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Abstract: The aim of this paper is two fold: the first is to define two new classes of mappings and
show the existence and iterative approximation of their fixed points; the second is to show that
the Ishikawa, Mann, and Krasnoselskij iteration methods defined for such classes of mappings are
equivalent. An application of the main results to solve split feasibility and variational inequality
problems are also given.
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1. Introduction and Preliminaries

In certain cases, such as solving a system of nonlinear functional equations, optimiza-
tion problems, variational inequality problems, split feasibility problems, and equilibrium
point problems, the transformation of the given problem into a fixed-point problem of a
certain operator, requires an appropriate space that acts as the domain of a corresponding
operator and contains the solution set of the problem. In most of the cases, when finding an
analytic solution of the corresponding fixed-point problem is not possible, an approxima-
tion of the solution of a particular fixed-point problem is obtained via fixed-point iteration
methods. For details on the subject, we refer the reader to [1] and the references therein.
For different classes of mappings, fixed-point iteration methods may behave differently.
A fixed-point iteration method may be convergent for one class of mappings; it might not
be suitable for others.

To decide whether an iteration method is useful for the approximation of the solution
of the given problem, it is of paramount importance to answer the following questions:

(i) Does it converge to the fixed point of an operator?
(ii) Is it equivalent to some other iteration methods?

Before we address the above questions, let us recall the following concepts:
Let K be a nonempty convex subset of a normed space (X, ‖·‖) and T : K → K. We

denote the set {x ∈ K : Tx = x} of fixed points of T by Fix (T).
Define T0 = I (the identity map on K) and Tn = Tn−1 ◦ T, called the nth iterate of T

for n ≥ 1. Let x0 ∈ K be an initial guess that approximates the solution of a functional
equation Tx = x in X.

A sequence {xn}∞
n=0 in X is called a Picard iteration associated with T if:

xn = Tnx0, n = 1, 2, . . . (1)
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Let λ ∈ [0, 1]. A sequence {xn}∞
n=0 given by:

xn+1 = (1− λ)xn + λTxn, n = 0, 1, 2, . . . (2)

is called the Krasnoselskij iteration sequence.
Note that the Krasnoselskij iteration {xn}∞

n=0 sequence given by (2) is exactly the
Picard iteration corresponding to an averaged operator:

Tλ = (1− λ)I + λT. (3)

Moreover, for λ = 1, the Krasnoselskij iteration method reduces to the Picard iteration
method. Furthermore, Fix(T) = Fix(Tλ), for all λ ∈ (0, 1].

The Mann iteration [2] method associated with T is the sequence {xn}∞
n=0 defined by:

xn+1 = (1− αn)xn + αnTxn, n = 0, 1, 2, . . . (4)

where {αn}∞
n=0 ⊂ [0, 1] satisfies certain appropriate conditions. Note that the Mann

iteration {xn}∞
n=0 sequence given by (4) is exactly the Krasnoselskij iteration method with

varying step sizes.
The Ishikawa iteration [3] associated with T, was first employed to establish the

strong convergence of a sequence to a fixed point of a Lipschitzian and pseudo-contractive
self-map on a convex compact subset of a Hilbert space.

It is defined as follows:

u0 ∈ K.

un+1 = (1− αn)un + αnTvn,

vn = (1− βn)un + βnTun,

(5)

where {αn}∞
n=0 and {βn}∞

n=0 ⊂ [0, 1] are appropriate sequences of parameters.
In the last three decades, both the Mann and Ishikawa iteration methods have been suc-

cessfully used by several authors to approximate fixed points of various class of operators
in Banach spaces.

In [4], the following conjecture was given: if the Mann iteration sequence associated
with a certain mapping T converges to its fixed point, then so does the Ishikawa iteration
sequence associated with T.

In a series of papers [5–9], a positive answer to the above conjecture was given. The
following is the key result in [4].

Theorem 1 ([4]). Let K be a nonempty convex subset of a normed space (X, ‖·‖) and T : K → K
satisfy the following inequality:

‖Tx− Ty‖ ≤ c max
{
‖x− y‖, ‖x− Tx‖, ‖y− Ty‖, ‖x− Ty‖, ‖y− Tx‖

}
, (6)

for all x, y ∈ K, 0 ≤ c < 1. Suppose that T possesses a fixed point x∗ in K. Then, the Picard
iteration and the certain Mann and Ishikawa iteration associated with T converge strongly to x∗.

The mapping T satisfying (6) is known as a quasi-contraction mapping.
We now pose the following
Question
Let (X, ‖·‖) be Banach space and T : X → X satisfy a certain contractive condition

such that Fix(T) 6= ∅. Does there exist λ ∈ (0, 1] such that the following statement holds?
If the Mann iteration method associated with Tλ converges to the fixed point, then so

does the Ishikawa iteration associated with Tλ.
In 1966, Browder and Petryshyn [10] introduced the concept of the asymptotic reg-

ularity in connection with the study of fixed points of nonexpansive mappings. As a
matter of fact, the same property was used in 1955 by Krasnoselskij [11] to prove that if
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K is a compact convex subset of a uniformly convex Banach space and T : X → X is a
nonexpansive mapping, then for any x0 ∈ K, the sequence:

xn+1 =
1
2
(xn + Txn), n ≥ 0, (7)

converges to the fixed point of T.
In proving this result, Krasnoselskij used the fact that if T is nonexpansive, which, in

general, is not asymptotically regular, then the averaged mapping T1
2

in (7) is asymptoti-
cally regular.

Therefore, an averaged operator Tλ enriches the class of nonexpansive mappings with
respect to the asymptotic regularity. This fact suggests that one could enrich the classes
of contractive mappings in metrical fixed-point theory by imposing a certain contractive
condition on Tλ instead of T itself.

In this way, the following mapping classes were introduced and studied: in enriched
contractions and enriched φ contractions [12], enriched Kannan contractions [13], enriched
Chatterjea mappings [14], enriched nonexpansive mappings in Hilbert spaces [15], enriched
multivalued contractions [16], enriched cyclic contractions [17], etc.

Following the authors of [12], a mapping T : X → X is called an enriched contraction
or (b, θ)-enriched contraction if there exist two constants, b ∈ [0, ∞) and θ ∈ [0, b + 1) such
that for all x, y ∈ X,

‖b(x− y) + Tx− Ty‖ ≤ θ‖x− y‖. (8)

As shown in [12], many well-known contractive conditions from the literature imply
the (b, θ)-enriched contraction. It was proven that any enriched contraction mapping
defined on a Banach space has a unique fixed point, which can be approximated by means
of the Krasnoselskij iterative scheme.

The aim of this paper is to enrich the quasi-contraction (6) and the weak contrac-
tion [18] mappings on a Banach space and to answer the above question, which exactly
support the conjecture given in [4].

2. Two New Classes of Operators on a Normed Space

We introduce the following.

Definition 1. Let (X, ‖·‖) be a normed space. A mapping T : X → X is said to be an enriched
quasi-contraction if there exist two constants, b ∈ [0, ∞) and c ∈ [0, 1), such that for all x, y ∈ X,

‖b(x− y) + Tx− Ty‖ ≤ c max
{
‖(b + 1)(x− y)‖, ‖x− Tx‖,
‖y− Ty‖, ‖b(x− y) + x− Ty‖, (9)

‖b(y− x) + y− Tx‖
}

.

To highlight an involvement of constants b and c in (9), we shall also call T a (b, c)-enriched
quasi-contraction.

Example 1. Any quasi-contraction mapping T with contraction constant c is a (0, c)-enriched
quasi-contraction.

We now give an example of an enriched quasi-contraction, which is not a quasi-contraction.

Example 2. Let X = [0, 1] be endowed with the usual norm and T : X → X be defined by
Tx = 1− x, for all x ∈ [0, 1]. Then, T is not a quasi-contraction, but T is an enriched quasi-
contraction.

Indeed, if T is a quasi-contraction then, by (6), there exists c ∈ [0, 1) such that for all
x, y ∈ [0, 1], we have:

|x− y| ≤ c max{|x− y|, |2x− 1|, |2y− 1|, |y + x− 1|, |x + y− 1|},
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which upon taking x = 0 and y = 1 gives 1 ≤ c < 1, a contradiction.
On the other hand, for b = 1, T satisfies the inequality (9) for all x, y ∈ [0, 1].

Example 3. Let (Y, µ) be a finite measure space. The classical Lebesgue space X = L2(Y, µ) is de-
fined as the collection of all Borel measurable functions f : Y → R such that

∫
Y | f (y)|

2dµ(y) < ∞.

We know that the space X equipped with the norm ‖ f ‖X =

( ∫
Y | f |

2dµ

) 1
2

is a Banach space.

Define the mapping T : L2(Y, µ)→ CB(L2(Y, µ)) by:

T f = g− 2 f ,

where g(y) = 1, ∀ y ∈ Y. Clearly, g ∈ L2(Y, µ) as µ(Y) < ∞.
Note that T is a (2, 0.5)-enriched quasi-contraction mapping, but not a quasi-contraction.

Indeed, if T were a quasi-contraction, then, by (6), there exists c ∈ [0, 1) such that for all f , h ∈
L2(Y, µ), we have:

‖ − 2 f + 2h‖X ≤ c max{‖ f − h‖X , ‖3 f − h‖X , ‖3h− g‖X , ‖ f − g + 2h‖X , ‖h− g + 2 f ‖X}.

which upon taking f (y) = 0 and h(y) = 1, for all y ∈ Y, gives 1 ≤ c, a contradiction.

We need the following technical notations.

Definition 2 ([19]). Let T be a self-mapping on a normed space (X, ‖·‖). For A ⊂ X, let Λ[A] =
sup{||x− y|| : x, y ∈ A}, and for each x ∈ X, let:

O(T, x, n) = {x, Tx, . . . , Tnx}, n = 1, 2, 3, . . .

O(T, x, ∞) = {x, Tx, T2x, . . . }.

A normed space (X, ‖·‖) is said to be a T-orbital Banach space if every Cauchy sequence
contained in O(T, x, ∞) for some x ∈ X converges in X.

Before stating the main result, we first prove two lemmas for the class of enriched
quasi-contraction mappings.

Lemma 1. Let T be a (b, c)-enriched quasi-contraction on a normed space (X, ‖·‖) and n be any
positive integer. Then, there exists λ ∈ (0, 1] such that for each x ∈ X and for all positive integers s
and t in {1, 2, . . . , n}, we have:∥∥Ts

λx− Tt
λx
∥∥ ≤ cΛ[O(Tλ, x, n)]. (10)

Proof. Let us denote λ = 1
b+1 . Clearly, 0 < λ < 1. Note that, for any x, y ∈ X, (9) becomes:∥∥∥∥( 1

λ
− 1
)
(x− y) + Tx− Ty

∥∥∥∥ ≤ c max
{

1
λ
‖x− y‖, ‖x− Tx‖, ‖y− Ty‖,∥∥∥∥( 1

λ
− 1
)
(x− y) + x− Ty

∥∥∥∥,∥∥∥∥( 1
λ
− 1
)
(y− x) + y− Tx

∥∥∥∥}
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that is,

1
λ
‖(1− λ)(x− y) + λTx− λTy‖ ≤ c max

{
1
λ
‖x− y‖, ‖x− Tx‖, ‖y− Ty‖,

1
λ
‖(1− λ)(x− y) + λx− λTy‖,

1
λ
‖(1− λ)(y− x) + λy− λTx‖

}
,

which can be written in an equivalent form as:

‖Tλx− Tλy‖ ≤ c max{‖x− y‖, ‖x− Tλx‖, ‖y− Tλy‖, ‖x− Tλy‖, ‖y− Tλx‖}. (11)

Let x ∈ X be arbitrary and n a fixed positive integer. By using (11), we have:∥∥Ts
λx− Tt

λx
∥∥ =

∥∥∥TλTs−1
λ x− TλTt−1

λ x
∥∥∥

≤ c max
{∥∥∥Ts−1

λ x− Tt−1
λ x

∥∥∥,
∥∥∥Ts−1

λ x− Ts
λx
∥∥∥,
∥∥∥Tt−1

λ x− Tt
λx
∥∥∥,∥∥∥Ts−1

λ x− Tt
λx
∥∥∥,
∥∥∥Ts

λx− Tt−1
λ x

∥∥∥}.

This implies that: ∥∥Ts
λx− Tt

λx
∥∥ ≤ cΛ[O(Tλ, x, n)].

Remark 1. It follows from Lemma 1 that if T is a (b, c)-enriched quasi-contraction and x ∈ X,
then for any positive integer n, there exists a positive integer k ≤ n, such that:∥∥∥x− Tk

λx
∥∥∥ = Λ[O(Tλ, x, n)].

Lemma 2. If T is a (b, c)-enriched quasi-contraction on a normed space (X, ‖·‖), then there exists
λ ∈ (0, 1] such that:

Λ[O(Tλ, x, ∞)] ≤ 1
1− c

‖x− Tλx‖ (12)

holds for all x ∈ X.

Proof. Take λ = 1
b+1 . Let x ∈ X be arbitrary. Since:

Λ[O(Tλ, x, 1)] ≤ Λ[O(Tλ, x, 2)] ≤, . . . .

Note that,
Λ[O(Tλ, x, ∞)] = sup{Λ[O(Tλ, x, n)] : n ∈ N}.

Then, (12) follows, if we show that:

Λ[O(Tλ, x, n)] ≤ 1
1− c

‖x− Tλx‖, ∀ n ∈ N.

Let n be any positive integer. By Remark 1, there exists Tk
λ ∈ O(Tλ, x, n)(1 ≤ k ≤ n)

such that: ∥∥∥x− Tk
λx
∥∥∥ = Λ[O(Tλ, x, n)].
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Using Lemma 1 and the triangle inequality, we have:∥∥∥x− Tk
λx
∥∥∥ ≤ ‖x− Tλx‖+

∥∥∥Tλx− Tk
λx
∥∥∥

≤ ‖x− Tλx‖+ cΛ[O(Tλ, x, n)]

= ‖x− Tλx‖+ c
∥∥∥x− Tk

λx
∥∥∥.

Therefore,

Λ[O(Tλ, x, n)] =
∥∥∥x− Tk

λx
∥∥∥ ≤ 1

1− c
‖x− Tλx‖.

Since n is arbitrary, the proof is complete.

We are now in a position to prove the following result.

Theorem 2. Let T be a (b, c)-enriched quasi-contraction on normed space (X, ‖·‖). Then, T has
unique fixed point x∗ ∈ X. Moreover, for λ = 1

b+1 , the iterative algorithm {xn}∞
n=0 given by:

xn = (1− λ)xn−1 + λTxn−1, n ≥ 1, (13)

converges to x∗ for any x0 ∈ X provided that X is a Tλ-orbital Banach space.

Proof. Following a similar argument in the proof of Lemma 1 for λ = 1
b+1 , we have:

‖Tλx− Tλy‖ ≤ c max{‖x− y‖, ‖x− Tλx‖, ‖y− Tλy‖, ‖x− Tλy‖, ‖y− Tλx‖}. (14)

In view of (1), the Krasnoselskij iterative process {xn}∞
n=1 defined by (13) is exactly

the Picard iteration associated with Tλ, that is,

xn = Tλxn−1 = Tn
λ x0, n ≥ 0. (15)

We now show that the sequence of iterates {xn}∞
n=1 defined by (15) is a Cauchy

sequence. Let n and m (n < m) be any positive integers. By Lemma 1, we obtain:

‖xn − xm‖ = ‖Tn
λ x0 − Tm

λ x0‖

=
∥∥∥TλTn−1

λ x0 − Tm−n+1
λ Tn−1

λ x0

∥∥∥
=
∥∥∥Tλxn−1 − Tm−n+1

λ xn−1

∥∥∥
≤ cΛ[O(Tλ, xn−1, m− n + 1)].

By Remark 1, there exists an integer p, 1 ≤ p ≤ m− n+ 1 such that the following holds:

Λ[O(Tλ, xn−1, m− n + 1)] =
∥∥xn−1 − xn+p−1

∥∥.

It follows from Lemma 1 that:∥∥xn−1 − xn+p−1
∥∥ = ||Tλxn−2 − Tp+1

λ xn−2||
≤ cΛ[O(Tλ, xn−2, p + 1)]

this implies that: ∥∥xn−1 − xn+p−1
∥∥ ≤ cΛ[O(Tλ, xn−2, m− n + 2)].

Therefore, we have:

‖xn − xm‖ ≤ cΛ[O(Tλ, xn−1, m− n + 1)] ≤ c2Λ[O(Tλ, xn−2, m− n + 2)].
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Continuing, we obtain that:

‖xn − xm‖ ≤ cΛ[O(Tλ, xn−1, m− n + 1)] ≤ . . . ≤ cnΛ[O(Tλ, x0, m)].

From Lemma 2, we obtain:

‖xn − xm‖ ≤
cn

1− c
‖x0 − Tλx0‖.

Upon taking the limit as n tends to infinity, we have that {xn} is a Cauchy sequence.
Since X is a Tλ-orbital Banach space, there exists x∗ ∈ X such that lim

n→∞
xn = x∗. Note that,

‖x∗ − Tλx∗‖ ≤ ‖x∗ − xn+1‖+ ‖xn+1 − Tλx∗‖
= ‖x∗ − xn+1‖+ ‖Tλxn − Tλx∗‖
≤ ‖x∗ − xn+1‖+ c max

{
‖xn − x∗‖, ‖xn − xn+1‖,

‖x∗ − Tλx∗‖, ‖xn − Tλx∗‖, ‖xn+1 − x∗‖
}

≤ ‖x∗ − xn+1‖+ c
{
‖xn − x∗‖+ ‖xn − xn+1‖

+ ‖x∗ − Tλx∗‖+ ‖xn+1 − x∗‖
}

.

Hence:

‖x∗ − Tλx∗‖ ≤ 1
1− c

{
(1 + c)‖xn+1 − x∗‖+ c‖xn − x∗‖+ c‖xn − xn+1‖

}
.

As limn→∞ xn = x∗, we have ‖x∗ − Tλx∗‖ = 0, that is x∗ is the fixed point of Tλ. The
uniqueness follows from (14).

If we take b = 0 in Theorem 2, we obtain Theorem 1 of [19] in the setting of
normed spaces.

Corollary 1 ([19]). Let T be a quasi-contraction mapping on a normed space (X, ‖·‖). Then, T
has a unique fixed point, provided that X is a T-orbital Banach space.

Now, we prove the following fixed-point theorem for a (b, c)-enriched quasi-contraction
in a Banach space.

Corollary 2. Let (X, ‖·‖) be a Banach space and T : X → X be a (b, c)-enriched quasi-contraction.
Then, T has a unique fixed point.

Proof. Following arguments similar to those in the proof Theorem 2, the result follows.

By Corollary 2, we obtain the following corollaries.

Corollary 3 ([12]). Let (X, ‖·‖) be a Banach space and T : X → X be an (b, θ)-enriched contrac-
tion, that is an operator satisfying:

||b(x− y) + Tx− Ty|| ≤ θ||x− y||, ∀ x, y ∈ X (16)

with b ∈ [0, ∞) and θ ∈ [0, b + 1). Then, T has a unique fixed point.

Proof. Take λ = 1
b+1 . Obviously, 0 < λ < 1, and the (b, θ)-enriched contraction

condition (16) becomes:

||
( 1

λ
− 1
)
(x− y) + Tx− Ty|| ≤ θ||x− y||, ∀ x, y ∈ X,
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which can be written in an equivalent form as:

||Tλx− Tλy|| ≤ d||x− y||, ∀ x, y ∈ X. (17)

where we denote d = λθ. Since θ ∈ (0, b + 1), it follows that c ∈ [0, 1), and therefore, by
(17) Tλ is a d-contraction. It follows from [20] that Tλ satisfies Condition (17) and also
satisfies Condition (11), since for the value of λ = 1

b+1 , the inequality (11) is the same as
condition (9). This suggests that T is an enriched quasi-contraction. Corollary 2 leads to
the conclusion.

Corollary 4 ([13]). Let (X, ‖·‖) be a Banach space and T : X → X be an (b, a)-enriched Kannan
contraction, that is an operator satisfying:

||b(x− y) + Tx− Ty|| ≤ a
{
||x− Tx||+ ||y− Ty||

}
, ∀ x, y ∈ X (18)

with b ∈ [0, ∞) and a ∈ [0, 1/2). Then, T has a unique fixed point.

Proof. Take λ = 1
b+1 . Obviously, 0 < λ < 1, and the (b, a)-enriched Kannan contraction

condition (18) becomes:

||
( 1

λ
− 1
)
(x− y) + Tx− Ty|| ≤ a

{
||x− Tx||+ ||y− Ty||

}
, ∀ x, y ∈ X,

which can be written in an equivalent form as:

||Tλx− Tλy|| ≤ a
{
||x− Tλx||+ ||y− Tλy||

}
, ∀ x, y ∈ X. (19)

Therefore, by (19), Tλ is a Kannan contraction. It follows from [20] that Tλ satis-
fies Condition (19) and also satisfies Condition (11), since for the value of λ = 1

b+1 , the
inequality (11) is the same as Condition (A). This suggests that T is an enriched quasi-
contraction. Corollary 2 leads to the conclusion.

Corollary 5 ([14]). Let (X, ‖·‖) be a Banach space and T : X → X be an (b, k)-enriched Chatterjea
contraction, that is an operator satisfying:

||b(x− y) + Tx− Ty|| ≤ k
{
||(b+ 1)(x− y) + y− Ty||+ ||(b+ 1)(y− x) + x− Tx||

}
, (20)

for all x, y ∈ X, with b ∈ [0, ∞) and k ∈ [0, 1/2). Then, T has a unique fixed point.

Proof. Take λ = 1
b+1 . Obviously, 0 < λ < 1, and the (b, k)-enriched Chatterjea contraction

condition (20) can be written in an equivalent form as:

||Tλx− Tλy|| ≤ k
{
||x− Tλy||+ ||y− Tλx||

}
, ∀ x, y ∈ X. (21)

Therefore, by (21), Tλ is a Chatterjea contraction. It follows from [20] that Tλ satis-
fies Condition (21) and also satisfies Condition (11), since for the value of λ = 1

b+1 , the
inequality (11) is the same as Condition (A). This suggests that T is an enriched quasi-
contraction. Corollary 2 leads to the conclusion.

Corollary 6 ([21]). Let (X, ‖·‖) be a Banach space and T : X → X be an (b, a, k)-enriched
Ćirić–Reich–Rus contraction, that is an operator satisfying:

||b(x− y) + Tx− Ty|| ≤ a||x− y||+ k
{
||x− Tx||+ ||y− Ty||}, ∀ x, y ∈ X (22)

with a, b ∈ [0, ∞) and k ∈ [0, 1/2) satisfying a + 2k < 1. Then, T has a unique fixed point.
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Proof. Take λ = 1
b+1 . Then, the (b, a, k)-enriched Ćirić–Reich–Rus contraction condition

(22) can be written in an equivalent form as:

||Tλx− Tλy|| ≤ λk||x− y||+ k
{
||x− Tλx||+ ||y− Tλy||

}
, (23)

for all x, y ∈ X. It follows from [20] that Tλ satisfies Condition (23) and also satisfies
Condition (11), since for the value of λ = 1

b+1 , the inequality (11) is the same as condi-
tion (9). This suggests that T is an enriched quasi-contraction. Corollary 2 leads to the
conclusion.

Corollary 7 ([22]). Let (X, ‖·‖) be a Banach space, m, n, p real numbers with p ∈ [0, 1), m, n ∈
[0, 1/2), and T : X → X a Zamfirescu operator, such that for each couple of different points
x, y ∈ X, at least one of the following conditions is satisfied:

1. ||Tx− Ty|| ≤ p||x− y||,
2. ||Tx− Ty|| ≤ m

{
||x− Tx||+ ||y− Ty||

}
,

3. ||Tx− Ty|| ≤ n
{
||x− Ty||+ ||y− Tx||

}
.

Then, T has a unique fixed point.

Proof. It follows from [20] that an operator T satisfying the contractive conditions in
Corollary 7 is a (0, c)-enriched quasi-contraction, for some c ∈ [0, 1). Corollary 2 leads to
the conclusion.

Now, we introduce the enriched weak contraction mapping as follows:

Definition 3. Let (X, ‖·‖) be a normed space and T : X → X. If there exist b ∈ [0, ∞) and
φ : [0, ∞)→ [0, ∞) such that φ is positive on (0, ∞), φ(0) = 0, and:

‖b(x− y) + Tx− Ty‖ ≤ (b + 1)
(
‖x− y‖ − φ(‖x− y‖)

)
, (24)

holds for all x, y ∈ X, then the mapping T is said to be a (b, φ)-enriched weak contraction.

Theorem 3. Let (X, ‖·‖) be a Banach space and T : X → X a (b, φ) weak enriched contraction.
Then, T has a unique fixed point in X, provided that:

1. φ is continuous and nondecreasing;
2. limt→∞ φ(t) = ∞.

Proof. Let us denote λ = 1
b+1 . By the (b, φ) weak enriched contraction condition (24), we

have:

||
( 1

λ
− 1
)
(x− y) + Tx− Ty||

≤ 1
λ
(‖x− y‖ − φ(‖x− y‖), ∀ x, y ∈ X,

which can be written in an equivalent form as follows:

‖Tλx− Tλy‖ ≤ ‖x− y‖ − φ(‖x− y‖), ∀ x, y ∈ X. (25)

Let x0 ∈ X. Define the Krasnoselskij iteration (2) with the help of T. From (25), we
have:

‖Tλxn − Tλxn+1‖ = ‖xn+1 − xn+2‖
≤ ‖xn − xn+1‖ − φ(‖xn − xn+1‖).
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Set δn = ‖xn − xn+1‖. Then, we have:

δn+1 ≤ δn − φ(δn) ≤ δn. (26)

Therefore, {δn} is a non-negative nonincreasing sequence, and hence possesses a
limit δ ≥ 0. Suppose that δ > 0. Since φ is nondecreasing, φ(δn) ≥ φ(δ) > 0. By (26), we
have δn+1 ≤ δn − φ(δ). Thus, δN+m ≤ δm − Nφ(δ), a contradiction for N large enough.
Therefore, δ = 0.

Fix ε > 0 and choose N so that ‖xN − xN+1‖ ≤ min{ε/2, φ(ε/2)}. We show that Tλ

is a self-map of the closed ball B(xN , ε). Let x ∈ B(xN , ε).
CASE 1. Then, ‖x− xN‖ ≤ ε

2 gives:

‖Tλx− xN‖ ≤ ‖Tλx− TλxN‖+ ‖TλxN − xN‖
≤ ‖x− xN‖ − φ(‖x− xN‖) + ‖xN+1 − xN‖
< ε/2 + ε/2 = ε.

CASE 2. If ε/2 < ‖x− xN‖ ≤ ε, then φ(‖x− xN‖) ≥ φ(ε/2). Therefore:

‖Tλx− xN‖ ≤‖x− xN‖ − φ(‖x− xN‖) + ‖xN+1 − xN‖
≤ ‖x− xN‖ − φ(ε/2) + φ(ε/2)

= ‖x− xN‖ ≤ ε.

Since Tλ is a self-map of B(xN , ε), it follows that each xn ∈ B(xN , ε) for n > N. Since ε
is arbitrary, {xn} is a Cauchy sequence and, hence, convergent, whose limit is a fixed point
of Tλ by the continuity of Tλ. The uniqueness is clear from (25).

3. Equivalence between Iteration Methods

In this section, we show that the Mann and Ishikawa iteration methods are equivalent
with respect to approximating fixed points of:

(i) (b, θ)-enriched contractions;
(ii) (b, c)-enriched quasi-contractions;
(iii) (b, φ)-enriched weak contractions.

The Mann iteration associated with Tλ, starting from x0 ∈ K, is the sequence {xn}∞
n=0

defined by:
xn+1 = (1− αn)xn + αnTλxn, (27)

where {αn}∞
n=0 ⊂ [0, 1] satisfies certain appropriate conditions.

The Ishikawa iteration associated with Tλ, starting from u0 ∈ K, is the sequence
{un}∞

n=1 defined by:

un+1 = (1− αn)un + αnTλvn,

vn = (1− βn)un + βnTλun, n ≥ 0,
(28)

where {αn}∞
n=0, {βn}∞

n=0 ⊂ [0, 1] satisfy certain appropriate conditions.
Let us recall the following lemma from [23].

Lemma 3. Let {an}n be a non-negative sequence that satisfies the inequality:

an+1 ≤ (1−ωn)an + σn, (29)

where ωn ∈ (0, 1) for each n ∈ N, ∑∞
n=1 ωn = ∞ , σn = εnωn, and limn→∞ εn = 0. Then

limn→∞ an = 0.

Theorem 4. Let K be a nonempty closed convex subset of a normed space (X, ‖·‖) and T : K → K
a (b, θ)-enriched contraction. Suppose that T has a unique fixed point x∗ ∈ K. Let x0 = u0 ∈ K.
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Define {xn} and {un} by (27) and (28), respectively, where {αn} and {βn} satisfy the following
conditions:

1. 0 ≤ αn, βn ≤ 1, ∀ n ≥ 0;
2. lim αn = lim βn = 0;
3. ∑ αn = ∞.

Then, there exists λ ∈ (0, 1] such that the following are equivalent:

(i) The Mann iteration associated with Tλ (27) converges strongly to x∗;
(ii) The Ishikawa iteration associated with Tλ (28) converges strongly to x∗.

Proof. Note that (ii) implies (i), which is obvious by setting βn = 0 in (28).
Take λ = 1

b+1 . Clearly, 0 < λ < 1. In this case, (8) becomes:∥∥∥∥( 1
λ
− 1
)
(x− y) + Tx− Ty

∥∥∥∥ ≤ θ‖x− y‖, ∀ x, y ∈ X,

which can be written in an equivalent form as:

‖Tλx− Tλy‖ ≤ d‖x− y‖, (30)

where θλ = d. As θ ∈ [0, b + 1), we have d ∈ (0, 1). Now,

‖xn+1 − un+1‖ = ‖(1− αn)(xn − un) + αn(Tλxn − Tλvn)‖.

Using (30), we have:

‖xn+1 − un+1‖ ≤ (1− αn)‖xn − un‖+ αn‖Tλxn − Tλvn‖
≤ (1− αn)‖xn − un‖+ dαn‖vn − xn‖.

Using the value of vn from (28) in the above inequality, we obtain:

‖xn+1 − un+1‖ ≤ (1− αn)‖xn − un‖+ dαn‖[(1− βn)un + βnTλun]− xn‖
= (1− αn)‖xn − un‖+ dαn‖(1− βn)(un − xn) + βn(Tλun − xn)‖
≤ (1− αn)‖xn − un‖+ dαn(1− βn)‖un − xn‖+ dαnβn‖Tλun − xn‖
≤ [1− αn(1− d(1− βn)]‖xn − un‖+ αnβn‖Tλun − xn‖,

which implies that:

‖xn+1 − un+1‖ ≤ [1− αn(1− d(1− βn)]‖xn − un‖+ αnβn‖Tλun − xn‖. (31)

We now claim that {‖Tλun − xn‖}n is bounded. It suffices to show that {‖un‖}n is
bounded. Note that,

‖un+1‖ = ‖(1− αn)un + αnTλvn‖
≤ (1− αn)‖un‖+ αn‖Tλvn‖.

It follows from (30) and simple induction that:

‖un+1‖ ≤ (1− αn)‖un‖+ dαn‖vn‖
= (1− αn)‖un‖+ dαn‖(1− βn)un + βnTλun‖
≤ (1− αn)‖un‖+ dαn(1− βn)‖un‖+ dαnβn‖Tλun‖
≤ (1− αn)‖un‖+ dαn(1− βn)‖un‖+ dαnβn‖un‖
= ‖un‖ ≤ . . . ≤ ‖u0‖.
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This implies that ‖Tλun − xn‖ ≤ ϑ, ∀ n ≥ 0. Then, (31) becomes,

‖xn+1 − un+1‖ ≤ [1− αn(1− d(1− βn)]‖xn − un‖+ ϑαnβn.

An inequality (29) of Lemma 3 is satisfied if we take an := ‖xn − un‖, ωn := αn(1−
d(1− βn) ∈ (0, 1), and σn := ϑαnβn, for each n ∈ N, in the above inequality. Therefore,

lim
n→∞
‖xn − un‖ = 0. (32)

Since (i) is true, using (32), we obtain that:

‖un − x∗‖ ≤ ‖xn − x∗‖+ ‖xn − un‖,

which implies that limn→∞‖un − x∗‖ = 0.

Theorem 5. Let M be a nonempty closed convex subset of a normed space (X, ‖.‖) and T : M→
M a (b, c)-enriched quasi-contraction on M. Suppose that T has a unique fixed point x∗ ∈ M.
Then, the Krasnoselskij, Mann, and Ishikawa iterations associated with Tλ converge strongly to x∗,
where λ = 1

b+1 .

Proof. Following arguments similar to those given in the proof of Theorem 2, we have:

‖Tλx− Tλy‖ ≤ c max{‖x− y‖, ‖x− Tλx‖, ‖y− Tλy‖, ‖x− Tλy‖, ‖y− Tλx‖}.

That is Tλ is a quasi-contraction. It follows from Theorem 2 that the Krasnoselskij
iterative process {xn}∞

n=0 defined by (13) converges strongly to x∗.
In [4], it was shown that the Mann iteration for Tλ satisfying (6) with a sequence {αn}

in (0, 1), which is bounded away from zero, converges strongly to the unique fixed point
of Tλ and the Ishikawa method associated with Tλ with each αn > 0 and ∑∞

n=1 αn = ∞
converges strongly to x∗.

Theorem 6. Let X be a Banach space, K a closed convex subset of X and T : K → K a (b, φ) weak
enriched contraction. Then, the Mann iteration (27) associated with Tλ with (i) 0 ≤ αn ≤ 1 and
(ii) ∑ αn = ∞ converges to the unique fixed point x∗ of T, where λ = 1

b+1 .

Proof. From Theorem 3, T has a unique fixed point. Call it x∗. Using (27), we have:

‖xn+1 − x∗‖ = ‖(1− αn)xn + αnTλxn − x∗‖
≤ (1− αn)‖xn − x∗‖+ αn‖Tλxn − Tλx∗‖
≤ (1− αn)‖xn − x∗‖+ αn[‖xn − x∗‖ − φ(‖xn − x∗‖)]
≤ ‖xn − x∗‖ − αnφ(‖xn − x∗‖).

This implies that:
‖xn+1 − x∗‖ ≤ ‖xn − x∗‖. (33)

Therefore, {‖xn − x∗‖} is a non-negative nonincreasing sequence, which converges to
a limit γ ≥ 0. Suppose γ > 0.

For notational convenience, define λn = ‖xn − x∗‖. Then, λn ≥ γ. For any fixed
integer N, it follows from (33) that:

∞

∑
n=N

αnφ(γ) ≤
∞

∑
n=N

αnφ(λn) ≤
∞

∑
n=N

(λn − λn+1) ≤ λN ,

a contradiction to (ii). Therefore, γ = 0.
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Theorem 7. Let X be a Banach space, K a closed convex subset of X, and T : K → K a (b, φ) weak
enriched contraction. Then, the Ishikawa iteration associated with Tλ with (i) 0 ≤ αn, βn ≤ 1 and
(ii) ∑ αnβn = ∞, converges to the unique fixed point x∗ of T, where λ = 1

b+1 .

Proof. The proof of Theorem 7 is similar to Theorem 6 and is omitted.

4. Applications to Split Feasibility and Variational Inequality Problems

Variational inequality theory is an important tool in economics, engineering mechanics,
mathematical programming, transportation, and other fields. Many numerical methods
have been constructed to solve variational inequalities and optimization problems. The aim
of this section is to present generic convergence theorems for Krasnoselskij-type algorithms
that solve variational inequality problems and split feasibility problems, respectively.

4.1. Solving Variational Inequality Problems

Let H be a real Hilbert space with inner product
〈
·, ·
〉
, and let C ⊂ H be closed and

convex. A mapping S : H → H is called monotone if:〈
Sx− Sy, x− y

〉
≥ 0, ∀ x, y ∈ H.

The variational inequality problem with respect to S and C, denoted by VIP(S, C), is
to find x∗ ∈ C such that: 〈

Sx∗, x− x∗
〉
≥ 0, ∀ x ∈ H.

It is well known (see for example [24]) that if γ > 0, then x∗ ∈ C is a solution of
VIP(S, C) if and only if x∗ is a solution of the fixed-point problem:

x = PC(I − γG)x,

where PC is the nearest point projection onto C.
In [24], it was proven, amongst many others results, that if I − γG and PC(I − γG) are

averaged nonexpansive mappings, then, under some additional assumptions, the iterative
algorithm {xn}∞

n=0 defined by:

xn+1 = PC(I − γG)xn, n ≥ 0,

converges weakly to a solution of VIP(S, C), if such solutions exist.
Our alternative is to consider VIP(S, C) for enriched quasi-contraction mappings,

which are in general discontinuous mappings, instead of nonexpansive mappings, which
are always continuous. In this case, we shall have VIP(S, C) with a unique solution, as
shown by the next theorem. Moreover, the considered algorithm (34) will converge strongly
to the solution of VIP(S, C).

Theorem 8. Assume that for γ > 0, PC(I − γG) is a (b, c)-enriched quasi-contraction mapping.
Then, there exists λ ∈ (0, 1] such that the iterative algorithm {xn}∞

n=0 defined by:

xn+1 = (1− λ)xn + λPC(I − γG)xn, n ≥ 0, (34)

converges strongly to the unique solution x∗ of VIP(S, C), for any x0 ∈ C.

Proof. Since C is closed, we take X := C and T := PC(I − γG) and apply Corollary 2.

4.2. Solving Split Feasibility Problems

The split feasibility problem (SFP), introduced by Censor and Elfving in 1994 [25], is:

Find x∗ ∈ C such that Ax∗ ∈ Q, (35)
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where C and Q are closed convex subsets of the Hilbert spaces H1 and H2, respectively,
and A : H1 → H2 is a bounded linear operator.

If we assume that the SFP (35) is consistent, that is it has a solution and denote by
W the solution set of (35), then (see [26]) x∗ ∈ C is a solution of (35) if and only if it is a
solution of the fixed-point problem.

x = PC
(

I − γA∗(I − PQ)A
)
x,

where PC and PQ are the nearest point projections onto C and Q, respectively, γ > 0, and
A∗ is the adjoint operator of A. It was shown in [24] that if δ is the spectral radius of A∗A
and γ ∈ (0, 2/δ), then the operator:

T = PC
(

I − γA∗(I − PQ)A
)

is averaged and nonexpansive and the so-called CQ algorithm:

xn+1 = PC
(

I − γA∗(I − PQ)A
)
xn, n ≥ 0,

converges weakly to a solution of the SFP.
In the case of averaged nonexpansive mappings, the problem of turning the weak

convergence above into the strong convergence has received a great deal of research work.
This usually consists of considering additional assumptions; see [26] for a recent survey on
Halpern-type algorithms.

We propose here an alternative to all those approaches, by considering enriched
quasi-contraction mappings, which are in general discontinuous mappings, instead of
nonexpansive mappings, which are always continuous. In this case, we have a SFP with a
unique solution, as shown by the next theorem, while the considered algorithm (36) will
converge strongly.

Theorem 9. Assume that the SFP (35) is consistent, γ ∈ (0, 2/δ), and PC
(

I − γA∗(I − PQ)A
)

is a (b, c)-enriched quasi-contraction mapping. Then, there exists λ ∈ (0, 1] such that the iterative
algorithm {xn}∞

n=0 defined by:

xn+1 = (1− λ)xn + λPC
(

I − γA∗(I − PQ)A
)
xn, n ≥ 0, (36)

converges strongly to the unique solution x∗ of the SFP (35) for any x0 ∈ C.

Proof. Since C is closed, we take X := C and T := PC(I − γG) and apply Corollary 2.

5. Conclusions

(1) In this paper, we first introduced a large class of contractive mappings, called enriched
quasi-contractions, that includes the usual quasi-contraction mappings, enriched
contractions, enriched Kannan mappings, enriched Chatterjea mappings, Zamfirescu
mappings, and enriched Ćirić–Reich–Rus mappings;

(2) We studied the set of fixed points and constructed an algorithm of the Krasnoselskij-
type in order to approximate fixed points of enriched quasi-contraction mappings for
which we have proven the strong convergence theorem;

(3) We then extended the weak contractions to the larger class of enriched weak contrac-
tions and constructed the corresponding algorithm of the Krasnoselskij-type in order
to approximate fixed points of enriched quasi-contraction mappings for which we
proved the strong convergence theorem;

(4) We showed that the Ishikawa, Mann, and Krasnoselskij iteration methods defined
with the help of enriched quasi-contractions and enriched weak contraction mappings
are equivalent;

(5) As applications of our main results, we presented two Krasnoselskij-projection-type
algorithms to solve split feasibility problems and variational inequality problems
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in the class of enriched quasi-mappings, thus improving the existence and weak
convergence results for split feasibility problems and variational inequality problems
in [24] to existence and uniqueness, as well as to strong convergence theorems.
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6. Rhoades, B.E.; Şoltuz, Ş.M. The equivalence between the convergences of Ishikawa and Mann iterations for asymptotically

pseudocontractive map. J. Math. Anal. Appl. 2003, 283, 681–688. [CrossRef]
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19. Ćirić, L.B. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 267–273. [CrossRef]
20. Rhoades, B.E. A comparison of various definitions of contractive mappings. Trans. Am. Soc. 1977, 226, 257–290. [CrossRef]
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