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Abstract: Welding operations may be subjected to different types of defects when the process is not
properly controlled and most defect detection is done a posteriori. The mechanical variables that are
at the origin of these imperfections are often not observable in situ. We propose an offline/online
data assimilation approach that allows for joint parameter and state estimations based on local
probabilistic surrogate models and thermal imaging in real-time. Offline, the surrogate models are
built from a high-fidelity thermomechanical Finite Element parametric study of the weld. The online
estimations are obtained by conditioning the local models by the observed temperature and known
operational parameters, thus fusing high-fidelity simulation data and experimental measurements.

Keywords: data assimilation; model order reduction; finite elements analysis; high dimensional
data; welding

1. Introduction

Welding is used extensively in the nuclear industry, for assembly and as a repair
technique. It is often used in maintenance operations of different kind that involve various
geometries and welding parameter settings. Very high temperatures applied in a localized
zone cause expansion and nonuniform thermal contractions, resulting in plastic deforma-
tions in the welding and its surrounding areas. Thus, residual stresses and permanent
deformations are produced in the welded structure. These could induce a variety of defects
such as hot tearing/cracking if the process is not properly controlled. Other defects may
appear such as porosity, lack of fusion or lack of penetration that need to be identified after
an operation.

The detection of defects in weld beads is usually performed after the welding operation
is fully performed [1]. When a defect is identified, the entire operation needs to be done
again. Therefore, it would be desirable to obtain real-time estimations of the current
mechanical state of the assembly using in situ measurements. With such estimations at
hand, welding operations could be stopped and/or controlled whenever predicted or
forecasted mechanical states are outside acceptable tolerance regions.

To this end, we propose to develop a digital twinning approach [2] whereby high-
fidelity model predictions will be continuously adjusted with respect to thermal images
acquired online during the welding operation. The simulation will rely on a state-of-the-art
mesoscale transient thermoelastoplastic finite element model. The fusion between FEA
and in situ measurements will be done by accounting for well-chosen parametric sources
of uncertainties in the simulation model, leaving freedom for the digital twin to react and
adapt to the sequence of thermal images. We aim for the data assimilation to be done
following a statistical and, if possible, Bayesian framework [3], to enable incorporating

Mathematics 2021, 9, 2263. https://doi.org/10.3390/math9182263 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3268-4892
https://doi.org/10.3390/math9182263
https://doi.org/10.3390/math9182263
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9182263
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9182263?type=check_update&version=2


Mathematics 2021, 9, 2263 2 of 25

engineering knowledge about the uncertain parameters of the model, and allow deriving
credible regions for the predictions and forecasts of mechanical states.

Unfortunately, data assimilation problems, i.e., sequential inverse or sequential calibra-
tion problems, are notoriously expensive to solve when the numerical models are systems
of partial differential equations [4–6]. In the context discussed above, the parameters of
spatially detailed nonlinear FEA models would need to be optimized in real-time. This
is intractable. We will therefore develop an appropriate piecewise linear meta-modeling
technique to achieve real-time efficiency.

Over the last decades, surrogate modeling via model order reduction has been suc-
cessfully developed for a variety of applications relying on high-fidelity modeling. This
is especially true for data-driven approaches based on projecting the high-fidelity model
in low-dimensional subspaces [7–13], among which POD-generated subspaces [14–16]
can be seen as an extension of the principal component analysis to continuous variables.
Projection-based model order reduction methods are known to reduce the computational
complexity of high-fidelity models by precomputed candidate solutions corresponding to
various points in the parameter domain (snapshot), and reusing the generated information
to fasten online solution procedures. However, even by using efficient hyper-reduction
schemes [17–20], reduced simulations of welding operations are still computationally too
demanding for process monitoring. This is in particular due to (i) the lack of reducibility
of moving heat source problems in general [17,21,22] and (ii) the relatively high online
cost associated with hyper-reduced models (hyper-reduction generalizes well in large
parameter domains owing to the fact that in the online phase, the nonlinear equations of
the original simulation model are solved on a reduced integration domain [23,24]).

To circumvent these difficulties, we propose to develop an offline/online meta-
modeling technique based on a mixture of probabilistic principal component analysis
models (PPCA). For any given position of the heat source, the thermomechanical state,
augmented by the vector of uncertain parameters, will be postulated to follow a Gaussian
distribution with low-rank covariance structure. This model will be identified using the
method of snapshots. Offline, we will run the high-fidelity mechanical simulations corre-
sponding to a fine sampling of the parameter space. In a second step, the Gaussian model
will be identified using the maximum likelihood approach probabilistic PCA described by
Bishop [25]. Online, parameter estimation will reduce to Gaussian conditioning (i.e., the
Kalman method), which can be made efficient when the covariance matrix exhibits a low-
rank structure. We will show numerically that this strategy allows us to successfully, and
for the first time, set up a data assimilation framework for welding operations, blending
high-fidelity thermomechanical simulations and thermal imaging in real-time to predict
and forecast mechanical states.

In a second stage of developments, we will treat the case where the position of the
heat source is to be estimated from thermal imaging. This is of practical interest when the
position of the welding torch is not accurately known or tracked during joining operations.
To achieve this goal, we build, numerically and offline, a correlation model statistically
linking the position of the hottest spots detected on the thermal image to the actual
position of the welding torch. Then, the data assimilation method based on the PPCA
can be easily adapted, using a probabilistic mixture of PPCA instead of a single Gaussian
model. Of course, conditioning the mixture of PPCA remains analytically tractable, and
computationally efficient as, as it will be shown, few PPCAs are associated with non-
vanishing coefficients at any given time (i.e., the estimation of the position of the torch from
thermal images is accurate). Even in this setting, the low-rank structure of the mixture of
PPCAs ensures that data assimilation is performed in real-time, without sacrificing the
accuracy provided by the high fidelity thermomechanical model.

In all cases, future states may be predicted by conditioning future statistical models to
available observations. This is technically done by Gaussian (mixture) conditioning of all
future mechanical states to current posterior distributions of unknown model parameters.
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The approach proposed in this paper is closely related to other data assimilation
methods available in the literature. Filtering methods based on parametrized models
(e.g., Kalman or particle filters) typically construct a Markov model for the propagation of
parameter distributions in time, progressively assimilating data as they are made available.
Our approach can be seen as a degenerate such filter whereby past data are ignored, only the
current thermal image influencing the posterior distribution of unknown model parameters.
Taking past data into account can be done, for instance, by concatenating mechanical states
from current and past assimilation times over a sliding window (i.e., an autoregressive
model). For the particular experimental setup considered in this work, taking past data into
account brought no significant change in predictive parameter distributions, which justifies
our development of a past-agnostic assimilation method. In terms of meta-modeling,
we could have used nonlinear meta-modeling techniques such as polynomial chaos or
neural network regression [26–28], but the choice of a linear model (PPCA) allows us
to solve analytically the conditioning problem, thus bringing robustness to the method,
which cannot be expected when using Markov Chain Monte Carlo solvers or sequential
importance sampling [5]. Our approach is clearly inspired by the parametrized background
data-weak approach [29], which adopts a variational point of view, while our method
is Bayesian, thereby delivering credible intervals and not point estimates. Similar to
the parametrized background data-weak method, we perform state estimation in large
dimensions by using a background covariance matrix generated by parametric variations
of a high-fidelity PDE system. The low rank structure of this covariance matrix is used
to fasten online Gaussian conditioning, circumventing the usual N3 complexity issue by
making use of standard algebraic techniques [25,30].

Our paper is organized as follows. In Section 2, we present the experimental config-
uration of our test case. Section 3 aims to present the thermomechanical model and the
inverse problem, detailing the known and unknown parameters. In Section 4, we will
introduce the construction of the local surrogate models using Probabilistic PCA, and in
Section 5, two different use cases are considered: a situation where the heat source position
is known and another one where it needs to be estimated. Forecasting is also discussed.
Finally, in Section 6 we present results for all the configurations introduced in Section 5
using noisy simulation data when the torch position is known and real experimental data
when it is not. Appendices A–C give, respectively, details on the algebraic expressions used
to accelerate the computations, some more forecasting results and material parameters of
the specimen.

2. Experimental Configuration

To test the proposed approach, we need to find an application that can replicate
similar welding conditions (in terms of materials and parameter variety) to those of a
real maintenance operation that can be performed in a laboratory environment with
proper instrumentation.

The target application is the stress prediction in a 316L stainless steel (The chemical
composition and some of the temperature dependent material parameters are given in
Appendix C) specimen submitted to Programmierter–Verformungs–Risstest (PVR) hot
cracking tests. PVR tests, developed during the 1970s by the Austrian company Boehler,
consist of making a fusion line using bead-on-plate TIG-welding with argon shielding
while the specimen is uniaxially tensile loaded [31]. It allows the control of the tensile
deformation progressively, which means that it can show cracks of different origin, most
notably solidification and liquidation cracking. The large surface of the specimen allows
easy positioning of thermocouples on both sides of it, as shown in Figure 1, and it is
also possible to film the surface of the specimen with an infrared camera. Thus, process
parameters and infrared images of the welding operation are the observational data from
which 3D stresses and temperatures will be estimated.
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Figure 1. Experimental configuration of a PVR test with two thermocouples.

The experiments are performed with a 6-axes Panasonic robotic arm and equipped
with a ValkWelding torch and the tensile loading is applied with a Lloyd Instruments LS100
plus. Two parameters related to the heat source are fixed before the experiment: the speed
(v) and the power (Q), which is the product of voltage (U) and current (I). The experiments
are instrumented with two thermocouples and filmed with a SC7500 FLIR infrared camera.
The infrared video will provide real-time measures on part of the specimen. While both
sides of the specimen have thermocouples, only the surface that is not being welded is
filmed. This way, reflections from the welding arc and the robot itself are avoided.

3. Digital Twin
3.1. Thermomechanical Model
3.1.1. Thermo-Elasto-Plasticity

Numerical simulation of welding is a very complex problem, as it needs to take into
account a great number of parameters to represent multiscale and multiphysics phenomena,
using temperature dependent material properties that are not always properly known.
Usually, the interactions between the metallurgy, the heat, and the mechanical problems
need to be simulated. In the case of 316L stainless steel, the metallurgic interactions are
negligible [32], and thus the model is reduced to a weakly coupled nonlinear parametric
thermo-elasto-viscoplasticity problem.

We consider a model of unsteady thermo-elasto-viscoplasticity over spatial domain
Ω ∈ R3, whose boundary will be denoted by ∂Ω, and time domain T ∈ [0, T]. For all
(x, t) ∈ Ω× T , the unsteady heat equation reads as

ρcp
∂T
∂t
−∇ · k∇T = qd (1)

where T : Ω × T → R is the temperature field, ρ is the mass density, k is the thermal
diffusion coefficient and cp is the specific heat capacity.

The above equation is complemented by boundary condition

T = T0 (2)

on domain boundary ∂ΩT . Moreover,

− k∇T · n = γ(T4 − T4
0 ) + ζ(T − T0) (3)
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on domain boundary ∂Ωq, where γ is the radiation coefficient and ζ is the thermal
convection coefficient. At time t = 0, the temperature T is equal to T0 everywhere in the
computational domain.

For all (x, t) ∈ Ω× T , the mechanical equilibrium reads as

∇ · σ = 0 (4)

This equation is complemented by boundary conditions

u = ud (5)

on part of the domain ∂Ωu, and
σ · n = 0 (6)

on part of the domain ∂Ωt. The coupled thermomechanical problem is closed by the
following constitutive relation:

σ = C : (ε(u)− εp − α(T − T0)Id) (7)

where ε(u) := 1
2
(
∇u +∇uT) is the total strain, εp is the plastic strain and α(T − T0)Id is

the thermal strain, with α the coefficient of thermal expansion and Id the identity tensor.
The plastic strain is fully determined by a Von Mises plasticity model with isotropic and
kinematic hardening.

f (σ, R, X) :=

√
3
2
(σ̃− X) : (σ̃− X)− R(p) ≤ 0 (8)

ε̇p = λ
d f
dσ

(9)

ṗ = λ
dR
dp

(10)

X =
2
3

C(p)α (11)

α̇ = ε̇p − γ(p)α ṗ (12)

λ ≥ 0 λ f (σ) = 0 (13)

where R(p) is the limit of the elastic domain due to isotropic hardening, λ is the plastic
multiplier and σ̃ = σ− 1

3 Tr(σ)I is the deviatoric part of the stress tensor.
In the specimen of a PVR test, the traction boundary conditions are enforced by

Dirichlet boundary conditions:

u(x, t) = Ud
t

tw
∀x ∈ ∂Ωu (14)

The main mechanical quantity of interest is the first principal stress, denoted by σI :

σI = max
n∈R3

n · σ · n
||n||2 (15)

The first principal stress is the highest principal stress. It has a huge influence on hot
cracking during the welding process.

3.1.2. Thermomechanical Load

The choice of a model for the moving heat source is a key point in numerical simula-
tion of welding. The most commonly used one is Goldak’s double-ellipsoid model [33],
represented in Figure 2. It is important to note that the heat distribution is different in
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the front and the rear of the heat source, thus the model depends on the current central
position of the heat source P(t) = (x(t), y(t), z(t)) ∈ R3,

P(t) = P0 +

(
t

(PF − P0)V
− εP(t)

)
(PF − P0) (16)

In the equation above, P0 ∈ R3 is the position of the heat source at the start of the
welding operation, and PF ∈ R3 is the position at the end of the operation. T = (PF − P0)V
corresponds to the total welding time, which depends linearly on the velocity V of the
source. εP(t) is a small (normalized) time delay that accounts for potential errors in the
control of the welding robot (This is a very simple model, which could easily be modified
to include fluctuations of the velocity field.). This parameter will be identified online.

Assuming that the heat source moves in the direction x, the final equation is

q(x, y, z, t) =


12
√

3ηQ
(ar+a f )bc

√
π3 exp

(
−3(x−X)2

a2
f

+ −3(y−Y)2

b2 + −3(z−Z)2

c2

)
, x ≥ X.

12
√

3ηQ
(ar+a f )bc

√
π3 exp

(
−3(x−X)2

a2
r

+ −3(y−Y)2

b2 + −3(z−Z)2

c2

)
, x < X.

(17)

where ar, a f , b and c are unknown parameters describing the geometry of the double
ellipsoid (In practice, we calibrate ar, b, c, η and K where K is the ratio between ar and a f :
ar = Ka f ), Q = UI is the power, with U the voltage, I the current and η the efficiency.

Figure 2. Goldak’s double-ellipsoid model.

3.1.3. Space and Time Discretization

The thermomechanical problem is discretized in space using the standard P1 Lagrange
finite element method. In the following, T(t) and σ�(t) will respectively denote the vector
of finite element nodal temperature and the vector of components of the stress tensor at the
quadrature points.

The thermomechanical problem is discretized in time using the standard backward
Euler finite difference scheme.

3.2. “Truth” Online Inverse Problem

We now describe the problem of data assimilation and online forecasting for the
welding operation.

3.2.1. Parametrized Probabilistic Setting

The power Q of the heat source and its velocity V are supposed to be controlled with
a good degree of accuracy. The mechanical load Ud is also well controlled during the
experimental procedure. In order to build the “truth” digital twin, we further assume that
the thermal capacity and diffusivity of the material are well characterized. The mechanical
behaviour of the structure (thermal expansion, elasticity and plasticity) are also assumed
to be well characterized, qualitatively and quantitatively. This is consistent with EDF’s
decades of experience in modeling, characterizing and simulating such welding processes.
Finally, the thermal and mechanical boundary conditions are reasonably well quantified in
our experimental setting.
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However, several sources of uncertainties negatively affect the predictive capabilities
of the simulation model:

• The position P of the center of the heat source is not perfectly well known. We will
consider that parameter εt is random, i.e., is a source of epistemic uncertainty.

• The spatial distribution of the heat source is not known with precision. We surmise
that that the main contribution to the overall uncertainty of the model is the spatial
length-scale of the Goldak model.

Therefore, the parameter space P =M×Θ space comprises two distinct blocks:

• The set of known parameters µ = {Q, V} ∈ M, which will vary from one welding
operation to the next, but can be controlled with precision.

• The set of unknown parameters θ = {ar, b, c, η, K, } ∈ Θ, which are given a probability
distribution θ ∼ pθ that encodes the prior knowledge available about these parameters.

3.2.2. “Truth” Online Bayesian Conditioning

Data will be assimilated at homogeneously distributed times T̄ = {t0 = 0, t1 =
∆t, t2 = 2∆t, . . . tNt = Nt∆t}. The assimilation time step ∆t is adjusted so that the number
of assimilation steps Nt is the same for all simulations, independently of the velocity V of
the heat source,

∆t =
(PF − P0)

Nt
V (18)

Online at time tk ∈ T̄ , we assume that surface temperatures are measured noisily (i.e.,
with the thermal camera). We will write

dk
T = HTTk

|θ,µ + εk
s (19)

where H is a fixed Boolean operator acting on the vector of finite element temperature nodal
values Tk at time step k. The additive measurement noise is supposed to be zero-mean
Gaussian distributed εT ∼ N (0, ΣM = σ2

M Id). The sources of the temperature measure
uncertainty are varied and might include light reflections or lack of knowledge of material
parameters like the emissivity at different temperatures [34]. The measure error parameter
σ2

M will be calibrated empirically comparing the measure from two sensors available in
EDF’s welding lab.

Assuming that the successive noise vectors {εk}k∈[0,t]∩T̄ are independent, the statisti-
cal inverse problem to be solved online is the following.

At time t ∈ T̄ , the posterior distribution of unknown parameters given the past
measurements is

p(θ|dk, µk) ∝ Πk′≤kLk′(θ; dk′)pθ(θ) (20)

where
Lk(θ; dk) = N (dk; HTTk

|θ,µ, ΣT) (21)

Unfortunately, evaluating the likelihood function in real-time is unfeasible, even when
using standard Markov assumptions.

4. Real-Time Predictions with Gaussian Mixture of Local Surrogate Models

In the previous section, the truth inverse problem was presented, and it was concluded
that it is not well suited for real-time applications. To overcome this, in this section the
construction of Gaussian local surrogate models from snapshots of a Finite Elements
parametric study is discussed.

4.1. Local Multiphysics PCA Model

Our proposal is to make local surrogate models for a linear joint representation of the
state, known parameters and unknown parameters for every position of the heat source
at the assimilation times. The positions are fixed in a grid between the initial position
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P0 and the final position PF with a regular separation ∆P. The parametric solutions are
clustered by the position P(t) of the heat source and associated to the position Pk = k∆P if
|P(t)− Pk| < ∆P

2 . The local model at position Pk reads as

sk =


Tk

σk

µk

θk

 = s̄k + Φkαk + εk
s (22)

with αk ∼ N (0, Id) and εk
s ∼ N (0, σ2 Id). Operator Φk—a decoder—is fixed for each

position and possesses nφ columns. It is obtained by using all parametric solutions of
the welding problem corresponding to position Pk. This probabilistic model encodes the
dependency between all the state variables and the known and unknown parameters in
the form of a multivariate Gaussian:

sk ∼ N (s̄k, ΦkΦkT + σ2
s Id) (23)

The choice of using local models aims at avoiding the use of a global reduced basis, as
it is well known that moving heat sources generate irreducible parametric solutions [17].
Notice as well that there is no Markovian assumption in the model. In other words,
measurements at times {tl}l<k do not provide any new information about the state at
time k.

Using Gaussian assumptions on αk and εs follows a certain logic as well. With sk being
Gaussian, we can deduce that dk, the observed data at time k is also Gaussian distributed.
This means that p(sk|dk, µ) will also be Gaussian and can be calculated analytically, allowing
us to greatly accelerate the computation times.

4.2. Maximum Likelihood PCA

In order to calibrate the surrogate model, we assume that a snapshot of ns extended
states is available, which we denote by S = {S1, S2, . . . , Sns}. This snapshot should cover
the time and parameter domains appropriately.

In 1999, Tipping and Bishop [35] showed that a probabilistic formulation of PCA can
be obtained from a Gaussian latent variable model, where the basis vectors are maximum-
likelihood estimates. Given Equation (22), there are explicit expressions for the maximum
likelihood estimates of the parameters:

Φ = Uq

√(
Λq − σ2 Id

)
R (24)

where Uq contains the left singular vectors associated to the greatest q < ns singular values
of a Singular Value Decomposition (SVD) of the snapshot matrix S . The diagonal matrix Λq
is also obtained from the SVD, and it contains the greatest q singular values in decreasing
order. R is an orthogonal rotation matrix that, in practice, will be chosen to be the identity
matrix. Finally, σ2 is related to the truncation error:

σ2 =
1

ns − q

ns

∑
j=q+1

λ2
j . (25)

where λj are the smaller singular values.
This means that the generative PCA model can be easily computed from a SVD of the

output of a parametric study of the thermomechanical finite elements model.
The snapshots S = {S1, S2, . . . , SNt} are generated using a straightforward procedure.

All the parameters in P are assumed to be uniformly distributed over a hyper-cube and will
be sampled using Latin Hypercube Sampling [36]. The minimum and maximum values for
each parameter are given by experts.
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The samples are generated as follows. For every (µ, θ) sampled with LHS the finite
element simulation is ran over T (µ) = [0, T(µ)], delivering a history of Nt snapshots. Ad-
ditional postprocessing could be performed depending on the physics that are represented
in the state vector s.

5. Online Prediction

In this section, we treat the resolution of the inverse problem. Two cases have to be
considered depending on whether the torch position is known or not: The first case, when
the heat source position is known at all times, is straightforward and the predictions are
obtained using a single well-identified PPCA model. In the second case, the torch position
needs to be estimated with some uncertainty. The predictions are now computed from a
mixture of PPCAs. Finally, the forecast of future states is discussed.

5.1. Known Position

Let us assume that the heat source position is known at all times. This happens when
all measurements are synchronized and knowing how much time has passed from the
starting point allows perfect knowledge of the position Pk via the speed or when the robotic
arm is equipped with a sensor measuring the advanced distance and this signal is available.
This corresponds to a situation where εP(t) = 0 in Equation (16).

When the position Pk is known, the closest model is also known and it is enough
to estimate the current state and unknown parameters. This is done by computing the
posterior distribution p(sk|dk, µ), which is Gaussian as seen in Section 4. It can be computed
analytically and it is completely determined by its mean msk |dk ,µ and covariance Σsk |dk ,µ

and it. Introducing the notation Σsk = ΦkΦkT + σ2
T Id, the mean and covariance are

µsk |dk ,µ = s̄k + Σsk HkT
(

HkΣsk HkT + σ2
m Id

)−1
(dk − d̄k) (26)

Σsk |dk ,µ = Σsk − Σsk HkT
(

HkΣsk HkT + σ2
m Id

)−1
HkΣsk (27)

where Hk is a Boolean operator acting as the observation function.
The evaluation of this expression is very slow due to the size of the matrices involved.

To avoid this cost, we propose to compute the posterior distribution of the reduced coor-
dinates αk instead. Once again, the posterior distribution p(αk|dk, µ) is Gaussian, so it is
determined by its mean mαk |dk and covariance Σαk |dk :

mαk |dk ,µ = ΦkT HkT
(

HkΣsk HkT + σ2
m Id

)−1
(dk − d̄k) (28)

Σαk |dk ,µ = Id −ΦkT HkT
(

HkΣαk HkT + σ2
m Id

)−1
HkΦk (29)

The mean of the posterior distribution of sk can be then deduced using the reduced
basis Φk as follows:

µsk |dk ,µ = s̄k + Φkmαk |dk (30)

As for the covariance matrix, it can be calculated by

Σsk |dk ,µ = ΦkΣαk |dk ,µΦkT + εk
s (31)

The whole covariance matrix might be impossible to store in RAM if the number
of degrees of freedom is large. In this case, only the diagonal of the matrix product
ΦkΣαk |dk ,µΦkT is calculated.

For further details on the acceleration of these computations, see Appendix A.
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5.2. Unknown Position

As it is the case in EDF’s lab, we may not have access to the exact heat source po-
sition for lack of synchronicity between the measure sensors. In this case, εP(t) > 0 in
Equation (16) and the torch position needs to be estimated from the video frame, which
adds more uncertainty to the model. The filmed side of the specimen is the opposite side of
the weld and there exists a delay between the highest temperature on this side and the torch
position. Furthermore, this delay is dependent on material and operational parameters,
such as the speed.

Using the finite elements simulations used for the prior generation of the local PPCA
surrogate models, we created a Gaussian surrogate model that links the position of the
highest temperature measured on the camera side of the specimen xk and the known
parameters µ with the position of the heat source on the welded surface of the specimen
Pk. The model was fitted using a Matérn kernel with ν = 3

2 as a covariance function. The
output of the model is the probability distribution of the estimated heat source position P̂k.
We sample this distribution to find possible torch positions.

Not being able to determine the exact position, the data assimilation needs to be
adapted using a mixture of PPCAs. The multiphysics state for this video frame is named
sk̂ to indicate an unknown position. For each sample of the heat source position we
assign it the closest local PPCA model and a discrete assignment probability distribution is
calculated to find the active coefficients of the mixture. Assuming a total of J local models
are active, p(sk̂|dk, µ) is computed as a Gaussian mixture of the estimations of each local
model weighted by the discrete assignment probability pj ∀j ∈ J:

msk̂ |dk ,µ = ∑
j∈J

pjmsj |dk ,µ (32)

Σsk̂ |dk ,µ = ∑
j∈J

pjΣsj |dk ,µ (33)

The torch position estimation is sufficiently accurate to ensure that the number of
active PPCA models is not too large. The assimilation is still performed in real-time due to
the very quick evaluation of each individual PPCA.

5.3. Forecasting of Future States

Despite the lack of Markovian assumption in the model, it can be used to forecast
future states without observed experimental data by integrating previously estimated
unknown parameter values. Indeed, the unknown parameters are not changed online and,
assuming that they were estimated for a position Pk, θk could be used to obtain accurate
predictions of future states.

The position of the future state is defined by a displacement of j∆P in the direction
of the weld, where ∆P is the regular separator in the positions grid. This opens two
possibilities whether the torch position was known or was estimated from the data frame.
If the heat source position was known, the prediction is computed using the PPCA model
for position Pk+j = (k + j)∆P, this is p(s̃k+j|µ, θk).

The other possibility is that the current position was estimated from the experimental
data. In this case, the displacement will be added to the position samples so that the
uncertainty on the torch position is maintained. Then, the prediction will be calculated
using the mixture of PPCAs.

6. Results

In this section, we will show the use of the proposed models. First of all, the exper-
imental configuration of a PVR hot cracking test is explained. Then, details about the
parametric finite element study from which the snapshots are generated will be given.

For the numerical tests, two sources of data are considered to show the case where
the torch position is well known and the case where and estimation of its position is
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needed. The first test will use noisy synthetic data obtained from a previously calibrated
Finite Element solution as input. The joint multiphysics state and unknown parameters
estimation are obtained using a single PPCA model. Then, we will consider a frame of an
infrared video of a PVR experiment. The torch position will be deduced from the image
and the estimation computed from a mixture of PPCAs.

Last, the forecasting capabilities of the model will be showcased for the prediction of
a state situated 12 mm further than the last studied position.

6.1. Experimental Procedure

A PVR hot cracking test was done at EDF R&D welding lab to obtain experimental
data. The 316L steel specimen is 200 mm long and 3.5 mm thick. Its width is 80 mm on both
ends and 40 mm in the center. The fusion line is 130 mm long. The specimen was placed in
a tensile testing machine which was configured to augment the tensile deformation speed
progressively from 0 mm/s to a maximum speed of 0.333 mm/s. The welding parameters
used in the experiment are shown in Table 1. Thus, the known parameters are v = 2 mm/s
and Q0 = U × I = 8.4× 81 = 680.4 W. The welded specimen is shown in Figure 3.

Figure 3. Welded PVR specimen after the experiment.

Table 1. PVR experiment parameter values.

Current Voltage Travel Speed Shielding Gas Maximal Stroke Rate

81 A 8.4 V 2.00 mm/s Argon 20 mm/min

The experiment is instrumented with two type K thermocouples and a SC7500 FLIR
infrared camera. The thermocouples, one on each side of the specimen (see Figure 1), are
placed 110 mm from the bottom and 4 mm to the left from the center. The camera films the
surface that is not being welded in order to avoid reflections from the welding arc. Figure 4
shows the projection of a frame of the video on the FE mesh. The resolution of the camera
images is 320 × 256 pixels.

Previous uses of this configuration of thermocouples and infrared camera helped
with the calibration of the parameter σ2

m. To estimate the value of σ2
m, we compare the

measures of both sensors on a single point over time. The aim is to obtain an estimation of
deviations between measures. Figure 5 shows the comparison between the signals. Here,
both measures seem very close but show differences in some areas. Due to the configuration
of the camera, only temperatures above 400 ◦C should be considered. One more thing to
note is the peak that appears in the camera measure during the cooling phase, which was
probably caused by the reflection of light. Work is being done at the lab to improve the
quality of instrumentation and avoid this kind of issue. Considering the thermocouple and
camera measures as ΘT(t) and ΘC(t), respectively, the value of σ2

m is estimated as

σ2
m = Var(ΘT(t)−ΘC(t)) = 323.880246 (34)

which corresponds to a standard deviation of ~18 ◦C.
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Figure 4. Projection of infrared images on the FE mesh.
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Figure 5. Temperature measures taken with a thermocouple and an infrared camera.

The thermocouple measures, and not the camera data, are also used to calibrate the
unknown parameter values for a high fidelity Finite Elements simulation of the experiment
that will be used as reference. This is a standard procedure that is done for every simulation
of an experiment at EDF and it involves the resolution of an optimization problem. The
result of the calibration of θ is shown in Table 2.

Table 2. Deterministic calibration of the unknown parameters.

a f b c η K

Calibrated value 6.657 mm 3 mm 1.5 mm 0.9 1.15

6.2. Prior Generation

In Section 4, we briefly discussed the generation of the prior that is obtained by
running finite element simulations for a Latin Hypercube Sampling of the parameter space
P , where every parameter is assumed to be uniformly distributed. The minimum and
maximum values for each parameter are issued from EDF’s decades of experience in both
welding and numerical analysis of welding. These values are shown in Table 3 for the
known parameters and in Table 4 for the unknown parameters.
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Table 3. Minimum and maximum values for the known parameters µ, as determined by the experts.

Heat Source Speed Voltage Current

Min. value 1 mm/s 8 V 70 A
Max. value 3 mm/s 12 V 90 A

Table 4. Minimum and maximum values for the known parameters θ, as determined by the experts.

a f b c η K

Min. value 3 mm 1 mm 0.5 mm 0.75 1.15
Max. value 12 mm 7 mm 2.5 mm 0.95 2.5

A total of 128 simulations of PVR experiments were run with code_aster [37], EDF’s
open-source thermomechanical simulation software. The selected physical fields for the
multiphysics state vector are the temperature (T) and the maximum principal stress σI . The
maximum principal stress is postprocessed from the stress tensor. It was chosen because it
is used in a hot crack criterion developed in a previous PhD [38] .

6.3. Numerical Tests
6.3.1. Estimation of the Heat Source Position

Before launching the two tests, the heat source position is identified using the surrogate
model presented in Section 5. Figure 6 shows the discrete probability of assignment from
1000 samples of the position distribution.
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Figure 6. Possible PPCA bases with associated probability.

The most probable basis is 130, which corresponds to 65 mm from the starting position.
This position is the one that will be used as known position in the synthetic data test.

6.3.2. Tests with Noisy Synthetic Data

In this first test, the input data come from the calibrated finite elements simulation of
the experiment, with µ = (2.0, 680.4). The snapshot used as input is the one corresponding
to the highest probability. White noise of the same amplitude as the measure error estimated
for the camera has been added to the data. The observation function Hk restricts the view
to a region “seen” by the camera, and it is represented in Figure 7.
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Figure 7. Noisy simulation data on camera area.

The mean of the posterior distribution mk
sk |dk contains the estimation of the temperature

and maximum principal stress fields, as well as the unknown parameters. We can compare
these results to the calibrated finite elements simulation, from which the input data was
taken.

The results are compared along a line of 130 mm at the center of both sides of the
specimen, which coincides with the the weld line on the torch side. The 95% confidence
interval of the estimation is also plotted around the posterior mean in Figures 8 and 9. The
reconstruction of the temperature and stress fields is very accurate, with a global relative
error of 1.3693% for the temperature and 6.3419% for the principal stress. This relative
error is calculated as

ek
T =
||Tk
|µ,θ − sk

|T ||2
||Tk
|µ,θ ||2

(35)

ek
σI
=
||σk

I|µ,θ − sk
|σI
||2

||σk
I|µ,θ ||2

(36)

where Tk
|µ,θ and σk

I|µ,θ are the nodal temperature and principal stress simulation values,

respectively, and sk
|T and sk

|σI
are the estimated nodal temperature and principal stress,

respectively.
The confidence intervals are thin for the observed temperature data, as it is expected,

but it is larger around the peak on the non-observed surface. For the principal stress
estimations, although no data was seen, the estimated posterior mean is close to the
simulation on both surfaces.

The estimation of the unknown parameters θ is very close to the results of the de-
terministic calibration, with a relative error inferior to 10%, meaning that the parameter
calibration successfully identified the theta values used for the simulation. A comparison of
the values obtained by the deterministic calibration and the mean posterior theta estimation
is given in Table 5.

Table 5. Posterior estimation of the unknown parameters θ obtained from noisy synthetic data.

a f b c η K

Calibrated value 6.657 3 1.5 0.9 1.15
Estimated value 6.18868114 2.84188617 1.58588521 0.89049624 1.16543712
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Figure 8. Temperature estimations obtained from noisy synthetic data, FE simulation and confidence interval. (a) Camera
side. (b) Torch side.
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Figure 9. Maximum principal stress estimations obtained from noisy synthetic data, FE simulation and confidence interval.
(a) Camera side. (b) Torch side.

6.3.3. Tests with Real Experimental Data

In this test, we will use the camera frame projected onto the mesh as input data for the
model. The camera is configured to capture temperatures above 400 ◦C, so the observation
function Hk is modified to only use data above 400 ◦C, which is the area represented in
Figure 10.

The estimation is calculated as a mixture of the results given by the local PCA models
in Figure 6. The amount of active local models is small and each individual conditioning is
computed very fast. All the confidence intervals are the 95% confidence intervals.

On the camera side, the estimations can be compared to the measured temperature. In
Figure 11, we can see that the model estimates a temperature that follows the experimentally
measured one. Interestingly, the estimation deviates from the simulation, as seen in
Figure 12, where the temperature is higher for the FE results. We interpret this difference in
the estimation and the FE simulation as a model correction given by the partial observation
of the temperature. We remind the reader that the FE model was calibrated using only
the thermocouple measures and not the infrared camera. This difference between the FE
simulation and the measured data in Figure 12 may indicate that the calibration of θ using
the thermocouples is not good enough. This is supported by the fact that the estimated
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efficiency η, shown in Table 6 along with the other unknown parameters, is smaller at ~0.74
while the initial calibration estimated it at 0.9. A smaller efficiency would transfer less
temperature to the specimen, explaining the lower estimated temperature.

Figure 10. Experimental data—Temperatures above 400 ◦C.

Table 6. Posterior estimation of the unknown parameters θ obtained from infrared experimental
data.

a f b c η K

Calibrated value 6.657 3 1.5 0.9 1.15
Estimated value 6.40815805 3.8549261 1.47004239 0.73615823 1.09763587
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Figure 11. Temperature estimations and camera data.

Note that on the camera side the confidence interval is very small for the temperature
estimation, as it is expected from observed data, while on the torch side the confidence
interval is larger, especially around the peak position. No mechanical data is observed,
and thus the maximum principal stress confidence intervals reflect the uncertainty of the
posterior estimation (see Figure 13).
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Figure 12. Temperature estimations obtained from infrared experimental data, FE simulation and confidence interval.
(a) Camera side. (b) Torch side.
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Figure 13. Maximum principal stress estimation obtained from infrared experimental data, FE simulation and confidence
interval. (a) Camera side. (b) Torch side.

6.4. Forecasting

In this last example, the forecasting capabilities of the model will be shown. Let us
assume that we want to estimate the temperature and maximum principal stress fields in
a future position that has not been observed yet. This position is situated 12 mm further
than the one studied for the previous tests. All the information available is the value of
the known parameters and the posterior estimation of the unknown parameters with their
associated posterior covariance.

Choosing the active coefficient of the mixture of PPCAs for this position Pj = (k +
12)∆P is the first problem to solve. When an image is available, the surrogate model for
position estimation takes the highest temperature identified in the image and returns the
probability distribution of the torch position. In the forecasting problem, we have no video
frame to find the highest temperature, so it is assumed to be shifted by the 12 mm and then
it is used to obtain the discrete assignment probability. The multiphysics state s̃j will be
predicted by conditioning its distribution by the known parameters µ and the estimated
unknown parameters θk with its associated posterior variance.

As with previous tests, the predicted estimations, p(s̃j|µ, θk), are compared to the
experimental data (when it is possible) and to a Finite Elements simulation over a line
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on both sides of the specimen. Figure 14 shows a frame of the video where the highest
temperature position is situated 12 mm to the right of the highest temperature position
found in Figure 10. The measures corresponding to that frame are compared to the
predictions in Figure 15. The estimation is very close to the camera data but the 95%
confidence interval is very large compared to the one in Figure 11, a case where the data
was observed, reducing the uncertainty.

Figure 14. Camera data of the future state.
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Figure 15. Forecasted temperature and camera data.

The Finite Elements simulation was used as reference in Figures 16 and 17, where
we observe generally large confidence intervals on both sides of the specimen. Overall,
knowledge of the known and unknown parameters is enough to obtain predictions that
represent the behaviour of the temperature and maximum principal stress fields but with a
high degree of uncertainty, which can be greatly reduced by observation of the thermal
images. This is not the case when only the known parameters are observed. Additional
figures are shown in the Appendix B to support this claim.
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Figure 16. Forecasted temperature, FE simulation and confidence interval. (a) Camera side. (b) Torch side.
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Figure 17. Forecasted maximum principal stress, FE simulation and confidence interval. (a) Camera side. (b) Torch side.

7. Conclusions

We have proposed a novel data assimilation methodology for automatized welding
operations monitored using thermal imaging. The approach is based on digital twinning,
a physically detailed thermomechanical finite element model assimilating online data
and predicting unseen mechanical quantities of interest such as stress fields. Sources of
variability are clearly identified and modeled using appropriate random parameters, the
distribution of which are designed based on expert knowledge. Data assimilation then
consists in finding the posterior distribution of the uncertain parameters given the sequence
of thermal images available at current process time.

The data assimilation framework is made in real-time by deploying and offline–online
meta-modeling technology. Sparse linear models are postulated for every position of the
welding torch, linking observations and hidden mechanical quantities to the parameters of
the welding process and to the random parameters. The coefficients of the linear models
are identified using the method of snapshots, using hundreds of prior high-fidelity compu-
tations. Online, predicting unseen mechanical states operation reduces to simple Gaussian
conditioning with a background covariance matrix exhibiting a low-rank structure. This is
made computationally efficient using standard algebraic manipulations.

Thanks to this model/data fusion technology, we have shown that we were, for
the first time, able to predict mechanical stress fields during welding in real-time, the
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predictions being continuously adjusted based on thermal imaging. We have shown that
our digital twin may produce predictions that differ significantly from those produced
by a high-fidelity model that is precalibrated using standard thermal sensing via a set of
thermocouples. We interpret this finding as an online model correction, the data acquired
online being richer, corresponding to thermal sensing closer to the regions of intense
thermal gradients.

Finally, we were able to forecast stress predictions into the future of welding operations,
by simply using current posterior distributions of unknown parameters and perform
uncertainty propagation. We have shown that such predictions where reasonably sharp
and could be used to stop welding operations in advance, when forecasting inadmissible
levels of stresses.

The developments presented in this paper are expected to be the foundations for
further theoretical and applied research. Future experiments may include additional
instrumentation to obtain more data such as measures of the strain field by digital image
correlation. In terms of algorithmic efficiency, the proposed meta-modeling methodology
is piecewise linear, homogeneously along the trajectory of the welding torch. We are
now investigating a data-driven clustering approach of the welding parameter domain,
which we expect will help us minimize the memory required to store the various meta-
models. In terms of application, the present developments focus on the prediction of
stresses during the operations, but could easily be extended to the prediction of residual
stresses. The exploration of parameter spaces describing geometrical variations of joining
operations is also of high practical interest. Finally, the proposed approach may constitute
the computational core of a model-based control technology aimed at adjusting the process
parameters online in order to ensure that the joining operations produce assemblies that
are of acceptable mechanical qualities.
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Appendix A. Fast Computation of Mean and Covariance

The mean and covariance of the posterior distribution have the following
explicit expression:

mαk |dk ,µ = ΦkT HkT
(

HkΦkΦkT HkT + (σ2
M + σ2

s )Id
)−1

(dk − d̄k) (A1)

Σαk |dk ,µ = Id−ΦkT HkT
(

HkΦkΦkT HkT + (σ2
M + σ2

s )Id
)−1

HkΦk (A2)

where Φk ∈ RN×NM is the PPCA basis, Hk ∈ RN×NC is the Boolean observation function,
dk ∈ RNC is the observed data, and σM and σs are the parameters guiding the mea-
sure and truncation errors. These matrices are of very high dimension, so evaluation is
potentially slow.
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Let us introduce the notation X := HkΦk et Z := (σ2
M + σ2

s )Id. Equations (A1) and
(A2) become

mαk |dk ,µ = XT
(

XXT + Z
)−1

(dk − d̄k) (A3)

Σαk |dk ,µ = Id− XT
(

XXT + Z
)−1

X (A4)

Appendix A.1. Mean of the Posterior Gaussian Distribution

In order to accelerate the evaluation, the following algebraic identity [25] is used:(
P−1 + BT R−1B

)−1
BT R−1 = PBT

(
BPBT + R

)−1
(A5)

where P ∈ RM×M, R ∈ RN×N and B ∈ RN×M. This expression can be verified by
multiplying both sides by (BPBT + R). The left side of the equation is quicker to evaluate
when M << N. If N << M, the right side is quicker to evaluate.

It is easy to see that XT(XXT + Z
)−1 in Equation (A3) corresponds to the right side of

Equation (A5) when P = Id, B = X and R = Z. In our case, the left side of Equation (A5)
is faster because NM, the number of PPCA modes, is smaller than NC, the number of mesh
nodes where the infrared camera is observed (NM << NC). The expression that should be
evaluated is

mαk |dk ,µ =
(

XTZ−1X + Id
)−1

XTZ−1(dk − d̄k) (A6)

Σαk |dk ,µ = I −
(

XTZ−1X + I
)−1

XTZ−1X (A7)

Notice that Z is a diagonal matrix, which means that computing Z−1 is trivial and
XTZ−1 is very fast.

Appendix A.2. Covariance of the Posterior Gaussian Distribution

In the case of the covariance matrix, it is convenient to use the Woodbury identity [30]:

(A + UBV)−1 = A−1 − A−1U
(

B−1 + VA−1U
)−1

VA−1 (A8)

where A ∈ RM×M, U ∈ RM×N , B ∈ RN×N and V ∈ RN×M.
If A = Id, U = XT , B = Z−1 and V = X, then we recognize that the right side of

Equation (A8) is the expression in Equation (A4). It is quicker to evaluate the left side
of Equation (A8) due to the dimensions of the problem. Thus, the covariance matrix is
computed as

Σαk |dk ,µ =
(

XTZ−1X + I
)−1

(A9)

Notice that Equation (A7) is part of Equation (A6), meaning that it only needs to be
computed once.

Appendix A.3. Example

We will show the results of two examples indicating the values for the different
dimensions. The first example uses input on all nodes on the whole surface of the specimen
(NC = 8093) and 20 PPCA modes (NM = 20). The second example uses input on the area
seen by the infrared camera (the surface shown in Figure 10, with NC = 3418) and 20 PPCA
modes (NM = 20).

The results shown in Table A1 are the average of 7000 runs for both examples using
each of the expressions presented previously. The computation time is greatly reduced
using the expression in Equations (A6) and (A7).
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Table A1. Computation time with both expressions with two different observation functions.

Old Expression New Expression

Whole surface 1.55 s 0.00377 s
Camera area 0.337 s 0.00212 s

Appendix B. Forecasting Results

In this appendix, we show some complementary forecasting results. In particular,
we want to compare a forecast performed with and without observing the posterior theta
values, as well as a comparison between the posterior covariance of a forecast and an
estimation obtained observing an infrared image.

We have shown that using the previously estimated unknown parameters θ, fore-
casting a future state is possible. Indeed, parametric uncertainty is the main source of
uncertainty in our model. The first result we want to show is a comparison between a
forecast obtained using only the known parameters µ and another one observing the mean
θ posterior. Figure A1 shows that without observing the mean θ posterior, the estimation is
not good and forecasting is not possible. This indicates that the prior distribution of the
unknown parameters might not be well chosen or that it reflects a spectrum of values that
is too large for this case.

Additionally, we want to compare the posterior covariance of a forecasted estimation
and an estimation obtained after observing an infrared image. It is clear that observing the
temperature field, the uncertainty is greatly reduced, as seen in Figure A2.
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Figure A1. Forecasted temperature conditioning by the known parameters (µ) and by the known and unknown parameters
(µ, θ) with their correspondent confidence interval. (a) Compared to experimental camera data. (b) Compared to FE results.
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Figure A2. Forecasted temperature conditioning by the known and unknown parameters (µ, θ) and posterior estimation
using the infrared camera data with their correspondent confidence interval. (a) Compared to experimental camera data.
(b) Compared to FE results.
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Appendix C. Relevant Material Parameters

In this final appendix, more details on the 316 stainless steel specimen is given. Most
of the thermal and mechanical material properties of steel are temperature dependent
and, thus, it is of great importance to take the variations into account. In Table A2, the
temperature dependent values of four material properties used in the simulations are
shown. These were obtained in previous research works by EDF R&D in collaboration
with CEA Saclay and Université de Bretagne Sud.

The chemical composition of the material is directly related to the occurrence of cracks.
In Table A3, the detailed chemical composition of the used specimen is given. The data
was directly obtained from the manufacturer.

Table A2. Temperature dependent material parameters: thermal conductivity, volumetric heat
capacity, thermal expansion coefficient and Young’s modulus.

Temperature (◦C) λ ( W
mm K) ρcp(

J
mm3 K) α( 1

K) E (MPa)

20 14× 10−3 3.784× 10−3 15.5× 10−6 190× 103

100 15.2× 10−3 - 16× 10−6 -
200 16.6× 10−3 4.036× 10−3 16.6× 10−6 -
300 17.9× 10−3 - 17.1× 10−6 -
400 19× 10−3 4.302× 10−3 17.5× 10−6 -
500 20.6× 10−3 - 18× 10−6 -
600 21.8× 10−3 4.557× 10−3 18.4× 10−6 140× 103

700 23.1× 10−3 - 18.7× 10−6 -
775 - - - 56.3× 103

800 24.3× 10−3 4.823× 10−3 19× 10−6 -
850 - - - 56.3× 103

900 26× 10−3 - 19.2× 10−6 -
1000 27.3× 10−3 5.072× 10−3 19.4× 10−6 -
1150 - - - 37.3× 103

1200 29.9× 10−3 5.327× 10−3 - -
1250 - - - 20.3× 103

1384 - 5.572× 10−3 - -
1390 - 7.823× 10−3 - -
1394 - 11.175× 10−3 - -
1400 32.5× 10−3 - 19.6× 10−6 -
1404 - 22.35× 10−3 - -
1420 - 44.70× 10−3 - -
1425 - 52.15× 10−3 - -
1450 - 5.7× 10−3 - -
1600 - 5.7× 10−3 19.7× 10−6 -
2400 32.5× 10−2 - - -

Table A3. Chemical composition of the 316L stainless steel specimen (in percentages except for boron).

B (ppm) C Mn Si P S Cr Ni Mo Co Cu Al N

39± 4 0.016 1.59 0.540 0.027 0.0011 17.25 10.03 2.05 0.080 0.106 0.043 0.052
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