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Abstract: In this systematic review, the authors give a survey on the recent developments of both the
John–Nirenberg space JNp and the space BMO as well as their vanishing subspaces such as VMO,
XMO, CMO, VJNp, and CJNp on Rn or a given cube Q0 ⊂ Rn with finite side length. In addition,
some related open questions are also presented.
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1. Introduction

In this article, a cube Q means that it has finite side length and all its sides parallel to
the coordinate axes, but Q is not necessarily open or closed. Moreover, we always let X be
Rn or a given cube of Rn. Recall that the Lebesgue space Lq(X) with q ∈ [1,∞] is defined to
be the set of all measurable functions f on X such that

‖ f ‖Lq(X) :=


[∫
X

| f (x)|q dx
] 1

q

when q ∈ [1,∞),

ess sup
x∈X

| f (x)| when q = ∞

is finite. In what follows, we use 1E to denote the characteristic function of a set E ⊂ Rn, and
for any given q ∈ [1,∞), Lq

loc (X) to denote the set of all measurable functions f on X such
that f 1E ∈ Lq(X) for any bounded measurable set E ⊂ X.

It is well known that Lp(X) with p ∈ [1,∞] plays a leading role in the modern analysis
of mathematics. In particular, when p ∈ (1,∞), the space Lp(X) enjoys some elegant
properties, such as the reflexivity and the separability, which no longer hold true in L∞(X).
Thus, many studies related to Lp(X) need some modifications when p = ∞: for instance,
the boundedness of Calderón–Zygmund operators. Recall that the Calderón–Zygmund
operator T is bounded on Lp(Rn) for any given p ∈ (1,∞), but not bounded on L∞(Rn).
Indeed, T maps L∞(Rn) into the space BMO (Rn) which was introduced by John and
Nirenberg [1] in 1961 to study the functions of bounded mean oscillation; here and thereafter,

BMO (X) :=

 f ∈ L1
loc (X) : ‖ f ‖BMO (X) := sup

cube Q⊂X

?
Q

∣∣∣ f (x) − fQ
∣∣∣ dx < ∞


with

fQ :=
?

Q
f (y) dy :=

1
|Q|

∫
Q

f (y) dy

and the supremum taken over all cubes Q ofX. This implies that BMO (X) is a fine substitute
of L∞(X). Furthermore, it should be mentioned that, in the sense modulo constants,
BMO (X) is a Banach space, but, for simplicity, we regard f ∈ BMO (X) as a function rather
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than an equivalent class f +C := { f + c : c ∈ C} if there exists no confusion. Moreover,
the space BMO (X) and its numerous variants as well as their vanishing subspaces have
attracted a lot of attention since 1961. For instance, Fefferman and Stein [2] proved that
the dual space of the Hardy space H1(Rn) is BMO (Rn); Coifman et al. [3] showed an
equivalent characterization of the boundedness of Calderón–Zygmund commutators via
BMO (Rn); Coifman and Weiss [4,5] introduced the space of homogeneous type and studied
the Hardy space and the BMO space in this context; Sarason [6] obtained the equivalent
characterization of VMO (Rn), the closure in BMO (Rn) of uniformly continuous functions,
and used it to study stationary stochastic processes satisfying the strong mixing condition
and the algebra H∞ + C; Uchiyama [7] established an equivalent characterization of the
compactness of Calderón–Zygmund commutators via CMO (Rn) which is defined to be
the closure in BMO (Rn) of infinitely differentiable functions on Rn with compact support;
Nakai and Yabuta [8] studied pointwise multipliers for functions on Rn of bounded mean
oscillation; and Iwaniec [9] used the compactness theorem in Uchiyama [7] to study
linear complex Beltrami equations and the Lp(C) theory of quasiregular mappings. All
these classical results have wide generalizations as well as applications and have inspired
a myriad of further studies in recent years: see, for instance, the References [10–13]
for their applications in singular integral operators as well as their commutators, the
References [14–19] for their applications in pointwise multipliers, the References [20–22]
for their applications in partial differential equations, and the References [23–28] for more
variants and properties of BMO (Rn). In particular, we refer the reader to Chang and
Sadosky [29] for an instructive survey on functions of bounded mean oscillation and also
Chang et al. [25] for BMO spaces on the Lipschitz domain of Rn.

Naturally, BMO (X) extends L∞(X), in the sense that L∞(X) $ BMO (X) and, more-
over, ‖ · ‖BMO (X) ≤ 2‖ · ‖L∞(X). Similarly, such extension exists for any Lp(X) with p ∈ (1,∞).
Indeed, John and Nirenberg [1] also introduced a generalized version of the BMO condition
which was subsequently used to define the so-called John–Nirenberg space JNp(Q0) with
exponent p ∈ (1,∞) and Q0 being any given cube of Rn. Recall that for any given p ∈ (1,∞)
and any given cube Q0 of Rn, the John–Nirenberg space JNp(Q0) is defined to be the set of all
f ∈ L1(Q0) such that

‖ f ‖JNp(Q0) := sup

∑
i

|Qi|

{?
Qi

∣∣∣ f (x) − fQi

∣∣∣ dx
}p


1
p

< ∞, (1)

where the supremum is taken over all collections of interior pairwise disjoint cubes {Qi}i of Q0.
It is easy to see that the limit of JNp(Q0) when p→∞ is just BMO (Q0) (see also Corollary 2
below). Moreover, the John–Nirenberg space is closely related to the Lebesgue space Lp(Q0)
and the weak Lebesgue space Lp,∞(Q0) which is defined in Definition 1 below. Precisely, let
p ∈ (1,∞). On the one hand, the inequality obtained in ([1], Lemma 3) (see also Theorem 2
below) implies that JNp(Q0) ⊂ Lp,∞(Q0); additionally, by ([30], Example 3.5), we further
know that JNp(Q0) $ Lp,∞(Q0). On the other hand, it is obvious that Lp(Q0) ⊂ JNp(Q0)
with ‖ · ‖JNp(Q0) ≤ 2‖ · ‖Lp(Q0), but the striking nontriviality was shown very recently by
Dafni et al. ([31], Proposition 3.2 and Corollary 4.2), who say that Lp(Q0) $ JNp(Q0).
Combining these facts, we conclude that

Lp(Q0) $ JNp(Q0) $ Lp,∞(Q0). (2)

Therefore, John–Nirenberg spaces are new spaces between Lebesgue spaces and weak
Lebesgue spaces, which motivates us to study the properties of JNp. Furthermore, various
John–Nirenberg-type spaces have also attracted a lot of attention in recent years (see,
for instance, [31–37] for the Euclidean space case and [30,38–40] for the metric measure
space case).

It should be mentioned that the mean oscillation truly makes a difference in both
BMO and JNp; for instance,
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(i) Via the characterization of distribution functions, we know that BMO is closely
related to the space Lexp whose definition (see (6) below) is similar to an equivalent
expression of BMO but with f − fQ replaced by f (see Proposition 3 below);

(ii) There exists an interesting observation presented by Riesz [41], which says that in (1),
if we replace f − fQi by f , then JNp(Q0) turns to be Lp(Q0). Moreover, this conclusion
also holds true when Q0 is replaced by Rn (see Proposition 28 below).

The main purpose of this article is to give a survey on some recent developments of
both the John–Nirenberg space JNp and the space BMO, including their several generalized
(or related) spaces and some vanishing subspaces. We begin in Section 2 by recalling
some definitions and basic properties of BMO and JNp. Section 3 summarizes some recent
developments of the John–Nirenberg–Campanato space, the localized John–Nirenberg–
Campanato space, and the special John–Nirenberg–Campanato space via congruent cubes.
Section 4 focuses on the Riesz-type space, which differs from the John–Nirenberg space in
subtracting integral means, and its congruent counterpart. In Section 5, we pay attention
to some vanishing subspaces of the aforementioned John–Nirenberg-type spaces, such as
VMO, XMO, CMO, VJNp, and CJNp on Rn or any given cube Q0 of Rn. In addition, several
related open questions are also summarized in this survey.

More precisely, the remainder of this survey is organized as follows.
Section 2 is split into two subsections. In Section 2.1, via recalling the definitions of

distribution functions and some related function spaces (including the weak Lebesgue
space, the Morrey space, and the space Lexp), we present the relation

L∞(Q0) $ BMO (Q0) $ Lexp(Q0)

in Proposition 2 below, which is a counterpart of (2) above, and also show two equivalent
Orlicz-type norms on BMO (Rn) in Proposition 3 below; moreover, the corresponding
results for the localized BMO space are also obtained in Corollary 1 below. Section 2.2 is
devoted to some significant results of JNp, including the famous John–Nirenberg inequality
(see Theorem 2 below), and the accurate relations of JNp and Lp as well as Lp,∞ (see
Remark 2 below). Furthermore, some recent progress of JNp is also briefly listed at the end
of this subsection.

Section 3 is split into three subsections. In Section 3.1, we first recall the notions of the
John–Nirenberg–Campanato space (for short, JNC space), the corresponding Hardy-type
space, and their basic properties, which include the limit results and the relations with
other classical spaces. Then we review the dual theorem between these two spaces and the
independence over the second sub-index of JNC spaces and Hardy-type spaces. Section 3.2
is devoted to the localized counterpart of Section 3.1. The aim of Section 3.3 is the summary
of the special JNC space defined via congruent cubes (for short, congruent JNC space),
including their basic properties corresponding to those in Section 3.1. Furthermore, some
applications about the boundedness of operators on congruent spaces are mentioned
as well.

In Section 4, via subtracting integral means in the JNC space, we first give the
definition of the Riesz-type space appearing in [37] and then present some basic facts
about this space in Section 4.1. Moreover, the predual space (namely, the block-type space)
and the corresponding dual theorem of the Riesz-type space are also displayed in this
subsection. Section 4.2 is devoted to the congruent counterpart of the Riesz-type space and
the boundedness of some important operators.

Section 5 is split into three subsections. Section 5.1 is devoted to several vanish-
ing subspaces of BMO (Rn), including VMO (Rn), CMO (Rn), MMO (Rn), XMO (Rn),
and X1MO (Rn). We first recall their definitions and then review their (except MMO (Rn))
mean oscillation characterizations, respectively, in Theorems 11–13 below. Meanwhile,
an open question on the corresponding equivalent characterization of MMO (Rn) is
also listed in Question 11 below. Then, we further review the compactness theorems
of the Calderón–Zygmund commutators [b, T], where b belongs to the vanishing sub-
spaces CMO (Rn) as well as XMO (Rn), and propose an open question on [b, T] with
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b ∈ XMO (Rn). Moreover, the characterizations via Riesz transforms of BMO (Rn),
VMO (Rn), and CMO (Rn), as well as the localized results of these vanishing subspaces,
are presented. Furthermore, some open questions are listed in this subsection. Section 5.2
devotes to the vanishing subspaces of JNC spaces. We first recall the definition of the van-
ishing JNC space on cubes in Definition 17 and then review its equivalent characterization
as well as its dual result, respectively, in Theorems 19 and 20. Moreover, for the case of Rn,
we review the corresponding results for VJNp(Rn) and CJNp(Rn), which are, respectively,
counterparts of VMO (Rn) and CMO (Rn) (see Theorems 21 and 22 below). As before,
some open questions are also listed at the end of this subsection. Section 5.3 is devoted to
the congruent counterpart of Section 5.2, and some similar conclusions are listed in this
subsection; meanwhile, some open questions on the JNC space have affirmative answers in
the congruent setting (see Proposition 32 below).

Finally, we make some conventions on notation. Let N := {1, 2, . . .}, Z+ := N ∪ {0},
and Zn

+ := (Z+)n. We always denote by C and C̃ positive constants which are independent
of the main parameters, but they may vary from line to line. Moreover, we use C(γ, β, ...)
to denote a positive constant depending on the indicated parameters γ, β, . . . Constants
with subscripts, such as C0 and A1, do not change in different occurrences. Moreover,
the symbol f . g represents that f ≤ Cg for some positive constant C. If f . g and g . f ,
we then write f ∼ g. If f ≤ Cg and g = h or g ≤ h, we then write f . g ∼ h or f . g . h,
rather than f . g = h or f . g ≤ h. For any p ∈ [1,∞], let p′ be its conjugate index, that is, p′

satisfies 1/p + 1/p′ = 1. We use 1E to denote the characteristic function of a set E ⊂ Rn, |E| to
denote the Lebesgue measure when E ⊂ Rn is measurable, and 0 to denote the origin of Rn.
For any function f on Rn, let supp ( f ) := {x ∈ Rn : f (x) , 0}. Let X be a normed linear
space. We use (X)∗ to denote its dual space.

2. BMO and JNp

It is well known that the space BMO has played an important role in harmonic analysis,
partial differential equations, and other mathematical fields since it was introduced by
John and Nirenberg in their celebrated article [1]. However, in the same article [1], another
mysterious space appeared as well, which is now called the John–Nirenberg space JNp.
Indeed, BMO can be viewed as the limit space of JNp as p → ∞ (see Proposition 6 and
Corollary 2 below with α := 0). To establish the relations of BMO and JNp, and also to
summarize some recent works of John–Nirenberg-type spaces, we first recall some basic
properties of BMO and JNp in this section.

This section is devoted to some well-known results of BMO (X) and JNp(X), respec-
tively, in Sections 2.1 and 2.2. In addition, it is trivial to find that all the results in Section 2.1
also hold true with the cube Q0 replaced by the ball B0 of Rn.

2.1. (Localized) BMO and Lexp

This subsection is devoted to several equivalent norms of the spaces BMO and localized
BMO. To this end, we begin with the distribution function

D( f ;X)(t) := |{x ∈ X : | f (x)| > t}|, (3)

where f ∈ L1
loc (X) and t ∈ (0,∞). Recall that the distribution function is closely related to

the following weak Lebesgue space.

Definition 1. Let p ∈ (0,∞). The weak Lebesgue space Lp,∞(X) is defined by setting

Lp,∞(X) :=
{

f is measurable on X : ‖ f ‖Lp,∞(X) < ∞
}
,

where, for any measurable function f on X,

‖ f ‖Lp,∞(X) := sup
t∈(0,∞)

[
t|{x ∈ X : | f (x)| > t}|

1
p

]
.
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Moreover, the distribution function also features BMO (X), which is exactly the famous
result obtained by John and Nirenberg ([1], Lemma 1’): there exist positive constants C1
and C2, depending only on the dimension n, such that, for any given f ∈ BMO (X), any
given cube Q ⊂ X, and any t ∈ (0,∞),

∣∣∣∣{x ∈ Q : | f (x) − fQ| > t
}∣∣∣∣ ≤ C1e

−
C2

‖ f ‖BMO (X)
t
|Q|. (4)

The main tool used in the proof of (4) is the following well-known Calderón–Zygmund
decomposition (see, for instance, [42], p. 34, Theorem 2.11, and also [43], p. 150, Lemma 1).

Theorem 1. For a given function f which is integrable and non-negative onX, and a given positive
number λ, there exists a sequence {Q j} j of disjoint dyadic cubes of X such that

(i) f (x) ≤ λ for almost every x ∈ X \
⋃

j Q j;
(ii) |

⋃
j Q j| ≤

1
λ‖ f ‖L1(X);

(iii) λ <
>

Q j
f (x) dx ≤ 2nλ.

As an application of (4), we find that for any given q ∈ (1,∞), f ∈ BMO (Rn) if and
only if f ∈ L1

loc (R
n) and

‖ f ‖BMOq(Rn) := sup
cube Q⊂Rn

[?
Q

∣∣∣ f (x) − fQ
∣∣∣q dx

] 1
q

< ∞.

Meanwhile, ‖ · ‖BMO (Rn) ∼ ‖ · ‖BMOq(Rn) (see, for instance, [42], p. 125, Corollary 6.12).
Recently, Bényi et al. [44] gave a comprehensive approach for the boundedness of

weighted commutators via a new equivalent Orlicz-type norm

‖ f ‖BMO(X) := sup
cube Q⊂X

‖ f − fQ‖Lexp(Q). (5)

This equivalence is proved in Proposition 3 below. Here and thereafter, for any given
cube Q of Rn and any measurable function g, the locally normalized Orlicz norm ‖g‖Lexp(Q) is
defined by setting

‖g‖Lexp(Q) := inf
{
λ ∈ (0,∞) :

?
Q

[
e
|g(x)|
λ − 1

]
dx ≤ 1

}
. (6)

Moreover, for any given cube Q of Rn, the space Lexp(Q) is defined by setting

Lexp(Q) :=
{

f is measurable on Q : ∃λ ∈ (0,∞) such that
?

Q
e
| f (x)|
λ dx < ∞

}
.

The space Lexp(Q) was studied in the interpolation of operators (see, for instance, [45],
p. 243), and it is closely related to the space BMO (Q) (see Proposition 3 below).

On the Orlicz function in (6), we have the following properties.

Lemma 1. For any t ∈ [0,∞), let Φ(t) := et
− 1. Then,

(i) Φ is of lower type 1, namely for any s ∈ (0, 1) and t ∈ (0,∞),

Φ(st) ≤ sΦ(t);

(ii) Φ is of critical lower type 1, namely there exists no p ∈ (1,∞), such that for any s ∈ (0, 1)
and t ∈ (0,∞),

Φ(st) ≤ CspΦ(t)

holds true for some constant C ∈ [1,∞) independent of s and t.
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Proof. We first show (i). For any s ∈ (0, 1) and t ∈ (0,∞), let

h(s, t) := Φ(st) − sΦ(t) = est
− 1− s(et

− 1).

Then,
∂
∂t

h(s, t) = sest
− set = s(est

− et).

From this and s ∈ (0, 1), we deduce that for any t ∈ (0,∞), ∂
∂t h(s, t) < 0, and hence

h(s, t) ≤ h(s, 0) = 0, which shows that Φ is of lower type 1 and hence completes the proof
of (i).

Next, we show that Φ is of critical lower type 1. Suppose that there exist a p ∈ (1,∞)
and a constant C ∈ [1,∞), such that for any s ∈ (0, 1) and t ∈ (0,∞), Φ(st) ≤ CspΦ(t),
namely

est
− 1 ≤ Csp(et

− 1). (7)

From p ∈ (1,∞) and the L’Hospital rule, we deduce that

lim
s→0+

Φ(st)
spΦ(t)

= lim
s→0+

est
− 1

sp(et − 1)
= lim

s→0+

test

psp−1(et − 1)
= ∞,

which contradicts (7), and hence Φ is of critical lower type 1. Here and thereafter, s→ 0+

means s ∈ (0, 1) and s→ 0. This finishes the proof of (ii) and hence of Lemma 1. �

Before showing the equivalent Orlicz-type norms of BMO (X), we first prove the
following equivalent characterizations of BMO (X). These characterizations might be well
known. However, to the best of our knowledge, we did not find a complete proof. For the
convenience of the reader, we present the details here.

Proposition 1. The following three statements are mutually equivalent:

(i) f ∈ BMO (X);
(ii) f ∈ L1

loc (X) and there exist positive constants C3 and C4, such that for any cube Q ⊂ X and
any t ∈ (0,∞), ∣∣∣∣{x ∈ Q : | f (x) − fQ| > t

}∣∣∣∣ ≤ C3e−C4t
|Q|;

(iii) f ∈ L1
loc (X) and there exists a λ ∈ (0,∞), such that

sup
cube Q⊂X

?
Q

e
| f (x)− fQ |

λ dx < ∞.

Proof. We prove this proposition via showing (i) =⇒ (ii) =⇒ (iii) =⇒ (i).
First, the implication (i) =⇒ (ii) was proved by John and Nirenberg in [1], Lemma 1’

(see (4) above).
Next, we show the implication (ii) =⇒ (iii). Suppose that f satisfies (ii). Then, there

exist positive constants C3 and C4, such that for any cube Q ⊂ X and any t ∈ (0,∞),∣∣∣∣{x ∈ Q : | f (x) − fQ| > t
}∣∣∣∣ ≤ C3e−C4t

|Q|

and hence ?
Q

e
C4
2 | f (x)− fQ | dx

=
1
|Q|

∫
∞

0

∣∣∣∣∣{x ∈ Q : e
C4
2 | f (x)− fQ | > t

}∣∣∣∣∣ dt
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=
1
|Q|

(∫ 1

0
+

∫
∞

1

)∣∣∣∣∣{x ∈ Q : e
C4
2 | f (x)− fQ | > t

}∣∣∣∣∣ dt

≤ 1 +
1
|Q|

∫
∞

1

∣∣∣∣{x ∈ Q : | f (x) − fQ| > 2C−1
4 log t

}∣∣∣∣ dt

≤ 1 +
1
|Q|

∫
∞

1
C3e−C42C−1

4 log t
|Q| dt

= 1 + C3

∫
∞

1
t−2 dt = 1 + C3, (8)

which implies that f satisfies (iii). This shows the implication (ii) =⇒ (iii).
Finally, we show the implication (iii) =⇒ (i). Suppose that f satisfies (iii). Then, there

exists a λ ∈ (0,∞), such that

sup
Q⊂X

?
Q

e
| f (x)− fQ |

λ dx < ∞.

From this and the basic inequality x ≤ ex
− 1 for any x ∈ R, we deduce that

sup
cube Q⊂X

?
Q

∣∣∣ f (x) − fQ
∣∣∣ dx ≤ λ sup

cube Q⊂X

?
Q

[
e
| f (x)− fQ |

λ − 1
]

dx < ∞,

which implies that f satisfies (i), and hence the implication (iii) =⇒ (i) holds true. This
finishes the proof of Proposition 1. �

In what follows, for any normed space Y(X), equipped with the norm ‖ · ‖Y(X), whose
elements are measurable functions on X, let

Y(X)/C :=
{

f is measurable on X : ‖ f ‖Y(X)/C := inf
c∈C
‖ f + c‖Y(X) < ∞

}
.

Proposition 2. Let Q0 be a given cube of Rn. Then,

[L∞(Q0)/C] $ BMO (Q0) $
[
Lexp(Q0)/C

]
.

Proof. Indeed, on the one hand, from?
Q

∣∣∣ f (x) − fQ
∣∣∣ dx ≤ 2

?
Q

∣∣∣ f (x) + c
∣∣∣ dx ≤ 2‖ f + c‖L∞(Q0)

for any c ∈ C, we deduce that [L∞(Q0)/C] ⊂ BMO (Q0). Moreover, let g(·) := log | · −c0|,
where c0 is the center of Q0. Then, g ∈ BMO (Q0) \ [L∞(Q0)/C] (see [46], Example 3.1.3,
for this fact).

On the other hand, by Proposition 1(iii), we easily find that BMO (Q0) ⊂ [Lexp(Q0)/C].
Moreover, without loss of generality, we may assume that Q0 := (−1, 1) and let

g(x) :=


− log(−x), x ∈ (−1, 0),
0, x = 0,
log(x), x ∈ (0, 1).

We claim that g ∈ [Lexp(Q0)/C] \ BMO (Q0). Indeed, for any ε ∈ (0, 1), let Iε := (−ε, ε).
Then, ?

Iε

∣∣∣g(x) − gIε

∣∣∣ dx =
1
2ε

∫ ε

−ε

∣∣∣log |x|
∣∣∣ dx = −

1
ε

∫ ε

0
log(x) dx = 1− log(ε)→∞
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as ε→ 0+, which implies that g < BMO (Q0). However,∫
Q0

e
1
2 |g(x)| dx = 2

∫ 1

0
e−

1
2 log(x) dx = 2

∫ 1

0
x−

1
2 dx = 4 < ∞,

which implies that g ∈ Lexp(Q0). Therefore, BMO (Q0) $ [Lexp(Q0)/C], which completes
the proof of Proposition 2. �

Now, we show that the two Orlicz-type norms, (5) and

‖ f ‖L̃exp(X)
:= inf

λ ∈ (0,∞) : sup
cube Q⊂X

?
Q

[
e
| f (x)− fQ |

λ − 1
]

dx ≤ 1


for any f ∈ L1

loc (X), are equivalent norms of BMO (X).

Proposition 3. The following three statements are mutually equivalent:

(i) f ∈ BMO (X);
(ii) f ∈ L1

loc (X) and ‖ f ‖BMO(X) < ∞;
(iii) f ∈ L1

loc (X) and ‖ f ‖L̃exp(X)
< ∞.

Moreover, ‖ · ‖BMO (X) ∼ ‖ · ‖BMO(X) ∼ ‖ · ‖L̃exp(X)
.

Proof. To prove this proposition, we only need to prove that for any f ∈ L1
loc (X),

‖ f ‖BMO (X) ∼ ‖ f ‖BMO(X) ∼ ‖ f ‖L̃exp(X)
.

We first show that for any f ∈ L1
loc (X), ‖ f ‖BMO (X) ≤ ‖ f ‖BMO(X) and ‖ f ‖BMO (X) ≤

‖ f ‖L̃exp(X)
. To this end, let f ∈ L1

loc (X). For any cube Q ⊂ X and any λ ∈ (0,∞), by t ≤ et
− 1

for any t ∈ (0,∞), we have?
Q

∣∣∣ f (x) − fQ
∣∣∣ dx ≤ λ

?
Q

[
e
| f (x)− fQ |

λ − 1
]

dx ≤ λ,

which implies that ?
Q

∣∣∣ f (x) − fQ
∣∣∣ dx ≤ ‖ f − fQ‖Lexp(Q)

and hence
‖ f ‖BMO (X) ≤ ‖ f ‖BMO(X).

Moreover, to show ‖ f ‖BMO (X) ≤ ‖ f ‖L̃exp(X)
, it suffices to assume that f ∈ L̃exp(X);

otherwise, ‖ f ‖L̃exp(X)
= ∞, and hence the desired inequality automatically holds true. Then,

by t ≤ et
− 1 for any t ∈ (0,∞), we conclude that for any n ∈ N and any cube Q ⊂ X,

?
Q

| f (x) − fQ|

‖ f ‖L̃exp(X)
+ 1

n

dx ≤
?

Q

e
| f (x)− fQ |

‖ f ‖
L̃exp(X)

+ 1
n
− 1

 dx. (9)

From the definition of ‖ · ‖L̃exp(X)
, we deduce that for any n ∈ N, there exists a

λn ∈

(
‖ f ‖L̃exp(X)

, ‖ f ‖L̃exp(X)
+

1
n

)
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such that

sup
cube Q⊂X

?
Q

[
e
| f (x)− fQ |

λn − 1
]

dx ≤ 1.

By this, (9), and the monotonicity of e(·) − 1, we conclude that, for any n ∈ N and any
cube Q ⊂ X, ?

Q

| f (x) − fQ|

‖ f ‖L̃exp(X)
+ 1

n

dx ≤ 1

and hence ?
Q
| f (x) − fQ| dx ≤ ‖ f ‖L̃exp(X)

+
1
n

.

Letting n→∞, we then obtain

‖ f ‖BMO (X) = sup
cube Q⊂X

?
Q
| f (x) − fQ| dx ≤ ‖ f ‖L̃exp(X)

.

To summarize, we have, for any f ∈ L1
loc (X),

‖ f ‖BMO (X) ≤ ‖ f ‖BMO(X) and ‖ f ‖BMO (X) ≤ ‖ f ‖L̃exp(X)
. (10)

Next, we show that the reverse inequalities hold true for any f ∈ L1
loc (X), respectively.

In fact, we may assume that f ∈ BMO (X) because, otherwise, the desired inequalities
automatically hold true. Now, let f ∈ BMO (X). Then, for any cube Q ⊂ X and any
λ ∈ (C−1

2 ‖ f ‖BMO (X),∞), by (4) and the calculation of (8), we obtain?
Q

e
| f (x)− fQ |

λ dx

≤ 1 +
1
|Q|

∫
∞

1

∣∣∣∣{x ∈ Q : | f (x) − fQ| > λ log t
}∣∣∣∣ dt

≤ 1 +
1
|Q|

∫
∞

1
C1e
−

C2
‖ f ‖BMO (X)

λ log t
|Q| dt

= 1 + C1

∫
∞

1
t
−

C2λ
‖ f ‖BMO (X) dt = 1 + C1

and hence ?
Q

[
e
| f (x)− fQ |

λ − 1
]

dx ≤ C1,

where C1 ∈ (1,∞) is as in (4). From this and Lemma 1(i) with s replaced by 1/C1, we
deduce that ?

Q

e | f (x)− fQ |
λC1 − 1

 dx ≤
1

C1

?
Q

[
e
| f (x)− fQ |

λ − 1
]

dx ≤ 1. (11)

On the one hand, by (11) and

C1

C2
‖ f ‖BMO (X) < λC1 < ∞,

we conclude that

‖ f − fQ‖Lexp(Q) = inf
{
λ̃ > 0 :

?
Q

[
e
| f (x)− fQ |

λ̃ − 1
]

dx ≤ 1
}
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≤
C1

C2
‖ f ‖BMO (X)

and hence

‖ f ‖BMO(X) = sup
cube Q⊂X

‖ f − fQ‖Lexp(Q) ≤
C1

C2
‖ f ‖BMO (X). (12)

On the other hand, by (11), we conclude that

sup
cube Q⊂X

?
Q

e | f (x)− fQ |
λC1 − 1

 dx ≤ 1.

From this and
C1

C2
‖ f ‖BMO (X) < λC1 < ∞,

we deduce that

‖ f ‖L̃exp(X)
= inf

λ ∈ (0,∞) : sup
cube Q⊂X

?
Q

[
e
| f (x)− fQ |

λ − 1
]

dx ≤ 1


≤

C1

C2
‖ f ‖BMO (X).

Combining this with (12), we have, for any f ∈ BMO (X),

‖ f ‖BMO(X) ≤
C1

C2
‖ f ‖BMO (X) and ‖ f ‖L̃exp(X)

≤
C1

C2
‖ f ‖BMO (X).

This, together with (10), then finishes the proof of Proposition 3. �

Remark 1. There exists another norm on Lexp(Q0), defined by the distribution functions as follows.
Let f be a measurable function on Q0. The decreasing rearrangement f ∗ of f is defined by setting,
for any u ∈ [0,∞),

f ∗(u) := inf{t ∈ (0,∞) : |{x ∈ Q0 : | f (x)| > t}| ≤ u}.

Moreover, for any v ∈ (0,∞), let

f ∗∗(v) :=
1
v

∫ v

0
f ∗(u) du.

Then, f ∈ Lexp(Q0) if and only if f is measurable on Q0 and

‖ f ‖L∗exp(Q0) := sup
v∈(0,|Q0 |]

f ∗∗(v)

1 + log( |Q0 |
v )

< ∞.

Meanwhile, ‖ · ‖L∗exp(Q0) is a norm of Lexp(Q0) (see [45], p. 246, Theorem 6.4, for more
details). Furthermore, from [45] (p. 7, Corollary 1.9), we deduce that ‖ · ‖L∗exp(Q0) and ‖ · ‖Lexp(Q0) are
equivalent. Notice that f ∗ and f ∗∗ are fundamental tools in the theory of Lorentz spaces (see [47],
p. 48, for more details).

Recently, Izuki et al. [48] obtained both the John–Nirenberg inequality and the
equivalent characterization of BMO (Rn) on the ball Banach function space which contains
Morrey spaces, (weighted, mixed-norm, variable) Lebesgue spaces, and Orlicz-slice spaces
as special cases (see [48], Definition 2.8, and also [49], for the related definitions). Precisely,
let X be a ball Banach function space satisfying the additional assumption that the Hardy–
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Littlewood maximal operator M is bounded on X′ (the associated space of X; see [48],
Definition 2.9, for its definition), and for any b ∈ L1

loc (R
n),

‖b‖BMO X := sup
B

1
‖1B‖X

∥∥∥|b− bB|1B
∥∥∥

X,

where the supremum is taken over all balls B of Rn. It is obvious that ‖ · ‖BMO L1(Rn)
=

‖ · ‖BMO (Rn). Moreover, in [48] (Theorem 1.2), Izuki et al. showed that under the above
assumption of X, b ∈ BMO (Rn) if and only if b ∈ L1

loc (R
n) and ‖b‖BMO X < ∞; meanwhile,

‖ · ‖BMO X ∼ ‖ · ‖BMO (Rn).

Furthermore, the John–Nirenberg inequality on X was also obtained in [48] (Theorem 3.1),
which shows that there exists some positive constant C̃, such that for any ball B ⊂ Rn and
any τ ∈ [0,∞), ∥∥∥∥1

{x∈B: |b(x)−bB |>τ2n+2‖b‖BMO (Rn)}

∥∥∥∥
X
≤ C̃2

−
τ

1+2n+4‖M‖X′→X′ ‖1B‖X,

where ‖M‖X′→X′ denotes the operator norm of M on X′. Later, these results were applied
in [49] to establish the compactness characterization of commutators on ball Banach
function spaces.

Now, we come to the localized counterpart. The local space BMO (Rn), denoted by
bmo (Rn), was originally introduced by Goldberg [50]. In the same article, Goldberg also
introduced the localized Campanato space Λα(Rn) with α ∈ (0,∞), which proves the dual
space of the localized Hardy space. Later, Jonsson et al. [51] constructed the localized Hardy
space and the localized Campanato space on the subset of Rn; Chang [52] studied the
localized Campanato space on bounded Lipschitz domains; Chang et al. [20] studied the
localized Hardy space and its dual space on smooth domains as well as their applications to
boundary value problems; and Dafni and Liflyand [53] characterized the localized Hardy
space in the sense of Goldberg, respectively, by means of the localized Hilbert transform
and localized molecules. In what follows, for any cube Q of Rn, we use `(Q) to denote its
side length, and let `(Rn) := ∞. Recall that

bmo (X) :=
{

f ∈ L1
loc (X) : ‖ f ‖ bmo (X) < ∞

}
,

where

‖ f ‖ bmo (X) := sup
Q

?
Q

∣∣∣ f (x) − fQ,c0

∣∣∣ dx

with

fQ,c0 :=

 fQ if `(Q) ∈ (0, c0),
0 if `(Q) ∈ [c0, `(X))

(13)

for some given c0 ∈ (0, `(X)), and the supremum taken over all cubes Q of X. Furthermore,
a well-known fact is that bmo (X) is independent of the choice of c0 (see, for instance, [54],
Lemma 6.1).

Proposition 4. Let X be Rn or a cube Q0 of Rn. Then,

[L∞(X)/C] ⊂ [ bmo (X)/C] ⊂ BMO (X) (14)

and

‖ · ‖BMO (X) ≤ 2 inf
c∈C
‖ ·+c‖ bmo (X) ≤ 4 inf

c∈C
‖ ·+c‖L∞(X). (15)
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Moreover,

[L∞(Rn)/C] $ [ bmo (Rn)/C] $ BMO (Rn) (16)

and, for any cube Q0 of Rn,

[L∞(Q0)/C] $ [ bmo (Q0)/C] = BMO (Q0) $
[
Lexp(Q0)/C

]
(17)

with
‖ · ‖BMO (Q0) ≤ 2 inf

c∈C
‖ ·+c‖ bmo (Q0) ≤ 4‖ · ‖BMO (Q0).

Proof. First, we prove (15). To this end, let f ∈ L1
loc (X). Then, for any c ∈ C and any cube

Q of X, ?
Q

∣∣∣ f (x) − fQ
∣∣∣ dx =

?
Q

∣∣∣[ f (x) + c] − ( f + c)Q
∣∣∣ dx

≤ 2
?

Q

∣∣∣ f (x) + c
∣∣∣ dx ≤ 2‖ f + c‖L∞(Q).

From this and the definitions of ‖ · ‖BMO (X) and ‖ · ‖ bmo (X), it follows that (15) holds
true, which further implies (14).

We now show (16). Indeed, let

g1(x) :=

log(|x|) if x ∈ Rn
\ {0},

0 if x = 0.

From [46] (Example 3.1.3), we deduce that g1 ∈ BMO (Rn). However, g1 < bmo (Rn)
because, for any M > max{c0, 1}, by the sphere coordinate changing method, we have?

B(0,M)

∣∣∣log(|x|)
∣∣∣ dx ∼ log(M),

which tends to infinity as M→ ∞. Thus, g1 ∈ BMO (Rn) \ [ bmo (Rn)/C], and hence we
have [ bmo (Rn)/C] $ BMO (Rn). Moreover, define

g2(x) :=

log(|x|) if |x| ∈ (0, 1),
0 if |x| ∈ {0}

⋃
[1,∞).

Notice that g2 < L∞(Rn) and g2 = max{g1, 0} ∈ BMO (Rn). Then, for any cube Q ⊂ Rn,
if `(Q) ∈ (0, c0), then ?

Q

∣∣∣g2(x) − (g2)Q
∣∣∣ dx ≤ ‖g2‖BMO (Rn);

if `(Q) ∈ [c0,∞), then?
Q

∣∣∣g2(x)
∣∣∣ dx ≤

?
B(0,1)

log(|x|) dx ∼ ‖g2‖L1(Rn) ∼ 1.

To summarize, ‖g2‖ bmo (Rn) . 1 + ‖g2‖BMO (Rn), which implies that g2 ∈ bmo (Rn)

and hence L∞(Rn) $ bmo (Rn). This shows (16).
We next prove (17). By the above example g2, we conclude that L∞(Q0) $ bmo (Q0).

Meanwhile, BMO (Q0) $ [Lexp(Q0)/C] was obtained in Proposition 2. Moreover, for any
given f ∈ BMO (Q0), we have f ∈ L1(Q0) and hence

inf
c∈C
‖ f − c‖ bmo (Q0)
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=


?

Q

∣∣∣ f (x) − fQ
∣∣∣ dx ≤ ‖ f ‖BMO (Q0) if `(Q) ∈ (0, c0),

inf
c∈C

?
Q
| f (x) − c| dx ≤ 2‖ f ‖BMO (Q0) if `(Q) ∈ [c0, `(Q0)),

≤ 2‖ f ‖BMO (Q0).

Combining this with the observations that [ bmo (Q0)/C] ⊂ BMO (Q0) and that,
for any c ∈ C,

‖ f ‖BMO (Q0) = ‖ f + c‖BMO (Q0) ≤ 2‖ f + c‖ bmo (Q0),

we find that [ bmo (Q0)/C] = BMO (Q0) and

‖ f ‖BMO (Q0) ≤ 2 inf
c∈C
‖ f + c‖ bmo (Q0) ≤ 4‖ f ‖BMO (Q0).

To summarize, we obtain (17). This finishes the proof of Proposition 4. �

Let f ∈ L1
loc (X). Similar to Proposition 3, let

‖ f ‖bmo1(X) := sup
cube Q⊂X

∥∥∥ f − fQ,c0

∥∥∥
Lexp(Q)

(18)

and

‖ f ‖bmo2(X) := inf

λ ∈ (0,∞) : sup
cube Q⊂X

?
Q

[
e
| f (x)− fQ,c0

|

λ − 1
]

dx ≤ 1

, (19)

where c0 ∈ (0, `(X)), and fQ,c0 is as in (13). To show that they are equivalent norms of
bmo (X), we first establish the following John–Nirenberg inequality for bmo (X), namely
Proposition 5 below. In what follows, for any given cube Q of Rn, (a1, . . . , an) denotes
the left and lower vertex of Q, which means that for any (x1, . . . , xn) ∈ Q, xi ≥ ai for any
i ∈ {1, . . . , n}. Recall that for any given cube Q of Rn, the dyadic system DQ of Q is defined by
setting

DQ :=
∞⋃

j=0

D
( j)
Q , (20)

where, for any j ∈ {0, 1, . . . }, D
( j)
Q denotes the set of all (x1, . . . , xn) ∈ Q, such that for any

i ∈ {1, . . . , n}, either
xi ∈

[
ai + ki2− j`(Q), ai + (ki + 1)2− j`(Q)

)
for some ki ∈ {0, 1, . . . , 2 j

− 2} or

xi ∈
[
ai + (1− 2− j)`(Q), ai + `(Q)

]
.

Proposition 5. Let f ∈ bmo (X) and c0 ∈ (0, `(X)). Then, there exist positive constants C5 and
C6, such that for any given cube Q ⊂ X and any t ∈ (0,∞),

∣∣∣∣{x ∈ Q : | f (x) − fQ,c0 | > t
}∣∣∣∣ ≤ C5e

−
C6

‖ f ‖ bmo (X)
t
|Q|. (21)

Proof. Indeed, this proof is a slight modification of the proof of [1] (Lemma 1) or [42]
(Theorem 6.11). We give some details here, again for the sake of completeness.
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Let f ∈ bmo (X). Then, from Proposition 4, we deduce that f ∈ BMO (X) with
‖ f ‖BMO (X) ≤ 2‖ f ‖ bmo (X), which further implies that for any cube Q ⊂ X with `(Q) < c0
and any t ∈ (0,∞),

D
(

f − fQ,c0 ; Q
)
(t) = D

(
f − fQ; Q

)
(t) ≤ C1e

−
C2

‖ f ‖BMO (X)
t
|Q|

≤ C1e
−

C2
2‖ f ‖ bmo (X)

t
|Q|,

where C1 and C2 are as in (4), and the distribution functionD is defined as in (3). Therefore,
to show (21), it remains to prove that for any given cube Q with `(Q) ≥ c0, and any
t ∈ (0,∞),

∣∣∣{x ∈ Q : | f (x)| > t
}∣∣∣ ≤ C5e

−
C6

‖ f ‖ bmo (X)
t
|Q|.

Notice that, in this case, there exists a unique m0 ∈ Z+ such that 2−(m0+1)`(Q) < c0 ≤

2−m0`(Q). Moreover, since inequality (21) is not altered when we multiply both f and
t by the same constant, without loss of generality, we may assume that ‖ f ‖ bmo (X) = 1.

Let Q0 be any given dyadic subcube of Q with level m0, namely Q0 ∈ D
(m0)
Q . Then,

by c0 ≤ 2−m0`(Q) = `(Q0) and the definition of ‖ f ‖ bmo (X), we have?
Q0

| f (x)| dx ≤ ‖ f ‖ bmo (X) = 1. (22)

From the Calderón–Zygmund decomposition (namely Theorem 1) of f with height
λ := 2, we deduce that there exists a family {Q1, j} j ⊂ D

(1)
Q0

, such that for any j,

2 <
?

Q1, j

| f (x)| dx ≤ 2n+1

and | f (x)| ≤ 2 when x ∈ Q \
⋃

j Q1, j. By this and (22), we conclude that∑
j

∣∣∣Q1, j
∣∣∣ ≤ 1

2

∑
j

∫
Q1, j

| f (x)| dx ≤
1
2

∫
Q0

| f (x)| dx ≤
1
2
|Q0|

and, for any j, ∣∣∣∣ fQ1, j

∣∣∣∣ ≤
∣∣∣∣∣∣∣
?

Q1, j

f (x) dx

∣∣∣∣∣∣∣ ≤ 2n+1.

Moreover, for any j, from the Calderón–Zygmund decomposition of f − fQ1, j with

height 2, we deduce that there exists a family {Q1, j,k}k ⊂ D
(1)
Q1, j

, such that for any k,

2 <
?

Q1, j,k

| f (x) − fQ1, j | dx ≤ 2n+1

and | f (x) − fQ1, j | ≤ 2 when x ∈ Q \
⋃

k Q1, j,k. Meanwhile, by the construction of {Q1, j} j, we

know that `(Q1, j) =
1
2`(Q0) = 2−(m0+1)`(Q), which, combined with the facts ‖ f ‖ bmo (X) = 1

and 2−(m0+1)`(Q) < c0, further implies that?
Q1, j

∣∣∣∣ f (x) − fQ1, j

∣∣∣∣ dx ≤ ‖ f ‖ bmo (X) = 1.
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Thus, we obtain, for any j,∑
k

∣∣∣Q1, j,k
∣∣∣ ≤ 1

2

∑
j

∫
Q1, j,k

| f (x) − fQ1, j | dx

≤
1
2

∫
Q1, j

| f (x) − fQ1, j | dx ≤
1
2
|Q1, j|

and, for any k, ∣∣∣∣ fQ1, j,k − fQ1, j

∣∣∣∣ ≤ ?
Q1, j,k

| f (x) − fQ1, j | dx ≤ 2n+1.

Rewrite
⋃

j,k{Q1, j,k} =:
⋃

j{Q2, j}. Then, we have∑
j

∣∣∣Q2, j
∣∣∣ ≤ 1

2

∑
j

∣∣∣Q1, j
∣∣∣ ≤ 1

4
|Q0|

and, for any x ∈ Q \
⋃

j Q2, j,

| f (x)| ≤
∣∣∣∣ f (x) − fQ1, j

∣∣∣∣+ ∣∣∣∣ fQ1, j

∣∣∣∣ ≤ 2 + 2n+1
≤ 2 · 2n+1.

Repeating this process, then, for any T ∈ N, we obtain a family {QT, j} j ⊂ DQ0 of disjoint
dyadic cubes, such that ∑

j

∣∣∣QT, j
∣∣∣ ≤ 2−T

|Q0|

and, for any x ∈ Q0 \
⋃

j QT, j,
| f (x)| ≤ T2n+1.

Notice that, for any t ∈ [2n+1,∞), there exists a unique T ∈ N, such that T2n+1
≤ t <

(T + 1)2n+1
≤ T2n+2. Therefore, we obtain

|{x ∈ Q0 : | f (x)| > t}| ≤
∑

j

∣∣∣QT, j
∣∣∣ ≤ 2−T

|Q0|

= e−T log 2
|Q0| ≤ e−C6t

|Q0|, (23)

where C6 := 2−(n+2) log 2. Furthermore, observe that if t ∈ (0, 2n+1), then C6t < 2−1 log 2
and hence

|{x ∈ Q0 : | f (x)| > t}| ≤ |Q0| ≤ e2−1 log 2−C6t
|Q0| = C5e−C6t

|Q0|,

where C5 :=
√

2. By this, (23), and the arbitrariness of Q0 ∈ D
(m0)
Q , we conclude that for any

t ∈ (0,∞),

|{x ∈ Q : | f (x)| > t}| =
∑

Q0∈D
(m0)
Q

|{x ∈ Q0 : | f (x)| > t}|

≤ C5e−C6t
∑

Q0∈D
(m0)
Q

|Q0| = C5e−C6t
|Q|

and hence (21) holds true. This finishes the proof of Proposition 5. �

As a corollary of Proposition 5, we have the following result: namely, ‖ · ‖bmo1(X) in (18)
and ‖ · ‖bmo2(X) in (19) are equivalent norms of bmo (X). The proof of Corollary 1 is just a
repetition of the proof of Proposition 3 with (4) replaced by (21); we omit the details here.
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Corollary 1. The following three statements are mutually equivalent:

(i) f ∈ bmo (X);
(ii) f ∈ L1

loc (X) and ‖ f ‖bmo1(X) < ∞;
(iii) f ∈ L1

loc (X) and ‖ f ‖bmo2(X) < ∞.

Moreover, ‖ · ‖ bmo (X) ∼ ‖ · ‖bmo1(X) ∼ ‖ · ‖bmo2(X).

2.2. John–Nirenberg Space JNp

Although there exist many fruitful studies of the space BMO in recent years, as was
mentioned before, the structure of JNp is largely a mystery, and there still exist many
unsolved problems on JNp. The first well-known property of JNp is the following John–
Nirenberg inequality obtained in [1] (Lemma 3), which says that JNp(Q0) is embedded into
the weak Lebesgue space Lp,∞(Q0) (see Definition 1).

Theorem 2 (John–Nirenberg). Let p ∈ (1,∞) and Q0 be a given cube of Rn. If f ∈ JNp(Q0),
then f − fQ0 ∈ Lp,∞(Q0), and there exists a positive constant C(n,p), depending only on n and p,
but independent of f , such that∥∥∥ f − fQ0

∥∥∥
Lp,∞(Q0)

≤ C(n,p)‖ f ‖JNp(Q0).

It should be mentioned that the proof of Theorem 2 relies on the Calderón–Zygmund
decomposition (namely Theorem 1) as well. Moreover, as an application of Theorem 2,
Dafni et al. recently showed in [31] (Proposition 5.1) that for any given p ∈ (1,∞) and
q ∈ [1, p), f ∈ JNp(Q0) if and only if f ∈ L1(Q0) and

‖ f ‖JNp,q(Q0) := sup

∑
i

|Qi|

(?
Qi

∣∣∣ f (x) − fQi

∣∣∣q dx
) p

q


1
p

< ∞,

where the supremum is taken in the same way as in (1); meanwhile, ‖ · ‖JNp(Q0) ∼ ‖ · ‖JNp,q(Q0).
Furthermore, in [31] (Proposition 5.1), Dafni et al. also showed that for any given p ∈ (1,∞)
and q ∈ [p,∞), the spaces JNp,q(Q0) and Lq(Q0) coincide as sets.

Remark 2.

(i) As a counterpart of Proposition 2, for any given p ∈ (1,∞) and any given cube Q0 of Rn, we
have

Lp(Q0) $ JNp(Q0) $ Lp,∞(Q0).

Indeed, Lp(Q0) ⊂ JNp(Q0) is obvious from their definitions; JNp(Q0) ⊂ Lp,∞(Q0) is just
Theorem 2; JNp(Q0) $ Lp,∞(Q0) was shown in [30] (Example 3.5); and the desired function
is just x−1/p on [0, 2]. However, the fact Lp(Q0) $ JNp(Q0) is extremely non-trivial and
was obtained in [31] (Proposition 3.2 and Corollary 4.2) via constructing a nice fractal
function based on skillful dyadic techniques. Moreover, in [31] (Theorem 1.1 and Remark 2.4),
Dafni et al. showed that for any given p ∈ (1,∞) and any given interval I0 ⊂ R, no matter
whether bounded or not, monotone functions are in JNp(I0) if and only if they are also in
Lp(I0). Thus, JNp(X) may be very “close” to Lp(X) for any given p ∈ (1,∞).

(ii) JN1(Q0) coincides with L1(Q0). To be precise, let Q0 be any given cube of Rn, and

JN1(Q0) :=
{

f ∈ L1(Q0) : ‖ f ‖JN1(Q0) < ∞
}
,

where ‖ f ‖JN1(Q0) is defined as in (1) with p replaced by 1. Then, we claim that JN1(Q0) =

[L1(Q0)/C] with equivalent norms. Indeed, for any f ∈ JN1(Q0), by the definition of
‖ f ‖JN1(Q0), we have

‖ f ‖JN1(Q0) ≥
∥∥∥ f − fQ0

∥∥∥
L1(Q0)

≥ inf
c∈C
‖ f + c‖L1(Q0)

=: ‖ f ‖L1(Q0)/C.
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Conversely, for any given f ∈ L1(Q0) and any c ∈ C, we have

‖ f ‖JN1(Q0) = sup
∑

i

∫
Qi

∣∣∣ f (x) − fQi

∣∣∣ dx

≤ 2 sup
∑

i

∫
Qi

∣∣∣ f (x) + c
∣∣∣ dx

≤ 2‖ f + c‖L1(Q0)
,

which implies that ‖ f ‖JN1(Q0) ≤ ‖ f ‖L1(Q0)/C and hence the above claim holds true. Moreover,
the relation between JN1(R) and L1(R) was studied in [33] (Proposition 2).

(iii) Garsia and Rodemich in [55] (Theorem 7.4) showed that for any given p ∈ (1,∞), f ∈ Lp,∞(Q0)

if and only if f ∈ L1(Q0) and

‖ f ‖GaRop(Q0) := sup
1

(
∑

i |Qi|)1/p′

∑
i

1
|Qi|

∫
Qi

∫
Qi

∣∣∣ f (x) − f (y)
∣∣∣ dx dy < ∞,

where the supremum is taken in the same way as in (1); meanwhile,

‖ · ‖Lp,∞(Q0) ∼ ‖ · ‖GaRop(Q0);

(see also [35], Theorem 5(ii), for this equivalence). Moreover, in [35] (Theorem 5(i)), Milman
showed that ‖ · ‖GaRop(Q0) ≤ 2‖ · ‖JNp(Q0).

Recall that the predual space of BMO (X) is the Hardy space H1(X) (see, for
instance, [5], Theorem B). Similar to this duality, Dafni et al. [31] also obtained the predual
space of JNp(Q0) for any given p ∈ (1,∞), which is denoted by the Hardy kind space
HKp′(Q0), here and thereafter 1/p+ 1/p′ = 1. Later, these properties, including equivalent
norms and duality, were further studied on several John–Nirenberg-type spaces, such as
John–Nirenberg–Campanato spaces, localized John–Nirenberg–Campanato spaces, congru-
ent John–Nirenberg–Campanato spaces (see Section 3 for more details), and Riesz-type
spaces (see Section 4 for more details).

Finally, let us briefly recall some other related studies concerning the John–Nirenberg
space JNp, which will not be stated in detail in this survey, although all of them are
quite instructive:

• Stampacchia [56] introduced the space N(p,λ), which coincides with JN(p,1,0)α(Q0) in
Definitions 3 if we write λ = pα with p ∈ (1,∞) and α ∈ (−∞,∞), and applied them
to the context of interpolation of operators.

• Campanato [57] also used the John–Nirenberg spaces to study the interpolation
of operators.

• In the context of doubling metric spaces, JNp and median-type JNp were studied,
respectively, by Aalto et al. in [30] and Myyryläinen in [58].

• Hurri-Syrjänen et al. [34] established a local-to-global result for the space JNp(Ω) on
an open subset Ω of Rn. More precisely, it was proved that the norm ‖ · ‖JNp(Ω) is
dominated by its local version ‖ · ‖JNp,τ(Ω) modulus constants; here, τ ∈ [1,∞); for any
open subset Ω of Rn, the related “norm” ‖ · ‖JNp(Ω) is defined in the same way as
‖ · ‖JNp(Q0) in (1) with Q0 replaced by Ω; and ‖ · ‖JNp,τ(Ω) is defined in the same way
as ‖ · ‖JNp(Ω) with an additional requirement τQ ⊂ Ω for all chosen cubes Q in the
definition of ‖ · ‖JNp(Ω).

• Marola and Saari [40] studied the corresponding results of Hurri-Syrjänen et al. [34] on
metric measure spaces and obtained the equivalence between the local and the global
JNp norms. Moreover, in both articles [34,40], a global John–Nirenberg inequality for
JNp(Ω) was established.
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• Berkovits et al. [32] applied the dyadic variant of JNp(Q0) in the study of self-improving
properties of some Poincaré-type inequalities. Later, the dyadic JNp(Q0) was further
studied by Kinnunen and Myyryläinen in [59].

• A. Brudnyi and Y. Brudnyi [60] introduced a class of function spaces Vκ([0, 1]n) which
coincides with JN(p,q,s)α([0, 1]n), defined below for suitable range of indices (see [61],
Proposition 2.9, for more details). Very recently, Domínguez and Milman [62] further
introduced and studied sparse Brudnyi and John–Nirenberg spaces.

• Blasco and Espinoza-Villalva [33] computed the concrete value of ‖1A‖JNp(R) for any
given p ∈ [1,∞] and any measurable set A ⊂ R of positive and finite Lebesgue measure,
where JN∞(R) := BMO (R).

• The JNp(Q0)-type norm ‖ · ‖GaRop(Q0) in Remark 2(iii) was further generalized and
studied in Astashkin and Milman [63] via the Strömberg–Jawerth–Torchinsky local
maximal operator.

3. John–Nirenberg–Campanato Space

The main target of this section is to summarize the main results of John–Nirenberg–
Campanato spaces, localized John–Nirenberg–Campanato spaces, and congruent John–
Nirenberg–Campanato spaces obtained, respectively, in [36,61,64]. Moreover, at the end of
each part, we list some open questions which are still unsolved so far. Now, we first recall
some definitions of some basic function spaces.

• For any s ∈ Z+ (the set of all non-negative integers), let Ps(Q) denote the set of all

polynomials of degree not greater than s on the cube Q, and P(s)
Q ( f ) denote the unique

polynomial of degree not greater than s, such that∫
Q

[
f (x) − P(s)

Q ( f )(x)
]
xγ dx = 0, ∀ |γ| ≤ s, (24)

where γ := (γ1, . . . ,γn) ∈ Zn
+ := (Z+)n, |γ| := γ1 + · · ·+ γn, and xγ := xγ1

1 · · · x
γn
n for

any x := (x1, . . . , xn) ∈ Rn.
• Let q ∈ [1,∞] and Q0 be a given cube of Rn. For any measurable function f , let

‖ f ‖Lq(Q0,|Q0 |−1dx) :=
[?

Q0

| f (x)|q dx
] 1

q

.

• Let q ∈ (1,∞), s ∈ Z+, and Q0 be a given cube ofRn. The space Lq(Q0, |Q0|
−1dx)/Ps(Q0)

is defined by setting

Lq(Q0, |Q0|
−1dx)/Ps(Q0) :=

{
f ∈ Lq(Q0) : ‖ f ‖Lq(Q0,|Q0 |−1dx)/Ps(Q0)

< ∞
}
,

where
‖ f ‖Lq(Q0,|Q0 |−1dx)/Ps(Q0)

:= inf
m∈Ps(Q0)

‖ f + m‖Lq(Q0,|Q0 |−1dx).

• For any given v ∈ [1,∞] and s ∈ Z+, and any measurable subset E ⊂ Rn, let

Lv
s (E) :=

{
f ∈ Lv(E) :

∫
E

f (x)xγ dx = 0, ∀γ ∈ Zn
+, |γ| ≤ s

}
.

Let Q be any given cube of Rn. It is well known that P(0)
Q ( f ) = fQ, and for any s ∈ Z+,

there exists a constant C(s) ∈ [1,∞), independent of f and Q, such that∣∣∣∣P(s)
Q ( f )(x)

∣∣∣∣ ≤ C(s)

?
Q
| f (x)| dx, ∀ x ∈ Q. (25)
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Indeed, let {ϕ(γ)
Q : γ ∈ Zn

+, |γ| ≤ s} denote the Gram–Schmidt orthonormalization of
{xγ : γ ∈ Zn

+, |γ| ≤ s} on the cube Q with respect to the weight 1/|Q|, namely for any γ, ν,

µ ∈ Zn
+ with |γ| ≤ s, |ν| ≤ s, and |µ| ≤ s, ϕ(γ)

Q ∈ Ps(Q) and

〈ϕ
(ν)
Q ,ϕ(µ)

Q 〉 :=
1
|Q|

∫
Q
ϕ
(ν)
Q (x)ϕ(µ)

Q (x) dx =

1, ν = µ,
0, ν , µ.

Then,
P(s)

Q ( f )(x) :=
∑

{γ∈Zn
+ : |γ|≤s}

〈ϕ
(γ)
Q , f 〉ϕ(γ)

Q (x), ∀ x ∈ Q,

and we can choose C(s) :=
∑
{γ∈Zn

+ : |γ|≤s} ‖ϕ
(γ)
Q ‖

2
L∞(Q)

satisfying (25) (see [65], p. 83, and [66],
p. 54, Lemma 4.1, for more details).

3.1. John–Nirenberg–Campanato Spaces

In this subsection, we first recall the definitions of Campanato spaces, John–Nirenberg–
Campanato spaces (for short, JNC spaces), and Hardy-type spaces, respectively, in
Definitions 2, 3, and 6 below. Moreover, we review some properties of JNC spaces and
Hardy-type spaces, including their limit spaces (Proposition 6 and Corollary 2 below),
relations with the Lebesgue space (Propositions 7 and 8 below), the dual result (The-
orem 3 below), the monotonicity over the first sub-index (Proposition 9 below), the
John–Nirenberg-type inequality (Theorem 4 below), and the equivalence over the second
sub-index (Propositions 10 and 11 below).

A general dual result for Hardy spaces was given by Coifman and Weiss [5] who
proved that for any given p ∈ (0, 1] and q ∈ [1,∞], and s being a non-negative integer not
smaller than n( 1

p − 1), the dual space of the Hardy space Hp(Rn) is the Campanato space
C 1

p−1, q, s(R
n), which was introduced by Campanato [67] and coincides with BMO (Rn)

when p = 1.

Definition 2. Let α ∈ [0,∞), q ∈ [1,∞), and s ∈ Z+.

(i) The Campanato space Cα,q,s(X) is defined by setting

Cα,q,s(X) :=
{

f ∈ Lq
loc (X) : ‖ f ‖Cα,q,s(X) < ∞

}
,

where

‖ f ‖Cα,q,s(X) := sup |Q|−α
[?

Q

∣∣∣∣ f − P(s)
Q ( f )

∣∣∣∣q] 1
q

and the supremum is taken over all cubes Q of X. In addition, the “norm” ‖ · ‖Cα,q,s(X) of
polynomials is zero, and for simplicity, the space Cα,q,s(X) is regarded as the quotient space
Cα,q,s(X)/Ps(X).

(ii) The dual space (Cα,q,s(X))∗ of Cα,q,s(X) is defined to be the set of all continuous linear
functionals on Cα,q,s(X) equipped with the weak-∗ topology.

In what follows, for any ` ∈ (0,∞), Q(0, `) denotes the cube centered at the origin 0
with side length `.

Remark 3. Let 0 < q ≤ p ≤ ∞. The Morrey space Mp
q(Rn), introduced by Morrey in [68], is

defined by setting

Mp
q(Rn) :=

{
f ∈ Lq

loc (R
n) : ‖ f ‖Mp

q(Rn) < ∞
}
,
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where, for any f ∈ Lq
loc (R

n),

‖ f ‖Mp
q(Rn) := sup

cube Q⊂Rn
|Q|

1
p

[?
Q
| f (y)|q dy

] 1
q

.

From Campanato ([67], Theorem 6.II), it follows that for any given q ∈ [1,∞) and α ∈ [− 1
q , 0),

and any f ∈ Cq,α,0(X),

‖ f ‖Cq,α,0(X) ∼
∥∥∥ f − σ( f )

∥∥∥
M−1/α

q (X)
, (26)

where the positive equivalence constants are independent of f , and

σ( f ) :=


lim
`→∞

1
|Q(0, `)|

∫
Q(0,`)

f (x) dx if X = Rn,

1
|Q0|

∫
Q0

f (x) dx if X = Q0;

see also Nakai [16], Theorem 2.1 and Corollary 2.3, for this conclusion on spaces of homogeneous
type. In addition, a surprising result says that in the definition of supremum ‖ · ‖Mp

q(Rn), if “cubes”
were changed into “measurable sets”, then the Morrey norm ‖ · ‖Mp

q(Rn) becomes an equivalent
norm of the weak Lebesgue space (see Definition 1). To be precise, for any given 0 < q < p < ∞,
f ∈ Lp,∞(Rn) if and only if f ∈ Lq

loc (R
n) and

‖ f ‖
M̃p

q(Rn)
:= sup

A⊂Rn, |A|∈(0,∞)

|A|
1
p

[?
A
| f (y)|q dy

] 1
q

< ∞;

moreover,

‖ · ‖Lp,∞(Rn) ≤ ‖ · ‖M̃p
q(Rn)

≤

(
p

p− q

) 1
q

‖ · ‖Lp,∞(Rn);

see, for instance, [69], p. 485, Lemma 2.8. Another interesting JNp-type equivalent norm of the
weak Lebesgue space was presented in Remark 2(iii).

Inspired by the relation between BMO and the Campanato space, as well as the relation
between BMO and JNp, Tao et al. [61] introduced a Campanato-type space JN(p,q,s)α(X) in
the spirit of the John–Nirenberg space JNp(Q0), which contains JNp(Q0) as a special case.
This John–Nirenberg–Campanato space is defined not only on any cube Q0 but also on the
whole space Rn.

Definition 3. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ R.

(i) The John–Nirenberg–Campanato space (for short, JNC space) JN(p,q,s)α(X) is defined by
setting

JN(p,q,s)α(X) :=
{

f ∈ Lq
loc (X) : ‖ f ‖JN(p,q,s)α (X)

< ∞
}
,

where

‖ f ‖JN(p,q,s)α (X)
:= sup


∑

i

|Qi|

|Qi|
−α

{?
Qi

∣∣∣∣ f (x) − P(s)
Qi
( f )(x)

∣∣∣∣q dx
} 1

q


p
1
p

,

P(s)
Qi
( f ) for any i is as in (24) with Q replaced by Qi, and the supremum is taken over all

collections of interior pairwise disjoint cubes {Qi}i ofX. Furthermore, the “norm” ‖ · ‖JN(p,q,s)α (X)
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of polynomials is zero, and for simplicity, the space JN(p,q,s)α(X) is regarded as the quotient
space JN(p,q,s)α(X)/Ps(X).

(ii) The dual space (JN(p,q,s)α(X))
∗ of JN(p,q,s)α(X) is defined to be the set of all continuous

linear functionals on JN(p,q,s)α(X) equipped with the weak-∗ topology.

Remark 4. In [61], the JNC space was introduced only for any given α ∈ [0,∞) to study its
relation with the Campanato space in Definition 2, and for any given p ∈ (1,∞) due to Remark 2(ii).
However, many results in [61] also hold true when α ∈ R and p = 1, just with some slight
modifications of their proofs. Thus, in this survey, we introduce the JNC space for any given α ∈ R
and p ∈ [1,∞) and naturally extend some related results with some identical proofs omitted.

The following proposition, which is just [61] (Proposition 2.6), means that the classical
Campanato space serves as a limit space of JN(p,q,s)α(X), similar to the Lebesgue spaces
L∞(X) and Lp(X) when p→∞.

Proposition 6. Let α ∈ [0,∞), q ∈ [1,∞), and s ∈ Z+. Then,

lim
p→∞

JN(p,q,s)α(X) = Cα,q,s(X)

in the following sense: for any f ∈
⋃

r∈[1,∞)
⋂

p∈[r,∞) JN(p,q,s)α(X),

lim
p→∞
‖ f ‖JN(p,q,s)α (X)

= ‖ f ‖Cα,q,s(X).

In Proposition 6, if we take X = Q0, we then have the following corollary, which is
just [61] (Corollary 2.8).

Corollary 2. Let q ∈ [1,∞), α ∈ [0,∞), s ∈ Z+, and Q0 be a given cube of Rn. Then,

Cα,q,s(Q0) =

 f ∈
⋂

p∈[1,∞)

JN(p,q,s)α(Q0) : lim
p→∞
‖ f ‖JN(p,q,s)α (Q0) < ∞


and for any f ∈ Cα,q,s(Q0),

‖ f ‖Cα,q,s(Q0) = lim
p→∞
‖ f ‖JN(p,q,s)α (Q0).

Remark 5.

(i) Let p ∈ (1,∞) and Q0 be a given cube of Rn. It is easy to show that

BMO (Q0) ⊂ JNp(Q0).

However, we claim that
BMO (Rn) * JNp(Rn).

Indeed, for the simplicity of the presentation, without loss of generality, we may show this claim
only in R. Let g(x) := log(|x|) for any x ∈ R \ {0}, and g(0) := 0. Then, g ∈ BMO (R)
due to [46] (Example 3.1.3), and hence it suffices to prove that g < JNp(R) for any given
p ∈ (1,∞). To do this, let It := (0, t) for any t ∈ (0,∞). Then, by some simple calculations,
we obtain

gIt =

?
It

g(x) dx =
1
t

∫ t

0
log(x) dx = log(t) − 1

and hence ∣∣∣∣∣{x ∈ It :
∣∣∣g(x) − gIt

∣∣∣ > 1
2

}∣∣∣∣∣
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=

∣∣∣∣∣{x ∈ (0, t) :
∣∣∣log(x) − [log(t) − 1]

∣∣∣ > 1
2

}∣∣∣∣∣
≥ t− te−

1
2 = t

(
1− e−

1
2

)
→∞

as t → ∞. However, the John–Nirenberg inequality of JNp(It) in Theorem 2 implies that
for any t ∈ (0,∞),∣∣∣∣∣{x ∈ It :

∣∣∣g(x) − gIt

∣∣∣ > 1
2

}∣∣∣∣∣ .
‖g‖JNp(It)

1
2

p

. ‖g‖p
JNp(R)

with the implicit positive constants depending only on p. Thus, g < JNp(R), and hence the
above claim holds true.

(ii) The predual counterpart of Corollary 2 is still unclear so far (see Question 2 below for more
details).

Obviously, JN(p,q,0)0
(Q0) is just JNp,q(Q0). From this and [31] (Proposition 5.1), we

deduce that when p ∈ (1,∞) and q ∈ [1, p), JN(p,q,0)0
(Q0) coincides with JNp(Q0) in the

sense of equivalent norms, and when p ∈ (1,∞) and q ∈ [p,∞), JN(p,q,0)0
(Q0) and Lq(Q0)

coincide as sets. Moreover, by adding a particular weight of |Q0|, the authors of this article
showed that the aforementioned coincidence (as sets) can be modified into equivalent norms
(see Proposition 7 below, which is just [61], Proposition 2.5). In what follows, for any given
positive constant A and any given function space (X, ‖ · ‖X), we write AX := {A f : f ∈ X}
with its norm defined by setting, for any A f ∈ AX, ‖A f ‖AX := A‖ f ‖X.

Proposition 7. Let p ∈ [1,∞), q ∈ [p,∞), s ∈ Z+, α = 0, and Q0 be a given cube of Rn. Then,[
|Q0|

−
1
p JN(p,q,s)α(Q0)

]
=

[
Lq(Q0, |Q0|

−1dx)/Ps(Q0)
]

with equivalent norms, namely

‖ f ‖Lq(Q0,|Q0 |−1dx)/Ps(Q0)
≤ |Q0|

−
1
p ‖ f ‖JN(p,q,s)0

(Q0)

≤ 2p− p
q
[
1 + C(s)

] p
q
‖ f ‖Lq(Q0,|Q0 |−1dx)/Ps(Q0)

,

where C(s) is as in (25).

It is a very interesting open question to find a counterpart of Proposition 7 when
α ∈ R \ {0} (see Question 1 below for more details).

Now, we review the predual of the John–Nirenberg–Campanato space via introducing
atoms, polymers, and Hardy-type spaces in order, which coincide with the same notation
as in [31] when u ∈ (1,∞), v ∈ (u,∞], and α = 0 = s (see [61], Remarks 3.4 and 3.8, for
more details). In particular, when α = 0, the (u, v, s)0-atom below is just the classic atom of
the Hardy space (see [61], Remark 3.2).

Definition 4. Let u, v ∈ [1,∞], s ∈ Z+, and α ∈ R. A function a is called a (u, v, s)α-atom on a
cube Q if

(i) supp (a) := {x ∈ Rn : a(x) , 0} ⊂ Q;

(ii) ‖a‖Lv(Q) ≤ |Q|
1
v−

1
u−α;

(iii)
∫

Q a(x)xγ dx = 0 for any γ ∈ Zn
+ with |γ| ≤ s.
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In what follows, for any u ∈ [1,∞], let u′ denote its conjugate index, namely 1/u+ 1/u′ =
1, and for any {λ j} j ⊂ C, let

∥∥∥{λ j} j
∥∥∥
`u :=



∑
j

|λ j|
u


1
u

when u ∈ [1,∞),

sup
j
|λ j| when u = ∞.

(27)

Definition 5. Let u, v ∈ [1,∞], s ∈ Z+, and α ∈ R. The space of (u, v, s)α-polymers, denoted
by H̃K(u,v,s)α(X), is defined to be the set of all g ∈ (JN(u′,v′,s)α(X))

∗ satisfying that there exist
(u, v, s)α-atoms {a j} j supported, respectively, in interior pairwise disjoint cubes {Q j} j of X, and
{λ j} j ⊂ C with |λ j|

u < ∞, such that

g =
∑

j

λ ja j

in (JN(u′,v′,s)α(X))
∗. Moreover, any g ∈ H̃K(u,v,s)α(X) is called a (u, v, s)α-polymer with its norm

‖g‖H̃K(u,v,s)α (X)
defined by setting

‖g‖H̃K(u,v,s)α (X)
:= inf

∥∥∥{λ j} j
∥∥∥
`u ,

where the infimum is taken over all decompositions of g as above.

Definition 6. Let u, v ∈ [1,∞], s ∈ Z+, and α ∈ R. The Hardy-type space HK(u,v,s)α(X) is
defined by setting

HK(u,v,s)α(X) :=

g ∈ (JN(u′,v′,s)α(X))
∗ : g =

∑
i

gi in (JN(u′,v′,s)α(X))
∗,

{gi}i ⊂ H̃K(u,v,s)α(X), and
∑

i

∥∥∥gi
∥∥∥

H̃K(u,v,s)α (X)
< ∞


and for any g ∈ HK(u,v,s)α(X), let

‖g‖HK(u,v,s)α (X)
:= inf

∑
i

‖gi‖H̃K(u,v,s)α (X)
,

where the infimum is taken over all decompositions of g as above. Moreover, the finite atomic
Hardy-type space HKfin

(u,v,s)α
(X) is defined to be the set of all finite summations

∑M
m=1 λmam,

where M ∈ N, {λm}
M
m=1 ⊂ C, and {am}

M
m=1 are (u, v, s)α-atoms.

The significant dual relation between JN(p,q,s)α(X) and HK(p′,q′,s)α(X) reads as follows,
which is just [61] (Theorem 3.9) with α ∈ [0,∞) replaced by α ∈ R (this makes sense because
the crucial lemma ([61], Lemma 3.12) still holds true with the corresponding replacement).

Theorem 3. Let p, q ∈ (1,∞), 1/p = 1/p′ = 1 = 1/q + 1/q′, s ∈ Z+, and α ∈ R. Then,
(HK(p′,q′,s)α(X))

∗ = JN(p,q,s)α(X) in the following sense:

(i) If f ∈ JN(p,q,s)α(X), then f induces a linear functional L f on HK(p′,q′,s)α(X) and

‖L f ‖(HK(p′ ,q′ ,s)α (X))
∗ ≤ C‖ f ‖JN(p,q,s)α (X)

,

where C is a positive constant independent of f .
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(ii) If L ∈ (HK(p′,q′,s)α(X))
∗, then there exists an f ∈ JN(p,q,s)α(X), such that for any g ∈

HKfin
(p′,q′,s)α

(X),

L(g) =
∫
X

f (x)g(x) dx,

and
‖L‖(HK(p′ ,q′ ,s)α (X))

∗ ∼ ‖ f ‖JN(p,q,s)α (X)

with the positive equivalence constants independent of f .

When X := Q0, α = 0 = s, and q ∈ [1, p), by [61] (Remark 3.10 and Proposition 10), we
know that Theorem 3 in this case coincides with [31] (Theorem 6.6). As an application of
Theorem 3, the authors obtained the following atomic characterization of Lq′

s (Q0) for any
given q′ ∈ (1,∞) and s ∈ Z+, which is just [61] (Corollary 3.13).

Proposition 8. Let p ∈ (1,∞), q ∈ [p,∞), 1/p = 1/p′ = 1 = 1/q + 1/q′, s ∈ Z+, and Q0 be a
given cube of Rn. Then,

Lq′
s (Q0, |Q0|

q′−1dx) = |Q0|
1
p HK(p′,q′,s)0

(Q0)

with equivalent norms.

From Theorem 2 and [47] (p. 14, Exercise 1.1.11), we deduce that for any 1 < p1 < p2 < ∞,

JNp2(Q0) ⊂ Lp2,∞(Q0) ⊂ Lp1(Q0) ⊂ JNp1(Q0).

Moreover, it is easy to show the following monotonicity over the first sub-index of
both JN(p,q,s)α(Q0) and HK(u,v,s)α(Q0).

Proposition 9. Let s ∈ Z+ and Q0 be a given cube of Rn.

(i) Let 1 < u1 < u2 < ∞. If v ∈ (1,∞) and α ∈ R, or v = ∞ and α ∈ [0,∞), then

HK(u2,v,s)α(Q0) ⊂ HK(u1,v,s)α(Q0)

and
‖ · ‖HK(u1,v,s)α (Q0) ≤ |Q0|

1
u1
−

1
u2 ‖ · ‖HK(u2,v,s)α (Q0).

(ii) Let 1 < p1 < p2 < ∞. If q ∈ (1,∞) and α ∈ R, or q = 1 and α ∈ [0,∞), then

JN(p2,q,s)α(Q0) ⊂ JN(p1,q,s)α(Q0)

and there exists some positive constant C, such that

‖ · ‖JN(p1,q,s)α (Q0) ≤ C|Q0|
1

p1
−

1
p2 ‖ · ‖JN(p2,q,s)α (Q0).

Proof. (i) is a direct corollary of the fact that for any (u2, v, s)α-atom a on the cube Q,

|Q|
1

v2
−

1
v1 a

is a (u1, v, s)α-atom (see [36], Remark 5.5, for more details).
(ii) is a direct consequence of the Jensen inequality (see, for instance, [61], Remark 4.2(ii)).

This finishes the proof of Proposition 9. �

Now, we consider the independence over the second sub-index, which strongly relies
on the John–Nirenberg inequality as in the BMO case. The following John–Nirenberg-type
inequality is just [61] (Theorem 4.3), which coincides with Theorem 2 when α = 0 = s.
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Theorem 4. Let p ∈ (1,∞), s ∈ Z+,α ∈ [0,∞), and Q0 be a given cube ofRn. If f ∈ JN(p,1,s)α(Q0),

then f − P(s)
Q0
( f ) ∈ Lp,∞(Q0), and there exists a positive constant C(n,p,s), depending only on n, p,

and s, but independent of f , such that∥∥∥∥ f − P(s)
Q0
( f )

∥∥∥∥
Lp,∞(Q0)

≤ C(n,p,s)|Q0|
α
‖ f ‖JN(p,1,s)α (Q0).

It should be mentioned that the main tool used in the proof of Theorem 4 is the
following good-λ inequality (namely, Lemma 2 below), which is just [61] (Lemma 4.6) (see
also [30], Lemma 4.5, when s = 0). Recall that for any given cube Q0 of Rn, the dyadic
maximal operatorM(d)

Q0
is defined by setting, for any given g ∈ L1(Q0) and any x ∈ Q0,

M
(d)
Q0

(g)(x) := sup
Q∈DQ0 , Q3x

1
|Q|

∫
Q
|g(x)| dx,

whereDQ0 is as in (20) with Q replaced by Q0, and the supremum is taken over all dyadic
cubes Q ∈ DQ0 and Q 3 x.

Lemma 2. Let p ∈ (1,∞), s ∈ Z+, C(s) ∈ [1,∞) be as in (25), θ ∈ (0, 2−nC−1
(s)), Q0 be a given

cube of Rn, and f ∈ JN(p,1,s)0
(Q0). Then, for any real number λ > 1

θ

>
Q0
| f − P(s)

Q0
( f )|,∣∣∣∣∣{x ∈ Q0 : M(d)

Q0

(
f − P(s)

Q0
( f )

)
(x) > λ

}∣∣∣∣∣
≤

‖ f ‖JN(p,1,s)0
(Q0)

[1− 2nθC(s)]λ

∣∣∣∣∣{x ∈ Q0 : M(d)
Q0

(
f − P(s)

Q0
( f )

)
(x) > θλ

}∣∣∣∣∣ 1
p′

.

Moreover, based on Theorem 4 in [61] (Proposition 4.1), Tao et al. further obtained the
following independence over the second sub-index of JN(p,q,s)α(X).

Proposition 10. Let 1 ≤ q < p < ∞, s ∈ Z+, and α ∈ [0,∞). Then,

JN(p,q,s)α(X) = JN(p,1,s)α(X)

with equivalent norms.

Furthermore, the following independence over the second sub-index of HK(u,v,s)α(X)
is just [61] (Proposition 4.7), whose proof is based on Theorem 3 and Proposition 10.

Proposition 11. Let 1 < u < v ≤ ∞, s ∈ Z+, and α ∈ [0,∞). Then,

HK(u,v,s)α(X) = HK(u,∞,s)α(X)

with equivalent norms.

In particular, when α = 0 = s, Propositions 10 and 11 were obtained, respectively,
in [31] (Propositions 5.1 and 6.4).

Combining Theorem 3 and Propositions 10 and 11, we immediately have the following
corollary; we omit the details here.

Corollary 3. Let p ∈ (1,∞), s ∈ Z+, and α ∈ [0,∞). Then, (HK(p′,∞,s)α(X))
∗ = JN(p,1,s)α(X).

Finally, we list some open questions.
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Question 1. For any given cube Q0 of Rn, by [61] (Remark 4.2(ii)) with slight modifications, we
know that

(i) for any given p ∈ [1,∞) and s ∈ Z+,

JN(p,q,s)0
(Q0) =

JN(p,1,s)0
(Q0), q ∈ [1, p),

JN(q,q,s)0
(Q0), q ∈ [p,∞);

(ii) for any given p ∈ [1,∞), q ∈ [p,∞), s ∈ Z+, and α ∈ R,

JN(q,q,s)α(Q0) ⊂ JN(p,q,s)α(Q0)

and [
|Q0|

−
1
p ‖ f ‖JN(p,q,s)α (Q0)

]
≤

[
|Q0|

−
1
q ‖ f ‖JN(q,q,s)α (Q0)

]
;

(iii) for any given p ∈ [1,∞), q ∈ [p,∞), s ∈ Z+, and α ∈ ( s+1
n ,∞),

JN(q,q,s)α(Q0) = Ps(Q0) = JN(p,q,s)α(Q0).

However, letting RMp,q,α(X) denote the Riesz–Morrey space in Definition 14, it is still unknown
whether or not

(i) for any given p ∈ [1,∞), q ∈ [p,∞), s ∈ Z+, and α ∈ (−∞, s+1
n ] \ {0},

JN(p,q,s)α(Q0) = JN(q,q,s)α(Q0) or JN(p,q,s)α(Q0) =
[
RMp,q,α(Q0)/Ps(Q0)

]
holds true;

(ii) for any given p ∈ [1,∞), q ∈ [p,∞), s ∈ Z+, and α ∈ R,

JN(p,q,s)α(R
n) = JN(q,q,s)α(R

n) or JN(p,q,s)α(R
n) =

[
RMp,q,α(Rn)/Ps(Rn)

]
holds true, where Ps(Rn) denotes the set of all polynomials of degree not greater than s on Rn.

Question 2. Let 1 < u1 < u2 < ∞, v ∈ (1,∞], s ∈ Z+, and Q0 be a given cube of Rn. From
Proposition 9(i), we deduce that

HK(u2,v,s)0
(Q0) ⊂ HK(u1,v,s)0

(Q0)

and
‖ · ‖HK(u1,v,s)0

(Q0) ≤

[
|Q0|

1
u1
−

1
u2 ‖ · ‖HK(u2,v,s)0

(Q0)

]
.

Moreover, by [61] (Remark 4.2(iii)) and [36] (Proposition 5.7), we find that for any u ∈ [1,∞),

HK(u,v,s)0
(Q0) ⊂ H1,v,s

at (Q0)

and for any g ∈
⋃

u∈[1,∞) HK(u,v,s)0
(Q0),

‖g‖H1,v,s
at (Q0)

≤ lim inf
u→1+

‖g‖HK(u,v,s)0
(Q0),

where H1,v,s
at (X) denotes the atomic Hardy space (see Coifman and Weiss [5], and also [61],

Remark 3.2(ii), for its definition). Here and thereafter, u → 1+ means u ∈ (1,∞) and u → 1.
However, for any given v ∈ (1,∞], s ∈ Z+, α ∈ [0,∞), and any given cube Q0 of Rn,

(i) it is still unknown whether or not for any g ∈
⋃

u∈[1,∞) HK(u,v,s)α(Q0),

‖g‖
H

1
α+1 ,v,s
at (Q0)

= lim
u→1+

‖g‖HK(u,v,s)α (Q0)
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holds true;

(ii) it is interesting to clarify the relation between
⋃

u∈[1,∞) HK(u,v,s)α(Q0) and H
1

α+1 ,v,s
at (Q0).

The last question in this subsection is on an interpolation result in [56]. We first recall
some notation in [56]. Let p ∈ (1,∞), λ ∈ R, and Q0 be a given cube of Rn. The space
N(p,λ)(Q0) is defined by setting

N(p,λ)(Q0) :=
{
u ∈ L1(Q0) : [u]N(p,λ)(Q0)

< ∞
}
,

where

[u]N(p,λ)(Q0) := sup

∑
i

∣∣∣∣∣∣
∫

Qi

|u(x) − uQi | dx

∣∣∣∣∣∣p|Qi|
1−p−λ


1/p

and the supremum is taken over all collections of interior pairwise disjoint cubes {Qi}i
of Q0, and uQi is the mean of u over Qi for any i. Let F (Q0) denote the set of all simple
functions on Q0.

Definition 7 ([56], Definition 3.1). A linear operator T defined on F (Q0) is said to be of strong
type N[p, (q,µ)] if there exists a positive constant K, such that for any u ∈ F (Q0),

[Tu]N(q,µ)(Q0)
≤ K‖u‖Lp(Q0);

the smallest of the constant K for which the above inequality holds true is called the strong
N[p, (q,µ)]-norm.

Theorem 5 ([56], Theorem 3.1). Let [pi, qi,µi] be real numbers, such that pi, qi ∈ [1,∞) for
any i ∈ {1, 2}. If T is a linear operator which is simultaneously of strong type N[pi, (qi,µi)] with
respective norms Ki (i ∈ {1, 2}), then T is of strong type N[pt, (qt,µ)], where

1
pt

:=
1− t
p1

+
t

p2
,

1
qt

:=
1− t
q1

+
t

q2
µ

q
= (1− t)

µ1

q1
for t ∈ [0, 1].

Moreover, for any t ∈ [0, 1],

[Tu]N[pt,(qt,µ)] ≤ K1−t
1 Kt

2‖u‖Lp(Q0).

The theorem also holds true in the limit case p1 = ∞ and 1
q1

= µ1 = 0.

Question 3. In the proof of Theorem 5, lines 1–3 of [56] (p. 454), the author applied [56] (Lemma 2.3)
with

F[u, v, S] :=
∑

i

∫
Qi

[
u(y) − uQi

]
v dy|Qi|

−λ/pt

replaced by

Φ(S, t) :=
∑

i

∫
Qi

[
T(ũ(y, t)) − (Tũ)Qi

]
ṽ(y, t) dy|Qi|

−µ(t)β(t).

Therefore, by the proof of [56] (Lemma 2.3), we need to choose a function ṽ satisfying that
for any i, there exists some constant ci, such that

ṽ(y, t) = ci
{
sign

[
T(ũ(y, t)) − (Tũ)Qi

]}
(28)
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in Qi. Meanwhile, from the definition of ṽ (see line 3 of [56], p. 452), it follows that

ṽ(y, t) = |v(y)|[1−β(t)]q
′

t eiargv(y) (29)

for some simple function v ∈ F (Q0), where 1/qt + 1/q′t = 1. To summarize, we need to find a
simple function v, such that both (28) and (29) hold true, which seems unreasonable because Tũ
may behave so badly even though both u and ũ are simple functions. Thus, the proof of Theorem 5
in [56] seems problematic. It is interesting to check whether or not Theorem 5 is really true.

3.2. Localized John–Nirenberg–Campanato Spaces

As a combination of the JNC space and the localized BMO space in Section 2.1,
Sun et al. [36] studied the localized John–Nirenberg–Campanato space, which is new even
in a special case: localized John–Nirenberg spaces. Now, we recall the definition of the
localized Campanato space, which was first introduced by Goldberg in [50] (Theorem 5).
In what follows, for any s ∈ Z+ and c0 ∈ (0, `(X)), let

P(s)
Q,c0

( f ) :=

P(s)
Q ( f ), `(Q) < c0,

0, `(Q) ≥ c0,

where P(s)
Q ( f ) is as in (24).

Definition 8. Let q ∈ [1,∞), s ∈ Z+, and α ∈ [0,∞). Fix c0 ∈ (0, `(X)). The local Campanato
space Λ(α,q,s)(X) is defined to be the set of all functions f ∈ Lq

loc (X), such that

‖ f ‖Λ(α,q,s)(X)
:= sup|Q|−α

[?
Q

∣∣∣∣ f (x) − P(s)
Q,c0

( f )(x)
∣∣∣∣q dx

] 1
q

< ∞,

where the supremum is taken over all cubes Q of X.

Fix the constant c0 ∈ (0, `(X)). In Definition 3, if P(s)
Q j
( f )were replaced by P(s)

Q j,c0
( f ), then

we obtain the following localized John–Nirenberg–Campanato space. As was mentioned in
Remark 4, we naturally extend the ranges of α and p, similar to Section 3.1; we omit some
identical proofs.

Definition 9. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ R. Fix the constant c0 ∈ (0, `(X)). The
local John–Nirenberg–Campanato space jn(p,q,s)α,c0

(X) is defined to be the set of all functions

f ∈ Lq
loc (X), such that

‖ f ‖ jn(p,q,s)α,c0
(X) := sup

∑
j∈N

∣∣∣Q j
∣∣∣
∣∣∣Q j

∣∣∣−α?
Q j

∣∣∣∣∣ f (x) − P(s)
Q j,c0

( f )(x)
∣∣∣∣∣q dx


1
q


p

1
p

is finite, where the supremum is taken over all collections of interior pairwise disjoint cubes {Q j} j∈N
of X. Moreover, the dual space ( jn(p,q,s)α,c0

(X))∗ of jn(p,q,s)α,c0
(X) is defined to be the set of all

continuous linear functionals on jn(p,q,s)α,c0
(X) equipped with the weak-∗ topology.

Remark 6. Notice that the Campanato space and the John–Nirenberg–Campanato space are quotient
spaces, while their localized versions are not.

Furthermore, in [36] (Proposition 2.5), Sun et al. showed that jn(p,q,s)α,c0
(X) in

Definition 9 is independent of the choice of the positive constant c0. Therefore, in what
follows, we write

jn(p,q,s)α(X) := jn(p,q,s)α,c0
(X).
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In particular, if q = 1 and s = 0 = α, then jn(p,q,s)α(X) becomes the local John–Nirenberg space

jnp(X) := jn(p,1,0)0
(X).

The following Banach structure of jn(p,q,s)α(X) is just [36] (Proposition 2.7).

Proposition 12. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ R. Then, jn(p,q,s)α(X) is a Banach space.

In what follows, the space jn(p,q,s)α(Q0)/Ps(Q0) is defined by setting

jn(p,q,s)α(Q0)/Ps(Q0) :=
{

f ∈ jn(p,q,s)α(Q0) : ‖ f ‖ jn(p,q,s)α (Q0)/Ps(Q0) < ∞
}
,

where
‖ f ‖ jn(p,q,s)α (Q0)/Ps(Q0) := inf

a∈Ps(Q0)
‖ f + a‖ jn(p,q,s)α (Q0);

the space JN(p,q,s)α(X)∩ Lp(X) is defined by setting

JN(p,q,s)α(X)∩ Lp(X) :=
{

f ∈ L1
loc (X) : ‖ f ‖JN(p,q,s)α (X)∩Lp(X) < ∞

}
,

where
‖ f ‖JN(p,q,s)α (X)∩Lp(X) := max

{
‖ f ‖JN(p,q,s)α (X)

, ‖ f ‖Lp(X)

}
.

Moreover, the relations between jn(p,q,s)α(X) and JN(p,q,s)α(X), namely the following
Propositions 13 and 14, are just [36] (Propositions 2.9 and 2.10), respectively.

Proposition 13. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ R. Then,

(i) jn(p,q,s)α(X) ⊂ JN(p,q,s)α(X);
(ii) if Q0 is a given cube of Rn, then JN(p,q,s)α(Q0) = jn(p,q,s)α(Q0)/Ps(Q0) with equivalent

norms;
(iii) Lp(R) $ jnp(R) $ JNp(R) if p ∈ (1,∞).

Proposition 14. Let p ∈ [1,∞), q ∈ [1, p], s ∈ Z+, and α ∈ (0,∞). Then,

jn(p,q,s)α(X) =
[
JN(p,q,s)α(X)∩ Lp(X)

]
(30)

with equivalent norms.

Furthermore, observe that Proposition 14 is the counterpart of [51] (Theorem 4.1),
which says that for any α ∈ (0,∞), q ∈ [1,∞), and s ∈ Z+,

Λ(α,q,s)(X) =
[
C(α,q,s)(X)∩ L∞(X)

]
.

However, the case q ∈ [p,∞) in Proposition 14 is unclear so far (see Question 5 below).
As an application of Propositions 13(ii) and 14, we have the following result.

Proposition 15. Let p ∈ [1,∞), q ∈ [1, p], s ∈ Z+, α ∈ (0,∞), and Q0 be a given cube of Rn.
Then,

JN(p,q,s)α(Q0) ⊂ [Lp(Q0)/Ps(Q0)].

Proof. Let p, q, s, α, and Q0 be as in this proposition. Then, by Propositions 13(ii) and 14,
we obtain

JN(p,q,s)α(Q0) =
[
jn(p,q,s)α(Q0)/Ps(Q0)

]
=

{
JN(p,q,s)α(Q0)∩ [Lp(Q0)/Ps(Q0)]

}
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and

‖ · ‖JN(p,q,s)α (Q0) ∼ inf
a∈Ps(Q0)

‖ ·+a‖ jn(p,q,s)α (Q0)

∼ max
{
‖ · ‖JN(p,q,s)α (Q0), inf

a∈Ps(Q0)
‖ ·+a‖Lp(Q0)

}
.

This implies that JN(p,q,s)α(Q0) ⊂ [Lp(Q0)/Ps(Q0)] with

inf
a∈Ps(Q0)

‖ ·+a‖Lp(Q0) . ‖ · ‖JN(p,q,s)α (Q0),

which completes the proof of Proposition 15. �

Propositions 16 and 17 below are just, respectively, [36] (Propositions 2.12 and 2.13),
which show that the localized Campanato space is the limit of the localized John–Nirenberg–
Campanato space.

Proposition 16. Let q ∈ [1,∞), s ∈ Z+, α ∈ [0,∞), and Q0 be a given cube of Rn. Then, for any
f ∈ L1(Q0),

‖ f ‖Λ(α,q,s)(Q0) = lim
p→∞
‖ f ‖ jn(p,q,s)α (Q0).

Moreover,

Λ(α,q,s)(Q0) =

 f ∈
⋂

p∈[1,∞)

jn(p,q,s)α(Q0) : lim
p→∞
‖ f ‖ jn(p,q,s)α (Q0) < ∞

.

Proposition 17. Let q ∈ [1,∞), s ∈ Z+, and α ∈ [0,∞). Then,

lim
p→∞

jn(p,q,s)α(R
n) = Λ(α,q,s)(Rn)

in the following sense: if f ∈ jn(p,q,s)α(R
n)∩Λ(α,q,s)(Rn), then

f ∈
⋂

r∈[p,∞)

jn(r,q,s)α(R
n)

and
‖ f ‖Λ(α,q,s)(Rn) = lim

r→∞
‖ f ‖ jn(r,q,s)α (Rn).

As in Proposition 10, the following invariance of jn(p,q,s)α(X) on its indices in the
appropriate range is just [36] (Proposition 3.1).

Proposition 18. Let p ∈ (1,∞), q ∈ [1, p), s ∈ Z+, and α ∈ [0,∞). Then,

jn(p,q,s)α(X) = jn(p,1,s)α(X)

with equivalent norms.

In other ranges of indices, namely q ≥ p, the following relation between jn(p,q,s)α(X)
and the Lebesgue space is just [36] (Proposition 3.4).

Proposition 19. Let s ∈ Z+ and Q0 be a given cube of Rn.

(i) If 1 ≤ p ≤ q < ∞, then [|Q0|
1
q−

1
p jn(p,q,s)0

(Q0)] = Lq(Q0) with equivalent norms.
(ii) If p ∈ [1,∞), then jn(p,p,s)0

(Rn) = Lp(Rn) with equivalent norms.
(iii) If p, q ∈ [1,∞), α ∈ (−∞, 1

p −
1
q ), and f ∈ jn(p,q,s)α(R

n), then f = 0 almost everywhere.
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Using the localized atom, Sun et al. [36] introduced the localized Hardy-type space
and showed that this space is the predual of the localized John–Nirenberg–Campanato
space. First, recall the definitions of localized atoms, localized polymers, and localized
Hardy-type spaces in order as follows.

Definition 10. Let v, w ∈ [1,∞], s ∈ Z+, and α ∈ R. Fix c0 ∈ (0, `(X)), and let Q denote a cube
of Rn. Then, a function a on Rn is called a local (v, w, s)α,c0 -atom supported in Q if

(i) supp (a) := {x ∈ Rn : a(x) , 0} ⊂ Q;

(ii) ‖a‖Lw(Q) ≤ |Q|
1
w−

1
v−α;

(iii) when `(Q) < c0,
∫

Q a(x)xβdx = 0 for any β ∈ Zn
+ and |β| ≤ s.

Definition 11. Let v, w ∈ [1,∞], s ∈ Z+, α ∈ R, and c0 ∈ (0, `(X)). The space h̃k(v,w,s)α,c0
(X)

is defined to be the set of all g ∈ ( jn(v′,w′,s)α,c0
(X))∗, such that

g =
∑
j∈N

λ ja j

in ( jn(v′,w′,s)α,c0
(X))∗, where 1/v + 1/v′ = 1 = 1/w + 1/w′, {a j} j∈N are local (v, w, s)α,c0 -atoms

supported, respectively, in interior pairwise disjoint subcubes {Q j} j∈N of X, and {λ j} j∈N ⊂ C with
‖{λ j} j∈N‖`v < ∞ (see (27) for the definition of ‖ · ‖`v). Any g ∈ h̃k(v,w,s)α,c0

(X) is called a local
(v, w, s)α,c0 -polymer on X, and let

‖g‖h̃k(v,w,s)α,c0
(X)

:= inf
∥∥∥{λ j} j∈N

∥∥∥
`v ,

where the infimum is taken over all decompositions of g as above.

Definition 12. Let v, w ∈ [1,∞], s ∈ Z+, α ∈ R, and c0 ∈ (0, `(X)). The local Hardy-type
space hk(v,w,s)α,c0

(X) is defined to be the set of all g ∈ ( jn(v′,w′,s)α,c0
(X))∗, such that there exists a

sequence {gi}i∈N ⊂ h̃k(v,w,s)α,c0
(X) satisfying that

∑
i∈N ‖gi‖h̃k(v,w,s)α,c0

(X)
< ∞ and

g =
∑
i∈N

gi (31)

in ( jn(v′,w′,s)α,c0
(X))∗. For any g ∈ hk(v,w,s)α,c0

(X), let

‖g‖hk(v,w,s)α,c0
(X) := inf

∑
i∈N
‖gi‖h̃k(v,w,s)α,c0

(X)
,

where the infimum is taken over all decompositions of g as in (31).

Correspondingly, hk(v,w,s)α,c0
(X) is independent of the choice of the positive constant

c0 as well, which is just [36] (Proposition 4.7).

Proposition 20. Let v ∈ (1,∞), w ∈ (1,∞], s ∈ Z+, α ∈ R, and 0 < c1 < c2 < `(X). Then,
hk(v,w,s)α,c1

(X) = hk(v,w,s)α,c2
(X) with equivalent norms.

Henceforth, we simply write

local (v, w, s)α,c0−atoms, h̃k(v,w,s)α,c0
(X), and hk(v,w,s)α,c0

(X),

respectively, as

local (v, w, s)α−atoms, h̃k(v,w,s)α(X), and hk(v,w,s)α(X).
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The corresponding dual theorem (namely Theorem 6 below) is just [36] (Theorem 4.11).
In what follows, the space hkfin

(v,w,s)α
(X) is defined to be the set of all finite linear combinations

of local (v, w, s)α-atoms supported, respectively, in cubes of X.

Theorem 6. Let v, w ∈ (1,∞), 1/v + 1/v′ = 1 = 1/w + 1/w′ = 1, s ∈ Z+, and α ∈ R. Then,
jn(v′,w′,s)α(X) = (hk(v,w,s)α(X))

∗ in the following sense:

(i) For any given f ∈ jn(v′,w′,s)α(X), the linear functional

L f : g 7−→
〈
L f , g

〉
:=

∫
X

f (x)g(x) dx, ∀ g ∈ hkfin
(v,w,s)α

(X)

can be extended to a bounded linear functional on hk(v,w,s)α(X). Moreover, it holds true that
‖L f ‖(hk(v,w,s)α (X))

∗ ≤ ‖ f ‖ jn(v′ ,w′ ,s)α (X)
.

(ii) Any bounded linear functional L on hk(v,w,s)α(X) can be represented by a function f ∈
jn(v′,w′,s)α(X) in the following sense:

〈
L, g

〉
=

∫
X

f (x)g(x) dx, ∀ g ∈ hkfin
(v,w,s)α

(X).

Moreover, there exists a positive constant C, depending only on s, such that ‖ f ‖ jn(v′ ,w′ ,s)α (X)
≤

C‖L‖(hk(v,w,s)α (X))
∗ .

As a corollary of Theorem 6, as well as a counterpart of Proposition 18, for any admis-
sible (v, s,α), Proposition 21, which is just [36] (Proposition 5.1), shows that hk(v,w,s)α(X) is
invariant on w ∈ (v,∞].

Proposition 21. Let v ∈ (1,∞), w ∈ (v,∞], s ∈ Z+, and α ∈ [0,∞). Then,

hk(v,w,s)α(X) = hk(v,∞,s)α(X)

with equivalent norms.

The following proposition, which is just [36] (Proposition 5.6), might be viewed as a
counterpart of Proposition 19.

Proposition 22. Let v ∈ (1,∞) and s ∈ Z+.

(i) If w ∈ (1, v], and Q0 is a given cube of Rn, then hk(v,w,s)0
(Q0) = |Q0|

1
v−

1
w Lw(Q0) with

equivalent norms.
(ii) Lv(Rn) = hk(v,v,s)0

(Rn) with equivalent norms.

Finally, the following relation between hk(v,w,s)α(X) and the atomic localized Hardy
space is just [36] (Proposition 5.7).

Proposition 23. Let w ∈ (1,∞] and Q0 be a given cube of Rn. Then,⋃
v∈[1,∞)

hk(v,w,0)0
(Q0) ⊂ h1,w

at (Q0).

Moreover, if g ∈
⋃

v∈[1,∞) hk(v,w,0)0
(Q0), then

‖g‖h1,w
at (Q0)

≤ lim inf
v→1+

‖g‖hk(v,w,0)0
(Q0),

where v→ 1+ means that v ∈ (1,∞) and v→ 1.
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We also list some open questions at the end of this subsection.

Question 4. There still exists something unclear in Proposition 13(iii). Precisely, let p ∈ (1,∞),

jnp(R)/C :=
{

f ∈ L1
loc (R) : ‖ f ‖ jnp(R)/C := inf

c∈C
‖ f + c‖ jnp(R) < ∞

}
and

Lp(R)/C :=
{

f ∈ L1
loc (R) : ‖ f ‖Lp(R)/C := inf

c∈C
‖ f + c‖Lp(R) < ∞

}
.

Then, it is still unknown whether or not[
jnp(R)/C

]
$ JNp(R)

holds true; namely, it is still unknown whether or not there exists some non-constant function h,
such that h ∈ JNp(R) but h < jnp(R). Moreover, it is still unknown whether or not

[Lp(Rn)/C] $
[
jnp(Rn)/C

]
$ JNp(Rn)

holds true.

The following question is on the case q > p corresponding to Proposition 14.

Question 5. Let p ∈ [1,∞), q ∈ (p,∞), s ∈ Z+, and α ∈ (0,∞). Then, it is still unknown
whether or not

jn(p,q,s)α(X) =
[
JN(p,q,s)α(X)∩ Lp(X)

]
still holds true.

Furthermore, the corresponding localized cases of Questions 1 and 2 are listed as
follows. The following Question 6 is a modification of [36] (Remark 3.5), and Question 7 is
just [36] (Remark 5.8).

Question 6. Let p ∈ [1,∞), q ∈ [1,∞), s ∈ Z+, and α ∈ [ 1
p −

1
q ,∞). Then, the relation between

jn(p,q,s)α(R
n) and the Riesz–Morrey space RMp,q,α(Rn) (see Section 4.1 for its definition) is still

unclear, except the identity

jn(p,p,s)0
(Rn) = Lp(Rn) = RMp,p,0(Rn)

due to Proposition 19(ii) and Theorem 8(ii), and the inclusion

jn(p,q,s)α(R
n) ⊃ RMp,q,α(Rn) with ‖ · ‖ jn(p,q,s)α (Rn) . ‖ · ‖RMp,q,α(Rn)

due to (25) and their definitions, where the implicit positive constant is independent of the functions
under consideration.

Question 7. Let v ∈ (1,∞), w ∈ (1,∞], and Q0 be a given cube of Rn.

(i) It is interesting to clarify the relation between
⋃

v∈(1,∞) hk(v,w,0)0
(Q0) and h1,w

at (Q0), and to
find the condition on g, such that ‖g‖h1,w

at (Q0)
= limv→1+ ‖g‖hk(v,w,0)0

(Q0).

(ii) Let α ∈ (0,∞) and s ∈ Z+. As v→ 1+, the relation between the localized atomic Hardy space
(see [50] for the definition) and hk(v,w,s)α(Q0) is still unknown.

3.3. Congruent John–Nirenberg–Campanato Spaces

Inspired by the JNC space (see Section 3.1) and the spaceB (introduced and studied by
Bourgain et al. [70]), Jia et al. [64] introduced the special John–Nirenberg–Campanato spaces
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via congruent cubes, which are of some amalgam features. This subsection is devoted to
the main properties and some applications of congruent JNC spaces.

In what follows, for any m ∈ Z,Dm(Rn) denotes the set of all subcubes of Rn with side
length 2−m,Dm(Q0) the set of all subcubes of Q0 with side length 2−m`(Q0) for any given
m ∈ Z+, andDm(Q0) := ∅ for any given m ∈ Z \Z+; here and thereafter, `(Q0) denotes the
side length of Q0.

Definition 13. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ R. The special John–Nirenberg–Campanato
space via congruent cubes (for short, congruent JNC space) JNcon

(p,q,s)α
(X) is defined to be the

set of all f ∈ L1
loc(X), such that

‖ f ‖JNcon
(p,q,s)α

(X) := sup
m∈Z

{
[ f ](m)

(p,q,s)α,X

}
< ∞,

where, for any m ∈ Z, [ f ](m)

(p,q,s)α,X
is defined to be

sup
{Q j} j⊂Dm(X)

∑
j

∣∣∣Q j
∣∣∣
∣∣∣Q j

∣∣∣−α?
Q j

∣∣∣∣∣ f (x) − P(s)
Q j
( f )(x)

∣∣∣∣∣q dx


1
q


p

1
p

with P(s)
Q j
( f ) for any j as in (24) via Q replaced by Q j and the supremum taken over all collections

of interior pairwise disjoint cubes {Q j} j ⊂ Dm(X). In particular, let

JNcon
p,q (X) := JNcon

(p,q,0)0
(X).

Remark 7. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ R. There exist some useful equivalent norms on
JNcon

(p,q,s)α
(X) as follows.

(i) (non-dyadic side length) f ∈ JNcon
(p,q,s)α

(X) if and only if f ∈ L1
loc (X) and

‖ f ‖ J̃Ncon
(p,q,s)α (X)

:= sup

∑
j

∣∣∣Q j
∣∣∣
∣∣∣Q j

∣∣∣−α?
Q j

∣∣∣∣∣ f (x) − P(s)
Q j
( f )(x)

∣∣∣∣∣q dx


1
q


p

1
p

< ∞

if and only if f ∈ L1
loc (X) and

‖ f ‖
ĴN

con
(p,q,s)α (X)

:= sup

∑
j

∣∣∣Q j
∣∣∣
∣∣∣Q j

∣∣∣−α inf
P∈Ps(Q j)

?
Q j

∣∣∣ f (x) − P(x)
∣∣∣q dx


1
q


p

1
p

< ∞, (32)

where the suprema are taken over all collections of interior pairwise disjoint cubes {Q j} j of
X with the same side length; moreover, ‖ · ‖JNcon

(p,q,s)α
(X) ∼ ‖ · ‖J̃N

con
(p,q,s)α (X)

∼ ‖ · ‖
ĴN

con
(p,q,s)α (X)

;

see [64] (Remark 1.6(ii) and Propositions 2.6 and 2.7).
(ii) (integral representation) In what follows, for any y ∈ Rn and r ∈ (0,∞), let

B(y, r) := {x ∈ Rn : |x− y| < r}.

Then f ∈ JNcon
(p,q,s)α

(Rn) if and only if f ∈ L1
loc (R

n) and

‖ f ‖∗ := sup
r∈(0,∞)


∫
Rn

|B(y, r)|−α
[?

B(y,r)

∣∣∣∣ f (x) − P(s)
B(y,r)

( f )(x)
∣∣∣∣q dx

] 1
q


p

dy


1
p

< ∞;
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moreover, ‖ · ‖JNcon
(p,q,s)α

(Rn) ∼ ‖ · ‖∗; see [64] (Proposition 2.2) for this equivalence, which plays

an essential role when establishing the boundedness of operators on congruent JNC spaces
(see [71–73] for more details).

The following proposition is just [64] (Proposition 2.10).

Proposition 24. Let s ∈ Z+, α ∈ R, and Q0 be a given cube of Rn.

(i) For any given p ∈ [1,∞) and q ∈ [1,∞),

JNcon
(p,q,s)α

(Q0) ⊂
[
|Q0|

1
p−

1
q−αLq(Q0)/Ps(Q0)

]
.

Moreover, for any f ∈ JNcon
(p,q,s)α

(Q0),

‖ f ‖
|Q0 |

1
p−

1
q −αLq(Q0)/Ps(Q0)

≤ ‖ f ‖JNcon
(p,q,s)α

(Q0).

(ii) If α ∈ (−∞, 0], then, for any given p ∈ [1,∞) and q ∈ [p,∞),

JNcon
(p,q,s)α

(Q0) =
[
|Q0|

1
p−

1
q−αLq(Q0)/Ps(Q0)

]
with equivalent norms.

(iii) If q ∈ [1,∞) and 1 ≤ p1 ≤ p2 < ∞, then JNcon
(p2,q,s)α

(Q0) ⊂ JNcon
(p1,q,s)α

(Q0). Moreover,

for any f ∈ JNcon
(p2,q,s)α

(Q0),

|Q0|
−

1
p1 ‖ f ‖JNcon

(p1,q,s)α
(Q0) ≤ |Q0|

−
1

p2 ‖ f ‖JNcon
(p2,q,s)α

(Q0).

(iv) If p ∈ [1,∞) and 1 ≤ q1 ≤ q2 < ∞, then JNcon
(p,q2,s)α

(X) ⊂ JNcon
(p,q1,s)α

(X). Moreover, for any

f ∈ JNcon
(p,q2,s)α

(X),
‖ f ‖JNcon

(p,q1,s)α
(X) ≤ ‖ f ‖JNcon

(p,q2,s)α
(X).

The relation of congruent JNC spaces and Campanato spaces is similar to Proposition 6
and Corollary 2, and hence we omit the statement here; see [64] (Proposition 2.11) for details.
The relation of congruent JNC spaces and the space Bwas discussed in [64] (Proposition
2.20 and Remark 2.21). Recall that the local Sobolev space W1,p

loc(R
n) is defined by setting

W1,p
loc(R

n) :=
{

f ∈ Lp
loc(R

n) : |∇ f | ∈ Lp
loc(R

n)
}
,

here and thereafter, ∇ f := (∂1 f , . . . , ∂n f ), where for any i ∈ {1, . . . , n}, ∂i f denotes the weak
derivative of f , namely a locally integrable function on Rn, such that for any ϕ ∈ C∞c (Rn)
(the set of all infinitely differentiable functions on Rn with compact support),∫

Rn
f (x)∂iϕ(x) dx = −

∫
Rn
ϕ(x)∂i f (x) dx.

The following proposition is just [64] (Proposition 2.13).

Proposition 25. Let p ∈ (1,∞) and f ∈ Lp
loc(R

n). Then, |∇ f | ∈ Lp(Rn) if and only if

lim inf
m→∞

[ f ](m)

(p,p,0)1/n,Rn < ∞,
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where [ f ](m)

(p,p,0)1/n,Rn is as in Definition 13. Moreover, for any given p ∈ [1,∞), there exists a

constant C(n,p) ∈ [1,∞), such that for any f ∈W1,p
loc(R

n),

1
C(n,p)

[∫
Rn
|∇ f (x)|p dx

] 1
p

≤ lim inf
m→∞

[ f ](m)

(p,p,0)1/n,Rn ≤ C(n,p)

[∫
Rn
|∇ f (x)|p dx

] 1
p

.

Remark 8. Fusco et al. studied BMO-type seminorms and Sobolev functions in [74]. Indeed,
in [74] (Theorem 2.2), Fusco et al. showed that Proposition 25 still holds true with cubes {Q j} j, in

the supremum of [ f ](m)

(p,p,0)1/n,Rn , having the same side length but an arbitrary orientation. Later,
the main results of [74] were further extended by Di Fratta and Fiorenza in [75], via replacing a
family of open cubes by a broader class of tessellations (from pentagonal and hexagonal tilings to
space-filling polyhedrons and creative tessellations).

The following nontriviality is just [64] (Propositions 2.16 and 2.19).

Proposition 26. Let p ∈ (1,∞) and q ∈ [1, p).

(i) Let I0 be a given bounded interval of R. Then,

JNp,q(I0) $ JNcon
p,q (I0) and JNp,q(R) $ JNcon

p,q (R).

(ii) Let Q0 be a given cube of Rn. Then,

JNp,q(Q0) $ JNcon
p,q (Q0).

Similar to Theorem 3, the following dual result is just [64] (Theorem 4.10). Recall
that the congruent Hardy-type space HKcon

(u,v,s)α
(X) is defined as in Definition 6 with the

additional condition that all cubes of the polymer have the same side length (see [64],
Definition 4.7, for more details).

Theorem 7. Let p, q ∈ (1,∞), 1/p = 1/p′ = 1 = 1/q + 1/q′, s ∈ Z+, and α ∈ R. If
JNcon

(p,q,s)α
(X) is equipped with the norm ‖ · ‖

ĴN
con
(p,q,s)α (X)

in (32), then

(
HKcon

(p′,q′,s)α
(X)

)∗
= JNcon

(p,q,s)α
(X)

with equivalent norms in the following sense:

(i) Any f ∈ JNcon
(p,q,s)α

(X) induces a linear functional L f which is given by setting, for any

g ∈ HKcon
(p′,q′,s)α

(X) and {gi}i ⊂ H̃K
con
(p′,q′,s)α(X) with g =

∑
i gi in (JNcon

(p,q,s)α
(X))∗,

L f (g) := 〈g, f 〉 =
∑

i

〈gi, f 〉.

Moreover, for any g ∈ HKcon−fin
(p′,q′,s)α

(X),

L(g) =
∫
X

f (x)g(x) dx and
∥∥∥L f

∥∥∥
(HKcon

(p′ ,q′ ,s)α
(X))∗

≤ ‖ f ‖
ĴN

con
(p,q,s)α (X)

.

(ii) Conversely, for any continuous linear functional L on HKcon
(p′,q′,s)α

(X), there exists a unique

f ∈ JNcon
(p,q,s)α

(X), such that for any g ∈ HKcon−fin
(p′,q′,s)α

(X),

L(g) =
∫
X

f (x)g(x) dx and ‖ f ‖
ĴN

con
(p,q,s)α (X)

≤ ‖L‖(HKcon
(p′ ,q′ ,s)α

(X))∗ .



Mathematics 2021, 9, 2264 37 of 57

Moreover, when X = Q0, we further have the VMO-H1-type duality for the congruent
Hardy-type space (see Theorem 25 below).

Recall that Essén et al. [76] introduced and studied the Q space onRn, which generalizes
the space BMO (Rn). Later, the Q space proved very useful in harmonic analysis, potential
analysis, partial differential equations, and closely related fields (see, for instance, [77–79]).
Thus, it is natural to consider some “new Q space” corresponding to the John–Nirenberg
space JNp. Based on Remark 7(ii), Tao et al. [80] introduced and studied the John–Nirenberg-
Q space on Rn via congruent cubes, which contains the congruent John–Nirenberg space on
Rn as special cases and also sheds some light on the mysterious John–Nirenberg space.

4. Riesz-Type Space

Observe that if we partially subtract integral means (or polynomials for high order
cases) in ‖ f ‖JN(p,q,s)α (X)

, namely dropping P(s)
Qi
( f ) in


∑

i

|Qi|

|Qi|
−α

{?
Qi

∣∣∣∣ f (x) − P(s)
Qi
( f )(x)

∣∣∣∣q dx
} 1

q


p
1
p

for any i satisfying `(Qi) ≥ c0, then we obtain the localized JNC space as in Definition 9.
Thus, a natural question arises: what if we thoroughly drop all {P(s)

Qi
( f )}i in ‖ f ‖JN(p,q,s)α (X)

?

In this section, we study the space with such a norm (subtracting all {P(s)
Qi
( f )}i in the norm

of the JNC space). As a bridge connecting Lebesgue and Morrey spaces via Riesz norms, it
is called the “Riesz–Morrey space”. For more studies on the well-known Morrey space,
we refer the reader to, for instance, [81–84] and, in particular, the recent monographs by
Sawano et al. [85,86].

4.1. Riesz–Morrey Spaces

As a suitable substitute of L∞(X), the space BMO (X) proves very useful in harmonic
analysis and partial differential equations. Recall that

‖ f ‖BMO (X) := sup
cube Q⊂X

?
Q

∣∣∣ f (x) − fQ
∣∣∣ dx.

Indeed, the only difference between them exists in subtracting integral means, which is just
the following proposition. In what follows, for any q ∈ (0,∞) and any measurable function
f , let

‖ f ‖Lq
∗ (X)

:= sup
cube Q⊂X

[?
Q
| f (x)|q dx

] 1
q

.

Proposition 27. Let q ∈ (0,∞). Then, f ∈ L∞(X) if and only if f ∈ Lq
loc (X) and ‖ f ‖Lq

∗ (X)
< ∞.

Moreover,
‖ · ‖L∞(X) = ‖ · ‖Lq

∗ (X)
.
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Proof. For the simplicity of the presentation, we only consider the case q = 1. On the one
hand, for any f ∈ L∞(X), it is easy to see that f ∈ L1

loc (X) and

‖ f ‖L1
∗ (X)

= sup
Q⊂X

?
Q
| f (x)| dx ≤ sup

Q⊂X
‖ f ‖L∞(X) = ‖ f ‖L∞(X).

On the other hand, for any f ∈ L1
loc (X) and ‖ f ‖L1

∗ (X)
< ∞, let x be any Lebesgue point

of f . Then, from the Lebesgue differentiation theorem, we deduce that

| f (x)| = lim
|Q|→0+ , Q3x

?
Q
| f (y)| dy ≤ sup

Q⊂X

?
Q
| f (y)| dy = ‖ f ‖L1

∗ (X)
,

which, together with the Lebesgue differentiation theorem again, further implies that

‖ f ‖L∞(X) ≤ ‖ f ‖L1
∗ (X)

and hence f ∈ L∞(X). Moreover, we have ‖ · ‖L∞(X) = ‖ · ‖L1
∗ (X)

. This finishes the proof of
Proposition 27. �

Furthermore, if we remove integral means in the JNp(Q0)-norm

‖ f ‖JNp(Q0) = sup

∑
i

|Qi|

(?
Qi

∣∣∣ f (x) − fQi

∣∣∣ dx
)p


1
p

,

where the supremum is taken over all collections of cubes {Qi}i of Q0 with pairwise disjoint
interiors, then we obtain

sup

∑
i

|Qi|

(?
Qi

∣∣∣ f (x)∣∣∣ dx
)p


1
p

=: ‖ f ‖Rp(Q0)

which coincides with ‖ f ‖Lp(Q0) due to Riesz [41]. Corresponding to the JNC space, the
following triple index Riesz-type space Rp,q,α(X), called the Riesz–Morrey space, was
introduced and studied in [37] and, independently, by Fofana et al. [87] when X = Rn.

Definition 14. Let p ∈ [1,∞], q ∈ [1,∞], and α ∈ R. The Riesz–Morrey space RMp,q,α(X) is
defined by setting

RMp,q,α(X) :=
{

f ∈ Lq
loc (X) : ‖ f ‖RMp,q,α(X) < ∞

}
,

where

‖ f ‖RMp,q,α(X) :=


sup

∑
i

|Qi|
1−pα− p

q ‖ f ‖p
Lq(Qi)


1
p

if p ∈ [1,∞), q ∈ [1,∞],

sup sup
i
|Qi|
−α− 1

q ‖ f ‖Lq(Qi)
if p = ∞, q ∈ [1,∞]

and the suprema are taken over all collections of subcubes {Qi}i of X with pairwise disjoint interiors.
In addition, Rp,q,0(X) =: Rp,q(X).

Observe that the Riesz–Morrey norm ‖ · ‖RMp,q,α(X) is different from the JNC norm
‖ · ‖JN(p,q,s)α (X)

with s = 0, only in subtracting mean oscillations (see [37], Remark 2, for more
details). It is easy to see that ‖ · ‖Rp,1,0(Q0) = ‖ · ‖Rp(Q0), and, as a generalization of the above
equivalence in Riesz [41], the following proposition is just [37] (Proposition 1).
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Proposition 28. Let p ∈ [1,∞] and q ∈ [1, p]. Then, f ∈ Lp(X) if and only if f ∈ Rp,q(X).
Moreover, Lp(X) = Rp,q(X) with equivalent norms, namely, for any f ∈ Lq

loc (X), ‖ f ‖Lp(X) =
‖ f ‖Rp,q(X).

As for the case 1 ≤ p < q ≤ ∞, by [37] (Remark 2.3), we know that

Rp,q(Rn) = {0} , Lq(Rn) = Rq,q(Rn),

and [
|Q0|

−
1
p Rp,q(Q0)

]
=

[
|Q0|

−
1
q Lq(Q0)

]
=

[
|Q0|

−
1
q Rq,q(Q0)

]
with equivalent norms.

Moreover, it is shown in [37] (Theorem 1 and Corollary 1) that the endpoint spaces
of Riesz–Morrey spaces are Lebesgue spaces or Morrey spaces. In this sense, we regard
the Riesz–Morrey space as a bridge connecting the Lebesgue space and the Morrey space.
Thus, a natural question arises: whether or not Riesz–Morrey spaces are truly new spaces
different from Lebesgue spaces or Morrey spaces. Very recently, Zeng et al. [88] gave an
affirmative answer to this question via constructing two nontrivial functions over Rn and any
given cube Q of Rn. It should be pointed out that the nontrivial function on the cube Q is
geometrically similar to the striking function constructed by Dafni et al. in the proof of [31]
(Proposition 3.2). Furthermore, we have the following classifications of Riesz–Morrey
spaces, which are just [88] (Corollary 3.7).

Theorem 8.

(i) Let p ∈ (1,∞] and q ∈ [1, p). Then,

RMp,q,α(Rn)


= Lq(Rn) if α = 1

p −
1
q ,

% L
p

1−pα (Rn) if α ∈
(

1
p −

1
q , 0

)
,

= Lp(Rn) if α = 0,
= {0} if α ∈

(
−∞, 1

p −
1
q

)
∪ (0,∞).

In particular, if α ∈ (− 1
q , 0), then RM∞,q,α(Rn) = M−1/α

q (Rn), which is just the Morrey
space defined in Remark 3.

(ii) Let p ∈ [1,∞] and q ∈ [p,∞]. Then,

RMp,q,α(Rn)


= Lq(Rn) if α = 1

p −
1
q = 0,

= {0} if α = 1
p −

1
q , 0,

= {0} if α ∈ R \
{

1
p −

1
q

}
.

(iii) Let p ∈ (1,∞], q ∈ [1, p), and Q0 be a given cube of Rn. Then,

RMp,q,α(Q0)


= Lq(Q0) if α =

(
−∞, 1

p −
1
q

]
,

% L
p

1−pα (Q0) if α ∈
(

1
p −

1
q , 0

)
,

= Lp(Q0) if α = 0,
= {0} if α ∈ (0,∞).

In particular, RM∞,q,α(Q0) = M−1/α
q (Q0) if α ∈ (− 1

q , 0).
(iv) Let p ∈ [1,∞], q ∈ [p,∞], and Q0 be a given cube of Rn. Then,

RMp,q,α(Q0)

= Lq(Q0) if α ∈ (−∞, 0],
= {0} if α ∈ (0,∞).
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Recall that by [89] (Theorem 1), the predual space of the Morrey space is the so-called
block space. Combining this with the duality of John–Nirenberg–Campanato spaces
in [61] (Theorem 3.9), the authors in [37] introduced the block-type space which proves the
predual of the Riesz–Morrey space. Observe that every (∞, v,α)-block in Definition 15(i) is
exactly a (v, αn )-block introduced in [89].

Definition 15. Let u, v ∈ [1,∞], 1
u + 1

u′ = 1 = 1
v + 1

v′ , and α ∈ R. Let (RMu′,v′,α(X))
∗ be the

dual space of RMu′,v′,α(X) equipped with the weak-∗ topology.

(i) A function b is called a (u, v,α)-block if

supp (b) :=
{
x ∈ X : b(x) , 0

}
⊂ Q and ‖b‖Lv(Q) ≤ |Q|

1
v−

1
u−α.

(ii) The space of (u, v,α)-chains, B̃u,v,α(X), is defined by setting

B̃u,v,α(X) :=

h ∈ (RMu′,v′,α(X))
∗ : h =

∑
j

λ jb j and
∥∥∥∥∥{λ j

}
j

∥∥∥∥∥
`u
< ∞

,

where {b j} j are (u, v,α)-blocks supported, respectively, in subcubes {Q j} of X with pairwise
disjoint interiors, and {λ j} j ⊂ C with ‖{λ j} j‖`u < ∞ (see (27) for the definition of ‖ · ‖`u).
Moreover, any h ∈ B̃u,v,α(X) is called a (u, v,α)-chain, and its norm is defined by setting

‖h‖B̃u,v,α(X)
:= inf

∥∥∥∥∥{λ j
}

j

∥∥∥∥∥
`u

,

where the infimum is taken over all decompositions of h as above.
(iii) The block-type space Bu,v,α(X) is defined by setting

Bu,v,α(X) :=

g ∈ (RMu′,v′,α(X))
∗ : g =

∑
i

hi and
∑

i

∥∥∥h j
∥∥∥

B̃u,v,α(X)
< ∞

,

where {hi}i are (u, v,α)-chains. Moreover, for any g ∈ Bu,v,α(X),

‖g‖Bu,v,α(X) := inf
∑

i

∥∥∥h j
∥∥∥

B̃u,v,α(X)
,

where the infimum is taken over all decompositions of g as above.
(iv) The finite block-type space Bfin

u,v,α(X) is defined to be the set of all finite summations

M∑
m=1

λmbm,

where M ∈ N, {λm}
M
m=1 ⊂ C, and {bm}

M
m=1 are (u, v,α)-blocks.

The following dual theorem is just [37] (Theorem 2).

Theorem 9. Let p, q ∈ (1,∞), 1/p+ 1/p′ = 1 = 1/q+ 1/q′, andα ∈ R. Then, (Bp′,q′,α(X))
∗ =

RMp,q,α(X) in the following sense:

(i) If f ∈ RMp,q,α(X), then f induces a linear functional L f on Bp′,q′,α(X) with

‖L f ‖(Bp′ ,q′ ,α(X))
∗ ≤ C‖ f ‖RMp,q,α(X),

where C is a positive constant independent of f .
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(ii) IfL ∈ (Bp′,q′,α(X))
∗, then there exists some f ∈ RMp,q,α(X), such that for any g ∈ Bfin

p′,q′,α(X),

L(g) =
∫
X

f (x)g(x) dx,

and
‖L‖(Bp′ ,q′ ,α(X))

∗ ∼ ‖ f ‖RMp,q,α(X)

with the positive equivalence constants independent of f .

Furthermore, for the Riesz–Morrey space, there exist three open questions unsolved
so far. The first question is on the relation between the Riesz–Morrey space and the weak
Lebesgue space.

Question 8. Let p ∈ (1,∞), q ∈ [1, p), and α ∈ ( 1
p −

1
q , 0). Then, Zeng et al. ([88], Remark 3.4)

showed that
RMp,q,α(Rn) * L

p
1−pα ,∞

(Rn) * RMp,q,α(Rn),

which implies that on Rn, the Riesz–Morrey space and the weak Lebesgue space do not cover each
other. Furthermore, for a given cube Q0 of Rn, Zeng et al. ([88], Remark 3.6) showed that

L
p

1−pα ,∞
(Q0) * RMp,q,α(Q0).

However, it is still unknown whether or not

RMp,q,α(Q0) * L
p

1−pα ,∞
(Q0)

still holds true. This question was posed in [88] (Remark 3.6), and is still unclear.

The following Questions 9 and 10 are just [37] (Remarks 4 and 5), respectively.

Question 9. As a counterpart of (26), for any given p ∈ [1,∞), q ∈ [1, p), s ∈ Z+, and α ∈
[ 1

p −
1
q , 0), it is interesting to ask whether or not

JN(p,q,s)α(X) =
[
RMp,q,α(X)/Ps(X)

]
and, for any f ∈ JN(p,q,s)α(X),

‖ f ‖JN(p,q,s)α (X)
∼

∥∥∥ f − σ( f )
∥∥∥

RMp,q,α(X)
,

with the positive equivalence constants independent of f , still hold true. This is still unclear.

Question 10. Recall that for any given f ∈ L1
loc (X) and any x ∈ X, the Hardy–Littlewood

maximal functionM( f )(x) is defined by setting

M( f )(x) := sup
Q3x

?
Q
| f (y)| dy, (33)

where the supremum is taken over all cubes Q containing x. Meanwhile,M is called the Hardy–
Littlewood maximal operator. It is well known that M is bounded on Lq(X) for any given
q ∈ (1,∞] (see, for instance, [42], p. 31, Theorem 2.5). Moreover,M is also bounded on M−1/α

q (X)

for any given q ∈ (1,∞] and α ∈ [− 1
q , 0] (see, for instance, [90], Theorem 1). To summarize,

the boundedness ofM on endpoint spaces of Riesz–Morrey spaces (Lebesgue spaces and Morrey
spaces) has already been obtained. Therefore, it is very interesting to ask whether or not M is
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bounded on the Riesz–Morrey space RMp,q,α(X) with p ∈ (1,∞], q ∈ [1, p), and α ∈ ( 1
p −

1
q , 0).

This is a challenging and important problem which is still open.

4.2. Congruent Riesz–Morrey Spaces

To obtain the boundedness of several important operators, we next consider a special
Riesz–Morrey space via congruent cubes, denoted by RMp,q,α(Rn), as in Section 3.3. In this
subsection, we first recall the definition of RMcon

p,q,α(Rn), and then review the boundedness
of the Hardy–Littlewood maximal operator on this space.

Definition 16. Let p, q ∈ [1,∞], and α ∈ R. The special Riesz–Morrey space via congruent
cubes (for short, congruent Riesz–Morrey space) RMcon

p,q,α(Rn) is defined to be the set of all
locally integrable functions f on Rn, such that

‖ f ‖RMcon
p,q,α(Rn) :=


sup

∑
j

|Q j|
1−pα− p

q ‖ f ‖p
Lq(Qi)


1
p

, p ∈ [1,∞),

sup
cube Q⊂Rn

|Q|−α−
1
q ‖ f ‖Lq(Q), p = ∞

is finite, where the first supremum is taken over all collections of interior pairwise disjoint cubes
{Q j} j of Rn with the same side length.

Remark 9.

(i) If we do not require that {Q j} j has the same size in the definition of congruent Riesz–Morrey
spaces, then it is just the Riesz–Morrey space RMp,q,α(Rn) in Section 4.1.

(ii) If p = ∞, q ∈ (0,∞), and α ∈ [− 1
q , 0), then RMcon

p,q,α(Rn) in Definition 16 coincides with the

Morrey space M−1/α
q (Rn) in Remark 3.

(iii) Similar to Remark 7, for any given p, q ∈ [1,∞), and α ∈ R, f ∈ RMcon
p,q,α(Rn) if and only if

f ∈ L1
loc (R

n) and

‖ f ‖R̃M
con
p,q,α(Rn)

:= sup
r∈(0,∞)


∫
Rn

|B(y, r)|−α
[?

B(y,r)

∣∣∣ f (x)∣∣∣qdx
] 1

q


p

dy


1
p

is finite; moreover,
‖ · ‖RMcon

p,q,α(Rn) ∼ ‖ · ‖R̃M
con
p,q,α(Rn)

;

see [71] for more details. Recall that for any y ∈ Rn and r ∈ (0,∞),

B(y, r) := {x ∈ Rn : |x− y| < r}.

(iv) If 1 ≤ q < α < p ≤ ∞, then the space RMcon
p,q,α(Rn) coincides with the amalgam space

(Lq, `p)
p

1−pα (Rn), which was introduced by Fofana [91]. (See [87,92–96] for more studies on
the amalgam space.)

The following boundedness of the Hardy–Littlewood maximal operator on congruent
Riesz–Morrey spaces was obtained in [71].

Theorem 10. Let p, q ∈ (1,∞), α ∈ R, andM be the Hardy–Littlewood maximal operator as
in (33). ThenM is bounded on RMcon

p,q,α(Rn).

Moreover, via Theorem 10, Jia et al. [71] also established the boundedness of Calderón–
Zygmund operators on congruent Riesz–Morrey spaces.



Mathematics 2021, 9, 2264 43 of 57

Finally, since a congruent Riesz–Morrey space is a ball Banach function space, we
refer the reader to [49] for the equivalent characterizations of the boundedness and the
compactness of Calderón–Zygmund commutators on ball Banach function spaces. It
should be mentioned that a crucial assumption in [49] is the boundedness ofM, and hence
Theorem 10 provides an essential tool when studying the boundedness of operators on
congruent Riesz–Morrey spaces.

5. Vanishing Subspace

In this section, we focus on several vanishing subspaces of aforementioned John–
Nirenberg-type spaces. In what follows, C∞(Rn)denotes the set of all infinitely differentiable
functions on Rn; 0 denotes the origin of Rn; for any α := (α1, . . . ,αn) ∈ Zn

+ := (Z+)n, let
∂α := ( ∂

∂x1
)α1 · · · ( ∂

∂xn
)αn ; for any given normed linear spaceY and any given its subset X,

X
Y

denotes the closure of the set X inY in terms of the topology ofY; and ifY = Rn, we

then denote X
Y

simply by X.

5.1. Vanishing BMO Spaces

We now recall several vanishing subspaces of the space BMO (Rn).

• VMO (Rn), introduced by Sarason [6], is defined by setting

VMO (Rn) := Cu(Rn)∩ BMO (Rn)
BMO (Rn)

,

where Cu(Rn) denotes the set of all uniformly continuous functions on Rn.
• CMO (Rn), announced in Neri [97], is defined by setting

CMO (Rn) := C∞c (Rn)
BMO (Rn)

,

where C∞c (Rn) denotes the set of all infinitely differentiable functions on Rn with
compact support. In addition, by approximations of the identity, it is easy to find that

CMO (Rn) = Cc(Rn)
BMO (Rn)

= C0(Rn)
BMO (Rn)

, (34)

where Cc(Rn) denotes the set of all functions on Rn with compact support, and C0(Rn)
denotes the set of all continuous functions on Rn which vanish at the infinity.

• MMO (Rn), introduced by Torres and Xue [98], is defined by setting

MMO (Rn) := A∞(Rn)
BMO (Rn)

,

where

A∞(Rn) :=
{

b ∈ C∞(Rn)∩ L∞(Rn) : ∀ α ∈ Zn
+ \ {0}, lim

|x|→∞
∂αb(x) = 0

}
.

• XMO (Rn), introduced by Torres and Xue [98], is defined by setting

XMO (Rn) := B∞(Rn)
BMO (Rn)

,

where

B∞(Rn) :=
{

b ∈ C∞(Rn)∩ BMO (Rn) : ∀ α ∈ Zn
+ \ {0}, lim

|x|→∞
∂αb(x) = 0

}
.
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• X1MO (Rn), introduced by Tao et al. [99], is defined by setting

X1MO (Rn) := B1(Rn)
BMO (Rn)

,

where

B1(Rn) :=
{

b ∈ C1(Rn)∩ BMO (Rn) : lim
|x|→∞

|∇b(x)| = 0
}

with C1(Rn) being the set of all functions f on Rn whose gradients∇ f := (
∂ f
∂x1

, . . . , ∂ f
∂xn

)
are continuous.

The relation of these vanishing subspaces reads as follows.

Proposition 29. CMO (Rn) $ MMO (Rn) $ XMO (Rn) = X1MO (Rn) $ VMO (Rn).

Indeed,
CMO (Rn) $ MMO (Rn) $ XMO (Rn)

was obtained in [98] (p. 5). Moreover,

XMO (Rn) = X1MO (Rn) $ VMO (Rn)

was obtained in [99] (Corollary 1.3), which completely answered the open question proposed
in [98] (p. 6).

Next, we investigate the mean oscillation characterizations of these vanishing sub-
spaces. Recall that, for any cube Q of Rn, and any f ∈ L1

loc (R
n), the mean oscillation O( f ; Q)

is defined by setting

O( f ; Q) :=
?

Q

∣∣∣ f (x) − fQ
∣∣∣ dx =

1
|Q|

∫
Q

∣∣∣∣∣∣ f (x) − 1
|Q|

∫
Q

f (y) dy

∣∣∣∣∣∣ dx.

The earliest results of VMO (Rn) were obtained by Sarason in [6], and Theorem 11
below is a part of [6] (Theorem 1). In what follows, a→ 0+ means a ∈ (0,∞) and a→ 0.

Theorem 11. f ∈ VMO (Rn) if and only if f ∈ BMO (Rn) and

lim
a→0+

sup
|Q|=a

O( f ; Q) = 0.

The following equivalent characterization of CMO (Rn) is just Uchiyama ([7], p. 166).

Theorem 12. f ∈ CMO (Rn) if and only if f ∈ BMO (Rn) and satisfies the following three con-
ditions:

(i) lim
a→0+

sup
|Q|=a

O( f ; Q) = 0;

(ii) for any cube Q of Rn, lim
|x|→∞

O( f ; Q + x) = 0;

(iii) lim
a→∞

sup
|Q|=a

O( f ; Q) = 0.

Very recently, Tao et al. obtained the following equivalent characterization of
XMO (Rn) and X1MO (Rn), which is just [99] (Theorem 1.2).

Theorem 13. The following statements are mutually equivalent:

(i) f ∈ X1MO (Rn);
(ii) f ∈ BMO (Rn) and enjoys the properties that

a) lim
a→0+

sup
|Q|=a

O( f ; Q) = 0;
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b) for any cube Q of Rn, lim
|x|→∞

O( f ; Q + x) = 0.

(iii) f ∈ XMO (Rn).

Remark 10. Proposition 12(ii) can be replaced by

(ii’) lim
M→∞

sup
Q∩Q(0,M)=∅

O( f ; Q) = 0,

where Q(0, M) denotes the cube centered at 0 with the side length M. However, (ii)2 of Theorem 13(ii)
can not be replaced by (ii’) (see [99], Proposition 2.5, for more details).

However, the equivalent characterization of MMO (Rn) is still unknown (see [99],
Proposition 2.5 and Remark 2.6, for more details on the following open question.)

Question 11. It is interesting to find the equivalent characterization of MMO (Rn), as well as its
localized counterpart (see Question 14), via the mean oscillations.

As for the applications of these vanishing subspaces, we know that the commutator
[b, T], generated by b ∈ BMO (Rn) and the Calderón–Zygmund operator T, plays an
important role in harmonic analysis, complex analysis, partial differential equations,
and other fields in mathematics. Here, we only list several typical bilinear results; other
linear and multi-linear results can be found, for instance, in [22,100,101] and their references.

In what follows, let Z3n
+ := (Z+)3n and L∞c (Rn) denote the set of all functions

f ∈ L∞(Rn) with compact support. We now consider the following particular type of
bilinear Calderón–Zygmund operator T, whose kernel K satisfies

(i) The standard size and regularity conditions: for any multi-indexα := (α1, . . . ,α3n) ∈ Z3n
+

with |α| := α1 + · · ·+ α3n ≤ 1, there exists a positive constant C(α), depending on α,
such that for any x, y, z ∈ Rn with x , y or x , z,

|∂αK(x, y, z)| ≤ C(α)(|x− y|+ |x− z|)−2n−|α|. (35)

Here and thereafter, ∂α := ( ∂
∂x1

)α1 · · · ( ∂
∂x3n

)α3n .
(ii) The additional decay condition: there exist positive constants C and δ, such that for

any x, y, z ∈ Rn with |x− y|+ |x− z| > 1,

|K(x, y, z)| ≤ C(|x− y|+ |x− z|)−2n−2−δ, (36)

and for any f , g ∈ L∞c (Rn) and x < supp ( f )∩ supp (g), T is supposed to have the following
usual representation:

T( f , g)(x) =
∫
R2n

K(x, y, z) f (y)g(z) dy dz,

here and thereafter, supp ( f ) := {x ∈ Rn : f (x) , 0}. Notice that the (inhomogeneous)
Coifman–Meyer bilinear Fourier multipliers and the bilinear pseudodifferential operators
with certain symbols satisfy the above two conditions (see, for instance, [98] and references
therein).

Recall that, usually, a non-negative measurable function w on Rn is called a weight on
Rn. For any given p := (p1, p2) ∈ (1,∞) × (1,∞), let p satisfy 1

p = 1
p1

+ 1
p2

. Following [10],
we call w := (w1, w2) a vector Ap(Rn) weight, denoted by w := (w1, w2) ∈ Ap(Rn), if

[w]Ap(Rn) := sup
Q

[
1
|Q|

∫
Q

w(x) dx
]{

1
|Q|

∫
Q
[w1(x)]

1−p′1 dx
} p

p′1

×

{
1
|Q|

∫
Q
[w2(x)]

1−p′2 dx
} p

p′2 < ∞,
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where w := wp/p1
1 wp/p2

2 , 1/p1 + 1/p′1 = 1 = 1/p2 + 1/p′2, and the supremum is taken over
all cubes Q of Rn. In what follows, for any given weight w on Rn and any measurable
subset E j Rn, the symbol Lp

w(E), with p ∈ (0,∞), denotes the set of all measurable functions
f on E, such that

‖ f ‖Lp
w(E)

:=
[∫

E
| f (x)|pw(x) dx

] 1
p

< ∞,

and, when w ≡ 1, we write Lp
w(E) =: Lp(E). Furthermore, ‖ · ‖L∞(E) represents the essential

supremum on E.
In addition, recall that the bilinear commutators [b, T]1 and [b, T]2 are defined, respectively,

by setting, for any f , g ∈ L∞c (Rn) and x < supp ( f )∩ supp (g),

[b, T]1( f , g)(x) := (bT( f , g) − T(b f , g))(x)

=

∫
R2n

[b(x) − b(y)]K(x, y, z) f (y)g(z) dy dz (37)

and

[b, T]2( f , g)(x) := (bT( f , g) − T( f , bg))(x)

=

∫
R2n

[b(x) − b(z)]K(x, y, z) f (y)g(z) dy dz. (38)

The following theorem, obtained in [11] (Theorem 1) for any given p ∈ (1,∞) and
in [102] (Theorem 1) for any given p ∈ ( 1

2 , 1], showed that the bilinear commutators
{[b, T]i}i=1,2 are compact for b ∈ CMO (Rn).

Theorem 14. Let (p1, p2) ∈ (1,∞) × (1,∞), p ∈ ( 1
2 ,∞) with 1

p = 1
p1

+ 1
p2

, b ∈ CMO (Rn),
and T be a bilinear Calderón–Zygmund operator whose kernel satisfies (35). Then, for any i ∈ {1, 2},
the bilinear commutator [b, T]i as in (37) or (38) is compact from Lp1(Rn) × Lp2(Rn) to Lp(Rn).

If we require an extra additional decay (36) for the Calderón–Zygmund kernel in Theo-
rem 14, we can then replace CMO (Rn) by XMO (Rn), that is, delete condition (iii) in Theo-
rem 12 of CMO (Rn). This new compactness result was first obtained in [98] (Theorem 1.1)
and then generalized into the weighted case, namely the following Theorem 15, which is
just [99] (Theorem 1.4).

Theorem 15. Let p := (p1, p2) ∈ (1,∞) × (1,∞), p ∈ ( 1
2 ,∞) with 1

p = 1
p1

+ 1
p2

, w :=

(w1, w2) ∈ Ap(Rn), w := wp/p1
1 wp/p2

2 , b ∈ XMO (Rn), and T be a bilinear Calderón–Zygmund
operator whose kernel satisfies (35) and (36). Then, for any i ∈ {1, 2}, the bilinear commutator [b, T]i
as in (37) or (38) is compact from Lp1

w1
(Rn) × Lp2

w2
(Rn) to Lp

w(Rn).

On the other hand, if the kernel behaves “good”, such as the Riesz transforms {R j}
n
j=1:

R j( f )(x) := p. v.π−
n+1

2 Γ
(n + 1

2

) ∫
Rn

y j

|y|n+1
f (x− y) dy,

then the reverse of Theorem 14 holds true as well (see, for instance, the following Theorem 16,
which is just [103], Theorem 3.1). Moreover, it should be mentioned that the linear case of
Theorem 16 was obtained by Uchiyama ([7], Theorem 2).

Theorem 16. Let (p1, p2) ∈ (1,∞) × (1,∞) and p ∈ ( 1
2 ,∞) with 1

p = 1
p1

+ 1
p2

. Then, for any
i ∈ {1, 2} and j ∈ {1, . . . , n}, the bilinear commutator [b,R j]i is compact from Lp1(Rn) × Lp2(Rn) to
Lp(Rn) if and only if b ∈ CMO (Rn).
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However, the corresponding equivalent characterization of XMO (Rn) is still unknown.
For simplicity, we state this question in the unweighted case.

Question 12. Let (p1, p2) ∈ (1,∞) × (1,∞), and p ∈ ( 1
2 ,∞) be such that 1

p = 1
p1

+ 1
p2

. Then,
it is interesting to find some bilinear Calderón–Zygmund operator T, such that for any i ∈ {1, 2},
the bilinear commutator [b, T]i is compact from Lp1(Rn) × Lp2(Rn) to Lp(Rn) if and only if
b ∈ XMO (Rn).

Next, recall the Riesz transform characterizations of BMO (Rn) and its vanishing
subspaces.

Theorem 17. Let f ∈ L1
loc (R

n). Then,

(i) ([2], Theorem 3) f ∈ BMO (Rn) if and only if there exist functions { f j}
n
j=0 ⊂ L∞(Rn), such

that

f = f0 +
n∑

j=1

R j( f j)

and

C−1
‖ f ‖BMO (Rn) ≤

n∑
j=0

∥∥∥ f j
∥∥∥

L∞(Rn)
≤ C‖ f ‖BMO (Rn) (39)

for some positive constant C independent of f and { f j}
n
j=0.

(ii) ([6], Theorem 1) f ∈ VMO (Rn) if and only if there exist functions { f j}
n
j=0 ⊂ [Cu(Rn) ∩

L∞(Rn)], such that

f = f0 +
n∑

j=1

R j( f j)

and (39) holds true in this case.
(iii) ([97], p. 185) f ∈ CMO (Rn) if and only if there exist functions { f j}

n
j=0 ⊂ C0(Rn), such that

f = f0 +
n∑

j=1

R j( f j)

and (39) holds true in this case.

Question 13. Since the Riesz transform is well defined on L∞(Rn), it is interesting to find
the counterpart of Theorem 17 when f ∈ MMO (Rn). Moreover, since the Riesz transform
characterization is useful when proving the duality of the CMO-H1 type, it is also interesting to
find the dual spaces of MMO (Rn) and XMO (Rn).

When Rn is replaced by some cube Q0 with finite side length, we then have
VMO (Q0) = CMO (Q0) (see [104] for more details). Moreover, the vanishing sub-
space on the spaces of homogeneous type, denoted by X, was studied in Coifman et al. [5],
and they proved (VMO(X))∗ = H1(X), whereVMO(X) denotes the closure in BMO (X)
of continuous functions on X with compact support. Notice that when X = Rn, by (34), we
haveVMO(X) = VMO(Rn) = CMO (Rn).

Finally, we consider the localized version of these vanishing subspaces. The following
characterization of local VMO (Rn) is a part of [105] (Theorem 1).
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Proposition 30. Let vmo (Rn) be the closure of Cu(Rn) ∩ bmo (Rn) in bmo (Rn). Then,
f ∈ vmo (Rn) if and only if f ∈ bmo (Rn) and

lim
a→0+

sup
|Q|=a

O( f ; Q) = 0.

Moreover, the following localized result of CMO (Rn) is just Dafni ([104], Theorem 6)
(see also [105], Theorem 3).

Theorem 18. Let cmo (Rn) be the closure of C0(Rn) in bmo (Rn). Then, f ∈ cmo (Rn) if and
only if f ∈ bmo (Rn) and

lim
a→0+

sup
|Q|=a

O( f ; Q) = 0 = lim
M→∞

sup
|Q|>1, Q∩Q(0,M)=∅

?
Q
| f |.

In addition, the localized version of Theorem 17 can be found in [50] (Corollary 1) for
bmo (Rn), and in [105] (Theorems 1 and 3) for vmo (Rn) and cmo (Rn), respectively.

Question 14. Let mmo (Rn), xmo (Rn), and x1mo (Rn) be, respectively, the closure in bmo (Rn)
of A∞(Rn), B∞(Rn), and B1(Rn). It is interesting to find the counterparts of

(i) Theorem 18 with cmo (Rn) replaced by xmo (Rn);
(ii) Theorem 13 with XMO (Rn) and X1MO (Rn) replaced, respectively, by xmo (Rn) and

x1mo (Rn);
(iii) Question 13 with MMO (Rn) replaced by mmo (Rn);
(iv) The dual result ( cmo (Rn))∗ = h1(Rn), in ([104], Theorem 9), with cmo (Rn) replaced by

mmo (Rn) or xmo (Rn), where h1(Rn) is the localized Hardy space;
(v) The equivalent characterizations for mmo (Rn) and xmo (Rn) via localized Riesz trans-

forms.

Remark 11. For the studies of vanishing Morrey spaces, we refer the reader to [106–109].

5.2. Vanishing John–Nirenberg–Campanato Spaces

Very recently, the vanishing subspaces of John–Nirenberg spaces were also studied
in [60,110]. Indeed, as a counterpart of Section 5.1, the vanishing subspaces of JNC spaces
enjoy similar characterizations, which are summarized in this subsection.

Definition 17. Let p ∈ (1,∞), q ∈ [1,∞), s ∈ Z+, and α ∈ R. The vanishing subspace
VJN(p,q,s)α(X) is defined by setting

VJN(p,q,s)α(X) :=
 f ∈ JN(p,q,s)α(X) : lim sup

a→0+
sup

size≤a
Õ(p,q,s)α( f ; {Qi}i) = 0

,

where

Õ(p,q,s)α( f ; {Qi}i) :=


∑

i

|Qi|

|Qi|
−α

{?
Qi

∣∣∣∣ f (x) − P(s)
Qi
( f )(x)

∣∣∣∣q dx
} 1

q


p
1
p

and the supremum is taken over all collections of interior pairwise disjoint cubes {Qi}i of X with
side lengths no more than a. To simplify the notation, write VJNp,q(X) := VJN(p,q,0)0

(X) and
VJNp(X) := VJNp,1(X).

On the unit cube [0, 1]n, the space VJN(p,q,s)α([0, 1]n) was studied by A. Brudnyi and Y.
Brudnyi in [60] with different symbols. The following characterization (Theorem 19) and
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duality (Theorem 20) are just, respectively, [60] (Theorem 3.14 and 3.7). Notice that when
α ≥ s+1

n , from [60] (Lemma 4.1), we deduce that JN(p,q,s)α([0, 1]n) = Ps([0, 1]n) is trivial.

Theorem 19. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ (−∞, s+1
n ). Then,

VJN(p,q,s)α([0, 1]n) = C∞([0, 1]n)∩ JN(p,q,s)α([0, 1]n)
JN(p,q,s)α ([0,1]n)

,

where C∞([0, 1]n) := C∞(Rn)|[0,1]n denotes the restriction of infinitely differentiable functions
from Rn to [0, 1]n.

Theorem 20. Let p, q ∈ (1,∞), s ∈ Z+, and α ∈ (−∞, s+1
n ). Then,(

VJN(p,q,s)α([0, 1]n)
)∗
= HK(p′,q′,s)α([0, 1]n),

where 1
p + 1

p′ = 1 = 1
q +

1
q′ .

It is obvious that Theorems 19 and 20 hold true with [0, 1]n replaced by a given cube
Q0 of Rn. As an application of the duality, Tao et al. ([110], Proposition 5.7) showed that for
any p ∈ (1,∞) and any given cube Q0 of Rn,

[Lp(Q0)/C] $ VJNp(Q0)

which proves the nontriviality of VJNp(Q0), here and thereafter,

Lp(X)/C :=
{

f ∈ L1
loc (X) : ‖ f ‖Lp(X)/C < ∞

}
with

‖ f ‖Lp(X)/C := inf
c∈C
‖ f + c‖Lp(X).

Remark 12. There exists a gap in the proof of [110] (Proposition 5.7): we cannot deduce(
VJNp(Q0)

)∗∗
= JNp(Q0), (40)

namely [110] (5.2), directly from Theorems 20 and 3 because, in the statements of these dual
theorems, q cannot equal 1. Indeed, (40) still holds true due to the equivalence of JNp,q(Q0) with
q ∈ [1, p). Precisely, let p ∈ (1,∞) and q ∈ (1, p). By Theorems 20 and 3, we obtain(

VJNp,q(Q0)
)∗∗

= JNp,q(Q0),

which, together with Theorems 10 and 21 below, further implies that(
VJNp(Q0)

)∗∗
=

(
VJNp,q(Q0)

)∗∗
= JNp,q(Q0) = JNp(Q0),

and hence (40) holds true. This fixes the gap in the proof of [110] (5.2).

Next, we consider the case X = Rn. The following proposition indicates that the
convolution is a suitable tool when approximating functions in JNp(Rn), which is a
counterpart of [6] (Lemma 1). Indeed, the approximate functions in the proofs of both
Theorems 21 and 22 are constructed via the convolution (see [110] for more details).

Proposition 31. Let p ∈ (1,∞) and ϕ ∈ L1(Rn) with compact support. If f ∈ JNp(Rn), then
f ∗ϕ ∈ JNp(Rn) and

‖ f ∗ϕ‖JNp(Rn) ≤ 2‖ϕ‖L1(Rn)‖ f ‖JNp(Rn).
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Proof. Let p, ϕ, and f be as in this lemma. Then, for any cube Q of Rn, by the Fubini
theorem, we have

O( f ∗ϕ; Q) =

?
Q

∣∣∣ f ∗ϕ(x) − ( f ∗ϕ)Q
∣∣∣ dx

=

?
Q

∣∣∣∣∣∣
?

Q

∫
Rn
ϕ(z)[ f (x− z) − f (y− z)] dz dy

∣∣∣∣∣∣ dx

≤

∫
Rn

?
Q

?
Q
|ϕ(z)|

∣∣∣ f (x− z) − f (y− z)
∣∣∣ dy dx dz

=

∫
Rn
|ϕ(z)|

?
Q−z

?
Q−z

∣∣∣ f (x) − f (y)
∣∣∣ dy dx dz

≤ 2
∫
Rn
|ϕ(z)|O( f ; Q− z) dz, (41)

where Q− z := {w− z : w ∈ Q}. Therefore, for any interior pairwise disjoint subcubes {Qi}i
of Rn, by (41) and the generalized Minkowski integral inequality, we conclude that∑

i

|Qi|[O( f ∗ϕ; Qi)]
p


1
p

≤ 2

∑
i

|Qi|

[∫
Rn
|ϕ(z)|O( f ; Q− z) dz

]p


1
p

= 2

∑
i

[∫
Rn
|Qi|

1
p |ϕ(z)|O( f ; Qi − z) dz

]p


1
p

≤ 2
∫
Rn

∑
i

[
|Qi|

1
p |ϕ(z)|O( f ; Qi − z)

]p


1
p

dz

= 2
∫
Rn
|ϕ(z)|

∑
i

|Qi − z|[O( f ; Qi − z)]p


1
p

dz

≤ 2‖ϕ‖L1(Rn)‖ f ‖JNp(Rn),

where Qi − z := {w− z : w ∈ Qi} for any i. This further implies that

‖ f ∗ϕ‖JNp(Rn) ≤ 2‖ϕ‖L1(Rn)‖ f ‖JNp(Rn)

and hence finishes the proof of Proposition 31. �

The following equivalent characterization is just [110] (Theorem 3.2).

Theorem 21. Let p ∈ (1,∞). Then, the following three statements are mutually equivalent:

(i) f ∈ Dp(Rn)∩ JNp(Rn)
JNp(Rn)

=: VJNp(Rn), where

Dp(Rn) :=
{
f ∈ C∞(Rn) : |∇ f | ∈ Lp(Rn)

}
and ∇ f denotes the gradient of f ;

(ii) f ∈ JNp(Rn) and, for any given q ∈ [1, p),

lim
a→0+

sup
{{Qi}i : `(Qi)≤a, ∀ i}

∑
i

|Qi|

[?
Qi

∣∣∣ f (x) − fQi

∣∣∣q dx
] p

q


1
p

= 0,
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where the supremum is taken over all collections {Qi}i of interior pairwise disjoint subcubes of
Rn with side lengths no more than a;

(iii) f ∈ JNp(Rn) and

lim
a→0+

sup
{{Qi}i : `(Qi)≤a, ∀ i}

∑
i

|Qi|

[?
Qi

∣∣∣ f (x) − fQi

∣∣∣ dx
]p


1
p

= 0,

where the supremum is taken over all collections {Qi}i of interior pairwise disjoint subcubes of
Rn with side lengths no more than a.

Now, we recall another vanishing subspace of JNp(Rn) introduced in [110], which is
of the CMO type.

Definition 18. Let p ∈ (1,∞). The vanishing subspace CJNp(Rn) of JNp(Rn) is defined by
setting

CJNp(Rn) := C∞c (Rn)
JNp(Rn)

,

where C∞c (Rn) denotes the set of all infinitely differentiable functions on Rn with compact support.

The following theorem is just [110] (Theorem 4.3).

Theorem 22. Let p ∈ (1,∞). Then, f ∈ CJNp(Rn) if and only if f ∈ JNp(Rn), and f satisfies the
following two conditions:

(i)

lim
a→0+

sup
{{Qi}i : `(Qi)≤a, ∀ i}

∑
i

|Qi|

[?
Qi

∣∣∣ f (x) − fQi

∣∣∣ dx
]p


1
p

= 0,

where the supremum is taken over all collections {Qi}i of interior pairwise disjoint subcubes of
Rn with side lengths {`(Qi)}i no more than a;

(ii)

lim
a→∞

sup
{Q⊂Rn : `(Q)≥a}

|Q|1/p
?

Q

∣∣∣ f (x) − fQ
∣∣∣ dx = 0,

where the supremum is taken over all cubes Q of Rn with side lengths `(Q) no less than a.

Moreover, Tao et al. ([110], Theorem 4.4) showed that Theorem 22(ii) can be replaced
by the following statement:

lim
a→∞

sup
{{Qi}i : `(Qi)≥a, ∀ i}

∑
i

|Qi|

[?
Qi

∣∣∣ f (x) − fQi

∣∣∣ dx
]p


1
p

= 0,

where the supremum is taken over all collections {Qi}i of interior pairwise disjoint subcubes
of Rn with side lengths {`(Qi)}i greater than a.

Furthermore, Tao et al. ([110], Corollary 4.5) showed that Theorem 22 holds true with?
Q

∣∣∣ f (x) − fQ
∣∣∣ dx and

?
Qi

∣∣∣ f (x) − fQi

∣∣∣ dx

in (i) and (ii) replaced, respectively, by[?
Q

∣∣∣ f (x) − fQ
∣∣∣q dx

] 1
q

and
[?

Qi

∣∣∣ f (x) − fQi

∣∣∣q dx
] 1

q

for any q ∈ [1, p).
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However, there still exist some unsolved questions on the vanishing John–Nirenberg
space. The first question is on the case p = 1.

Question 15. The proof of [110] (Theorem 3.2) indicates that (i) and (iii) of Theorem 21 are
equivalent when p = 1. However, the corresponding equivalent characterization of CJN1(Rn) is
still unclear.

The following question is just [110] (Question 5.5).

Question 16.

(i) It is still unknown whether or not Theorems 21 and 22 hold true with JNp(Rn) replaced by
JN(p,q,s)α(R

n) when p, q ∈ [1,∞), s ∈ Z+, and α ∈ R \ {0}.
(ii) It is interesting to ask whether or not for any given p ∈ (1,∞), q ∈ [1,∞), s ∈ Z+, and α ∈ R,(

CJN(p,q,s)α(R
n)

)∗
= HK(p′,q′,s)α(R

n) or
(
CJN(p,q,s)α(R

n)
)∗∗

= JN(p,q,s)α(R
n)

still holds true, where 1/p + 1/p′ = 1 = 1/q + 1/q′, CJN(p,q,s)α(R
n) denotes the closure

of C∞c (Rn) in JN(p,q,s)α(R
n), and HK(p′,q′,s)α(R

n) the Hardy-type space introduced in [61]
(Definition 3.6).

Obviously, [Lp(Rn)/C] ⊂ CJNp(Rn) ⊂ VJNp(Rn) ⊂ JNp(Rn). Then, the last question
naturally arises, which is just [110] (Questions 5.6 and 5.8).

Question 17. Let p ∈ (1,∞). It is interesting to ask whether or not

[Lp(Rn)/C] $ CJNp(Rn) $ VJNp(Rn) $ JNp(Rn)

holds true. This is still unclear.

5.3. Vanishing Congruent John–Nirenberg–Campanato Spaces

As a counterpart of Section 5.2, the vanishing subspace of congruent John–Nirenberg–
Campanato spaces VJNcon

(p,q,s)α
(X) was studied in [64].

Definition 19. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ R. The space VJNcon
(p,q,s)α

(X) is defined by
setting

VJNcon
(p,q,s)α

(X) := Dp(X)∩ JNcon
(p,q,s)α

(X)
JNcon

(p,q,s)α
(X)

,

where
Dp(X) :=

{
f ∈ C∞(X) : |∇ f | ∈ Lp(X)

}
.

Furthermore, simply write VJNcon
p,q (X) := VJNcon

(p,q,0)0
(X) and VJNcon

p (X) := VJNcon
p,1 (X).

Remark 13. Let p, q ∈ [1,∞), s ∈ Z+, α ∈ R, and Q0 be a given cube of Rn. Then, the observation
Dp(Q0) = C∞(Q0) implies that

VJNcon
(p,q,s)α

(Q0) = C∞(Q0)∩ JNcon
(p,q,s)α

(Q0)
JNcon

(p,q,s)α
(Q0)

.

Recall that Dm(X) with m ∈ Z is defined in the beginning of Section 3.3. The
following characterizations, namely Theorems 23 and 24, are just [64] (Theorems 3.5 and
3.9, respectively).
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Theorem 23. Let p, q ∈ [1,∞), s ∈ Z+, α ∈ (−∞, s+1
n ), and Q0 be a given cube of Rn. Then,

f ∈ VJNcon
(p,q,s)α

(Q0) if and only if f ∈ Lq(Q0) and

lim sup
m→∞

sup
{Q j} j⊂Dm(Q0)

∑
j

∣∣∣Q j
∣∣∣
∣∣∣Q j

∣∣∣−α?
Q j

∣∣∣∣∣ f − P(s)
Q j
( f )

∣∣∣∣∣q


1
q


p

1
p

= 0, (42)

where the second supremum is taken over all collections of interior pairwise disjoint cubes {Q j} j ⊂

Dm(Q0) for any m ∈ Z.

Corollary 4. Let p = 1, q ∈ [1,∞), s ∈ Z+, α = 0, and Q0 be a given cube of Rn. Then, (42)
holds true for any f ∈ Lq(Q0).

Proof. By Proposition 24(ii) and the definition of VJNcon
(p,q,s)α

(Q0), we have

[Lq(Q0)/Ps(Q0)] = VJNcon
(p,q,s)α

(Q0) = JNcon
(p,q,s)α

(Q0),

which, combined with Theorem 23, then completes the proof of Corollary 4. �

Theorem 24. Let p ∈ [1,∞) and q ∈ [1, p]. Then, f ∈ VJNcon
p,q (Rn) if and only if f ∈ JNcon

p,q (Rn)
and

lim sup
m→∞

sup
{Q j} j⊂Dm(Rn)

∑
j

|Q j|

?
Q j

∣∣∣∣ f − fQ j

∣∣∣∣q
p
q


1
p

= 0,

where the second supremum is taken over all collections of interior pairwise disjoint cubes {Q j} j ⊂

Dm(Rn) for any m ∈ Z.

We can partially answer Question 17 in the congruent JNC space as follows.

Proposition 32. Let I0 be a given bounded interval of R, and Q0 a given cube of Rn.

(i) ([64], Proposition 3.11) If p ∈ (1,∞) and q ∈ [1, p), then [Lp(R)/C] $ VJNcon
p,q (R).

(ii) ([64], Proposition 3.12) If p ∈ (1,∞) and q ∈ [1, p), then VJNcon
p,q (R) $ JNcon

p,q (R) and
VJNcon

p,q (I0) $ JNcon
p,q (I0).

(iii) ([64], Proposition 4.40) If p ∈ (1,∞) and q ∈ (1, p), then [Lp(Q0)/C] $ VJNcon
p,q (Q0).

Furthermore, it is easy to show that [L1(Q0)/C] = VJNcon
1 (Q0) = JNcon

1 (Q0) (see
Remark 2(ii)).

The following VMO-H1-type duality is just [64] (Theorem 4.39).

Theorem 25. Let p, q ∈ (1,∞), s ∈ Z+, 1
p +

1
p′ = 1 = 1

q +
1
q′ , α ∈ (−∞, s+1

n ), and Q0 be a given
cube of Rn. Then, (

VJNcon
(p,q,s)α

(Q0)
)∗
= HKcon

(p′,q′,s)α
(Q0)

in the following sense: there exists an isometric isomorphism

K : HKcon
(p′,q′,s)α

(Q0) −→
(
VJNcon

(p,q,s)α
(Q0)

)∗
such that for any g ∈ HKcon

(p′,q′,s)α
(Q0) and f ∈ VJNcon

(p,q,s)α
(Q0),

〈Kg, f 〉 = 〈g, f 〉.

Similar to Question 16(ii), the following question, posed in [64] (Remark 4.41), is still
unsolved.
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Question 18. For any given p, q ∈ (1,∞), s ∈ Z+, and α ∈ (−∞, s+1
n ), it is interesting to ask

whether or not(
CJNcon

(p,q,s)α
(Rn)

)∗
= HKcon

(p′,q′,s)α
(Rn) and

(
CJNcon

(p,q,s)α
(Rn)

)∗∗
= JNcon

(p,q,s)α
(Rn)

hold true, where CJNcon
(p,q,s)α

(Rn) denotes the closure of C∞c (Rn) in JNcon
(p,q,s)α

(Rn) and 1
p + 1

p′ =

1 = 1
q +

1
q′ . This is still unclear.
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