the classification error is the primary task
of the proposed feature selection model, so the classification error is defined as the fitness
value in this experiment.

Table 2. Parameter setting for this experiment.

Parameter Value

Number of nearest neighbor of k-NN classifier 1
k-fold cross-validation 10
Number of solutions 10

Maximum number of iterations T 100
Independent runs 30

Inertia weight w in BPSO [0.9, 0.4]
Acceleration c1 and c2 in BPSO 2.05

Crossover rate in GA 0.8
Mutation rate in GA and IBPSO 0.01

Rooster parameter in BCSO 0.15
Hen parameter in BCSO 0.7

Mother parameter in BCSO 0.5
C in IBPSO 4

4.1.2. Comparison with Basic Feature Selection Algorithm

This subsubsection shows the convergence curves of feature selection algorithms
including IBPSO, BPSO, GA, and BCSO for each dataset, as shown in Figure 3. Observing
from the convergence curve in Figure 3, IBPSO has lower classification errors than other
feature selection algorithms in all datasets when it reaches the defined convergence criterion.
Especially in the BreastCancer, WaveformEW and Sonar datasets, IBPSO has a relatively
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poor initial population, but IBPSO can continue to find better solutions and eventually
achieve the best classification error.
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Figure 3. Comparison between IBPSO based on convergence curves of UCI benchmark datasets. (a) BreastCancer, (b) Wine,
(c) CongressEW, (d) SpectEW, (e) BreastEW, (f) Ionosphere, (g) krvskp, (h) WaveformEW, (i) Sonar.

Table 3 shows the results of the average classification accuracy and the average number
of selected features. IBPSO has the best average classification accuracy in all datasets. GA
has the second-ranked average classification accuracy in all datasets. BPSO has competitive
results of average classification accuracy with GA in datasets with smaller dimensions, such
as BreastCancer, Wine, and CongressEW. This result shows that although BPSO has good
exploitation capabilities, high-dimensional datasets such as WaveformEW and Sonar, GA
with better exploration capabilities perform better than BPSO. In summary, the proposed
hybrid algorithm IBPSO has good exploitation and exploration capabilities and achieves
the best classification accuracy in this experiment.

In addition, because the results of the algorithm are different each run, this experiment
uses the standard deviation to analyze the stability of the algorithm. Table 4 shows
the standard deviation of the classification error of each algorithm. It can be seen from
Table 4 that IBPSO has the best standard deviation of classification error in all datasets,
showing that IBPSO has stronger stability than other algorithms. Table 5 shows the average
calculation time of each algorithm. It can be clearly seen from Table 5 that GA is the worst
computational cost algorithm. There is no significant difference in computational time
between BPSO, BCSO and IBPSO. From this result, IBPSO can achieve higher classification
accuracy without consuming extra computational costs.

In summary, case study 1 uses the public feature selection datasets to verify the supe-
riority of IBPSO. The results in Tables 3 and 4 show that based on the average classification
accuracy and stability, the proposed method is better than the three comparison algorithms
(BPSO, GA, BCSO). This shows that IBPSO enhances its exploitation and exploration capa-
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bilities during the iteration through its more efficient cycling time-varying inertia weights
and crossover operators than traditional BPSO. Although IBPSO has no advantage in the
average number of selected features, accurate classification of rolling element failures is
the priority criterion of this study.

Table 3. Comparison between IBPSO based on classification accuracy and selected features in this experiment.

Datasets
BPSO GA BCSO IBPSO

Avg Acc (%) Avg No.F Avg Acc (%) Avg No.F Avg Acc (%) Avg No.F Avg Acc (%) Avg No.F

BreastCancer 97.19 5.83 97.24 6.06 97.1 5.56 97.28 6.13
Wine 98.72 6.36 98.82 6.63 98.2 6.46 99.27 6.63

CongressEW 96.16 3.93 96.13 4.2 95.95 4.03 96.3 3.86
SpectEW 84.49 12.4 85.39 12.53 83.79 12.76 85.73 12.56
BreastEW 96.89 14.7 97.38 15.96 96.81 16 97.49 15.13

Ionosphere 94.93 14.63 95.21 15.8 94.2 14.93 95.43 15.1
krvskp 97.79 20.73 98.29 20.96 97.19 20.46 98.45 20.5

WaveformEW 75.76 18.5 77.91 17.63 74.96 18.96 78.16 16.36
Sonar 91.95 30.13 93.57 31.2 91.49 31.9 94.04 32.7

Note: the algorithms that achieve better results are bold.

Table 4. Comparison between IBPSO based on standard deviation.

Datasets
BPSO GA BCSO IBPSO

Std Std Std Std

BreastCancer 1.79 × 10−3 1.38 × 10−3 2.12 × 10−3 1.31 × 10−3

Wine 8.1 × 10−3 1.08 × 10−2 8.37 × 10−3 5.89 × 10−3

CongressEW 3.74 × 10−3 4.14 × 10−3 3.65 × 10−3 2.2 × 10−3

SpectEW 8.89 × 10−3 9.38 × 10−3 8.34 × 10−3 7.59 × 10−3

BreastEW 3.38 × 10−3 3.61 × 10−3 2.97 × 10−3 2.7 × 10−3

Ionosphere 7.86 × 10−3 1.05 × 10−2 6.36 × 10−3 5.33 × 10−3

krvskp 2.45 × 10−3 1.81 × 10−3 4.3 × 10−3 1.03 × 10−3

WaveformEW 7.56 × 10−3 8.1 × 10−3 9.36 × 10−3 6.7 × 10−3

Sonar 7.78 × 10−3 9.74 × 10−3 8.58 × 10−3 6.17 × 10−3

Note: the algorithm that achieves better results is bold.

Table 5. Comparison between IBPSO based on average computational time.

Datasets
BPSO GA BCSO IBPSO

Sec Sec Sec Sec

BreastCancer 108.45 176.43 109.33 110.28
Wine 98.05 152.56 97 98.37

CongressEW 140.07 216.17 138.33 140.46
SpectEW 105.35 153.96 98.51 103.99
BreastEW 138.88 237.47 139.17 138.08

Ionosphere 140.7 217.08 134.29 138.78
krvskp 200.22 322.99 205.42 229.92

WaveformEW 235.62 352.55 237.4 215.45
Sonar 153.02 213.39 135.72 132.75

Note: the algorithms that achieve better results are bold.

4.1.3. Comparison with State-of-the-Art Models

Table 6 shows the classification results that reference the same UCI dataset to evaluate
the effectiveness of the proposed algorithm in the field of feature selection. This study
cites four state-of-the-art feature selection models, and their brief descriptions are as
follows: the continuous symbiotic organism search algorithm uses adaptive S-shaped
transfer function to convert into a binary symbiosis organism search algorithm, named
BSOS [49]; the basic PSO introduces two dynamic correction coefficient and spiral-shaped
mechanisms to improve the position update formula of PSO, and uses the logic diagram
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sequence to enhance the diversity, named HPSO-SSM [50]; a binary butterfly optimization
algorithm based on sigmoid transfer function can better converge to the optimal solution,
named s-bBOA [51]; the grasshopper optimization algorithm combined with the mutation
operator with linearly decreasing mutation rate enhances the exploration stage, named
BGOA-M [52].

In Table 6, BSOS achieves the least number of selected features in BreastEW and
Sonar, which is significantly reduced compared to other algorithms. This result is because
the author emphasizes fewer selected features to achieve acceptable accuracy. HPSO-
SSM achieves better performance in low-dimensional datasets, such as BreastCancer,
Wine and CongressEW. Especially in BreastCancer and Wine, HPSO-SSM achieves the
highest classification accuracy and the least number of selected features. This result is
because the spiral-shaped position update mechanism introduced by HPSO-SSM can
exploitation the search area more intensively, provide more solutions and maximize the
exploitation capability of the PSO algorithm. However, in high-dimensional datasets,
too much exploitation may lead to local optima. s-bBOA generally performs well in the
selected datasets. This result is because the adaptive mechanism in s-bBOA plays a role in
balancing exploration and exploitation. s-bBOA achieves the second highest classification
accuracy among SpectEW and BreastEW. However, in datasets with many local solutions,
such as CongressEW, Ionosphere, WaveformEW and Sonar, the classification accuracy
of s-bBOA is not well and cannot escape the local solution well. BGOA-M has better
classification accuracy in low-dimensional datasets, especially in CongressEW. BGOA-M
achieves the highest classification accuracy. However, in higher-dimensional datasets, such
as WaveformEW and Sonar, the classification accuracy of BGOA-M is poor. This result
shows that the exploration capability of mutation operators with a linearly decreasing
mutation rate is not enough to solve high-dimensional datasets. The proposed algorithm
IBPSO performs best in classification accuracy, especially in medium and high-dimensional
datasets including SpectEW, BreastEW, Ionosphere, krvskp, WaveformEW and Sonar,
achieving the highest classification accuracy. In addition, to evaluate the stability of the
algorithm, Table 6 also compares the standard deviation of the classification accuracy of
the algorithm. Based on the standard deviation of classification accuracy, BGOA-M and
IBPSO performed best, achieving the best or second-ranked standard deviation of the
classification accuracy in all datasets.

Table 6. Comparison between IBPSO and state-of-the-art models.

Datasets Algorithms Avg Acc (%) std Avg No.F

BreastCancer

HPSO-SSM [50] 98.03 2.25 × 10−3 4
s-bBOA [51] 96.86 6 × 10−3 5.6

BGOA_M [52] 97.43 0 5
IBPSO 97.28 1.31 × 10−3 6.13

Wine

HPSO-SSM [50] 99.38 8.91 × 10−3 4.43
s-bBOA [51] 98.43 5.6 × 10−3 6.2

BGOA_M [52] 98.88 0 4.4
IBPSO 99.27 5.89 × 10−3 6.63

CongressEW

HPSO-SSM [50] 96.64 8.13 × 10−3 2.97
s-bBOA [51] 95.93 2 × 10−2 6.4

BGOA_M [52] 97.64 1.6 × 10−3 5
IBPSO 96.3 2.2 × 10−3 3.87

SpectEW

HPSO-SSM [50] 79.92 2.61 × 10−2 8.43
s-bBOA [51] 84.63 1 × 10−2 10.8

BGOA_M [52] 82.61 7.6 × 10−3 9.96
IBPSO 85.73 7.59 × 10−3 12.57
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Table 6. Cont.

Datasets Algorithms Avg Acc (%) std Avg No.F

BreastEW

BSOS [49] 94.73 9 × 10−3 5
HPSO-SSM [50] 94.89 6.87 × 10−3 6.76

s-bBOA [51] 97.09 3 × 10−3 16.8
BGOA_M [52] 96.97 4 × 10−3 12.5

IBPSO 97.49 2.7 × 10−3 15.13

Ionosphere

BSOS [49] 90 1.2 × 10−2 8
HPSO-SSM [50] 92.57 1.62 × 10−2 7.1

s-bBOA [51] 90.7 1 × 10−2 16.2
BGOA_M [52] 94.58 7.3 × 10−3 11.46

IBPSO 95.43 5.33 × 10−3 15.1

krvskp

HPSO-SSM [50] 96.37 7.11 × 10−3 18.27
s-bBOA [51] 96.6 3 × 10−3 17.6

BGOA_M [52] 97.36 3 × 10−3 17.73
IBPSO 98.45 1.03 × 10−3 20.5

WaveformEW
s-bBOA [51] 74.29 1 × 10−3 25

BGOA_M [52] 75.11 6.4 × 10−3 20.9
IBPSO 78.17 6.7 × 10−3 16.37

Sonar

BSOS [49] 90.47 1.4 × 10−2 19
s-bBOA [51] 93.62 1 × 10−3 32.8

BGOA_M [52] 91.47 1.09 × 10−2 26.8
IBPSO 94.04 6.17 × 10−3 32.7

Note: the algorithms that achieve better results are bold.

4.2. Experiment 2: CWRU Bearing Dataset

In this experiment, a bearing failure dataset was used to evaluate the robustness of
the diagnostic model. In this experiment, fully connected neural network was used and
hyperparameters were adjusted to set a total of five fully connected neural networks to
select a robust fault diagnosis model. In the experiment, white Gaussian noise was also
added to simulate various noise environments, making the experimental results more
in line with the real working environment. Finally, we compared the robustness of the
proposed bearing fault diagnosis model with the state-of-the-art model.

4.2.1. Experiment Setup and Parameter Setting

This experiment used a bearing failure dataset from Case Western Reserve University
(CWRU) [48]. The source of the vibration signal is an accelerometer set at the driving
end of the test motor, collected at a sampling frequency of 12 kHz. The test motor was
tested under a load of 2 horsepower and the speed was 1750 rpm. Bearing defects were
completed using electrical discharge machining. This experiment used 10 different rolling
bearing faults, including normal bearings, inner ring faults (0.007-, 0.014- and 0.021-inch
fault depth), outer ring faults (0.007-, 0.014- and 0.021-inch fault depth) and ball defects
(0.007-, 0.014- and 0.021-inch fault depth). Table 7 shows the description of the dataset.
Table 8 shows the detailed information of the fully connected neural network used in this
experiment. The fully connected neural network set 5-fold cross-validation to effectively
measure the generalization ability of the model to new data. A total of three kind of layer
sizes of single fully connected layer neural networks were set up, and the layer sizes of
the FCNN-D and FCNN-E fully connected neural networks were both 10. In addition,
setting the penalty term lower can solve overfitting, and standardizing can converge data
to optimize neural network performance.
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Table 7. Description of CWRU bearing dataset used in this case study.

Fault Type Fault Depth
(Inches)

Dataset (2Hp)

Category Label

Healthy - 1

Inner
0.007 2
0.014 3
0.021 4

Outer
0.007 5
0.014 6
0.021 7

Ball
0.007 8
0.014 9
0.021 10

Table 8. Parameter setting of five classifiers.

Parameter FCNN-A FCNN-B FCNN-C FCNN-D FCNN-E

k-fold cross-validation 5 5 5 5 5
Layer sizes 10 25 100 [10, 10] [10, 10, 10]

Activation function ReLU ReLU ReLU ReLU ReLU
Maximum number of training iterations 1000 1000 1000 1000 1000

Regularization penalty term 0 0 0 0 0
Standardize data true true true true true

4.2.2. Comparison in Feature Selection Stage

In this study, not only the UCI feature selection datasets, but also the bearing failure
dataset were used to evaluate the effectiveness of the proposed feature selection algorithm. In
addition, in this experiment, BPSO, GA and BCSO were also used for comparison. Figure 4
shows the convergence curves of the four algorithms. It can be seen from Figure 4 that the
proposed algorithm has excellent performance, converging to the best solution at the 29th
iteration. In contrast, BPSO, GA and BCSO converged at the 59th, 64th and 77th iterations,
respectively, and did not converge to the optimal solution. According to Table 9, the proposed
algorithm achieves the best performance in the average fitness value, the average selected
feature number and the standard deviation of the average fitness value. Especially in the result
of average fitness value, the proposed algorithm has a significant improvement compared
with the compared algorithms. Table 10 shows the detailed information of the best feature
subsets obtained by each algorithm. According to Table 10, the proposed algorithm achieves
the optimal feature subset with the least number of selected features. The above results show
that the proposed algorithm has better exploitation and exploration capabilities, and better
converges to the best solution.

Table 9. Comparison between IBPSO based on fitness value and number of selected features in this case study.

Dataset
BPSO GA BCSO IBPSO

Avg
Fitness

Avg
No.F Std Avg

Fitness
Avg
No.F Std Avg

Fitness
Avg
No.F Std Avg

Fitness
Avg
No.F Std

2 Hp 0.021 25.73 6.4 × 10−3 0.0207 29.67 1.4 × 10−2 0.0339 29.9 9.7 × 10−3 0.0067 25 6.2 × 10−3

Note: the algorithm that achieves better results is bold.
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Table 10. Details of obtained optimal feature subset.

Dataset Algorithm No.F Feature Indicators (F)

2 Hp

BPSO 26 2, 7, 8, 9, 10, 11, 12, 17, 18, 19, 20, 23, 24, 33, 37, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 56.

GA 25 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 14, 16, 17, 18, 19, 21, 36, 37, 38, 40, 43, 45, 49, 52, 56.

BCSO 21 1, 5, 6, 7, 9, 10, 12, 13, 15, 17, 18, 19, 20, 36, 37, 41, 43, 44, 48, 50, 56.

IBPSO 16 1, 2, 3, 5, 7, 10, 14, 15, 16, 18, 19, 20, 33, 41, 45, 47.

4.2.3. Comparison in Classification Stage

In the classification stage, five fully connected neural networks were used to classify
the optimal feature subset based on Table 10 and the original feature set obtained in the
feature extraction stage. In addition, this experiment also evaluated the performance of
the proposed fault diagnosis model in a noisy environment. In this experiment, Gaussian
white noise was added to the original vibration signal to simulate the real environment.
Equation (13) defines the signal to noise ratio (SNR).

SNR = 10 log10(
Psignal

Pnoise
) (15)

where Psignal and Pnoise are the power of signal and the power of noise, respectively. In
this experiment, the SNR values were set to 20, 15, 10, 5 and 0 dB. In order to make
the experimental results fair, the average classification accuracy rate is obtained after
50 trainings. Tables 11–15 show the classification results of each fully connected neural
network under different noise levels. It can be seen from each table that after feature
selection eliminates redundant features, the performance of the fault diagnosis model can
be further improved, and the feature subset obtained by the proposed feature selection
algorithm has the best classification accuracy. Based on classification accuracy, the three
types of single fully connected layer neural networks have better performance, while
FCNN-D was fourth and FCNN-E has the worst performance. The FCNN-A is the worst
among the three types of single fully connected layer neural networks. There are competing
results between FCNN-B and FCNN-D. The classification accuracy under each noise level
is very similar, but the FCNN-B is still slightly higher, except that when SNR = 0 dB, the
two classifiers achieve the same classification accuracy, which is 96.56%. In summary,
according to the above analysis, the FCNN-B is highly efficient in this experiment and has
high robustness for bearing fault detection.
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Table 11. Classification results using FCNN-A.

Dataset Algorithm No.F
Avg Acc (%)

∞ dB 20 dB 15 dB 10 dB 5 dB 0 dB

2 Hp

Without FS 64 94.44 93.87 93.65 92.52 90.35 85.22

BPSO 26 95.88 95.51 95.2 94.82 93.08 89.83

GA 25 97.01 96.89 96.59 96.41 95.64 93.21

BCSO 21 96.55 96.5 96.36 96.01 95.22 92.03

IBPSO 16 97.4 97.24 97.18 96.93 96.29 96.08

Note: the algorithm that achieves better results is bold.

Table 12. Classification results using FCNN-B.

Dataset Algorithm No.F
Avg Acc (%)

∞ dB 20 dB 15 dB 10 dB 5 dB 0 dB

2 Hp

Without FS 64 95.18 94.16 93.55 92.3 89.76 84.11

BPSO 26 95.88 95.75 95.56 95.1 92.98 89.65

GA 25 97.42 97.16 96.96 96.41 95.85 93.64

BCSO 21 96.94 96.74 96.68 96.52 95.72 92.38

IBPSO 16 98.05 97.53 97.49 97.27 96.63 96.56

Note: the algorithm that achieves better results is bold.

Table 13. Classification results using FCNN-C.

Dataset Algorithm No.F
Avg Acc (%)

∞ dB 20 dB 15 dB 10 dB 5 dB 0 dB

2 Hp

Without FS 64 94.3 93.88 93.5 92.71 89.5 82.22

BPSO 26 96.18 96.11 95.07 94.98 92.68 89.54

GA 25 97.3 97.13 96.85 96.72 96.03 93.5

BCSO 21 96.89 96.75 96.59 96.49 95.48 91.78

IBPSO 16 97.97 97.43 97.27 97.24 96.64 96.56

Note: the algorithm that achieves better results is bold.

Table 14. Classification results using FCNN-D.

Dataset Algorithm No.F
Avg Acc (%)

∞ dB 20 dB 15 dB 10 dB 5 dB 0 dB

2 Hp

Without FS 64 92.08 91.67 91.46 90.62 88.85 86.1

BPSO 26 94.97 94.83 94.29 93.81 93.12 89.82

GA 25 95.79 95.64 95.01 94.91 94.88 92.97

BCSO 21 95.59 95.5 95.27 94.58 93.52 91.13

IBPSO 16 96.75 96.31 96.01 95.9 95.42 95.37

Note: the algorithm that achieves better results is bold.



Mathematics 2021, 9, 2302 17 of 22

Table 15. Classification results using FCNN-E.

Dataset Algorithm No.F
Avg Acc (%)

∞ dB 20 dB 15 dB 10 dB 5 dB 0 dB

2 Hp

Without FS 64 91.61 91.56 91.02 90.36 88.85 85.07

BPSO 26 94.65 93.73 93.65 92.8 90.71 88.38

GA 25 94.95 94.42 94.3 93.74 93.14 91.63

BCSO 21 94.16 94.04 93.78 92.97 91.57 88.55

IBPSO 16 95.17 95.13 94.62 94.09 93.5 92.58

Note: the model that achieves better results is bold.

4.2.4. Comparison with State-of-the-Art Bearing Fault Diagnosis Models

Tables 16 and 17 show the comparison for the classification accuracy of the proposed
fault diagnosis model and the most advanced bearing diagnosis model. Among them,
Tables 16 and 17 are the classification accuracy rate (SNR = ∞ dB) under the normal
environment and the classification accuracy rate under the noise environment, respectively.
The diagnostic models in the table all use the same data set (CWRU bearing fault dataset)
for fair comparison, and the classification results are all cited from their papers. Some
brief descriptions of state-of-the-art fault diagnosis models are as follows: C. Grover and
N. Turk [53] proposed a fault diagnosis model that combines Hjorth parameters to extract
features from intrinsic mode functions (IMFs) and rule-based machine learning. M. Zhao
et al. [54] proposed a new supervised dimensionality reduction method to extract features
and improved the iterative trace ratio method to solve the trace ratio problem in linear
discriminant analysis for fault classification. X. Zhanga and J. Zhoub [55] proposed a
bearing fault diagnosis model combining ensemble empirical mode decomposition (EEMD)
and optimized support vector machine by inter-cluster distance (ICD). X. Zhang et al. [41]
proposed a hybrid fault diagnosis model, which uses permutation entropy (PE) to extract
feature vectors from intrinsic mode functions and supports vector machines optimized by
ICD for classification.

Table 16. Comparison with published in literature for bearing fault diagnosis models in normal
condition.

Diagnosis Model Dataset (2 Hp)

Ref. [53] 93.82
Ref. [54] 95.8
Ref. [55] 99.33
Ref. [41] 100

Proposed work 98.05
Note: the algorithm that achieves better results is bold.

Table 17. Comparison with published in literature for bear.ng fault diagnosis models in noisy condition.

Diagnosis
Model

Avg Acc (%)

20 dB 15 dB 10 dB 8 dB 6 dB 5 dB 4 dB 3 dB 2 dB 0 dB

Ref. [56] - - 95.4 85 76.8 - 68.4 - 66.6 64.3
Ref. [57] - - - - 99.61 - 97.33 - 95.71 91.33
Ref. [58] - - 99.33 - - - - 98.63 - 96.35
Ref. [59] - 99.64 - - - 98.57 - 95 - -

Proposed work 97.53 97.49 97.27 - - 96.63 - - - 96.56

Note: the models that achieve better results are bold.

Some brief descriptions of state-of-the-art fault diagnosis models which are tested un-
der the noise environment are as follows: Y. Zhang et al. [56] integrated 15 ensembles deep
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shrinkage autoencoders (EDCAE) and combined these EDCAEs through a combination
strategy. The proposed fault diagnosis method can effectively diagnose the fault even in the
noise environment. H. Wenyi et al. [57] used filters of different scales to obtain the diversity
resolution expression of the signal in the frequency domain, and enhanced the classification
information of the input, and proposed an improved CNN called multi-scale cascaded
convolutional neural network (MC-CNN). S. Ma et al. [58] proposed an end-to-end deep
learning model based on wavelet packet transform. The experimental results show that
this model is highly efficient and has excellent anti-noise ability. X. Yu et al. [59] proposed
a combination of window marginal spectrum clustering (WMSC) and Hilbert–Huang
transform (HHT) feature extraction technology and SVM, named HHT-WMSC-SVM.

The comparison results of classification accuracy under normal conditions are shown
in Table 16. Ref. [41] achieves 100% classification accuracy, Ref. [55] achieves 99.33% classi-
fication accuracy and ranks second, and the proposed model achieves 98.05% classification
accuracy and ranks third. The above results show that SVM has excellent classification
performance under normal condition. However, Table 17 shows the classification results
of each model in a strong noise environment, and the proposed model shows excellent
anti-noise capability. When the SNR value is reduced from 20 dB to 0 dB, the classification
accuracy of the proposed model is only reduced by 0.97%. In contrast, when the SNR
value from 10 dB to 0 dB, the classification accuracy was reduced by 31.1% in Ref. [56].
When the SNR value is reduced from 6 dB to 0 dB, the classification accuracy is reduced by
8.28% in Ref. [57]. When the SNR value is reduced from 10 dB to 0 dB, the classification
accuracy is reduced by 2.98% in Ref. [58]. When the SNR value is reduced from 15 dB to
0 dB, the classification accuracy is reduced by 4.64% in Ref. [59]. In addition, when the
SNR value is 0 dB, the proposed model achieves a classification accuracy of 96.56%, which
is better than the 96.35% classification accuracy of the deep learning model proposed by
Ref. [57]. In summary, the above analysis results show that the proposed fault diagnosis
model achieves high accuracy and excellent noise immunity.

5. Discussion

Based on the reason for the highest incidence of rolling element failures, this research
proposes an efficient rolling element failure diagnosis model. To verify the effectiveness of
the proposed model, two public data sets were used, namely, UCI feature selection dataset
and CWRU bearing fault dataset for fair comparison with other state-of-the-art methods.
Based on the experimental results in the fourth subsection, the main contributions of this
research can be divided into the following two points.

(1) The proposed fault diagnosis model can be applied to a strong noise environment:
Although local mean decomposition can effectively deal with non-stationary signals, it can
extract the time-frequency domain information from the signal. However, this method is
sensitive to noise and generates redundant PF components. Therefore, this study proposes
a feature extraction technique that combines local mean decomposition with PF selection
and WPD. Three fault features are introduced in PF selection, because these features
perform well in early faults or severe faults, so the weight value is considered to balance the
contribution of each fault feature. Benefitting from the wavelet packet denoising technology
that maintains high resolution at both low and high frequencies, high-frequency noise is
removed and fault information is further extracted.

In addition, feature selection technology can improve the performance of fault di-
agnosis models further, remove redundant features, improve classification accuracy and
reduce computational costs. Based on the above criteria, the proposed feature selection
algorithm IBPSO performs best among the comparison algorithms (BPSO, GA, BCSO).
Table 12 shows the classification results of the best feature subsets obtained by each feature
selection algorithm. It can be seen from Table 12 that IBPSO removes 75% of the redundant
features and achieves the best classification accuracy under each noise level. Moreover,
after increasing the noise level, there was a reduction in the classification accuracy of
the diagnostic model. Based on the classification results of the original feature set, the
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classification accuracy rate drops from 95.18% to 84.11% when the SNR value rises from ∞
dB to 0 dB. Based on the classification result of the best feature subset obtained by IBPSO,
the classification accuracy rate drops from 98.05% to 96.56% when the SNR value rises from
∞ dB to 0 dB. Based on the above analysis results, IBPSO can select the most important
features and significantly improve the performance of the fault diagnosis model.

(2) Determine the appropriate number and size of fully connected layers: In neural
networks, the most difficult task is to determine the appropriate number of fully connected
layers and the number of neurons. A deeper number of layers may cause overfitting
problems, increase the difficulty of training and make it hard for the model to converge.
Using too few neurons will result in underfitting. Conversely, using too many neurons will
also lead to overfitting. When the amount of information contained in the training set is
not enough to train all the neurons in the fully connected layer, it will lead to overfitting.
Therefore, it is important to select the appropriate number of fully connected layers and
neurons. In this study, five types of layer numbers and sizes are set, including FCNN-A
(layer sizes: 10), FCNN-B (layer sizes: 25), FCNN-C (layer sizes: 100), FCNN-D (layer
sizes: [10, 10]) and FCNN-E (layer sizes: [10, 10, 10]). Tables 11–15 show the classification
results of each classifier. The experimental results from Tables 14 and 15 show that the
classification accuracy of deeper layers is worse than that of single layer, and the model is
difficult to converge. Therefore, the fault diagnosis model is more suitable for using a single
fully connected layer neural network. Based on the experimental results from Tables 11–13,
the performance of the FCNN-B is better than narrow neural network. This result shows
that increasing the number of neurons can improve classification performance. However,
increasing the number of too many neurons does not help improve the classification
performance. In Tables 12 and 13, the classification results of FCNN-B and FCNN-C are
almost the same. This result shows that too many neurons are a waste of computational
cost and do not help to improve the classification performance.

In addition to the above advantages, the proposed model still has the following
shortcomings.

(1) The types of features selected by the fault diagnosis model are highly dependent
on the knowledge of the engineer, and the quality of the features determines the accu-
racy of the fault diagnosis model. This also affects the versatility of the fault diagnosis
model. Engineers choose appropriate features for different types of faults based on prior
knowledge. Therefore, automatic feature extraction technology should be considered in
the future.

(2) The computational time of the algorithm. In Table 5, the computational time of the
proposed algorithm performs poorly in low-dimensional or less local optimum datasets.
However, in high-dimensional or more local optimum datasets, the proposed algorithm
performs better than other algorithms. This result shows that although the crossover
operator mechanism has powerful exploration capabilities, the low-dimensional or less
local optimum datasets usually require strong exploitation capabilities to approach the
global optimal. Therefore, it is necessary to further study the algorithm to reduce the
computational time.

(3) Optimization of the computational complexity of the fault diagnosis model. This
study only discusses the influence of the number of fully connected neural network layers
and the number of neurons on the classification accuracy of fault diagnosis model but
does not mention the computational complexity of the diagnosis model. Some methods
may reduce the computational complexity of a fully connected neural network, such as
sparsity [60] or improvement of neural network architecture and parameters.

6. Conclusions

This paper proposes an improved binary particle swarm optimization algorithm for
the feature selection task of rolling element fault classification model, which is accurate and
robust. The proposed model uses effective and anti-noise feature extraction technology.
The process is to decompose the vibration signal by LMD and combine the noise reduc-
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tion technology of PF selection and wavelet packet decomposition. The improved binary
particle swarm optimization can remove redundant features and improve classification
accuracy. The CWRU bearing fault dataset was used to evaluate the proposed diagnostic
model. The IBPSO removes 75% of the redundant features from the original feature set
(64 features) and selects the 16 most important features. By adjusting the hyperparam-
eters, five fully connected neural networks are applied. The FCNN-B achieves the best
classification results, reaching a classification accuracy of 98.05%. In addition, the proposed
diagnostic model was compared for anti-noise capability, and the result is better than the
state-of-the-art diagnostic model. When the SNR value is reduced from 20 dB to 0 dB,
the classification accuracy of the proposed model is only reduced by 0.97%. However, as
mentioned in the discussion section, the proposed model still has the following limitations:
(1) the selection of feature types depends on prior knowledge, which affects the classifi-
cation accuracy and generalization of the fault diagnosis model, and (2) computational
complexity. Therefore, it is necessary to further study the automatic feature extraction
technology and the improvement of neural network architecture and parameters.
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