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Abstract: In this paper, we present a new asymptotically normal test for out-of-sample evaluation
in nested models. Our approach is a simple modification of a traditional encompassing test that
is commonly known as Clark and West test (CW). The key point of our strategy is to introduce an
independent random variable that prevents the traditional CW test from becoming degenerate under
the null hypothesis of equal predictive ability. Using the approach developed by West (1996), we
show that in our test, the impact of parameter estimation uncertainty vanishes asymptotically. Using
a variety of Monte Carlo simulations in iterated multi-step-ahead forecasts, we evaluated our test and
CW in terms of size and power. These simulations reveal that our approach is reasonably well-sized,
even at long horizons when CW may present severe size distortions. In terms of power, results were
mixed but CW has an edge over our approach. Finally, we illustrate the use of our test with an
empirical application in the context of the commodity currencies literature.

Keywords: forecasting; random walk; out-of-sample; prediction; mean square prediction error

1. Introduction

Forecasting is one of the most important and widely studied areas in time series
econometrics. While there are many challenges related to financial forecasting, forecast
evaluation is a key topic in the field. One of the challenges faced by the forecasting
literature is the development of adequate tests to conduct inference about predictive
ability. In what follows, we review some advances in this area and address some of the
remaining challenges.

“Mighty oaks from little acorns grow”. This is probably the best way to describe the
forecast evaluation literature since the mid-1990s. The seminal works of Diebold and
Mariano (1995) [1] and West (1996) [2] (DMW) have flourished in many directions, attracting
the attention of both scholars and practitioners in the quest for proper evaluation techniques.
See West (2006) [3], Clark and McCracken (2013) [4], and Giacomini and Rossi (2013) [5] for
great reviews on forecasting evaluation.

Considering forecasts as primitives, Diebold and Mariano (1995) [1] showed that under
mild conditions on forecast errors and loss functions, standard time-series versions of the
central limit theorem apply, ensuring asymptotic normality for tests evaluating predictive
performance. West (1996) [2] considered the case in which forecasts are constructed with
estimated econometric models. This is a critical difference with respect to Diebold and
Mariano (1995) [1], since forecasts are now polluted by estimation error.

Building on this insight, West (1996) [2] developed a theory for testing population-
level predictive ability (i.e., using estimated models to learn something about the true
models). Two fundamental issues arise from West’s contribution: Firstly, in some specific
cases, parameter uncertainty is “asymptotically irrelevant”, hence, it is possible to pro-
ceed as proposed by Diebold and Mariano (1995) [1]. Secondly, although West’s theory is
quite general, it requires a full rank condition over the long-run variance of the objective
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function when parameters are set at their true values. A leading case in which this assump-
tion is violated is in standard comparisons of mean squared prediction errors (MSPE) in
nested environments.

As pointed out by West (2006) [3]: “A rule of thumb is: if the rank of the data becomes
degenerate when regression parameters are set at their population values, then a rank
condition assumed in the previous sections likely is violated. When only two models are
being compared, “degenerate” means identically zero” West (2006) [3], page 117. Clearly,
in the context of two nested models, the null hypothesis of equal MSPE means that both
models are exactly the same, which generates the violation of the rank condition in West
(1996) [2].

Forecast evaluations in nested models are extremely relevant in economics and finance
for at least two reasons. Firstly, it is a standard in financial econometrics to compare the
predictive accuracy of a given model A with a simple benchmark that usually is generated
from a model B, which is nested in A (e.g., the ‘no change forecast’). Some of the most
influential empirical works, like Welch and Goyal (2008) [6] and Meese and Rogoff (1983,
1988) [7,8], have shown that outperforming naïve models is an extremely difficult task.
Secondly, comparisons within the context of nested models provide an easy and intuitive
way to evaluate and identify the predictive content of a given variable Xt: suppose the
only difference between two competing models is that one of them uses the predictor Xt,
while the other one does not. If the former outperforms the latter, then Xt has relevant
information to predict the target variable.

Due to its relevance, many efforts have been undertaken to deal with this issue. Some
key contributions are those of Clark and McCracken (2001, 2005) [9,10] and McCracken
(2007) [11], who used a different approach that allows for comparisons at the population
level between nested models. Although, in general, the derived asymptotic distributions are
not standard, for some specific cases (e.g., no autocorrelation, conditional homoskedasticity
of forecast errors, and one-step-ahead forecasts), the limiting distributions of the relevant
statistics are free of nuisance parameters, and their critical values are provided in Clark
and McCracken (2001) [9].

While the contributions of many authors in the last 25 years have been important, our
reading of the state of the art in forecast evaluation coincides with the view of Diebold
(2015) [12]: “[ . . . ] one must carefully tiptoe across a minefield of assumptions depending on the
situation. Such assumptions include but are not limited to: (1) Nesting structure and nuisance
parameters. Are the models nested, non-nested, or partially overlapping? (2) Functional form. Are
the models linear or nonlinear? (3) Model disturbance properties. Are the disturbances Gaussian?
Martingale differences? Something else? (4) Estimation sample. Is the pseudo-in-sample estimation
period fixed? Recursively expanding? Something else? (5) Estimation method. Are the models
estimated by OLS? MLE? GMM? Something else? And crucially: Does the loss function embedded
in the estimation method match the loss function used for pseudo-out-of-sample forecast accuracy
comparisons? (6) Asymptotics. What asymptotics are invoked?” Diebold (2015) [12], pages 3–4.
Notably, the relevant limiting distribution generally depends on some of these assumptions.

In this context, there is a demand for straightforward tests that simplify the discussion
in nested model comparisons. Of course, there have been some attempts in the literature.
For instance, one of the most used approaches in this direction is the test outlined in Clark
and West (2007) [13]. The authors showed, via simulations, that standard normal critical
values tend to work well with their test, even though, Clark and McCracken (2001) [9]
demonstrated that this statistic has a non-standard distribution. Moreover, when the null
model is a martingale difference and parameters are estimated with rolling regressions,
Clark and West (2006) [14] showed that their test is indeed asymptotically normal. Despite
this and other particular cases, as stated in the conclusions of West (2006) [3] review: “One
of the highest priorities for future work is the development of asymptotically normal or otherwise
nuisance parameter-free tests for equal MSPE or mean absolute error in a pair of nested models. At
present only special case results are available”. West (2006) [3], page 131. Our paper addresses
this issue.
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Our WCW test can be viewed as a simple modification of the CW test. As noticed by
West (1996) [2], in the context of nested models, the CW core statistic becomes degenerate
under the null hypothesis of equal predictive ability. Our suggestion is to introduce an
independent random variable with a “small” variance in the core statistic. This random
variable prevents our test from becoming degenerate under the null hypothesis, keeps the
asymptotic distribution centered around zero, and eliminates the autocorrelation structure
of the core statistic at the population level. While West’s (1996) [2] asymptotic theory does
not apply for CW (as it does not meet the full rank condition), it does apply for our test
(as the variance of our test statistic remains positive under the null hypothesis). In this
sense, our approach not only prevents our test from becoming degenerate, but also ensures
asymptotic normality relying on West’s (1996) [2] results. In a nutshell, there are two key
differences between CW and our test. Firstly, our test is asymptotically normal, while CW
is not. Secondly, our simulations reveal that WCW is better sized than CW, especially at
long forecasting horizons.

We have also demonstrated that “asymptotic irrelevance” applies; hence the effects
of parameter uncertainty can be ignored. As asymptotic normality and “asymptotic
irrelevance” apply, our test is extremely user friendly and easy to implement. Finally, one
possible concern about our test is that it depends on one realization of one independent
random variable. To partially overcome this issue, we have also provided a smoothed
version of our test that relies on multiple realizations of this random variable.

Most of the asymptotic theory for the CW test and other statistics developed in Clark
and McCracken (2001, 2005) [9,10] and McCracken (2007) [11] focused almost exclusively
on direct multi-step-ahead forecasts. However, with some exceptions (e.g., Clark and
McCracken (2013) [15] and Pincheira and West (2016) [16]), iterated multi-step-ahead
forecasts have received much less attention. In part for this reason, we evaluated the
performance of our test (relative to CW), focusing on iterated multi-step-ahead forecasts.
Our simulations reveal that our approach is reasonably well-sized, even at long horizons
when CW may present severe size distortions. In terms of power, results have been rather
mixed, although CW has frequently exhibited some more power. All in all, our simulations
reveal that asymptotic normality and size corrections come with a cost: the introduction of
a random variable erodes some of the power of WCW. Nevertheless, we also show that the
power of our test improves with a smaller variance of our random variable and with an
average of multiple realizations of our test.

Finally, based on the commodity currencies literature, we provide an empirical illus-
tration of our test. Following Chen, Rossi, and Rogoff (2010, 2011) [17,18]; Pincheira and
Hardy (2018, 2019, 2021) [19–21]; and Pincheira and Jarsun (2020) [22], we evaluated the
performance of the exchange rates of three major commodity exporters (Australia, Chile,
and South Africa) when predicting commodity prices. Consistent with previous literature,
we found evidence of predictability for some of the commodities considered in this exercise.
Particularly strong results were found when predicting the London Metal Exchange Index,
aluminum and tin. Fairly interesting results were also found for oil and the S&P GSCI. The
South African rand and the Australian dollar have a strong ability to predict these two
series. We compared our results using both CW and WCW. At short horizons, both tests
led to similar results. The main differences appeared at long horizons, where CW tended
to reject the null hypothesis of no predictability more frequently. From the lessons learned
from our simulations, we can think of two possible explanations for these differences:
Firstly, they might be the result of CW displaying more power than WCW. Secondly, they
might be the result of CW displaying a higher false discovery rate relative to WCW. Let
us recall that CW may be severely oversized at long horizons, while WCW is better sized.
These conflicting results between CW and WCW might act as a warning of a potential
false discovery of predictability. As a consequence, our test brings good news to careful
researchers that seriously wish to avoid spurious findings.

The rest of this paper is organized as follows. Section 2 establishes the econometric
setup and forecast evaluation framework, and presents the WCW test. Section 3 addresses
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the asymptotic distribution of the WCW, showing that “asymptotic irrelevance” applies.
Section 4 describes our DGPs and simulation setups. Section 5 discusses the simulation
results. Section 6 provides an empirical illustration. Finally, Section 7 concludes.

2. Econometric Setup

Consider the following two competing nested models for a target scalar variable yt+1.

yt+1 = X′tβ1 + e1t+1 (model 1 : null model)

yt+1 = X′tβ2 + Z′tγ+ e2t+1 (model 2 : alternative model)

where e1t+1 and e2t+1 are both zero mean martingale difference processes, meaning that
E(eit+1|Ft) = 0 for i = 1, 2 and Ft stands for the sigma field generated by current and
past values of Xt, Zt and eit. We will assume that e1t and e2t have finite and positive
fourth moments.

When the econometrician wants to test the null using an out-of-sample approach in this
econometric context, Clark and McCracken (2001) [9] derived the asymptotic distribution
of a traditional encompassing statistic used, for instance, by Harvey, Leybourne, and
Newbold (1998) [23] (other examples of encompassing tests include Chong and Hendry
(1986) [24] and Clements and Hendry (1993) [25], to name a few). In essence, the ENC-t
statistic proposed by Clark and McCracken (2001) [9] studies the covariance between ê1t+1
and (ê1t+1 − ê2t+1). Accordingly, this test statistic takes the form:

ENC− t =
√

P− 1
P−1 ∑T

t=R+1 ê1t+1(ê1t+1 − ê2t+1)√
σ̂2

where σ̂2 is the usual variance estimator for ê1t+1(ê1t+1 − ê2t+1) and P is the number of out-
of-sample forecasts under evaluation (as pointed out by Clark and McCracken (2001) [9],
the HLN test is usually computed with regression-based methods. For this reason, we
use
√

P− 1 rather than
√

P). See Appendix A.1 for two intuitive interpretations of the
ENC-t test.

The null hypothesis of interest is that γ = 0. This implies that β1 = β2 and e1t+1 = e2t+1.
This null hypothesis is also equivalent to equality in MSPE.

Even though West (1996) [2] showed that the ENC-t is asymptotically normal for
non-nested models, this is not the case in nested environments. Note that one of the main
assumptions in West’s (1996) [2] theory is that the population counterpart of σ̂2 is strictly
positive. This assumption is clearly violated when models are nested. To see this, recall that
under the null of equal predictive ability, γ = 0 and e1t+1 = e2t+1 for all t. In other words,
the population prediction errors from both models are identical under the null and, there-
fore, e1t+1(e1t+1 − e2t+1) is exactly zero. Consequently, σ2 = V[e1t+1(e1t+1 − e2t+1)] = 0.
More precisely, notice that under the null:

e1t+1 = e2t+1

e1t+1 − e2t+1 = 0

e1t+1(e1t+1 − e2t+1) = 0

E[e1t+1(e1t+1 − e2t+1)] = 0

σ2 = V[e1t+1(e1t+1 − e2t+1)] = 0

It follows that the rank condition in West (1996) [2] cannot be met as σ2 = 0.
The main aim of our paper was to modify this ENC-t test to make it asymptotically

normal under the null. Our strategy required the introduction of a sequence of independent
random variables θt with variance φ2 and expected value equal to 1. It is critical to notice
that θt is not only i.i.d, but also independent from Xt, Zt and eit.
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With this sequence in mind, we define our “Wild Clark and West” (WCW-t) statistic as

WCW− t =
√

P− 1
P−1 ∑T

t=R+1 ê1t+1(ê1t+1 − θtê2t+1)√
Ŝff

where Ŝff is a consistent estimate of the long-run variance of ê1t+1(ê1t+1 − θtê2t+1) (e.g.,
Newey and West (1987, 1994) [26,27] or Andrews (1991) [28]).

In this case, under the null we have e1t+1 = e2t+1, therefore:

E[e1t+1(e1t+1 − θte2t+1)] = E[e1t+1(e1t+1 − θte1t+1)]
= E

[
e2

1t+1(1− θt)
]

= E
[
e2

1t+1
]
E(1− θt)

= E
[
e2

1t+1
]

0 (As we define Eθt = 1)
= 0 (hence our statistic is centered around 0)

Besides, we have that under the null

V[e1t+1(e1t+1 − θte2t+1)] = V[e1t+1(e1t+1 − θte1t+1)] = V
[
e2

1t+1(1− θt)
]

= Ee4
1t+1 E(1− θt)

2

= φ2Ee4
1t+1 > 0

The last result follows from the fact that E(1− θt)
2 = V(θt) = φ2. Notice that this

transformation is important: under the null hypothesis, even if e1t+1(e1t+1 − e2t+1) is iden-
tically zero for all t, the inclusion of θt prevents the core statistic from becoming degenerate,
preserving a positive variance (it is also possible to show that the term e1t+1(e1t+1 − θte1t+1)
has no autocorrelation under the null).

Additionally, under the alternative:

e1t+1 = yt+1 − X′tβ1

e2t+1 = yt+1 − X′tβ2 − Z′tγ

e2t+1 = e1t+1 − Z′tγ− X′t(β2 − β1)

Therefore:

E[e1t+1(e1t+1 − θte2t+1)] = E[e1t+1
(
e1t+1 − θt

(
e1t+1 − Z′tγ− X′t(β2 − β1)

)]
= E

[
e2

1t+1(1− θt)
]
+E

[
e1t+1

(
Z′tγ+ X′t(β2 − β1)

)
θt
]

= E
[
e1t+1

(
Z′tγ+ X′t(β2 − β1)

)]
= E

[(
X′tβ2 + Z′tγ+ e2t+1 − X′tβ1

)(
Z′tγ+ X′t(β2 − β1)

)]
= E

[(
Z′tγ+ X′t(β2 − β1) + e2t+1

)(
Z′tγ+ X′t(β2 − β1)

)]
= E

[(
Z′tγ+ X′t(β2 − β1)

)2
]
+E
[
e2t+1

(
Z′tγ+ X′t(β2 − β1)

)]
= E

[(
Z′tγ+ X′t(β2 − β1)

)2
]
> 0

Consequently, our test is one-sided.
Finally, there are two possible concerns with the implementation of our WCW-t statis-

tic. The first one is about the choice of V(θt) = φ2. Even though this decision is arbitrary,
we give the following recommendation: φ2 should be “small”; the idea of our test is to
recover asymptotic normality under the null hypothesis, something that could be achieved
for any value of φ2 > 0. However, if φ2 is “too big”, it may simply erode the predictive
content under the alternative hypothesis, deteriorating the power of our test. Notice that a
“small” variance for some DGPs could be a “big” one for others, for this reason, we propose
to take φ as a small percentage of the sample counterpart of

√
V(e2t+1). As we discuss later
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in Section 4, we considered three different standard deviations with reasonable size and
power results: φ =

{
0.01

√
V(ê2t+1), 0.02

√
V(ê2t+1), and 0.04

√
V(ê2t+1)

}
(1 percent,

2 percent, and 4 percent of the standard deviation of ê2t+1). We emphasize that V(ê2t+1) is
the sample variance of the estimated forecast errors. Obviously, our test tends to be better
sized as φ grows, at the cost of some power.

Secondly, notice that our test depends on K = 1 realization of the sequence θt. One
reasonable concern is that this randomness could strongly affect our WCW-t statistic (even
for “small” values of the φ2 parameter). In other words, we would like to avoid significant
changes in our statistic generated by the randomness of θt. Additionally, as we report
in Section 4, our simulations suggest that using just one realization of the sequence θt
sometimes may significantly reduce the power of our test relative to CW. To tackle both
issues, we propose to smooth the randomness of our approach by considering K different
WCW-t statistics constructed with different and independent sequences of θt. Our proposed
test is the simple average of these K standard normal WCW-t statistics, adjusted by the
correct variance of the average as follows:

WCW(K)− t = ∑K
K=1 WCWk√
∑K

j=1 ∑K
i=1ρi,j

(1)

where WCWK is the k-th realization of our statistic and ρi,j is the sample correlation between
the i-th and j-th realization of the WCW-t statistics. Interestingly, as we discuss in Section 4,
when using K = 2, the size of our test is usually stable, but it significantly improves the
power of our test.

3. Asymptotic Distribution

Since most of our results rely on West (1996) [2], here we introduce some of his
results and notation. For clarity of exposition, we focus on one-step-ahead forecasts. The
generalization to multi-step-ahead forecasts is cumbersome in notation but straightforward.

Let ft+1 = e1t+1(e1t+1− θte2t+1) =
(
Yt+1−X′tβ

∗
1
)(

Yt+1−X′tβ
∗
1 − θt

[
Yt+1−X′tβ

∗
2 −Z′tγ∗

])
be our loss function. We use “*” to emphasize that ft depends on the true population param-
eters, hence ft+1 ≡ ft+1(β

∗), where β∗ = [β∗1,β∗2,γ∗]′. Additionally, let f̂t+1 ≡ ft+1(β̂t) =
ê1t+1(ê1t+1− θtê2t+1) = (Yt+1−X′tβ̂1t)(Yt+1−X′tβ̂1t− θt[Yt+1−X′tβ̂2t−Z′tγ̂t]) be the sample
counterpart of ft+1. Notice that ft+1(β̂t) rely on estimates of β∗, and as a consequence, ft+1(β̂t)
is polluted by estimation error. Moreover, notice the subindex in β̂t: the out-of-sample forecast
errors (ê1t+1 and ê2t+1) depend on the estimates β̂t constructed with the relevant information
available up to time t. These estimates can be constructed using either rolling, recursive, or fixed
windows. See West (1996, 2006) [2,3] and Clark and McCracken (2013) [4] for more details about
out-of-sample evaluations.

Let Eft = E[e1t(e1t − θte2t)] be the expected value of our loss function. As considered
in Diebold and Mariano (1995) [1], if predictions do not depend on estimated parameters,
then under weak conditions, we can apply the central limit theorem:

√
P

(
P−1 ∑

t
ft+1 −Eft

)
∼A N(0, Sff) (2)

Sff ≡
∞

∑
j=−∞

E
{
(Ft+1 −EFt)

(
Ft+1−j −EFt+1−j

)}
where Sff > 0 stands for the long-run variance of the scalar ft+1. However, one key technical
contribution of West (1996) [2] was the observation that when forecasts are constructed with
estimated rather than true, unknown, population parameters, some terms in expression (2)
must be adjusted. We remark here that we observe f̂t+1 = ê1t+1(ê1t+1 − θtê2t+1) rather than
ft+1 = e1t+1(e1t+1 − θte2t+1). To see how parameter uncertainty may play an important
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role, under assumptions Appendices A.1–A.4 in the Appendix A, West (1996) [2] showed
that a second-order expansion of ft(β̂) around β yields

P−
1
2

T−1

∑
t=R

(
f̂t+1 −Eft

)
= P−

1
2

T−1

∑
t=R

(ft+1 −Eft) + F
(

P
R

) 1
2 (

BR
1
2 H
)
+ op(1) (3)

where F = ∂Eft(β
∗)

∂β , R denotes the length of the initial estimation window, and T is the total
sample size (T = R + P), while B and H will be defined shortly.

Recall that in our case, under the null hypothesis, Eft+1 = E[e1t+1(e1t+1 − θte2t+1)] = 0,
hence expression (3) is equivalent to

P−
1
2

T−1

∑
t=R

ê1t+1(ê1t+1 − θtê2t+1) = P−
1
2

T−1

∑
t=R

e1t+1(e1t+1 − θte2t+1) + F
(

P
R

) 1
2 (

BR
1
2 H
)
+ op(1)

Note that according to West (2006) [3], p. 112, and in line with Assumption 2 in West
(1996) [2], pp. 1070–1071, the estimator of the regression parameters satisfies

β̂t − β∗ = B(t)H(t),

where B(t) is k× q; H(t) is q× 1 with (a) B(t) a.s→ B, B as a matrix of rank k; (b) H(t) =
t−1 ∑t

s=1 hs(β
∗) if the estimation method is recursive, H(t) = R−1 ∑t

s=t−R+1 hs(β
∗) if it is

rolling, or H(t) = R−1 ∑R
s=1 hs(β

∗) if it is fixed. hs(β
∗) is a q× 1 orthogonality condition

that is satisfied. Notice that H = P−1 ∑T−1
t=R H(t); (c) Ehs(β

∗) = 0.
As explained in West (2006) [3]: “Here, Ht can be considered as the score if the

estimation method is ML, or the GMM orthogonality condition if GMM is the estimator.
The matrix B(t) is the inverse of the Hessian if the estimation method is ML or a linear
combination of orthogonality conditions when using GMM, with large sample counterparts
B.” West (2006) [3], p. 112.

Notice that Equation (3) clearly illustrates that P−
1
2 ∑t ê1t+1(ê1t+1 − θtê2t+1) can be

decomposed into two parts. The first term of the RHS is the population counterpart,
whereas the second term captures the sequence of estimates of β∗ (in other words, terms
arising because of parameter uncertainty). Then, as P, R→ ∞ , we can apply the expansion
in West (1996) [2] as long as assumptions of Appendices A.1–A.4 hold. The key point is that
a proper estimation of the variance in Equation (3) must account for: (i) the variance of the
first term of the RHS (Sff = φ2Ee4

1t+1 > 0, i.e., the variance when there is no uncertainty
about the population parameters), (ii) the variance of the second term of the RHS, associated
with parameter uncertainty, and iii) the covariance between both terms. Notice, however,
that parameter uncertainty may be “asymptotically irrelevant” (hence (ii) and (iii) may
be ignored) in the following cases: (1) P

R → 0 as P, R→ ∞ , (2) a fortunate cancellation
between (ii) and (iii), or (3) F = 0.

In our case:

F = E∂Ft(β)

∂β

∣∣∣∣
β=β∗

= [E∂Ft(β)

∂β1

∣∣∣∣
β=β∗

, E∂Ft(β)

∂β2

∣∣∣∣
β=β∗

, E∂Ft(β)

∂γ

∣∣∣∣
β=β∗

]

where
ft(β) =

(
Yt+1 − X′tβ1

)(
Yt+1 − X′tβ1 − θt

[
Yt+1 − X′tβ2 − Z′tγ

])
ft(β) =

(
Yt+1 − X′tβ1

)2 −
(
Yt+1 − X′tβ1

)
θt
(
Yt+1 − X′tβ2 − Z′tγ

)
∂ft(β)

∂β1
= −2

(
Yt+1 − X′tβ1

)
Xt + θt

(
Yt+1 − X′tβ2 − Z′tγ

)
Xt

Note that under the null, γ∗ = 0, β∗1 = β∗2 and recall that Eθt = 1, therefore

E∂ft(β)

∂β1

∣∣∣∣
β=β∗

= −2Ee1t+1Xt +EθtEe1t+1Xt = 0
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With a similar argument, it is easy to show that

E∂ft(β)

∂β2

∣∣∣∣
β=β∗

= EX′te1t+1Eθt = 0

Finally,

E∂ft(β)

∂γ
=
(
Yt+1 − X′tβ1

)
θtZt → E∂ft(β)

∂γ

∣∣∣∣
β=β∗

= EθtEZ′te1t+1 = EZ′te1t+1 = 0

This result follows from the fact that we define e1t+1 as a martingale difference with
respect to Xt and Zt.

Hence, in our case “asymptotic irrelevance” applies as F = 0 and Equation (3) reduces
simply to

P−
1
2

T−1

∑
t=R

ê1t+1(ê1t+1 − θtê2t+1) = P−
1
2

T−1

∑
t=R

e1t+1(e1t+1 − θte2t+1) + op(1)

In other words, we could simply replace true errors by estimated out-of-sample errors
and forget about parameter uncertainty, at least asymptotically.

4. Monte Carlo Simulations

In order to capture features from different economic/financial time series and different
modeling situations that might induce a different behavior in the tests under evaluation,
we considered three DGPs. The first DGP (DGP1) relates to the Meese–Rogoff puzzle and
matches exchange rate data (Meese and Rogoff (1983,1988) [7,8] found that, in terms of
predictive accuracy, many exchange rate models perform poorly against a simple random
walk). In this DGP, under the null hypothesis, the target variable is simply white noise.
In this sense, DGP1 mimics the low persistence of high frequency exchange rate returns.
While in the null model, there are no parameters to estimate, under the alternative model
there is only one parameter that requires estimation. Our second DGP matches quarterly
GDP growth in the US. In this DGP, under the null hypothesis, the target variable follows
an AR(1) process with two parameters requiring estimation. In addition, the alternative
model has four extra parameters to estimate. Differing from DGP1, in DGP 2, parameter
uncertainty may play an important role in the behavior of the tests under evaluation.
DGP1 and DGP2 model stationary variables with low persistence, such as exchange rate
returns and quarterly GDP growth. To explore the behavior of our tests with a series
displaying more persistence, we considered DGP3. This DGP is characterized by a VAR(1)
model in which both the predictor and the predictand are stationary variables that display
relatively high levels of persistence. In a nutshell, there are three key differences in our
DGPs: persistence of the variables, the number of parameters in the null model, and the
number of excess parameters in the alternative model (according to Clark and McCracken
(2001) [9], the asymptotic distribution of the ENC-t, under the null hypothesis, depends
on the excess of parameters in the alternative model—as a consequence, the number of
parameters in both the null and alternative models are key features of these DGPs).

To save space, we only report here results for recursive windows, although in general
terms, results with rolling windows were similar and they are available upon request.
For large sample exercises, we considered an initial estimation window of R = 450 and
a prediction window of P = 450 (T = 900), while for small sample exercises, we consid-
ered R = 90 and P = 90 (T = 180). For each DGP, we ran 2000 independent replications.
We evaluated the CW test and our test, computing iterated multi-step-ahead forecasts at
several forecasting horizons from h = 1 up to h = 30. As discussed at the end of Section 2,
we computed our test using K = 1 and K = 2 realizations of our WCW-t statistic. Ad-
ditionally, for each simulation, we considered three different standard deviations of θt:
φ =

{
0.01 ∗

√
V(ê2t+1), 0.02 ∗

√
V(ê2t+1), and 0.04 ∗

√
V(ê2t+1)

}
(1 percent, 2 percent,
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and 4 percent of the standard deviation of ê2t+1). We emphasize that V(ê2t+1) is the sample
variance of the out-of-sample forecast errors and it was calculated for each simulation.

Finally, we evaluated the usefulness of our approach using the iterated multistep
ahead method for the three DGPs under evaluation (notice that the iterated method uses an
auxiliary equation for the construction of the multistep ahead forecasts—here, we stretched
the argument of “asymptotic irrelevance” and we assumed that parameter uncertainty on
the auxiliary equation plays no role). We report our results comparing the CW and the
WCW-t test using one-sided standard normal critical values at the 10% and 5% significance
level (a summary of the results considering a 5% significance level can be found in the
Appendix A section). For simplicity, in each simulation we considered only homoscedastic,
i.i.d, normally distributed shocks.

DGP 1
Our first DGP assumes a white noise for the null model. We considered a case like this

given its relevance in finance and macroeconomics. Our setup is very similar to simulation
experiments in Pincheira and West (2006) [16], Stambaugh (1999) [29], Nelson and Kim
(1993) [30], and Mankiw and Shapiro (1986) [31].

Null model:
Yt+1 = εt+1

Alternative model:
Yt+1 = αy + γrt + εt+1

rt+1 = αr + ρ1rt + ρ2rt−1 + . . . + ρprt−p + vt+1

We set our parameters as follows:

αy = αr = ρ3 = · · · = ρP = 0

V(εt+1) = σ2
ε

V(vt+1) = σ2
v

Corr(εt+1, vt+1) = ψ

ρ1 ρ2 σ2
ε σ2

v ψ γ under H0 : γ under HA :
1.19 −0.25 (1.75)2 (0.075)2 0 0 −2

The null hypothesis posits that Yt+1 follows a no-change martingale difference. Addi-
tionally, the alternative forecast for multi-step-ahead horizons was constructed iteratively
through an AR(p) on rt+1. This is the same parametrization considered in Pincheira and
West (2016) [16], and it is based on a monthly exchange rate application in Clark and West
(2006) [14]. Therefore, Yt+1 represents the monthly return of a U.S dollar bilateral exchange
rate and rt is the corresponding interest rate differential.

DGP 2
Our second DGP is mainly inspired by macroeconomic data, and it was also considered

in Pincheira and West (2016) [16] and Clark and West (2007) [13]. This DGP is based on
models exploring the relationship between U.S GDP growth and the Federal Reserve Bank
of Chicago’s factor index of economic activity.

Null model:
Yt+1 = αy + δrt + εt+1

Alternative model:

Yt+1 = αy + δYt + γ1rt + γ2rt + · · ·+ γprt−p + εt+1

rt+1 = αr + 0.804rt − 0.221rt−1 + 0.226rt−2 − 0.205rt−3 + vt+1

We set our parameters as follows:

αy = 2.237
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αr = γ5 = · · · = γp = 0

V(εt+1) = σ2
ε

V(vt+1) = σ2
v

Corr(εt+1, vt+1) = ψ

γ1 under H0 : γ2 under H0 : γ3 under H0 : γ4 under H0 :
0 0 0 0

γ1 under HA : γ2 under HA : γ3 under HA : γ4 under HA :
3.363 −0.633 −0.377 −0.529
δ σ2

ε σ2
v ψ

0.261 10.505 0.366 0.528
DGP 3
Our last DGP follows Busetti and Marcucci (2013) [32] and considers a very simple

VAR(1) process:
Null model:

Yt+1 = µy +φyYt + εt+1

Alternative model:
Yt+1 = µy +φyYt + cXt + εt+1

Xt+1 = µx +φxXt + vt+1

We set our parameters as follows:

µy = µx = 0

V(εt+1) = σ2
ε

V(vt+1) = σ2
v

Corr(εt+1, vt+1) = ψ

φy φx σ2
ε σ2

v ψ c under H0 : c under HA :
0.8 0.8 1 1 0 0 0.5

5. Simulation Results

This section reports exclusively results for a nominal size of 10%. To save space, we
considered only results with a recursive scheme. Results with rolling windows were similar,
and they are available upon request. Results of the recursive method are more interesting
to us for the following reason: For DGP1, Clark and West (2006) [14] showed that the
CW statistic with rolling windows is indeed asymptotically normal. In this regard, the
recursive method may be more interesting to discuss due to the expected departure from
normality in the CW test. For each simulation, we considered θt i.i.d normally distributed
with mean one and variance φ2. Tables 1–6 show results on size considering different
choices for V(θt) = φ2 and K, as suggested at the end of Section 2. The last row of each
table reports the average size for each test across the 30 forecasting horizons. Tables 7–12
are akin to Tables 1–6, but they report results on power. Similarly to Tables 1–6, the last
row of each table reports the average power for each test across the 30 forecasting horizons.
Our analysis with a nominal size of 5% carried the same message. A summary of these
results can be found in the Appendix A.
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Table 1. Empirical size comparisons between CW and WCW tests with nominal size of 10%, consid-
ering DGP1 and a large sample.

(θt)=0.01∗σ(
^
e2) σ(θt)=0.02∗σ(

^
e2) σ(θt)=0.04∗σ(

^
e2)

h CW K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

1 0.07 0.08 0.08 0.09 0.09 0.09 0.10
2 0.07 0.09 0.08 0.10 0.09 0.09 0.11
3 0.08 0.08 0.07 0.10 0.09 0.09 0.11
6 0.07 0.09 0.08 0.10 0.09 0.10 0.11

12 0.06 0.09 0.07 0.10 0.09 0.09 0.11
15 0.06 0.08 0.08 0.09 0.09 0.11 0.10
18 0.06 0.09 0.08 0.10 0.09 0.09 0.10
21 0.06 0.08 0.08 0.10 0.10 0.09 0.11
24 0.06 0.08 0.08 0.11 0.08 0.10 0.11
27 0.06 0.08 0.08 0.10 0.10 0.09 0.10
30 0.07 0.09 0.07 0.11 0.10 0.10 0.11

Average Size 0.06 0.08 0.08 0.10 0.09 0.10 0.10
Notes: Table 1 presents empirical sizes for the CW test and different versions of our test when parameters were
estimated with a recursive scheme. K is the number of independent realizations of the sequence of θt and h is the
forecasting horizon. When K > 1, our statistic was the adjusted average of the K WCW statistics, as considered in
Equation (1). The last row reports average size across the 30 forecasting horizons. σ(θt) is the standard deviation
of θt and it was set as a percentage of the standard deviation of the forecasting errors of model 2 (σ(ê2)). The total
number of Monte Carlo simulations was 2000 and the sample size was T = 900 (R = 450 and P = 450). We evaluated
the CW test and our proposed test using one-sided standard normal critical values at the 10% significance level.
Multistep-ahead forecasts were computed using the iterated approach.

Table 2. Empirical size comparisons between CW and WCW tests with nominal size of 10%, consid-
ering DGP1 and a small sample.

σ(θt)=0.01∗σ(
^
e2) σ(θt)=0.02∗σ(

^
e2) σ(θt)=0.04∗σ(

^
e2)

h CW K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

1 0.08 0.08 0.08 0.09 0.08 0.10 0.09
2 0.09 0.09 0.09 0.09 0.09 0.10 0.11
3 0.10 0.09 0.09 0.09 0.10 0.11 0.11
6 0.09 0.09 0.09 0.11 0.10 0.11 0.11

12 0.09 0.09 0.09 0.10 0.10 0.11 0.11
15 0.09 0.10 0.10 0.11 0.10 0.12 0.11
18 0.09 0.09 0.11 0.10 0.12 0.11 0.12
21 0.10 0.10 0.10 0.11 0.10 0.11 0.11
24 0.10 0.11 0.10 0.12 0.11 0.12 0.11
27 0.09 0.10 0.10 0.11 0.11 0.12 0.11
30 0.10 0.10 0.11 0.10 0.11 0.10 0.12

Average Size 0.09 0.10 0.10 0.11 0.10 0.11 0.11
Notes: Table 2 presents empirical sizes for the CW test and different versions of our test when parameters were
estimated with a recursive scheme. K is the number of independent realizations of the sequence of θt and h is the
forecasting horizon. When K > 1, our statistic was the adjusted average of the K WCW statistics, as considered in
Equation (1). The last row reports average size across the 30 forecasting horizons. σ(θt) is the standard deviation
of θt and it was set as a percentage of the standard deviation of the forecasting errors of model 2 (σ(ê2)). The total
number of Monte Carlo simulations was 2000 and the sample size was T = 180 (R = 90 and P = 90). We evaluated
the CW test and our proposed test using one-sided standard normal critical values at the 10% significance level.
Multistep-ahead forecasts were computed using the iterated approach.
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Table 3. Empirical size comparisons between CW and WCW tests with nominal size of 10%, consid-
ering DGP2 and a large sample.

σ(θt)=0.01∗σ(
^
e2) σ(θt)=0.02∗σ(

^
e2) σ(θt)=0.04∗σ(

^
e2)

h CW K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

1 0.08 0.09 0.09 0.11 0.11 0.11 0.11
2 0.08 0.08 0.10 0.09 0.11 0.09 0.12
3 0.08 0.09 0.08 0.10 0.09 0.10 0.11
6 0.09 0.10 0.09 0.11 0.09 0.11 0.09

12 0.13 0.10 0.11 0.10 0.11 0.10 0.11
15 0.15 0.11 0.10 0.11 0.10 0.12 0.10
18 0.15 0.11 0.12 0.11 0.12 0.11 0.12
21 0.16 0.10 0.10 0.10 0.10 0.10 0.10
24 0.15 0.11 0.11 0.11 0.11 0.11 0.11
27 0.15 0.12 0.10 0.12 0.10 0.12 0.10
30 0.15 0.10 0.10 0.10 0.10 0.10 0.10

Average Size 0.13 0.10 0.10 0.10 0.10 0.10 0.11
Notes: Table 3 presents empirical sizes for the CW test and different versions of our test when parameters were
estimated with a recursive scheme. K is the number of independent realizations of the sequence of θt and h is the
forecasting horizon. When K > 1, our statistic was the adjusted average of the K WCW statistics, as considered in
Equation (1). The last row reports average size across the 30 forecasting horizons. σ(θt) is the standard deviation
of θt and it was set as a percentage of the standard deviation of the forecasting errors of model 2 (σ(ê2)). The total
number of Monte Carlo simulations was 2000 and the sample size was T = 900 (R = 450 and P = 450). We evaluated
the CW test and our proposed test using one-sided standard normal critical values at the 10% significance level.
Multistep-ahead forecasts were computed using the iterated approach.

Table 4. Empirical size comparisons between CW and WCW tests with nominal size of 10%, consid-
ering DGP2 and a small sample.

σ(θt)=0.01∗σ(
^
e2) σ(θt)=0.02∗σ(

^
e2) σ(θt)=0.04∗σ(

^
e2)

h CW K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

1 0.09 0.10 0.09 0.10 0.10 0.11 0.10
2 0.10 0.10 0.10 0.10 0.11 0.11 0.11
3 0.10 0.10 0.10 0.12 0.11 0.12 0.12
6 0.11 0.10 0.11 0.10 0.11 0.11 0.11

12 0.14 0.11 0.14 0.10 0.14 0.10 0.14
15 0.15 0.13 0.13 0.12 0.11 0.11 0.11
18 0.15 0.13 0.13 0.12 0.12 0.11 0.11
21 0.15 0.12 0.13 0.11 0.11 0.11 0.11
24 0.17 0.13 0.14 0.11 0.13 0.10 0.12
27 0.16 0.12 0.14 0.11 0.11 0.11 0.11
30 0.17 0.14 0.14 0.12 0.13 0.12 0.12

Average Size 0.14 0.12 0.13 0.11 0.12 0.11 0.11
Notes: Table 4 presents empirical sizes for the CW test and different versions of our test when parameters were
estimated with a recursive scheme. K is the number of independent realizations of the sequence of θt and h is the
forecasting horizon. When K > 1, our statistic was the adjusted average of the K WCW statistics, as considered in
Equation (1). The last row reports average size across the 30 forecasting horizons. σ(θt) is the standard deviation
of θt and it was set as a percentage of the standard deviation of the forecasting errors of model 2 (σ(ê2)). The total
number of Monte Carlo simulations was 2000 and the sample size was T = 180 (R = 90 and P = 90). We evaluated
the CW test and our proposed test using one-sided standard normal critical values at the 10% significance level.
Multistep-ahead forecasts were computed using the iterated approach.
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Table 5. Empirical size comparisons between CW and WCW tests with nominal size of 10%, consid-
ering DGP3 and a large sample.

σ(θt)=0.01∗σ(
^
e2) σ(θt)=0.02∗σ(

^
e2) σ(θt)=0.04∗σ(

^
e2)

h CW K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

1 0.08 0.08 0.08 0.09 0.09 0.10 0.10
2 0.08 0.09 0.09 0.11 0.10 0.10 0.11
3 0.09 0.09 0.10 0.10 0.11 0.12 0.12
6 0.11 0.12 0.13 0.12 0.13 0.12 0.13

12 0.13 0.12 0.14 0.12 0.14 0.11 0.12
15 0.14 0.11 0.14 0.11 0.12 0.10 0.11
18 0.15 0.12 0.13 0.11 0.11 0.11 0.11
21 0.14 0.12 0.12 0.12 0.11 0.12 0.11
24 0.12 0.11 0.11 0.11 0.11 0.11 0.10
27 0.15 0.10 0.12 0.11 0.12 0.10 0.11
30 0.15 0.10 0.10 0.10 0.10 0.10 0.10

Average Size 0.13 0.11 0.12 0.11 0.12 0.11 0.11
Note: Table 5 presents empirical sizes for the CW test and different versions of our test when parameters were
estimated with a recursive scheme. K is the number of independent realizations of the sequence of θt and h is the
forecasting horizon. When K > 1, our statistic was the adjusted average of the K WCW statistics, as considered in
Equation (1). The last row reports average size results across the 30 forecasting horizons. σ(θt) is the standard
deviation of θt and it was set as a percentage of the standard deviation of the forecasting errors of model 2 (σ(ê2)).
The total number of Monte Carlo simulations was 2000 and the sample size was T = 900 (R = 450 and P = 450). We
evaluated the CW test and our proposal using one-sided standard normal critical values at the 10% significance
level. Multistep-ahead forecasts were computed using the iterated approach.

Table 6. Empirical size comparisons between CW and WCW tests with nominal size of 10%, consid-
ering DGP3 and a small sample.

σ(θt)=0.01∗σ(
^
e2) σ(θt)=0.02∗σ(

^
e2) σ(θt)=0.04∗σ(

^
e2)

h CW K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

1 0.07 0.07 0.07 0.07 0.07 0.08 0.08
2 0.09 0.09 0.09 0.09 0.09 0.09 0.10
3 0.10 0.11 0.10 0.12 0.11 0.11 0.12
6 0.13 0.13 0.14 0.14 0.14 0.14 0.14

12 0.16 0.15 0.17 0.13 0.16 0.13 0.16
15 0.17 0.16 0.18 0.14 0.16 0.13 0.16
18 0.17 0.14 0.17 0.13 0.15 0.12 0.14
21 0.18 0.15 0.17 0.13 0.14 0.11 0.12
24 0.19 0.16 0.16 0.14 0.14 0.13 0.12
27 0.20 0.15 0.17 0.13 0.14 0.12 0.12
30 0.22 0.17 0.19 0.15 0.16 0.13 0.14

Average Size 0.16 0.14 0.16 0.13 0.14 0.12 0.14
Notes: Table 6 presents empirical sizes for the CW test and different versions of our test when parameters were
estimated with a recursive scheme. K is the number of independent realizations of the sequence of θt and h is the
forecasting horizon. When K > 1, our statistic was the adjusted average of the K WCW statistics, as considered in
Equation (1). The last row reports average size results across the 30 forecasting horizons. σ(θt) is the standard
deviation of θt and it was set as a percentage of the standard deviation of the forecasting errors of model 2 (σ(ê2)).
The total number of Monte Carlo simulations was 2000 and the sample size was T = 180 (R = 90 and P = 90). We
evaluated the CW test and our proposal using one-sided standard normal critical values at the 10% significance
level. Multistep-ahead forecasts were computed using the iterated approach.
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Table 7. Power comparisons between CW and WCW tests with nominal size of 10%, considering
DGP1 and a large sample.

σ(θt)=0.01∗σ(
^
e2) σ(θt)=0.02∗σ(

^
e2) σ(θt)=0.04∗σ(

^
e2)

h CW K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 0.99 1.00
6 0.97 0.97 0.97 0.96 0.97 0.93 0.95

12 0.69 0.68 0.68 0.63 0.64 0.55 0.60
15 0.50 0.49 0.50 0.45 0.48 0.38 0.43
18 0.37 0.36 0.36 0.33 0.35 0.28 0.30
21 0.26 0.26 0.27 0.24 0.26 0.21 0.25
24 0.21 0.21 0.21 0.20 0.22 0.19 0.20
27 0.18 0.18 0.19 0.18 0.19 0.16 0.18
30 0.17 0.17 0.17 0.16 0.17 0.15 0.16

Average
Power 0.55 0.54 0.55 0.52 0.54 0.49 0.52

Notes: Table 7 presents power results for CW and different versions of our test when parameters were estimated
with a recursive scheme. K is the number of independent realizations of the sequence of θt and h is the forecasting
horizon. When K > 1, our statistic was the adjusted average of the K WCW statistics, as considered in Equation (1).
The last row reports average power across the 30 forecasting horizons. σ(θt) is the standard deviation of θt and it
was set as a percentage of the standard deviation of the forecasting errors of model 2 (σ(ê2)). The total number
of Monte Carlo simulations was 2000 and the sample size was T = 900 (R = 450 and P = 450). We evaluated the
CW test and our proposed test using one-sided standard normal critical values at the 10% significance level.
Multistep-ahead forecasts were computed using the iterated approach.

Table 8. Power comparisons between CW and WCW tests with nominal size of 10%, considering
DGP1 and a small sample.

σ(θt)=0.01∗σ(
^
e2) σ(θt)=0.02∗σ(

^
e2) σ(θt)=0.04∗σ(

^
e2)

h CW K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

1 0.78 0.78 0.78 0.77 0.78 0.73 0.77
2 0.77 0.76 0.77 0.74 0.76 0.70 0.74
3 0.71 0.71 0.71 0.70 0.70 0.66 0.68
6 0.51 0.50 0.50 0.49 0.50 0.46 0.49

12 0.27 0.27 0.28 0.26 0.28 0.25 0.28
15 0.23 0.23 0.23 0.23 0.23 0.22 0.23
18 0.21 0.21 0.21 0.20 0.21 0.20 0.21
21 0.19 0.19 0.19 0.19 0.20 0.18 0.19
24 0.18 0.17 0.17 0.17 0.18 0.17 0.19
27 0.17 0.17 0.18 0.17 0.19 0.16 0.18
30 0.17 0.17 0.17 0.17 0.17 0.17 0.17

Average
Power 0.32 0.32 0.32 0.31 0.32 0.30 0.32

Notes: Same notes as in Table 7. The only difference is that in Table 8, the sample size was T = 180 (R = 90 and P = 90).
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Table 9. Power comparisons between CW and WCW tests with nominal size of 10%, considering
DGP2 and a large sample.

σ(θt)=0.01∗σ(
^
e2) σ(θt)=0.02∗σ(

^
e2) σ(θt)=0.04∗σ(

^
e2)

h CW K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00 0.98 1.00

12 0.86 0.73 0.81 0.49 0.62 0.32 0.42
15 0.61 0.40 0.51 0.28 0.33 0.20 0.23
18 0.48 0.28 0.39 0.19 0.25 0.15 0.18
21 0.41 0.22 0.29 0.17 0.20 0.14 0.16
24 0.36 0.17 0.23 0.14 0.15 0.13 0.14
27 0.31 0.16 0.19 0.12 0.14 0.10 0.13
30 0.29 0.14 0.16 0.13 0.12 0.12 0.11

Average
Power 0.65 0.54 0.59 0.47 0.51 0.42 0.46

Notes: Table 9 presents power results for CW and different versions of our test when parameters were estimated
with a recursive scheme. K is the number of independent realizations of the sequence of θt and h is the forecasting
horizon. When K > 1, our statistic was the adjusted average of the K WCW statistics, as considered in Equation
(1). The last row reports average power results across the 30 forecasting horizons. σ(θt) is the standard deviation
of θt and it was set as a percentage of the standard deviation of the forecasting errors of model 2 (σ(ê2)). The total
number of Monte Carlo simulations was 2000 and the sample size was T = 900 (R = 450 and P = 450). We evaluated
the CW test and our proposed test using one-sided standard normal critical values at the 10% significance level.
Multistep-ahead forecasts was computed using the iterated approach.

Table 10. Power comparisons between CW and WCW tests with nominal size of 10%, considering
DGP2 and a small sample.

σ(θt)=0.01∗σ(
^
e2) σ(θt)=0.02∗σ(

^
e2) σ(θt)=0.04∗σ(

^
e2)

h CW K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 0.99 0.97 0.97 0.91 0.95 0.80 0.90
6 0.94 0.91 0.93 0.84 0.90 0.71 0.83

12 0.58 0.50 0.55 0.38 0.45 0.28 0.35
15 0.46 0.38 0.45 0.29 0.35 0.23 0.27
18 0.41 0.33 0.38 0.26 0.29 0.20 0.22
21 0.38 0.30 0.36 0.21 0.28 0.17 0.22
24 0.36 0.28 0.33 0.21 0.25 0.17 0.20
27 0.36 0.27 0.32 0.20 0.25 0.16 0.19
30 0.36 0.28 0.33 0.20 0.24 0.16 0.19

Average
Power 0.58 0.52 0.57 0.44 0.50 0.37 0.43

Notes: Same notes as in Table 9. The only difference is that in Table 10 the sample size was T = 180 (R = 90 and P = 90).
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Table 11. Power comparisons between CW and WCW tests with nominal size of 10%, considering
DGP3 and a large sample.

σ(θt)=0.01∗σ(
^
e2) σ(θt)=0.02∗σ(

^
e2) σ(θt)=0.04∗σ(

^
e2)

h CW K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00 1.00 1.00

12 0.98 0.98 0.98 0.98 0.98 0.97 0.98
15 0.90 0.90 0.90 0.90 0.91 0.88 0.90
18 0.82 0.82 0.82 0.80 0.82 0.77 0.82
21 0.73 0.73 0.74 0.72 0.75 0.68 0.74
24 0.64 0.64 0.65 0.62 0.65 0.58 0.64
27 0.58 0.57 0.59 0.53 0.59 0.48 0.56
30 0.51 0.50 0.52 0.46 0.53 0.39 0.49

Average
Power 0.83 0.83 0.84 0.82 0.84 0.80 0.83

Notes: Table 11 presents power results for CW and different versions of our test when parameters were estimated
with a recursive scheme. K is the number of independent realizations of the sequence of θt and h is the forecasting
horizon. When K > 1, our statistic was the adjusted average of the K WCW statistics, as considered in Equation (1).
The last row reports the average power results across the 30 forecasting horizons. σ(θt) is the standard deviation
of θt and it was set as a percentage of the standard deviation of the forecasting errors of model 2 (σ(ê2)). The total
number of Monte Carlo simulations was 2000 and the sample size was T = 900 (R = 450 and P = 450). We evaluated
the CW test and our proposed test using one-sided standard normal critical values at the 10% significance level.
Multistep-ahead forecasts were computed using the iterated approach.

Table 12. Power comparisons between CW and WCW tests with nominal size of 10%, considering
DGP3 and a small sample.

σ(θt)=0.01∗σ(
^
e2) σ(θt)=0.02∗σ(

^
e2) σ(θt)=0.04∗σ(

^
e2)

h CW K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 0.98 0.98 0.98 0.98 0.98 0.97 0.98

12 0.73 0.72 0.73 0.71 0.73 0.69 0.73
15 0.65 0.65 0.65 0.63 0.65 0.60 0.64
18 0.60 0.59 0.60 0.57 0.60 0.53 0.58
21 0.55 0.55 0.55 0.53 0.55 0.50 0.53
24 0.52 0.51 0.52 0.49 0.51 0.45 0.50
27 0.49 0.49 0.50 0.46 0.50 0.43 0.48
30 0.48 0.47 0.49 0.45 0.48 0.42 0.46

Average
Power 0.70 0.70 0.71 0.69 0.70 0.66 0.70

Notes: Same notes as in Table 11. The only difference is that in Table 10 the sample size was T = 180 (R = 90 and
P = 90).

5.1. Simulation Results: Size

Table 1 reports results for the case of a martingale sequence (i.e., DGP1) using large
samples (P = R = 450 and T = 900). From the second column of Table 1, we observed that
the CW test was modestly undersized. The empirical size of nominal 10% tests ranged
from 6% to 8%, with an average size across the 30 forecasting horizons of 6%. These results
are not surprising. For instance, for the case of a martingale sequence, Clark and West
(2006) [14] commented that: “our statistic is slightly undersized, with actual sizes ranging
from 6.3% [ . . . ] to 8.5%” Clark and West (2006) [14], pp. 172–173. Moreover, Pincheira
and West (2016) [16], using iterated multi-step ahead forecasts, found very similar results.
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Our test seemed to behave reasonably well. Across the nine different exercises presented
in Table 1, the empirical size of our WCW test ranged from 7% to 11%. Moreover, the last row
indicates that the average size of our exercises ranged from 0.08 (σ(θt) = 0.01∗σ(ê2)) to 0.10
(e.g., all exercises considering σ(θt) = 0.04∗σ(ê2)). Notably, our results using “the highest
variance”, 0.04∗σ(e2), ranged from 9% to 11%, with an average size of 10% in the two cases.
As we discuss in the following section, in some cases, this outstanding result comes at the cost
of some reduction in power.

Table 2 is akin to Table 1, but considering simulations with small samples (P = R = 90
and T = 180). While the overall message was very similar, the CW test behaved remarkably
well, with an empirical size ranging from 8% to 10% and an average size of 9%. Additionally,
our test also showed good size behavior, but with mild distortions in some experiments.
Despite these cases, in 6 out of 9 exercises, our test displayed an average size of 10% across
different forecast horizons. The main message of Tables 1 and 2 is that our test behaves
reasonably well, although there were no great improvements (nor losses) compared to CW.

Table 3 reports our results for DGP2 using large samples (P = R = 450 and T = 900). In
this case, the empirical size of the CW test ranged from 8% to 16%, with an average size
of 13%. Notably, the CW test was undersized at “short” forecasting horizons (h ≤ 3) and
oversized at long forecasting horizons (h ≥ 12). This is consistent with the results reported
in Pincheira and West (2016) [16] for the same DGP using a rolling scheme: “[ . . . ] the
CW test has a size ranging from 7% to 13%. It tends to be undersized at shorter horizons
(h ≤ 3), oversized at longer horizons (h ≥ 6).” Pincheira and West (2016) [16], p. 313.

In contrast, our test tended to be considerably better sized. Across all exercises, the
empirical size of the WCW ranged from 8% to 12%. Moreover, the average size for each
one of our tests was in the range of 10% to 11%. In sharp contrast with CW, our test had
a “stable” size and did not become increasingly oversized with the forecasting horizon.
In particular, for h = 30, the empirical size of our test across all exercises was exactly 10%,
while CW had an empirical size of 15%. In this sense, our test offers better protection to the
null hypothesis at long forecasting horizons.

Table 4 is akin to Table 3, but considering a smaller sample. The overall message is
similar, however, both CW and our test became oversized. Despite these size distortions
in both tests, we emphasize that our test performed comparatively better relative to CW
in almost every exercise. For instance, using a standard deviation of σ(θt) = 0.02∗σ(ê2)
or σ(θt) = 0.04∗σ(ê2), our test was reasonably well-sized across all exercises. The worst
results were found for σ(θt) = 0.01∗σ(ê2); however, our worst exercise, with K = 2,
was still better (or equally) sized compared to CW for all horizons. The intuition of
σ(θt) = 0.01∗σ(ê2) presenting the worst results is, in fact, by construction; recall that
for σ(θt) = 0, our test coincided with CW, hence, as the variance of θt becomes smaller,
it is reasonable to expect stronger similarities between CW and our test. In a nutshell,
Tables 3 and 4 indicate that our test is reasonably well sized, with some clear benefits
compared to CW for long horizons (e.g., h ≥ 12), as CW becomes increasingly oversized.

Finally, Tables 5 and 6 show our results for DGP3 using large samples (P = R = 450
and T = 900) and small samples (P = R = 90 and T = 180), respectively. The main mes-
sage is very similar to that obtained from DGP2—CW was slightly undersized at short
forecasting horizons (e.g., h ≤ 3) and increasingly oversized at longer horizons (h ≥ 12).
In contrast, our test either did not exhibit this pattern with the forecasting horizon or,
when it did, it was milder. Notably, for long horizons (e.g., h = 30) our test was always
better sized than CW. As in the previous DGP, our test worked very well using “the higher
variance” σ(θt) = 0.04∗σ(ê2) and became increasingly oversized as the standard deviation
approached zero. Importantly, using the two highest variances (σ(θt) = 0.02∗σ(ê2) and
σ(θt) = 0.04∗σ(ê2)) our worst results were empirical sizes of 16%; in sharp contrast, the
worst entries for CW were 20% and 22%.

All in all, Tables 1–6 provide a similar message: on average, our test seemed to be
better sized, specially at long forecasting horizons. The size of our test improved with
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a higher σ(θt), but as we will see in the following section, sometimes this improvement
comes at the cost of a mild reduction in power.

5.2. Simulation Results: Power

The intuition of our test is that we achieve normality by introducing a random variable
that prevents the core statistic of the CW test from becoming degenerate under the null
hypothesis. As reported in the previous section, our test tended to display a better size
relative to CW, especially at long horizons. The presence of this random variable, however,
may also have eroded some of the predictive content of model 2, and consequently, it may
also erode the power of our test. As we will see in this section, CW has an edge over WCW
in terms of power (this was somewhat expected since CW exhibits some important size
distortions). Nevertheless, we noticed that the power of WCW improved with the number
of realizations of θt (K) and with a smaller variance of θt (φ). Tables 7 and 8 report power
results for DGP1, considering large and small samples, respectively. Table 7 shows results
that are, more or less, consistent with the previous intuition—the worst results were found
for the highest standard deviation (σ(θt) = 0.04∗σ(ê2)) and one sequence of realizations of
θt (K = 1). In this sense, the good results in terms of size reported in the previous section
came at the cost of a slight reduction in power. In this case, the average loss of power across
the 30 forecasting horizons was about 6% (55% for CW and 49% for our “less powerful”
exercise). Notice, however, that averaging two independent realizations of our test (e.g.,
K = 2) or reducing σ(θt), rapidly enhanced the power of our test. Actually, with K = 2
and a low variance of σ(θt), the power of our test became very close to that of CW. The
best results in terms of power were found for the smallest variance. This can be partially
explained by the fact that the core statistic of our test became exactly the CW core statistic
when the variance (θt) approached zero. Table 8 shows results mostly in the same line,
although this time figures are much lower due to the small sample. Importantly, differences
in terms of power were almost negligible between our approach and CW.

Tables 9 and 10 report power results for DGP2, considering large and small sam-
ples, respectively. Contrary to DGP1, now, power reductions using our approach are
important for some exercises. For instance, in Table 10, CW had 20% more rejections than
our “less powerful” exercise. In this sense, asymptotic normality and good results for
σ(θt) = 0.04∗σ(e2) in terms of size, came along with an important reduction in power. As
noticed before, the power of our test rapidly improved with K > 1 or with a smaller σ(θt).
For instance, in Table 10, for the case of σ(θt) = 0.04∗σ(ê2), if we considered K = 2 instead
of K = 1, the average power improved from 37% to 43%. Moreover, if we kept K = 2 and
reduced σ(θt) to σ(θt) = 0.01∗σ(ê2), differences in power compared to CW were small.

Finally, Tables 11 and 12 report power results for DGP3, considering large and small
samples, respectively. In most cases reductions in power were small (if any). For instance,
our “less powerful exercise” in Table 11 had an average power only 3% below CW (al-
though there were some important differences at long forecasting horizons, such as h = 30).
However, as commented previously, the power of our test rapidly improved when consid-
ering K = 2; in this case, differences in power were fairly small for all exercises. Notably,
in some cases we found tiny (although consistent) improvements in power over CW; for
instance, using the smallest standard deviation and K = 2, our test was “as powerful” as
CW, and sometimes even slightly more powerful for longer horizons (e.g., h > 18).

All in all, our simulations reveal that asymptotic normality and size corrections come
with a cost: The introduction of the random variable θt tended to erode some of the power
of our test. In this sense, there was a tradeoff between size and power in the WCW test.
Nevertheless, our results are consistent with the idea that the power improves with an
average of K realizations of θt, and with a smaller variance of θt (φt). An interesting avenue
for further research would be to explore different strategies to maximize this size/power
tradeoff (e.g., an optimal criteria for K and φt).
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5.3. Simulation Results: Some Comments on Asymptotic Normality

Our simulation exercises show that CW has a pattern of becoming increasingly over-
sized with the forecasting horizon. At the same time, WCW tends to have a more “stable”
size at long forecasting horizons. These results may, in part, be explained by a substan-
tial departure from normality of CW as h grows. Using DGP2 with h = 12, 21, and 27,
Figures 1–3 support this intuition—while CW showed a strong departure from normality,
our WCW seemed to behave reasonably well.

Figure 1. Kernel densities of CW and WCW under the null hypothesis, DGP2, h = 12. Notes: For this exercise, we considered
large samples (P = R = 450 and T = 900) and 4000 Monte Carlo simulations. We evaluated CW and our test computing
iterated forecasts. In this case, we used WCW with K = 1 and σ(θt) = 0.04∗σ(ê2).

Figure 2. Kernel densities of CW and WCW under the null hypothesis, DGP2, h = 21. Note: See notes in Figure 1.

Figure 3. Kernel densities of CW and WCW under the null hypothesis, DGP2, h = 27. Note: See notes in Figure 1.
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Table 13 reports the means and the variances of CW and WCW after 4000 Monte
Carlo simulations. As both statistics were standardized, we should expect means around
zero, and variances around one (if asymptotic normality applies). Results in Table 13 are
consistent with our previous findings—while the variance of CW was notably high for
longer horizons (around 1.5 for h > 18), the variance of our test seemed to be stable with h,
and tended to improve with a higher σ(θt). In particular, for the last columns, the average
variance of our test ranged from 1.01 to 1.02, and, moreover, none of the entries were higher
than 1.05 nor lower than 0.98. In sharp contrast, the average variance of CW was 1.32,
ranging from 1.07 through 1.51. All in all, these figures are consistent with the fact that
WCW is asymptotically normal.

Table 13. Means and variances of the CW and WCW statistics for DGP2 under the null hypothesis.

σ(θt)=0.01∗σ(
^
e2) σ(θt)=0.02∗σ(

^
e2) σ(θt)=0.04∗σ(

^
e2)

CW K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

h Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

1 −0.16 1.07 −0.06 1.01 −0.10 0.99 −0.01 1.04 −0.04 0.99 0.00 1.05 −0.02 1.00
2 −0.16 1.10 −0.07 1.11 −0.08 1.14 −0.03 1.05 −0.02 1.07 −0.02 1.02 0.01 1.03
3 −0.19 1.08 −0.08 1.12 −0.12 1.18 −0.02 1.04 −0.05 1.09 −0.01 1.00 −0.02 1.04
6 −0.19 1.09 −0.05 1.11 −0.05 1.17 −0.02 1.03 −0.01 1.07 −0.01 1.00 0.01 1.04
9 −0.09 1.19 −0.05 1.07 −0.04 1.10 −0.03 1.03 −0.02 1.05 −0.02 1.02 −0.01 1.03

12 −0.08 1.34 0.00 1.03 −0.05 1.09 0.01 1.00 −0.03 1.04 0.02 1.00 −0.02 1.03
15 −0.06 1.44 −0.04 1.01 −0.02 1.09 −0.03 0.99 0.00 1.04 −0.02 0.99 0.01 1.03
18 −0.06 1.48 −0.04 1.01 −0.03 1.08 −0.03 0.99 −0.01 1.04 −0.02 0.98 −0.01 1.03
21 −0.07 1.51 0.00 1.02 −0.02 1.08 0.01 0.99 0.00 1.03 0.02 0.99 0.01 1.02
24 −0.06 1.51 −0.02 1.07 −0.03 1.08 0.00 1.04 −0.01 1.04 0.00 1.04 0.00 1.03
27 −0.06 1.50 −0.04 1.03 −0.04 1.05 −0.02 1.01 −0.02 1.02 −0.02 1.00 −0.02 1.01
30 −0.06 1.50 −0.01 1.07 −0.03 1.05 0.00 1.05 −0.02 1.00 0.01 1.04 −0.01 0.99

Ave. −0.10 1.32 −0.04 1.06 −0.05 1.09 −0.01 1.02 −0.02 1.04 −0.01 1.01 −0.01 1.02

Notes: Table 13 shows the mean and the variance of the CW and WCW statistics after 4000 Monte Carlo simulations. For this exercise, we
considered large samples (P = R = 450 and T = 900). We evaluated CW and our test computing iterated forecasts.

6. Empirical Illustration

Our empirical illustration was inspired by the commodity currencies literature. Re-
lying on the present value model for exchange rate determination (Campbell and Shiller
(1987) [33] and Engel and West (2005) [34]), Chen, Rogoff, and Rossi (2010, 2011) [17,18];
Pincheira and Hardy (2018, 2019, 2021) [19–21]; and many others showed that the exchange
rates of some commodity-exporting countries have the ability to predict the prices of the
commodities being exported and other closely related commodities as well.

Based on this evidence, we studied the predictive ability of three major commodity-
producer’s economies frequently studied by this literature: Australia, Chile, and South
Africa. To this end, we considered the following nine commodities/commodity indices:
(1) WTI oil, (2) copper, (3) S&P GSCI: Goldman Sachs Commodity Price Index, (4) alu-
minum, (5) zinc, (6) LMEX: London Metal Exchange Index, (7) lead, (8) nickel, and (9) tin.

The source of our data was the Thomson Reuters Datastream, from which we down-
loaded the daily close price of each asset. Our series was converted to the monthly
frequency by sampling from the last day of the month. The time period of our database
went from September 1999 through June 2019 (the starting point of our sample period was
determined by the date in which monetary authorities in Chile decided to pursue a pure
flotation exchange rate regime).

Our econometric specifications were mainly inspired by Chen, Rogoff, and Rossi
(2010) [17] and Pincheira and Hardy (2018, 2019, 2021) [19–21]. Our null model was

∆ log(CPt+1) = c0 + ρ0∆ log(CPt) + ε0,t+1
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While the alternative model was

∆ log(CPt+1) = c1 + β∆ log(ERt) + ρ1∆ log(CPt) + ε1,t+1

where ∆ log(CPt+1) denotes the log-difference of a commodity price at time t + 1, ∆ log(ERt)
stands for the log-difference of an exchange rate at time t; c0, ρ0 are the regression parame-
ters for the null model, and c1,β, ρ1 are the regression parameters for the alternative model.
Finally ε0,t+1 and ε1,t+1 are error terms.

One-step-ahead forecasts are constructed in an obvious fashion through both models.
Multi-step-ahead forecasts are constructed iteratively for the cumulative returns from t
through t + h. To illustrate, let yf

t(1) be the one-step-ahead forecasts from t to t + 1 and
yf

t+1(1) be the one-step-ahead forecast from t + 1 to t + 2; then, the two-steps-ahead forecast
is simply yf

t(1) + yf
t+1(1).

Under the null hypothesis of equal predictive ability, the exchange rate has no role
in predicting commodity prices, i.e., H0 : β = 0. For the construction of our iterated
multi-step-ahead forecasts, we assumed that ∆ log(ERt) follows an AR(1) process. Finally,
for our out-of-sample evaluations, we considered P/R = 4 and a rolling scheme.

Following Equation (1), we took the adjusted average of K = 2 WCW statistics and
considered σ(θt) = 0.04∗σ(e2). Additional results using a recursive scheme, other splitting
decisions (P and R), and different values of σ(θt) and K are available upon request.

Tables 14 and 15 show our results for Chile and Australia, respectively. Table A3 in the
Appendix A section reports our results for South Africa. Tables 14 and 15 show interesting
results for the LMEX. In particular, the alternative model outperformed the AR(1) for
almost every forecasting horizon, using either the Australian Dollar or the Chilean Peso. A
similar result was found for aluminum prices when considering h ≥ 3. These results seem
to be consistent with previous findings. For instance, Pincheira and Hardy (2018, 2019,
2021) [19–21], using the ENCNEW test of Clark and McCracken (2001) [9], showed that
models using exchange rates as predictors generally outperformed simple AR(1) processes
when predicting some base metal prices via one-step-ahead forecasts.

Interestingly, using the Chilean exchange rate, Pincheira and Hardy (2019) [20] re-
ported very unstable results for the monthly frequencies of nickel and zinc; moreover,
they reported some exercises in which they could not outperform an AR(1). This is again
consistent with our results reported in Table 14.

Results of the CW and our WCW tests were similar. Most of the exercises tended
to have the same sign and the statistics had similar “magnitudes”. However, there are
some important differences worth mentioning. In particular, CW tended to reject the null
hypothesis more frequently. There are two possible explanations for this result. On the one
hand, our simulations reveal that CW had, frequently, higher power; on the other hand,
CW tended to be more oversized than our test at long forecasting horizons, especially for
h ≥ 12. Table 14 can be understood using these two points. Both tests tended to be very
similar for short forecast horizons; however, some discrepancies became apparent at longer
horizons. Considering h ≥ 12, CW rejected the null hypothesis at the 10% significance
level in 54 out of 81 exercises (67%), while the WCW rejected the null only 42 times (52%).
Table 15 has a similar message: CW rejected the null hypothesis at the 5% significance
level in 49 out of 81 exercises (60%), while WCW rejected the null only 41 times (51%). The
results for oil (C1) in Table 15 emphasize this fact: CW rejected the null hypothesis at the 5%
significance level for most of the exercises with h ≥ 12, but our test only rejected at the 10%.
In summary, CW showed a higher rate of rejections at long horizons. The question here is
whether this higher rate is due to higher size-adjusted power, or due to a false discovery
rate induced by an empirical size that was higher than the nominal size. While the answer
to this question cannot be known for certain, a conservative approach, one that protects the
null hypothesis, would suggest to look at these extra CW rejections with caution.
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Table 14. Forecasting commodity prices with the Chilean exchange rate. A comparison between CW
and WCW in iterated multi-step-ahead forecasts.

Chile CW

h C1 C2 C3 C4 C5 C6 C7 C8 C9

1 0.90 0.01 1.24 0.80 −0.33 0.50 0.93 −0.01 0.86
2 0.86 0.68 1.01 1.18 −0.80 1.33 * 0.81 −0.19 1.55 *
3 0.90 0.06 1.22 1.42 * −0.52 1.67 ** 1.14 0.97 1.32 *
6 0.17 −0.46 0.97 1.42 * −0.77 1.61 * 1.51 * 1.54 * 1.46 *

12 0.28 −0.13 0.35 1.68 ** −0.95 2.17 ** 1.27 0.79 1.88 **
14 0.65 0.16 0.60 1.71 ** −0.98 2.25 ** 1.20 0.69 1.83 **
20 1.24 2.01 ** 1.33 * 1.72 ** −1.02 2.26 ** 1.40 * 0.36 1.86 **
21 1.29 * 1.88 ** 1.42 * 1.71 ** −1.02 2.25 ** 1.39 * 0.31 1.77 **
22 1.33 * 1.74 ** 1.49 * 1.70 ** −1.02 2.23 ** 1.39 * 0.27 1.70 **
23 1.36 * 1.62 * 1.54 * 1.69 ** −1.02 2.22 ** 1.38 * 0.23 1.63 *
24 1.39 * 1.52 * 1.59 * 1.68 ** −1.02 2.20 ** 1.38 * 0.19 1.58 *
25 1.41 * 1.45 * 1.62 * 1.67 ** −1.02 2.19 ** 1.39 * 0.16 1.54 *
26 1.42 * 1.39 * 1.65 ** 1.65 ** −1.02 2.17 ** 1.38 * 0.13 1.50 *

Chile WCW—K = 2—σ(θt) = 0.04∗σ(ê2)

h C1 C2 C3 C4 C5 C6 C7 C8 C9

1 0.90 −0.03 1.25 0.80 −0.35 0.51 0.96 0.01 0.86
2 0.86 0.66 1.02 1.19 −0.77 1.38 * 0.83 −0.16 1.54 *
3 0.90 0.03 1.22 1.41 * −0.49 1.77 ** 1.14 0.99 1.36 *
6 0.19 −0.45 1.00 1.41 * −0.75 1.60 * 1.50 * 1.54 * 1.46 *

12 0.34 1.23 0.05 1.68 ** −0.94 2.22 ** 1.26 0.72 1.83 **
14 0.36 −0.62 0.45 1.71 ** −0.97 2.23 ** 1.22 0.66 1.86 **
20 0.75 1.75 ** 0.90 1.71 ** −1.02 2.28 ** 1.38 * 0.03 2.31 **

21 0.92 2.08 ** 2.36
*** 1.68 ** −1.02 2.23 ** 1.42 * −0.04 2.14 **

22 1.48 * −0.93 1.82 ** 1.70 ** −1.02 2.30 ** 1.53 * 2.52
*** 1.81 **

23 0.69 1.75 ** 1.48 * 1.72 ** −1.02 2.26 ** 1.35 * 0.44 1.84 **
24 1.94 ** 1.97 ** 0.75 1.78 ** −1.02 2.19 ** 1.29 * −0.33 1.11
25 0.23 1.70 ** 0.79 1.71 ** 1.02 0.70 1.24 2.21 ** 0.88
26 1.72 ** −1.01 1.38 * 1.61 * −1.02 0.90 1.34 * 0.51 0.03

Notes: Table 14 shows out-of-sample results using the Chilean exchange rate as a predictor. We reported the test
by CW and the WCW for P/R = 4 using a rolling window scheme. C1 denotes WTI oil, C2: copper, C3: S&P GSCI:
Goldman Sachs Commodity Price Index, C4: aluminum, C5: zinc, C6: LMEX: London Metal Exchange Index, C7:
lead, C8: nickel, and C9: tin. Following Equation (1), we took the adjusted average of K = 2 WCW statistics and
we considered σ(θt) = 0.04∗σ(ê2). * p < 10%, ** p < 5%,*** p < 1%.
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Table 15. Forecasting commodity prices with the Australian exchange rate. A comparison between
CW and WCW in iterated multi-step-ahead forecasts.

Australia CW

h C1 C2 C3 C4 C5 C6 C7 C8 C9

1 −0.51 −0.16 −0.60 −0.65 −0.18 −0.14 1.59 * 0.51 0.84
2 0.01 −0.14 −0.68 −0.59 −0.66 0.00 1.05 0.08 1.75 **
3 0.41 0.81 0.12 0.11 0.53 1.18 1.49 * 1.04 0.99

6 0.72 1.78 ** 2.13 ** 1.69 ** 2.43
*** 2.25 ** 1.27 1.74 ** 1.61 *

12 1.55 * 1.49 * 2.33
*** 1.74 ** 1.86 ** 2.23 ** 1.28 * 2.53

***
2.43
***

14 1.65 ** 1.42 * 2.278
** 1.72 ** 0.77 2.21 ** 1.39 * 2.39

*** 2.31 **

20 1.68 ** 1.28 * 2.11 ** 1.68 ** −0.81 2.17 ** 1.46 * 1.91 ** 1.90 **
21 1.68 ** 1.27 2.08 ** 1.67 ** −0.88 2.16 ** 1.41 * 1.85 ** 1.83 **
22 1.67 ** 1.25 2.05 ** 1.66 ** −0.92 2.15 ** 1.37 * 1.80 ** 1.76 **
23 1.66 ** 1.24 2.03 ** 1.65 ** −0.95 2.14 ** 1.33 * 1.76 ** 1.70 **
24 1.66 ** 1.22 2.00 ** 1.64 * −0.97 2.13 ** 1.30 * 1.72 ** 1.65 **
25 1.65 ** 1.21 1.98 ** 1.63 * −0.99 2.13 ** 1.28 * 1.68 ** 1.60 *
26 1.65 ** 1.20 1.95 ** 1.62 * −1.00 2.12 ** 1.25 1.65 ** 1.55 *

Australia WCW—K = 2— σ(θt) = 0.04∗σ(ê2)

h C1 C2 C3 C4 C5 C6 C7 C8 C9

1 −0.56 −0.19 −0.61 −0.64 −0.22 −0.14 1.61 * 0.54 0.84
2 −0.02 −0.15 −0.68 −0.58 −0.61 0.01 1.06 0.11 1.73 **
3 0.42 0.76 0.14 0.07 0.59 1.25 1.46 * 1.08 1.04

6 0.75 1.78 ** 2.13 ** 1.68 ** 2.42
*** 2.25 ** 1.26 1.74 ** 1.61 *

12 1.55 * 1.48 * 2.33
*** 1.73 ** 2.00 ** 2.23 ** 1.28 2.51

***
2.42
***

14 1.60 * 1.43 * 2.28 ** 1.72 ** 0.74 2.21 ** 1.38 * 2.40
*** 2.31 **

20 1.62 * 1.29 * 2.11 ** 1.67 ** −0.81 2.17 ** 1.44 * 1.87 ** 1.95 **
21 1.61 * 1.27 2.09 ** 1.63 * −0.90 2.16 ** 1.45 * 1.80 ** 1.88 **
22 1.56 * 1.26 2.06 ** 1.66 ** −0.93 2.15 ** 1.41 * 1.96 ** 1.81 **
23 1.76 ** 1.24 2.04 ** 1.68 ** −0.98 2.14 ** 1.30 * 1.77 ** 1.69 **
24 1.91 ** 1.22 1.99 ** 1.74 ** −0.98 2.13 ** 1.27 1.61 * 1.61 *
25 1.39 * 1.22 1.99 ** 1.74 ** 1.11 2.13 ** 1.33 * 1.73 ** 1.55 *
26 1.43 * 1.22 1.99 ** 1.49 * −1.01 2.12 ** 1.16 1.64 * 1.52 *

Notes: Table 15 shows out-of-sample results using the Australian exchange rate as a predictor. We reported the
test by CW and the WCW for P/R = 4 using a rolling window scheme. C1 denotes WTI oil, C2: copper, C3: S&P
GSCI: Goldman Sachs Commodity Price Index, C4: aluminum, C5: zinc, C6: LMEX: London Metal Exchange
Index, C7: lead, C8: nickel, and C9: tin. Following Equation (1), we took the adjusted average of K = 2 WCW
statistics and we considered σ(θt) = 0.04∗σ(ê2). * p < 10%, ** p < 5%,*** p < 1%.

7. Concluding Remarks

In this paper, we have presented a new test for out-of-sample evaluation in the context
of nested models. We labelled this statistic as “Wild Clark and West (WCW)”. In essence,
we propose a simple modification of the CW (Clark and McCracken (2001) [9] and Clark
and West (2006, 2007) [13,14]) core statistic that ensures asymptotic normality: basically,
this paper can be viewed as a “non-normal distribution problem”, becoming “a normal
distribution” one, which significantly simplifies the discussion. The key point of our
strategy was to introduce a random variable that prevents the CW core statistic from
becoming degenerate under the null hypothesis of equal predictive accuracy. Using West’s
(1996) [2] asymptotic theory, we showed that “asymptotic irrelevance” applies, hence our
test can ignore the effects of parameter uncertainty. As a consequence, our test is extremely
simple and easy to implement. This is important, since most of the characterizations
of the limiting distributions of out-of-sample tests for nested models are non-standard.
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Additionally, they tend to rely, arguably, on a very specific set of assumptions, that, in
general, are very difficult to follow by practitioners and scholars. In this context, our test
greatly simplifies the discussion when comparing nested models.

We evaluated the performance of our test (relative to CW), focusing on iterated multi-
step-ahead forecasts. Our Monte Carlo simulations suggest that our test is reasonably
well-sized in large samples, with mixed results in power compared to CW. Importantly,
when CW shows important size distortions at long horizons, our test seems to be less prone
to these distortions and, therefore, it offers a better protection to the null hypothesis.

Finally, based on the commodity currencies literature, we provided an empirical
illustration of our test. Following Chen, Rossi, and Rogoff (2010, 2011) [17,18] and Pincheira
and Hardy (2018, 2019, 2021) [19–21], we evaluated the predictive performance of the
exchange rates of three major commodity exporters (Australia, Chile, and South Africa)
when forecasting commodity prices. Consistent with the previous literature, we found
evidence of predictability for some of our sets of commodities. Although both tests tend
to be similar, we did find some differences between CW and WCW. As our test tends to
“better protect the null hypothesis”, some of these differences may be explained by some
size distortions in the CW test at long horizons, but some others are most likely explained
by the fact that CW may, sometimes, be more powerful.

Extensions for future research include the evaluation of our test using the direct
method to construct multi-step-ahead forecasts. Similarly, our approach seems to be
flexible enough to be used in the modification of other tests. It would be interesting to
explore, via simulations, its potential when applied to other traditional out-of-sample tests
of predictive ability in nested environments.
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Appendix A

Appendix A.1. Two Intuitive Interpretations for the ENC-t Test

First, the label ENC-t comes from an “encompassing” test, like the one considered
by Harvey et al. (1998) [23] (HLN). Suppose we construct a combination as the weighted
average of the two competing forecasts, in order to minimize MSPE. If the entire weight is
optimally assigned to one single forecast, then that forecast “encompasses” the other. Au
contraire, it is possible to find a combination displaying lower MSPE than both individual
forecasts. Using this logic, and in the context of nested models, rejection of the null
hypothesis indicates that a combination including the forecasts coming from the nested
and nesting models should be preferable to either individual forecast. See Pincheira and
West (2016) [16].

An alternative interpretation goes along the lines of Clark and West (2006, 2007) [13,14]
(CW). In these papers, CW showed that there is an equivalence between the ENC-t core
statistic and an “adjusted mean squared prediction error (adj-MSPE)”. In simple words,
the CW test (or ENC-t test) tracks the behavior of MSPE differences between the forecasts
coming from the nested and nesting models, but at the population level. No rejection of
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the null hypothesis means that both models are indistinguishable: the nested and nesting
models. Rejection of the null means that both models are different and, furthermore, that
forecasts from the bigger nesting model should have lower population MSPE relative to
the forecasts generated by the nested model.

Appendix A.2. Assumption 1

Assumption 1 in West (1996) [2], p. 1070. In some open neighborhood N around β∗,
and with probability one: (a) ft(β) is measurable and twice continuously differentiable
with respect to β; (b) let fit be the ith element of ft. For i = 1, . . . , l, there is a constant

D < ∞, such that for all t, supβ∈N

∣∣∣ ∂2fit
∂β∂β′

∣∣∣ < mt for a measurable mt, for which Emt < D.

Appendix A.3. Assumption 2

Assumption 2 on West (1996) [2], pp. 1070–1071 and West (2006) [3], p. 112. Assuming
that models are parametric, the estimator of the regression parameters satisfies

β̂t − β∗ = B(t)H(t)

where B(t) is K× q, H(t) is q× 1 with (a) B(t) a.s→ B, B a matrix of rank k and (b) H(t) =
t−1 ∑t

s=1 hs(β
∗) if the estimation method is recursive, H(t) = R−1 ∑t

s=t−R+1 hs(β
∗) if it is

rolling, or H(t) = R−1 ∑R
s=1 hs(β

∗) if it is fixed. hs(β
∗) is a q× 1 orthogonality condition

that satisfies (c) Ehs(β
∗) = 0.

As it was explained in West (2006) [3]: “Here, ht can be considered as the score if the
estimation method is ML, or the GMM orthogonality condition if GMM is the estimator.
The matrix B(t) is the inverse of the Hessian if the estimation method is ML or a linear
combination of orthogonality conditions when using GMM, with large sample counterparts
B.” West (2006) [3] p. 112.

Appendix A.4. Assumption 3

Assumption 3 in West (1996) [2], p. 1071. Let ft ≡ ft(β
∗), ftβ ≡ ∂ft

∂β (β
∗), F ≡ Eftβ, then

(a) for some d > 1, sup
t
E|
∣∣∣∣[vec(ftβ)

′, f′t, h′t
]′∣∣∣∣4d

< ∞, where

1 

 

 stands for the Euclidean

norm; (b)
[
vec(ftβ − F)′, (ft − Eft)

′, h′t
]
′ is strong mixing, with mixing coefficients of size

− 3d
d−1 ; (c)

[
vec(ftβ)

′, f′t, h′t
]
′ is covariance stationary; (d) Sff = ∑∞

j=−∞ Γff(j) is p.d. with

Γff(j) = E(ft − Eft)
(
ft−j −Eft

)′.
Appendix A.5. Assumption 4

Assumption 4 in West (1996) [2], pp. 1071–1072.

R, P→ ∞ as T→ ∞, and lim
T→∞

(
P
R

)
= π, 0 ≤ π ≤ ∞; π = ∞↔ lim

T→∞

(
R
P

)
= 0
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Appendix A.6. Summary of Empirical Size Comparisons between CW and WCW Tests with
Nominal Size of 5% for our Three DGPs

Table A1. Summary of empirical size comparisons between CW and WCW tests with nominal size
of 5% for our three DGPs.

σ(θt)=0.01∗σ(
^
e2) σ(θt)=0.02∗σ(

^
e2) σ(θt)=0.04∗σ(

^
e2)

Average
Size CW K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

Large samples (T = 900)

DGP1 0.03 0.04 0.04 0.05 0.05 0.05 0.05
DGP2 0.07 0.05 0.05 0.05 0.05 0.05 0.05
DGP3 0.07 0.06 0.07 0.06 0.06 0.05 0.06

Small samples (T = 90)

DGP1 0.05 0.05 0.05 0.06 0.06 0.06 0.06
DGP2 0.09 0.07 0.07 0.06 0.07 0.06 0.06
DGP3 0.10 0.08 0.10 0.07 0.09 0.07 0.08

Notes: Table A1 presents a summary of empirical sizes of the CW test and different versions of our test when
parameters were estimated with a recursive scheme. Each entry reports the average size across the h = 30 exercises.
Each row considers a different DGP. The first panel reports our results for large samples (P = R = 450, T = 900),
while the second panel shows our results in small samples (P = R = 45, T = 90). K is the number of independent
realizations of the sequence of θt. When K > 1, our statistic was the adjusted average of the K WCW statistics, as
considered in Equation (1). σ(θt) is the standard deviation of θt and it was set as a percentage of the standard
deviation of the forecasting errors of model 2 (σ(ê2)). The total number of Monte Carlo simulations was 2000.
We evaluated the CW test and our proposed test using one-sided standard normal critical values at the 5%
significance level. Multistep-ahead forecasts were computed using the iterated approach.

Appendix A.7. Summary of Power Comparisons between CW and WCW Tests with Nominal Size
of 5% for Our Three DGPs

Table A2. Summary of power comparisons between CW and WCW tests with nominal size of 5% for
our three DGPs.

σ(θt)=0.01∗σ(
^
e2) σ(θt)=0.02∗σ(

^
e2) σ(θt)=0.04∗σ(

^
e2)

Average
Power CW K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

Large samples (T = 900)

DGP1 0.48 0.47 0.48 0.45 0.47 0.41 0.44
DGP2 0.58 0.48 0.52 0.41 0.45 0.36 0.40
DGP3 0.78 0.78 0.78 0.76 0.79 0.73 0.78

Small samples (T = 90)

DGP1 0.48 0.47 0.48 0.45 0.47 0.41 0.44
DGP2 0.48 0.43 0.47 0.35 0.41 0.28 0.35
DGP3 0.61 0.61 0.61 0.59 0.61 0.56 0.61

Notes: Table A2 presents a summary of the empirical power of the CW test and different versions of our
test when parameters were estimated with a recursive scheme. Each entry reports the average power across
the h = 30 exercises. Each row considers a different DGP. The first panel reports our results for large samples
(P = R = 450, T = 900), while the second panel shows our results in small samples (P = R = 45, T = 90). K is the
number of independent realizations of the sequence of θt. When K > 1, our statistic was the adjusted average
of the K WCW statistics, as considered in Equation (1). σ(θt) is the standard deviation of θt and it was set as
a percentage of the standard deviation of the forecasting errors of model 2 (σ(ê2)). The total number of Monte
Carlo simulations was 2000. We evaluated the CW test and our proposed test using one-sided standard normal
critical values at the 5% significance level. Multistep-ahead forecasts were computed using the iterated approach.
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Appendix A.8. Forecasting Commodity Prices with the South African Exchange Rate. A
Comparison between CW and WCW in Iterated Multi-Step-Ahead Forecasts

Table A3. Forecasting commodity prices with the South African exchange rate. A comparison
between CW and WCW in iterated multi-step-ahead forecasts.

South Africa CW

h C1 C2 C3 C4 C5 C6 C7 C8 C9

1 −1.20 −0.11 −0.89 −0.62 −0.92 0.03 −0.74 0.33 0.82
2 −0.45 0.01 −0.93 −0.73 −0.64 0.27 −0.49 −0.13 1.18
3 −0.03 1.08 −0.09 −0.56 0.34 1.31 * 0.27 1.44 * 0.26

6 1.01 1.52 * 2.12 ** 1.61 * 2.09 ** 2.00 ** 1.06 2.40
*** 1.25

12 1.85 ** 1.41 * 2.33
*** 1.71 ** 1.96 ** 2.13 ** 1.87 ** 2.50

*** 1.60 *

14 1.85 ** 1.36 * 2.30 ** 1.69 ** 1.64 * 2.15 ** 1.98 ** 2.34
*** 1.55 *

20 1.75 ** 1.26 2.15 ** 1.64 * 1.13 2.14 ** 1.65 ** 2.06 ** 1.40 *
21 1.74 ** 1.24 2.12 ** 1.63 * 1.10 2.14 ** 1.60 * 2.02 ** 1.38 *
22 1.72 ** 1.23 2.09 ** 1.62 * 1.08 2.13 ** 1.56 * 1.99 ** 1.36 *
23 1.70 ** 1.22 2.07 ** 1.61 * 1.06 2.13 ** 1.53 * 1.96 ** 1.34 *
24 1.69 ** 1.21 2.04 ** 1.60 * 1.05 2.12 ** 1.50 * 1.93 ** 1.32 *
25 1.67 ** 1.20 2.01 ** 1.59 * 1.04 2.11 ** 1.47 * 1.91 ** 1.30 *
26 1.66 ** 1.18 1.99 ** 1.58 * 1.04 2.11 ** 1.44 * 1.88 ** 1.29 *

South Africa WCW—K = 2—σ(θt) = 0.04∗σ(ê2)

h C1 C2 C3 C4 C5 C6 C7 C8 C9

1 −1.28 −0.16 −0.90 −0.61 −0.96 0.04 −0.71 0.36 0.82
2 −0.53 0.00 −0.92 −0.72 −0.56 0.29 −0.47 −0.09 1.13
3 0.02 1.02 −0.07 −0.57 0.41 1.39 * 0.25 1.46 * 0.35

6 1.10 1.53 * 2.12 ** 1.60 * 2.10 ** 2.00 ** 1.06 2.37
*** 1.28

12 1.86 ** 1.40 * 2.34
*** 1.70 ** 1.96 ** 2.13 ** 1.86 ** 2.49

*** 1.60 *

14 1.80 ** 1.37 * 2.31 ** 1.69 ** 1.65 ** 2.14 ** 1.98 ** 2.35
*** 1.56 *

20 1.75 ** 1.27 2.15 ** 1.62 * 1.13 2.14 ** 1.64 * 2.06 ** 1.45 *
21 1.68 ** 1.26 2.13 ** 1.56 * 1.10 2.13 ** 1.61 * 2.02 ** 1.48 *
22 1.48 * 1.26 2.11 ** 1.63 * 1.08 2.13 ** 1.57 * 1.99 ** 1.43 *
23 1.85 ** 1.25 2.08 ** 1.64 * 1.06 2.12 ** 1.52 * 1.96 ** 1.33 *
24 1.94 ** 1.20 2.05 ** 1.71 ** 1.05 2.12 ** 1.49 * 1.93 ** 1.24
25 1.58 * 1.31 * 1.99 ** 1.73 ** 1.04 2.11 ** 1.47 * 1.91 ** 1.20
26 1.15 1.28 2.06 ** 1.43 * 1.04 2.11 ** 1.44 * 1.88 ** 1.17

Notes: Table A3 shows out-of-sample results using the South African exchange rate as a predictor. We report the
test by CW and the WCW for P/R = 4 using a rolling window scheme. C1 denotes WTI oil, C2: copper, C3: S&P
GSCI: Goldman Sachs Commodity Price Index, C4: aluminum, C5: zinc, C6: LMEX: London Metal Exchange
Index, C7: lead, C8: nickel, and C9: tin. Following Equation (1), we took the adjusted average of K = 2 WCW
statistics and we considered σ(θt) = 0.04∗σ(ê2). * p < 10%, ** p < 5%, *** p < 1%.
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