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Abstract: In this era of unprecedented economic and social prosperity, problems such as energy
shortages and environmental pollution are gradually coming to the fore, which seriously restrict
economic and social development. In order to solve these problems, green shop scheduling, which
is a key aspect of the manufacturing industry, has attracted the attention of researchers, and the
widely used flow shop scheduling problem (HFSP) has become a hot topic of research. In this paper,
we study the fuzzy hybrid green shop scheduling problem (FHFGSP) with fuzzy processing time,
with the objective of minimizing makespan and total energy consumption. This is more in line with
real-life situations. The non-linear integer programming model of FHFGSP is built by expressing job
processing times as triangular fuzzy numbers (TFN) and considering the machine setup times when
processing different jobs. To address the FHFGSP, a discrete artificial bee colony (DABC) algorithm
based on similarity and non-dominated solution ordering is proposed, which allows individuals to
explore their neighbors to different degrees in the employed bee phase according to a sequence of
positions, increasing the diversity of the algorithm. During the onlooker bee phase, individuals at
the front of the sequence have a higher chance of being tracked, increasing the convergence rate of
the colony. In addition, a mutation strategy is proposed to prevent the population from falling into a
local optimum. To verify the effectiveness of the algorithm, 400 test cases were generated, comparing
the proposed strategy and the overall algorithm with each other and evaluating them using three
different metrics. The experimental results show that the proposed algorithm outperforms other
algorithms in terms of quantity, quality, convergence and diversity.

Keywords: green shop scheduling; fuzzy hybrid flow shop scheduling; discrete artificial bee colony
algorithm; minimize makespan; minimize total energy consumption

1. Introduction

The growth of manufacturing has brought economic and social prosperity. Shop
scheduling, as a key part of manufacturing, plays an important role in economic de-
velopment. Hybrid flow shop (HFS) is a common manufacturing environment [1] that
combines the features of process shop and parallel machine scheduling and is widely
used in container handling [2], electronics manufacturing, chemical production, and steel
production [3–5], in addition to applications in internet service architecture [6], civil engi-
neering [7], and production planting [8]. The hybrid flow shop scheduling problem (HFSP)
refers to multiple jobs to be processed in multiple stages with one or more machines in each
stage, and a specific optimization objective is achieved by determining the order in which
the jobs are processed and the allocation of machines to each job in each stage [1]. It is
worth noting that there are two other cases of HFSP in real life [9,10]: (1) the processing time
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of a job is often not fixed but fluctuates within a limited range due to worker proficiency,
newness of the machine. (2) The same machine processing different jobs requires a certain
setup of the machine before processing, and due to the differences between jobs, the setup
time required by the machine varies from job to job. Therefore, it is more meaningful and
practical to study HFSP with setup time and fuzzy job processing time.

While the world is experiencing unprecedented economic and social prosperity, en-
vironmental pollution and energy scarcity are becoming a serious problem that seriously
affects the future development of humanity. In particular, the manufacturing industry
takes up most of the world’s energy and produces a large amount of pollutant emis-
sions [11]. Therefore, in order to solve the energy and environmental problems, green shop
scheduling, as a key aspect of manufacturing, has become a hot spot for research [12]. The
purpose of green shop scheduling is to reduce energy consumption, reduce environmental
pressure, and achieve sustainable development without losing economic benefits. There-
fore, the widely used hybrid flow green shop scheduling problem (HFGSP) has a high
research value.

However, HFGSPs that consider fuzzy job processing time are not common at present.
Fu et al. [13] developed a hybrid multi-objective optimization algorithm to solve HFSP with
fuzzy processing time but did not consider the energy problem. Wang et al. [14] investigated
the HFGSP of job processing time variation caused by the dynamic reconfiguration process
of the device to minimize the energy consumption of makespan and the whole device and
proposed an improved multi-objective whale optimization algorithm to solve it.

As HFSP has a wide range of application scenarios, the uncertain job processing
time meets the actual production needs and the energy saving is in line with the future
direction of manufacturing. In this paper, we study the fuzzy hybrid flow green shop
scheduling problem (FHFGSP) which meets the above three scenarios and is less studied
currently. FHFGSP considers fuzzy job processing time and machine setup time with
the objective of minimizing both makespan (MS) and total energy consumption (TEC).
Uncertain completion time is denoted by triangular fuzzy numbers (TFN) and TEC is
divided into three parts: machine working time, machine setup time, and machine idle
time. At present, there are not many HFGSPs that consider both fuzzy processing time
and work sequence-related setup time, but FHFGSP is more in line with actual production
scenarios and has higher research value.

Artificial bee colony (ABC) [15] is one of the swarm intelligence algorithms, which
is divided into employed bees, onlooker bees, and scout bees according to the foraging
behavior of the swarm, with good global exploration and local development. ABC has
been shown to be superior or close to other classical swarm intelligence algorithms [16,17].
ABC is widely used to solve shop scheduling problems [18]. To solve FHFGSP, this paper
proposed a sorting-based discrete artificial bee colony algorithm (SDABC). Individuals in
the population are ranked according to non-dominated solutions and similarity to the ideal
solution and adopt different search and follow strategies according to the location to achieve
full exploration of the solution space and discover better solutions. It is worth mentioning
that SDABC can be used not only to solve FHFGSP problems such as turning shop [19]. It
can also be used to solve the expansion of FHFGSP described in the first paragraph.

The main contributions of this paper are as follows:

(1) The FHFGSP with processing time fuzzy is investigated. The completion time is rep-
resented by TFN, and the energy consumption in the scheduling process is considered
in three parts, which is more in line with the actual production environment.

(2) In the employed bee phase, the population was ranked based on the number of
dominant solutions and the similarity of ideal solutions, and different degrees of
exploration were taken for individuals according to the results of the ranking, with
the best individuals being more fully explored.

(3) In the onlooker bee phase, a selection strategy is adopted so that individuals in the
top ranking have a higher probability of being selected, and a mutation strategy is
adopted to avoid falling into a local optimum.
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The paper is organized as follows: Section 2 gives the relevant works, Section 3
describes what the FHFGSP is, gives a symbolic representation and builds a mathematical
model of the FHFGSP. Section 4 details the SDABC for solving the FHFGSP. Experimental
validation is presented in Section 5 and the last section contains conclusions and outlook.

2. Related Works

ABC has been successfully applied to solve shop scheduling problems due to its
advantages such as few control parameters and ease of implementation [20]. As there is no
research related to ABC for solving FHFGSP, this section reviews the work related to the
use of ABC for solving shop scheduling problems.

Li et al. [18] proposed a novel hybrid ABC and tabu search algorithm (TABC) to
solve the HFSP finite buffers, employing a TS-based adaptive neighborhood strategy that
gives the TABC algorithm the ability to learn and generate neighborhood solutions in
different promising regions as a means to minimize makespan. Yue et al. [21] investigated
the batching and hybrid model scheduling problem in a flexible parallel production line,
considering the sequence-dependent setup time between hybrid model products with the
aim of minimizing the manufacturing cycle time of the line while balancing the workload
between lines and maximizing the net profit. In addition, a new material availability
constraint is introduced to the problem. A novel Pareto guided ABC is designed to address
the current problem. Gong et al. [22] considered the impact and potential of human factors
on improving productivity and reducing production costs in real production systems and
proposed a hybrid ABC to solve flexible job shop scheduling problems (FJSP) with worker
flexibility. Zadeh et al. [23] proposed a heuristic model based on an ABC for the dynamic
FJSP. Lei et al. [24] studied the distributed unrelated parallel machine scheduling problem
with preventive maintenance (DUPMSP) and proposed an ABC with division to minimize
MS. Xie et al. [25] proposed an improved ABC considering machining structure evaluation
to solve the flexible integrated scheduling problem of networked equipment, which is an
extension of job shop scheduling. Xuan et al. [20] proposed an improved DABC with the
introduction of a genetic algorithm to solve FJSP for uncorrelated parallel machines with
progressively deteriorating jobs and timing dependencies.

As flow shops are very common in practical production activities, the HFSP is of high
research value. Wang et al. [19] proposed a new decoding method that simultaneously
considers spindle speed optimization and scheduling scheme optimization and acts on
the distribution estimation algorithm to simultaneously reduce energy consumption and
makspan in the turning shop. Li et al. [26] proposed an improved ABC to solve the
distributed flow shop problem (DFSP) with the objective of minimizing MS. Li et al. [27]
proposed a hybrid ABC to solve the parallel batch DFSP with deteriorating jobs. In
the proposed algorithms, two types of problem-specific heuristics are proposed, namely
batch allocation and right-shift heuristics, which can significantly shorten makespan.
Gong et al. [28] proposed a hybrid multi-objective DABC for solving the blocked batch
flow process shop scheduling problem with two conflicting criteria of minimizing MS and
lead time. With the objective of minimizing the total process time, Pan et al. [29] solved
the distributed arrangement flow job scheduling problem based on a high-performance
framework of DABC. Li et al. [30] proposed an improved ABC to solve a multi-objective
optimization model with the objectives of minimizing MS and processing cost for the
hybrid flow shop process planning and production scheduling independently of each
other. Peng et al. [31] investigated the problem of flow shop rescheduling in the actual
steelmaking process, considering interruptions caused by machine failures and controllable
processing times in the final stages, and proposed an improved ABC to solve the problem.

However, in actual production, the processing time of jobs is often uncertain and there
is very little research on ABC solutions to fuzzy HFSP. Zhong et al. [32] proposed a new
artificial swarm algorithm, the improved artificial swarm algorithm, for the multi-objective
fuzzy FJSP. The objectives are to minimize the maximum fuzzy MS, maximize the weighted
consistency index and minimize the maximum fuzzy machine workload.
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Most of the research on the use of ABC to solve shop scheduling problems is in the
area of improving economic efficiency. Very little research has been done on saving energy
and reducing pollution emissions. Li et al. [33] designed an improved ABC to solve a
multi-objective low-carbon job shop scheduling problem with variable machining speed
constraints. Zhang et al. [34] studied HFGSP with variable machine processing speed to
minimize MS and TEC and proposed a multi-objective DABC (MDABC) to solve HFGSP.
However, in HFGSP, the processing time of the job is set to an exact value, which is not fully
compatible with the actual production environment. In real life, the processing time of the
job often deviates due to the operator’s business ability, machine aging, etc. Moreover, the
neighborhood search adopted by MDABC in the employed bee phase and the binary race
strategy adopted in the onlooker bee phase make the algorithm suffer from the problem
that it cannot fully explore in the solution space, the convergence of the algorithm is not
high, and it is easy to fall into local optimum.

For this reason, this paper studies the FHFGSP with uncertain job processing time and
proposes SDABC to solve FHFGSP. In SDABC, the dominant individuals guide the poor
individuals to update in the employed bee phase, which improves the convergence speed
of the population, and the proposed ranking-based selection strategy and mutation strategy
can prevent individuals from falling into local optimum in the onlooker bee phase. FHFGSP
is consistent with the actual production environment and production requirements, but it
is not common in previous studies.

3. FHFGSP

This section first details the problem definition of FHFGSP, then the rules of TFN
operations are explained, and finally the symbolic representation of FHFGSP is given and
the mathematical model of FHFGSP is developed.

3.1. Description of the Problem

FHFGSP combines the features of fuzzy scheduling and HFSP. In FHFGSP, n jobs will
be processed in m (m ≥ 2) stages in the same order. Each stage j has at least one machine
Mj,k (k ≥ 1) and at least one stage has multiple machines [1,35,36]. The processing time Ti,j,v

of jobi on machine Mj,k is uncertain and is given by the triple [37] (to
i,j,v, tm

i,j,v, tp
i,j,v) where

to
i,j,v ≤ tm

i,j,v ≤ tp
i,j,v. to

i,j,v denotes the optimal processing time, tm
i,j,v denotes the most probable

processing time, and tp
i,j,v denotes the worst processing time.

The constraints for FHFGSP are formulated as follows:

(1) Jobs are not allowed to be interrupted and preempted when there is a job being
processed on the machine, and the machine is not allowed to stop.

(2) At the beginning, all jobs and machines are available.
(3) Only one job can be processed by any one machine at any one time and any job is

only allowed to be processed by one machine at any one time.
(4) Machines at the same stage process jobs at the same speed with the same power.
(5) Machines are allowed to idle.
(6) Machines can only process jobs at a selected speed. This cannot be changed during

the processing.

The objective to be optimized by FHFGSP is to minimize MS and TEC. In this paper,
the TEC is divided into three parts: when the machine is idle, when the machine is in the
setup phase, and when the machine is processing jobs. There are three ways to reduce
MS: (1) reduce machine idle time, which is influenced by the job sequence. (2) Reduce
machine setup time, which also reduces TEC, which is also influenced by the job sequence.
(3) Reducing the time of the job being processed, which means increasing the processing
speed of the job. However, the energy consumption of the machine when processing a job
is proportional to the processing speed of the job [38], and reducing the job processing time
increases the TEC. Since the two objectives to be optimized are in conflict with each other,
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this paper solves the FHFGSP by adjusting the job sequence and the speed of the machine
when processing the job.

3.2. TFN Concepts and Operations

The concept of fuzzy sets was introduced by Zadeh [39] and the basic idea is to
fuzzily the absolute affiliation in classical sets. It can be used to solve real-life uncertainty
problems [40]. This subsection gives the rules for the operation of the TFN to facilitate the
solution of the GFHSP.

For any two TFNs A = (a1, a2, a3) and B = (b1, b2, b3) the rules for each operation are
as follows:

1. Additive operations

A + B = (a1 + b1, a2 + b2, a3 + b3) (1)

2. Multiplication operations

A× B = (a1 × b1, a2 × b2, a3 × b3) (2)

3. Comparative operations
−
A = (

a1 + 2a2 + a3

4
) (3)

The TFN comparison operation is divided into three steps and has three judgement criteria.

Step 1: Get
−
A and

−
B by (3). If

−
A > (<)

−
B, then A > (<) B.

Step 2: If
−
A =

−
B, then compare a2 and b2. If a2 > (<) b2, then A > (<) B.

Step 3: If
−
A =

−
B and a2 = b2, then compare the difference between a3 and a1. If

a3−a1 > (<) b3−b1, then A < (>) B.

3.3. Mathematical Models

After understanding the basic concepts of FHFGSP and TFN, mathematical modelling
of FHFGSP from the perspective of optimization objectives is needed to facilitate a better
understanding of the problem to solve it. The interpretation of the relevant symbols
appearing in the FHFGSP is shown in Table 1.

Objective:
Min{MS, TEC} (4)

Subject to:
∑

k∈Mj

∑
v∈Vj

xi,j,k,v = 1, ∀i ∈ I, j ∈ J (5)

ei,j − bi,j = ∑
k∈Mj

∑
v∈Vj

xi,j,k,v · pti,j,v (6)

bi,j − ei,j−1 ≥ 0, j ∈ {2, . . . , m} (7)

zi,i∗ ,j,k + zi∗ ,i,j,k ≤ 1, ∀i, i∗ ∈ I, k ∈ Mj (8)

bi,j − ∑
i∗∈I

ei∗ ,j · zi∗ ,i,j,k − ∑
k∈Mj

∑
i∗∈I

zi∗ ,i,j,k · sti∗ ,i,j ≥ 0 (9)

ei,j − ∑
k∈Mj

∑
v∈Vj

xi,j,k,v · pti,j,v − ∑
k∈Mj

∑
i∗∈I

zi∗ ,i,j,k · sti∗ ,i,j = 0 (10)

MS = maxei,m (11)

TEC = PE + SE + IE (12)

ppi,j,v = pi,j/cj,v (13)
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PE = ∑
j∈J

∑
k∈Mj

∑
i∈I

∑
v∈Vj

xi,j,k,v · Ti,j,v · ppi, j,v (14)

SE = ∑
j∈J

∑
k∈Mj

∑
i∈I

∑
i∗∈I

∑
v∈Vj

xi,j,k,v · zi∗ ,i,j,k · sti∗ ,i,j · sp (15)

IE = ∑
j∈J

∑
k∈Mj

Ek,j − Bk,j −∑
i∈I

∑
v∈Vj

xi,j,k,v · (pti,j,v + ∑
i∗∈I

zi∗ ,i,j,k · sti∗ ,i,j)

 · ip (16)

where (4) gives the objective of the FHFGSP to minimize both MS and TEC (5)–(10) give the
associated constraints. (5) guarantees that each job i can be assigned to a specific machine
k for processing at speed v at each stage j. (6)–(9) guarantees that no interruptions and
preemptions by jobs are allowed during the processing and setup phases. (10) indicates
that the machine starts processing as soon as setup is complete. (11) indicates that MS is
determined by the end time of the last job to be processed in the final stage. (12) indicates
that the TEC consists of three components, PE indicates the energy consumption of the
machine while processing the job, SE indicates the energy consumption of the machine
during the setup time, IE indicates the energy consumption of the machine during the
idle time. (13) denotes the actual power of job i when it is processed at speed v in stage j.
(14)–(16) are the specific information of PE, SE, and IE, respectively, all energy consumption
is obtained by multiplying power by time.

Table 1. Nomenclature.

Symbol Meaning

MS The time required to complete the entire scheduling program

TEC The total energy consumption required to complete the entire scheduling
program

I The set of jobs and |I| = n
i Index of the job, indicating the i-th job
J The set of stages and |J| = m
j Index of the stage, indicating the j-th stage

Mj The set of machines at stage j
k Index of the machine

ei,j The ending time of job i at stage j and its value is greater than 0
pi,j The standard processing time for job i at stage j
cj,v The adjustment factor when the machine is running at speed v at stage j

Ti,j,v The time required for job i to be processed at speed v at stage j

sti*,i,j
The setup time from job i* (i* is the previous job of i) to job i at stage j. If

i* = i, si*,i,j indicates the setup time required for job i as the first job
sp Energy consumed by the machine per unit time during the setup phase

ap Energy consumed by auxiliary equipment per unit of time throughout the
scheduling process

ip Energy consumed by the machine per unit of time during the idle phase
bi,j The beginning time of job i at stage j and its value is greater than 0

xi,j,k,v
A control variable for job position that is equal to 1 if job i is processed on

machine k at speed v at stage j, and 0 otherwise

zi,i*,j,k
A control variable for job sequence that is equal to 1 if the next job on the

machine k at stage j for job i* is job i, and 0 otherwise
Bk,j The start time of the parallel machine k is at stage j
Ek,j The shutdown time of parallel machine k at stage j

4. SDABC of FHFGSP

This section presents the proposed SDABC algorithm for solving FHFGSP. The basic
framework of the ABC algorithm is first presented, and then the encoding and decoding
scheme and the energy saving procedure are described, followed by the details of SDABC,
and finally a summary.
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4.1. The Framework of ABC

In ABC, during the initialization phase, a set of food source locations are randomly
selected by bees and their nectar amount is determined, then these bees enter the colony
and share nectar information. Each search cycle consists of three steps. In the first phase,
after information sharing, each employed bee searches for information in the vicinity of
the food source location and abandons the old food source to choose a new food source if a
better one is found. In the second phase, the onlooker bee selects a food source to follow
based on the nectar distribution information sent by the employed bee, the better the food
source the more likely it is to be followed. If the current food source is not updated for a
long time, the employed bee will abandon the current food source and become a scout bee.
The scout bee randomly selects a new food source to replace the abandoned food source.
The overall framework of the basic ABC framework is shown in Algorithm 1.

Algorithm 1 Framework of the basic ABC framework

Input: population P;
Output: results;
1: Initialize population P;
2: while requirements are met do
3: Employed bees to explore around food sources;
4: Onlooker bees select good individuals to follow and explore around the food source;
5: if triali > threshold limit then
6: Employed bees transformed into scout bees looking for new food sources;
7: end if
8: end while
9: return results.

In this paper, the linear weighted sum method is used as the decomposition method.
For a multi-objective optimization problem with m objectives, a weight vector λ = (λ1, λ2,
. . . , λm) T is added, where i represents the sum of the weight values of the i-th objective.
As shown in (17).

min F(X) =
m
∑

i=1
λi fi(xi)

s.t. x ∈ Ω
(17)

where fi(xi) is the objective value for the i-th objective. Since this paper is a two-objective
problem, λ = (λ1, λ2,) T the values of λ1 are taken in {0/H, 1/H, . . . , i/H, . . . , H/H}, where
H = N − 1 and λ2 = 1 − λ1.

4.2. Coding Scheme

This subsection gives the encoding and decoding scheme of FHFGSP. The objective of
FHFGSP is the minimum MS and TEC. To achieve these two optimization objectives, it is
necessary to determine the sequence of jobs in each stage, the machine allocation for each
stage of the job, and the speed at which each stage of the job is processed on the machine.
Due to the characteristics of FHFGSP, each job needs to go through the same processing
stages, so we only need to determine the sequence of jobs into the first stage, and the
sequence of jobs in other stages can be determined automatically. However, since the
processing speed of each job in each stage is independent of the preceding and following
stages and the preceding and following jobs, the processing speed of each job in each stage
is independent of the preceding and following jobs. Therefore, the speed of each job in
each stage should be determined separately.
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Therefore, the solution is coded in two parts. The first part is the sequence of jobs into
the first stage. The second part is the velocity selection matrix. In this paper, the two parts
of the solution are represented as follows:

πn = {π1, . . . , πi, . . . πn}

Vm×n =



v1,1, · · · v1,i, · · · v1,n
...

...
...

vj,1, · · · vj,i, · · · vj,n
...

...
...

vm,1, · · · vm,i, · · · vm,n


(18)

where πn denotes the n-dimensional job sequence vector, πi is the sequence number of the
i-th job entering the machine, Vm×n represents the speed matrix of the jobs, and vi,j is the
machine processing speed level of the i-th job at stage j.

The second part represents the solution to the three-stage scheduling problem for three
jobs as <π3, V3×3>. As shown below, the solution to the three-stage scheduling problem
for three jobs is denoted as <π3, V3×3>. π3 indicates that the order in which jobs enter the
first stage of scheduling is job1, job3, and job2. V3×3 indicates that in the three stages, job1
is processed at levels 1, 2, and 3, while job2 is processed at levels 2, 1, and 1, and job3 is
processed at levels 2, 1, and 3, respectively.

π3= {1, 3, 2} V3×3 =

 1 2 2
2 1 1
3 1 3

 (19)

After the coding scheme is determined, it needs to be decoded into an actual schedul-
ing scheme to make sense. The detailed decoding scheme is as follows. In the first stage,
machines are available at the moment 0. According to the order of jobs in πn, the jobs are
placed on the machine that can be executed earliest and the jobs are processed according to
the corresponding speed in the speed matrix, after which the available time of the machine
is updated before processing the next job. The following steps are performed for each job
in turn in the other stages:

Step 1: Process the job according to its completion time in the previous stage, according
to the first-come, first-served principle, i.e., the one that was completed earlier in the
previous stage and arrives at this stage first is processed first.

Step 2: Based on the speed in the speed matrix, select the parallel machine that can
process the job as early as possible.

Step 3: Update the available time of the machines. Assuming that machine k is
available at the moment 0, it takes 3 times to process job i and 1 time to set up, then the
available time of the machine is 0 + 3 + 1 = 4 times.

4.3. Initialization and Energy Saving Procedures

After determining the encoding, it is necessary to initialize the populations and
external populations. In this paper, the population is initialized in a random way, and for
each individual, the job sequence and velocity matrix are generated randomly.

After the population initialization is completed, the dominance relationship between
individuals needs to be calculated and the non-dominated solutions are populated with
external population.

Although the two optimization objectives of the FHFGSP conflict with each other,
it is possible to use a suitable strategy to improve the other objective while controlling
one optimization objective constant. To obtain high-quality solutions, individuals use an
energy-saving procedure after initialization with the aim of further improving the quality
of the population. The basic idea of the energy-saving procedure is to achieve a reduction
of PE in TEC by reducing the processing speed of the job while controlling a constant MS.
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To achieve constant MS, the energy-saving procedure uses the idea of backtracking.
Starting from the last job in the last stage, the processing speed of the job is minimized
without affecting the completion time of other jobs. The detailed steps are shown in
Algorithm 2, where the symbols that appear are given in Table 1.

Algorithm 2 Energy saving procedure

Input: sequence of assignments in order of completion, π’;
speed selection matrix, V;
integer related to the number of parallel machines, k;
Output: new speed selection matrix, V*;
1: i’ = the job processed on machine k after i;
2: i* = the job processed on machine k before i
3: for j = m to 1 do
4: for l = n to 1 do
5: i← Index of the l-th job in π’;
6: for v* = 1 to vi,j do
7: if pti,j,v* <= bi’,j - sti*,i,j-sti,i’,j- ei*,j then
8: vi,j ← v*;
9: bi,j = ei,j- pti,j,v*;
10: break;
11: end if
12: end for
13: end for
14: end for
15: return V*.

4.4. Employed Bees

During the employed bee phase, each individual tries to search around the food source
to obtain a better food source. The food source is the solution to the problem.

In order to allow the employed bee to fully explore around the solution, a local search
strategy based on ranking is proposed, with the central idea that high-quality solutions are
used to guide bad solutions to update themselves.

First, there is a requirement to identify high quality individuals in population. A new
way of determining high-quality individuals is proposed. The quality of each individual is
related to two factors: the number of dominant solutions and the similarity to the ideal
solution. (21) gives a high-quality assessment function for each individual, where ni denotes
the number of solutions in population that are dominated by the current individual i, d+,
and d– denote the Euclidean distances to the ideal and negative ideal solutions, respectively.
(22) gives the formula for the Euclidean distance, where xi denotes the i-th subproblem
of the current solution and x*i denotes the i-th subproblem of the ideal solution. Since
this paper is about finding a minimum of two objectives, the ideal solution is the lower
boundary of the search space and the negative ideal solution is the upper boundary of the
search space.

valuei =
d
−
i

d−i + d+i
+

N − ni
N2 (20)

d =
√(

∑ (xi − x∗i )
2
)

(21)

The high-quality individuals then guide the poor individuals to self-renewal when
the employed bees search around solutions. The high-quality individuals guided the poor
individuals to different degrees, and (23) gives the degree to which each individual i guided
the poor individuals. It is worth noting that the high-quality individuals only guide the
poorer individuals in their neighborhood. The Euclidean distance of each individual i
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in population from other individuals was calculated and the nearest T individuals were
selected as neighbors of i.

l = π ∗ ni
N

(22)

In addition, in order to prevent individuals in the population from leading differential
updates that affect other individuals that have already been updated and destroy the
structure of individuals, individuals in population are sorted in a non-ascending order ac-
cording to their quality, and individuals that have already been updated do not participate
in updates in the same population.

It is also worth noting that five update strategies are used in this paper, depending
on the problem to be solved. These strategies are insertion and exchange of working
sequences, mutation of velocity matrices, and insertion mutation and cross mutation of
working sequences and velocity matrices. The employed bees obtain possible solutions
based on these update strategies.

The employed bees search around the solution starting from the first update strategy.
If the currently selected update strategy does not yield a solution with high fitness, then the
next employed bee searches based on the next update strategy until it finds a high-quality
solution. When all five update strategies have been searched, the search starts from the
first one again. The flow of the employed bee phase is shown in Algorithm 3, where
Quality() means calculating the quality of each individual according to (21), Level() means
determining the degree to which an individual leads the difference solution, GetNew()
means updating individuals according to the strategy qi with an initial value of 1 for qi, and
GetBad() means obtaining the difference solution that has a high similarity to the current
individual and has not been updated.

4.5. Onlooker Bees

In the onlooker bee phase, the onlooker bee will select good food sources for further
search based on the information conveyed by the employed bee, with the aim of obtaining
high-quality solutions and accelerating the convergence of the algorithm. In this paper,
a sorting-based selection strategy is proposed to improve the search efficiency of the
onlooker bee and speed up the convergence of the algorithm. First, the individuals in
population are ranked according to (21), and those with small values are in the front. The
high-quality solutions are placed in front of the bad solutions. Then, the onlooker bee
selects an individual in population to follow according to (24), in which (24), i represents
the i-th individual to follow and N denotes the population size. Therefore, the individual
with the top ranking has a higher probability of being selected.

indexi = rand
(

N + i
2

)
(23)

After selecting the individual Xindex according to the selection method proposed in
this paper, the onlooker bees randomly select the neighboring individual Ti of the current
individual for two-point crossover [41] to generate a new individual. The two-point
crossover is divided into two parts: the sequence of operations and the velocity matrix,
and the specific operation is as follows: two points in the range are randomly selected,
the part between two points in Xindex is left untouched, and the rest is filled by Ti. For the
job sequence, the remaining positions in Xindex are filled by the jobs in Ti that are different
from the remaining jobs in Xindex in turn. For the velocity matrix the remaining positions in
Xindex are filled by the corresponding positions in Ti.

Regarding the newly generated individuals, the algorithm will decide whether to
replace the original individuals according to the greedy selection algorithm. In particular,
in order to prevent the algorithm from falling into local optimum, this paper introduces
mutation in the onlooker bee phase, and the probability of mutation of individuals in the
population is 1/N. This avoids the algorithm from falling into local optimum to some
extent. The whole onlooker bee detailed process is shown in Algorithm 4.
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Algorithm 3 Employed bee phase

Input: population P;
Output: new population, P’;
1: P’ = P;
2: for i = 1 to N do
3: si = Quality(Xi);
4: end for
5: Sort(P’, s);
6: for i = 1 to N do
7: li = Level(Xi);
8: X’

i = GetNew(Xi,qi);
9: for z = 0 to li do
10: if z = 0 then
11: if X’

i < Xi then
12: Xi = X’

i;
13: qi = 1;
14: else
15: qi = qi + 1;
16: end if
17: if qi > 5 then
18: qi= 1;
19: end if
20: else
21: Xb=GetBad(Xi);
22: if X’

i < Xb then
23: Xb = X’

i;
24: break;
25: else
26: qb = qb + 1;
27: end if
28: end if
29: end for
30: end for
31: return P*.

In Algorithm 4, Select() indicates that the onlooker bee selects a food source to follow
according to (23), GetNeighbourhood() indicates a random selection from the neighbors of the
food source, TPX() indicates the two-point crossover, and Mutation() represents mutation
of an individual X, including the job sequence and speed selection matrix.

4.6. Scouting Bees

If a solution is not updated for a long time, the solution will be abandoned and
the employed bee will then be transformed into a scout bee, choosing a new solution at
random in the solution space. As random search is uncontrollable, this random strategy
does not have a positive impact on the algorithm, therefore, this paper uses a neighborhood-
based solution swapping strategy to improve the efficiency of the scout bee phase of the
algorithm [34]. This is because the solutions of neighboring sub-problems should be similar.

The scout bee searches in the following way: for a solution that has not improved after
L cycles, the scout bee first finds a more suitable solution among its neighboring individuals.
Then they exchange them with each other. If no better one is found, one individual
is randomly chosen to exchange with each other. The basic procedure is described in
Algorithm 5, where L(Xi) denotes the number of cycles Xi has gone through, T denotes
the number of neighboring individuals, Xi,j denotes the j-th neighboring individual of the
i-th solution.
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Algorithm 4 Onlooker bee phase

Input: population, P;
Output: new population, P’;
1: P’ = P;
2: for j = 1 to N do
3: sj = Quality(Xj);
4: end for
5: Sort(P’, si);
6: for j = 1 to N do
7: Xindex = Select(P’)
8: Ti = GetNeighborhood(Xindex);
9: Xchild = TPX(Xindex,Ti);
10: if 0.1 < Random() then
11: Xchild =Mutation(Xchild);
12: end if
13: if Xchild < Xindex then
14: Xindex =Xchild;
15: end if
16: if Xchild) < Ti then
17: Ti = Xchild;
18: end if
19: end for
20: return P’.

Algorithm 5 Scout bee phase

Input: population, P;
Output: new population, P’;
1: for i = 1 to N do
2: if L(Xi) > L then
3: for j = 1 to T do
4: if Xi,j < Xi then
5: Xi,j ↔ Xi;
6: break;
7: end if
8: end for
9: if j > T then
10: r = Rand(1, T);
11: Xi,r ↔ Xi;
12: end if
13: end if
14: end for
15: return P’.

4.7. The Whole Process of the Algorithm

This section outlines the entire algorithmic process of SDABC. It can be roughly
divided into four steps.

Step 1: The population is initialized randomly and is energy-efficient to improve the
quality of the solution.

Step 2: Sort the population in the manner described in Section 4.4 and perform
the algorithmic operations described in Sections 4.5–4.7 in sequence, while updating the
domain relationships of individuals in population and the external populations after each
subsection is completed.

Step 3: Repeat Step 2 until the end conditions are met.
Step 4: Perform another energy saving procedure on the external population.
The algorithm flow of SDABC can be shown in Figure 1.
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5. Experiment

In this section, the proposed SDABC algorithm and strategy will be evaluated through
experiments. Firstly, the parameter settings of FHFGSP and the performance indicators
of the evaluation algorithm are introduced. Then the proposed strategy is compared
with other common strategies in experiments. Finally, SDABC is compared with other
algorithms in experiments.

The algorithm proposed in this paper is coded in C++ and performed in Codeblocks
16.01. All experiments were run on a PC with an Intel(R) Core (TM) i3-8100U CPU, 3.60 GHz,
and 8 GB RAM. Maximum CPU usage time t = 100 was used as a stopping criterion.

5.1. Test Data

In order to fully evaluate the performance of the algorithm from different levels, the
performance of SDABC needs to be tested by selecting different problem instances. The
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parameters controlling the problem instances are n, m, and st. In this paper, to extensively
test the ability of SDABC to solve HFSP of different sizes, five different levels of n, four
different levels of m and four different levels of st were designed [34]. This results in
80 problem combinations of different levels. Once the n, m, and st of the problem instances
have been determined, it is also necessary to set them separately for the job and the
workshop environment. For jobi, the processing speed v and the standard processing time
p need to be set, and for the shop environment, the number of parallel machines per stage
k needs to be set, by means of the previous problem description. It is also necessary to
set the energy consumption per unit time of the machines in the processing phase, the
setup phase and the idle phase. To avoid chance in the algorithm results, five instances
were generated for each problem combination. In summary, the factors and their levels of
FHFGSP in generating test data are summarized in Table 2.

Table 2. Summary of test data.

Factors Levels Number of Levels

n 20, 40, 60, 80, 100 5
m 3, 5, 8, 10 4

st U[1, 25], U[1, 49], U[1, 99],
U[1, 124] 4

k U[1, 5] 1
v U[1, 5] 1
p U[1, 99] 1
sp 2 1
ip 1 1

5.2. Performance Metrics

Three popular metrics for evaluating multi-objective optimization problems
(MOPs) [34,42,43], namely the number of non-dominant solutions, set coverage, and
inverse generation distance, were adapted to evaluate the performance of SDABC. The
mean and standard deviation of each metric at each level were obtained from 400 instance
problems of the FHFGSP over 30 independent iterations.

(1) Number of non-dominated solutions (N-metric). This metric is the number of non-
dominant solutions produced by the algorithm, with higher values indicating better
performance the closer the PF is.

(2) Inverse Generational Distance (IGD-metric). This metric evaluates the convergence
and distribution performance of the algorithm.

IGD(A, PF*) =

∑
v∈PF*

d(v, A)∣∣∣PF*
∣∣∣ (24)

where d(v, A) is the minimum Euclidean distance between v and the point in A.
The smaller the value, the better the comprehensive performance of the algorithm
including convergence and distribution performance. Since the real PF* cannot
be solved, all non-dominated solutions obtained jointly by the algorithms of each
comparison are used as PF* in this paper.

(3) Set coverage (C-metric). This metric measures the dominance relationship between
the two solution sets A and B.

C(A, B) =
|{µ ∈ B|∃v ∈ A : v ≺ µ}|

|B| (25)

where C(A, B) represents the percentage of ideal solutions in B that are identical or
dominant to those in A. The higher the value, the higher the performance.
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In order to eliminate the effect of different metrics, a very simple max-min method [44]
is used in this paper to normalize the obtained MS and TEC as follows.

fi =
fi −min( fi)

max( fi)−min( fi)
(26)

5.3. Effect of Search Strategy

To evaluate the performance of the search strategy, SDABC with a search strategy
was compared with DABC without a search strategy. All content factors of the algorithm
were the same except for the difference in the employed bee phase search strategy. The
evaluation results of the three metrics for the two strategies are shown in Tables A1–A3
(Tables in Appendix A), where the better values are shown in bold and the last row is the
average of the 20 problem dimensions.

For the N-metric, it can be seen from Table A1 that SDABC has a higher average (AVG)
for 85% of the questions and a lower standard deviation (SD) for 75% of the questions. In
summary: no problems were found in DABC where both the AVG and SD were better
than in SDABC, so SDABC led to better results. For the FHFGSP, for which it is difficult to
find the exact solution, a higher N-metric can plot the PF more accurately and also help
managers to get more options. Therefore, SDABC is more advantageous in this respect.

This is because in the search phase, the employed bee is able to obtain more non-
dominated solutions by searching around the individual to different degrees depending on
the number of dominant solutions and the similarity of the ideal solutions.

For the C-metric, it can be seen from Table A2 that, with the exception for 20 × 5 and
60 × 3, SDABC resulted in a better AVG on 90% of the questions and obtained a lower SD
on 79% of the questions. Overall SDABC achieved a lower AVG and SD than DABC. To
better show the difference between the C-metric obtained by SDABC and DABC, a boxplot
of the two is plotted in Figure 2, and it can be seen that SDABC is able to obtain more
concentrated and dense values and the median was significantly higher for SDABC than
DABC. For the values of C (SDABC, DABC) away from the whole, which is the C-metric
obtained for question 100 × 5, a comparison of Table A2 shows that lower values were
obtained with DABC for the same question.
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This indicates that the quality of the solutions obtained by SDABC is higher than that
of DABC. This is because in the employed bee phase, the employed bee searches around
the individual to different degrees based on the similarity between the current solution
and the ideal solution, and by being guided by the ideal solution, the employed bee is able
to obtain a high-quality solution.
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For the IGD-metric, it can be seen from Table A3 that SDABC obtains a lower mean
value than DABC, except for 20 × 5, 60 × 8, and 80 × 10. For 75% of the questions, SDABC
obtained a lower SD. Taken together, SDABC obtained a lower AVG and SD. In order to
show the difference more graphically, a boxplot of the two is plotted in Figure 3. It can be
seen that SDABC is able to obtain a much more concentrated lower IGD and a much lower
median value than DABC.
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This indicates that the solutions obtained by SDABC are better than DABC in terms of
diversity and convergence. This is due to the design of five different directions in the search
phase, which improves the diversity of solutions obtained. The employed bee improved the
convergence by searching around individuals based on the number of dominant solutions
and the similarity of ideal solutions.

5.4. Effect of Selection Strategy

Three different selection strategies were compared, in order to evaluate the perfor-
mance of the newly proposed selection strategy. The three strategies are as follows: the
selection strategy proposed in this paper (denoted by ABC_snm), the selection strategy
in which individuals in population are selected according to similarity with mutation
(denoted by ABC_sm), and the selection strategy in which individuals in population are se-
lected according to similarity without mutation (denoted by ABC_s). The evaluation results
of the three metrics for the three strategies are shown in Tables A4–A6, where the better
values are shown in bold and the last row is the average of the 20 problem dimensions.

For the N-metric, it can be seen from Table A4 that ABC_snm obtained significantly
better mean values than ABC_s. Compared to ABC_sm, ABC_snm achieved better results
in 80% of the questions. For SD, ABC_s obtained a lower SD value due to the fact that the
size of SD is positively related to AVG, and ABC_s has a significantly smaller AVG value,
so the resulting SD is also smaller. However, on balance ABC_snm was able to obtain more
non-dominated solutions, giving the manager more options to choose from.

This indicates that it is more advantageous to select individuals in the onlooker bee
phase based on the number of solutions dominated by them and their similarity to the
ideal solution than to select only on the basis of similarity. A comparison of the three can
reveal that ABC_snm was able to obtain a greater number of non-dominated solutions.

For C-metric, it can be seen from Table A5 that ABC_snm obtains significantly better
AVG and SD than ABC_s and ABC_sm. In each problem, ABC_snm achieves better results.
Of course, overall, ABC_snm also obtains better AVG and SD than the other two strategies.
Figure 4 plots the boxplots of the C-metric obtained by the three strategies, and it can be
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seen that ABC_snm is able to obtain more concentrated values and obtains a much higher
median than the other two strategies, and the minimum value obtained for ABC_snm is
also higher than the maximum values of ABC_s and ABC_sn.
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This indicates that in this paper the proposed strategy is able to give obtain high-
quality non-dominated solutions. This is due to the fact that the adopted selection strategy
can speed up the convergence of the algorithm and the adopted mutation strategy can
prevent the algorithm from falling into local optimum.

For IGD-metric, it can be seen from Table A6 that in each problem, ABC_snm obtained
significantly lower AVG than ABC_s and ABC_sm. In total, 85% of the problems in
ABC_snm had smaller SDs than the other two algorithms. As a whole, both the AVG and
SD of ABC_snm are smaller than the other two strategies. Figure 5 plots the boxplot of the
IGD-metric obtained by the three algorithms, and it can be seen that ABC_snm is able to
obtain more concentrated values, and the median obtained is much lower than the other
two strategies.
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This indicates that in this paper the proposed strategy has better diversity and conver-
gence. This is because there is some probability that some low-quality individuals are also
selected, which improves the diversity of the algorithm to some extent, and the proposed
mutation strategy also has some contribution to the diversity. In addition, the adopted
selection strategy can speed up the convergence of the algorithm.

5.5. Evaluation of SDABC

In this subsection, SDABC is compared with IMDABC, MDABC, and NSGAII. All
algorithms use the same CPU time as a stopping criterion and all use the same parameter
settings, and the results are shown in Tables 8–13 and A7, respectively. The last row of the
table represents the average of the 20 problems. The best parts are marked in bold.

Table A7 shows the N-metrics obtained by the four algorithms, and it can be seen that
the average values obtained in SDABC are higher than the three remaining algorithms.
The values obtained by SDABC are significantly higher than IMDABC and NSGAII in each
problem. In addition, although some values of MDABC are higher than SDABC, the differ-
ence is not significant, and SDABC achieves higher values in 70% of the problems. To sum
up, SDABC is able to obtain more non-dominated solutions compared to other algorithms.

This is because the search strategy proposed by the SDABC in the employed bee phase
proposed in this paper is able to search in both depth and breadth directions, enhancing
the diversity of individuals and contributing to obtaining a greater number of solutions.

Tables 8–10 show the C-metric obtained by the four algorithms, and it can be seen that
the AVG and SD obtained by SDABC are significantly higher than IMDABC, MDABC and
NSGAII in each of the problems except for the 100 × 10 problem in Table 10 where the SD
is slightly higher. Figure 6 shows a boxplot of the C-metric obtained by SDABC versus the
other three algorithms. The outliers in (a) are the C-metric obtained for problem 100 × 5. In
Table 8, both C-metrics for 100 × 5 are lower than the overall value, but SDABC’s is better
than IMDABC’s. In (b) it can be seen that SDABC is significantly higher than NSGAII
overall. Two independent values of C (SDABC, MDABC) in (c) are for problems 100 × 3
and 100 × 5. While these two values deviate from the overall, SDABC has a higher quality
AVG and SD for the same problem dimension. Additionally, the median of SDABC is
significantly higher than the other three algorithms. Therefore, SDABC obtains solutions of
significantly higher quality than IMDABC, MDABC and NSGAII.

This is because SDABC follows the individual in the population in both the employed
and onlooker bee phases. The evolution of SDABC continued in accordance with the
dominance of individuals in population and the similarity to the ideal solution. At the
same time, it is possible to find high-quality solutions faster.

Tables 11–13 show the IGD-metric obtained by the four algorithms, and it can be
seen that in each problem SDABC obtains significantly lower AVG and SD than IMDABC,
MDABC, and NSGAII. Figure 7 plots the boxplot of the IGD-metrics obtained by the four
algorithms. Figure 7a shows that the overall and median SDABC is much lower than
IMDABC. Figure 7b demonstrates that SDABC has a better concentration than MDABC.
Figure 7c indicates that SDABC has a better overall and median quality than NSGAII. With
Figure 7, we can see that the SDABC distribution is more concentrated under the condition
of obtaining a lower IGD.
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This indicates that SDABC performs better than IMDABC, MDABC, and NSGAII in
terms of convergence and diversity. This is because SDABC takes five different search
directions in the employed bee phase and also explores them to different degrees depending
on the ranking, both of which can become a more adequate search for individuals in the
solution space and increase the diversity of the population. In addition, in the onlooker bee
phase, every individual in population has the potential to be tracked. It also contributes to
the diversity of the algorithm due to the introduction of the variation strategy. In terms
of convergence, both the employed bee and the onlooker bee phases operate based on
ranking, which speeds up the convergence of the population based on the similarity and
dominance with the ideal solution.

6. Conclusions

In this paper, we studied the FHFGSP with fuzzy processing time that minimizes
makespan and total energy consumption. To solve FHFGSP, a discrete artificial bee colony
algorithm based on similarity and non-dominated solution ordering was proposed. After
extensive numerical experiments, it can be demonstrated that the proposed strategy and
algorithm outperforms other algorithms in terms of performance.

In the employed bee phase, individuals fully explore around the dominant solution;
in the onlooker bee phase, individuals at the front of the sequence have a greater chance of
being followed; in addition, a mutation strategy was proposed to prevent the population
from falling into a local optimum. The algorithm produced solutions of high-quality in
terms of quantity, quality, convergence, and distribution.

In future, our aim is to study more flexible HFGSPs, such as the proficiency of shop
workers, and to consider other green metrics, such as noise and carbon emissions. We
will verify the effectiveness of the algorithm by comparing it with more optimization
algorithms based on mimicking animal behavior, which will have a positive impact on
the role of such algorithms in relation to the green shop scheduling problem. In addition,
as smart manufacturing continues to evolve and people start to use information physical
systems and industrial Internet of Things to obtain data in real time during manufacturing
processes, it is also interesting to study how to process real-time state data for decision
making and optimization of green shop scheduling.
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Appendix A

Table A1. N-metric for search strategy.

Problem
DABC SDABC

AVG SD AVG SD

20 × 3 86 62 92 59
20 × 5 65 36 67 40
20 × 8 45 16 49 16

20 × 10 40 16 44 15
40 × 3 106 72 110 71
40 × 5 54 30 59 32
40 × 8 34 16 34 15

40 × 10 25 11 23 9
60 × 3 79 58 76 52
60 × 5 50 21 54 25
60 × 8 32 12 33 11

60 × 10 26 10 28 9
80 × 3 61 53 65 55
80 × 5 32 20 42 29
80 × 8 30 11 28 10

80 × 10 22 9 22 8
100 × 3 58 46 63 53
100 × 5 38 25 36 24
100 × 8 25 13 25 12
100 × 10 22 9 23 10

Mean 47 27 49 28

Table A2. C-metric for search strategy.

Problem
C(DABC,SDABC) C(SDABC,DABC)

AVG SD AVG SD

20 × 3 0.93880 0.04258 0.93900 0.06198
20 × 5 0.95766 0.04046 0.92896 0.04124
20 × 8 0.88912 0.07329 0.96045 0.03546

20 × 10 0.88997 0.08919 0.90871 0.07201
40 × 3 0.93179 0.05220 0.94715 0.05798
40 × 5 0.88794 0.06988 0.93452 0.05402
40 × 8 0.86480 0.10236 0.90333 0.07605

40 × 10 0.86490 0.10413 0.88452 0.06131
60 × 3 0.92796 0.05899 0.90222 0.07063
60 × 5 0.86644 0.14676 0.89354 0.10818
60 × 8 0.92089 0.06839 0.92381 0.05100

60 × 10 0.90767 0.05409 0.93009 0.04827
80 × 3 0.86559 0.14008 0.89635 0.07251
80 × 5 0.79823 0.22431 0.86336 0.15612
80 × 8 0.87951 0.09336 0.93812 0.06277

80 × 10 0.92683 0.07375 0.93418 0.04575
100 × 3 0.84100 0.16037 0.87990 0.13044
100 × 5 0.78436 0.18936 0.78886 0.19950
100 × 8 0.88830 0.08372 0.92509 0.07065
100 × 10 0.92985 0.05288 0.93574 0.06011

Mean 0.88808 0.09601 0.91090 0.07680
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Table A3. IGD-metric for search strategy.

Problem
DABC SDABC

AVG SD AVG SD

20 × 3 0.02663 0.02198 0.01794 0.03307
20 × 5 0.01793 0.02496 0.02749 0.01907
20 × 8 0.03927 0.02212 0.01332 0.01327

20 × 10 0.03363 0.02926 0.02788 0.02733
40 × 3 0.02985 0.03042 0.01365 0.01382
40 × 5 0.05140 0.04928 0.02094 0.02754
40 × 8 0.05918 0.05344 0.02634 0.01598

40 × 10 0.05839 0.04808 0.03257 0.02078
60 × 3 0.03715 0.02399 0.02437 0.02303
60 × 5 0.05341 0.04582 0.03521 0.03348
60 × 8 0.02940 0.03220 0.03209 0.02915

60 × 10 0.04229 0.04451 0.02626 0.02061
80 × 3 0.04921 0.04863 0.02606 0.02082
80 × 5 0.07811 0.07623 0.04645 0.05436
80 × 8 0.04589 0.03531 0.03138 0.04547

80 × 10 0.03663 0.04203 0.04585 0.05587
100 × 3 0.05310 0.06431 0.05235 0.06774
100 × 5 0.06235 0.03463 0.04102 0.03457
100 × 8 0.05340 0.05929 0.03441 0.03360
100 × 10 0.04582 0.04686 0.04199 0.06017

Mean 0.04515 0.04167 0.03088 0.03249

Table A4. N-metric for selection strategy.

Problem
ABC_sm ABC_snm ABC_s

AVG SD AVG SD AVG SD

20 × 3 81 55 92 59 47 33
20 × 5 61 34 67 40 50 31
20 × 8 40 13 49 16 42 18

20 × 10 36 14 44 15 37 17
40 × 3 102 64 110 71 51 35
40 × 5 55 29 59 32 42 26
40 × 8 34 14 34 15 32 19

40 × 10 27 12 23 9 26 12
60 × 3 75 53 76 52 35 28
60 × 5 53 24 54 25 31 19
60 × 8 32 10 33 11 26 7

60 × 10 27 10 28 9 21 10
80 × 3 57 46 65 55 23 21
80 × 5 29 18 42 29 18 12
80 × 8 30 11 28 10 20 7

80 × 10 22 8 22 8 16 6
100 × 3 60 48 63 53 19 12
100 × 5 39 27 36 24 19 12
100 × 8 25 13 26 12 13 6

100 × 10 26 11 23 10 13 4
Mean 46 26 49 28 29 17
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Table A5. C-metric for selection strategy.

Problem
C(ABC_sm,ABC_snm) C(ABC_snm,ABC_sm) C(ABC_s,ABC_snm) C(ABC_snm,ABC_s)

AVG SD AVG SD AVG SD AVG SD

20 × 3 0.85934 0.08758 0.98144 0.01982 0.73993 0.17995 0.97764 0.02051
20 × 5 0.89810 0.05966 0.96951 0.03490 0.78039 0.16583 0.98023 0.02181
20 × 8 0.86900 0.11023 0.96419 0.03952 0.82839 0.10178 0.97108 0.03337
20 × 10 0.82771 0.13341 0.97760 0.02258 0.78766 0.12764 0.98465 0.01848
40 × 3 0.91836 0.04773 0.97068 0.02106 0.73526 0.16708 0.97883 0.02344
40 × 5 0.89508 0.08619 0.95619 0.04185 0.79438 0.16022 0.97169 0.03042
40 × 8 0.89812 0.06417 0.96804 0.02755 0.85335 0.12335 0.96984 0.03199
40 × 10 0.87944 0.06824 0.96875 0.02753 0.83444 0.11672 0.95150 0.05400
60 × 3 0.90653 0.06056 0.95775 0.04265 0.73289 0.17950 0.95740 0.10376
60 × 5 0.87867 0.09270 0.95395 0.05534 0.71341 0.16273 0.94364 0.06230
60 × 8 0.82253 0.09272 0.98044 0.03144 0.78647 0.13140 0.95530 0.04929

60 × 10 0.89406 0.06943 0.95311 0.04333 0.82031 0.14776 0.95453 0.06291
80 × 3 0.84510 0.10849 0.97731 0.02936 0.77974 0.21686 0.96227 0.05675
80 × 5 0.68997 0.20446 0.98967 0.02097 0.73794 0.21694 0.95857 0.05943
80 × 8 0.80327 0.13293 0.96337 0.05757 0.77936 0.10541 0.94491 0.06676

80 × 10 0.88756 0.08520 0.93426 0.09061 0.79879 0.15662 0.96216 0.04526
100 × 3 0.88165 0.12186 0.95392 0.03888 0.77351 0.19366 0.95870 0.04537
100 × 5 0.87378 0.10167 0.94669 0.05262 0.68042 0.21482 0.92094 0.08275
100 × 8 0.81979 0.11728 0.92500 0.08941 0.64569 0.19238 0.94140 0.09557
100 × 10 0.85256 0.09924 0.91935 0.14346 0.72247 0.17505 0.93433 0.11018

Mean 0.86003 0.09719 0.96056 0.04652 0.76624 0.16179 0.95898 0.05372

Table A6. IGD-metric for selection strategy.

Problem
ABC_sm ABC_snm ABC_s

AVG SD AVG SD AVG SD

20 × 3 0.04042 0.03405 0.00845 0.01556 0.08057 0.03846
20 × 5 0.03659 0.02632 0.01319 0.01536 0.06153 0.03196
20 × 8 0.03577 0.02567 0.01321 0.01561 0.04449 0.02785

20 × 10 0.04829 0.03799 0.00998 0.01414 0.05901 0.03691
40 × 3 0.03020 0.02552 0.01083 0.01343 0.08398 0.03540
40 × 5 0.03330 0.03128 0.02825 0.04225 0.06741 0.05066
40 × 8 0.04468 0.03790 0.02478 0.03358 0.04649 0.02746

40 × 10 0.03573 0.02457 0.01409 0.01484 0.04507 0.02870
60 × 3 0.02988 0.02740 0.01928 0.02141 0.10136 0.04475
60 × 5 0.04250 0.03227 0.02603 0.05360 0.09486 0.06072
60 × 8 0.07492 0.05767 0.01267 0.02564 0.07959 0.04397

60 × 10 0.04170 0.03099 0.02281 0.02704 0.06926 0.04548
80 × 3 0.06017 0.05241 0.01338 0.02040 0.09440 0.07314
80 × 5 0.11588 0.06826 0.00406 0.00849 0.11549 0.06856
80 × 8 0.07187 0.05380 0.00723 0.00979 0.09838 0.09451

80 × 10 0.05573 0.05833 0.02134 0.02361 0.10140 0.09607
100 × 3 0.06039 0.06521 0.01807 0.01793 0.11416 0.07280
100 × 5 0.05374 0.05680 0.01827 0.01903 0.11104 0.08333
100 × 8 0.05678 0.05496 0.03197 0.05249 0.12985 0.08506
100 × 10 0.06252 0.04959 0.03104 0.05631 0.12392 0.08962

Mean 0.05155 0.04255 0.01745 0.02502 0.08611 0.05677
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Table A7. N-metrics for the four algorithms.

Problem
MDABC SDABC IMDABC NSGAII

AVG SD AVG SD AVG SD AVG SD

20 × 3 81 55 92 59 47 33 4 1
20 × 5 6 34 73 39 50 31 4 1
20 × 8 40 13 49 16 42 18 4 1

20 × 10 36 14 44 15 37 17 3 1
40 × 3 102 64 110 71 51 35 4 1
40 × 5 55 29 59 32 42 26 4 1
40 × 8 34 14 33 15 32 19 4 1

40 × 10 27 12 23 9 26 12 3 1
60 × 3 75 53 76 52 35 28 4 1
60 × 5 53 24 54 25 31 19 4 1
60 × 8 32 10 33 11 26 7 4 1

60 × 10 27 10 28 9 21 10 4 1
80 × 3 57 46 65 55 23 21 4 1
80 × 5 29 18 42 29 18 12 4 1
80 × 8 30 11 28 10 20 7 4 1

80 × 10 22 8 21 8 16 6 4 1
100 × 3 60 48 63 53 19 12 4 1
100 × 5 39 27 36 24 19 12 4 1
100 × 8 26 13 21 11 13 6 4 1
100 × 10 26 11 19 7 13 4 4 1

Mean 4 26 49 28 29 17 1

Table 8. C-metric for SDABC and IMDABC.

Problem
C(IMDABC, SDABC) C(SDABC, IMDABC)

AVG SD AVG SD

20 × 3 0.71958 0.17690 0.97863 0.02441
20 × 5 0.81245 0.17156 0.96822 0.04305
20 × 8 0.69710 0.16276 0.98021 0.02158

20 × 10 0.67717 0.19304 0.95016 0.06298
40 × 3 0.67268 0.19374 0.96970 0.04154
40 × 5 0.71662 0.20731 0.96423 0.03848
40 × 8 0.71277 0.18846 0.88374 0.09222

40 × 10 0.65302 0.23329 0.87723 0.09688
60 × 3 0.68624 0.21262 0.93698 0.09011
60 × 5 0.58662 0.22109 0.86391 0.18674
60 × 8 0.75941 0.15186 0.94086 0.04614

60 × 10 0.74989 0.22071 0.91005 0.08697
80 × 3 0.69941 0.26287 0.90214 0.12340
80 × 5 0.60641 0.27873 0.85887 0.17892
80 × 8 0.72325 0.19220 0.93444 0.13380

80 × 10 0.79106 0.13459 0.95489 0.05211
100 × 3 0.61688 0.26191 0.83928 0.25371
100 × 5 0.52884 0.27615 0.66027 0.32685
100 × 8 0.60399 0.22069 0.93966 0.10319
100 × 10 0.70389 0.14102 0.93097 0.10896

Mean 0.68586 0.20508 0.91222 0.10560
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Table 9. C-metric for SDABC and NSGAII.

Problem
C(NSGAII, SDABC) C(SDABC, NSGAII)

AVG SD AVG SD

20 × 3 0.47604 0.19696 0.99894 0.00364
20 × 5 0.43420 0.21366 0.99839 0.00606
20 × 8 0.51249 0.18648 0.99817 0.00693

20 × 10 0.62232 0.28094 0.97241 0.04692
40 × 3 0.30179 0.20107 0.99637 0.01581
40 × 5 0.40568 0.24291 0.98909 0.03957
40 × 8 0.46779 0.23882 0.99658 0.01490

40 × 10 0.44047 0.25663 0.99565 0.01653
60 × 3 0.30520 0.23747 0.99847 0.00666
60 × 5 0.35629 0.20641 0.99647 0.01527
60 × 8 0.37387 0.25821 0.98637 0.05803

60 × 10 0.50566 0.27560 0.98842 0.03011
80 × 3 0.23740 0.18040 0.98565 0.04320
80 × 5 0.30696 0.23777 0.99592 0.00717
80 × 8 0.31161 0.27681 0.98151 0.03140

80 × 10 0.34208 0.30953 0.90678 0.16100
100 × 3 0.27811 0.21478 0.98198 0.06273
100 × 5 0.41473 0.25368 0.99075 0.02246
100 × 8 0.53949 0.31026 0.97923 0.05386
100 × 10 0.47040 0.32454 0.96777 0.08233

Mean 0.40513 0.24514 0.98525 0.03623

Table 10. C-metric for SDABC and MDABC.

Problem
C(MDABC, SDABC) C(SDABC, MDABC)

AVG SD AVG SD

20 × 3 0.85678 0.11097 0.97497 0.02959
20 × 5 0.92044 0.05882 0.96118 0.04077
20 × 8 0.83238 0.09010 0.97593 0.03354

20 × 10 0.82119 0.12392 0.95335 0.05121
40 × 3 0.90210 0.06388 0.96763 0.03469
40 × 5 0.86154 0.10690 0.95649 0.04270
40 × 8 0.81330 0.11659 0.90450 0.09811

40 × 10 0.77790 0.12432 0.92043 0.05911
60 × 3 0.90741 0.06411 0.93831 0.05046
60 × 5 0.81425 0.13803 0.92594 0.07804
60 × 8 0.79762 0.10058 0.96047 0.04091

60 × 10 0.86893 0.07453 0.95030 0.04694
80 × 3 0.78871 0.19319 0.94319 0.05262
80 × 5 0.58628 0.21435 0.95776 0.10780
80 × 8 0.74688 0.13289 0.97491 0.03945

80 × 10 0.86783 0.10606 0.93900 0.10327
100 × 3 0.79428 0.16286 0.88190 0.11669
100 × 5 0.75590 0.17291 0.82682 0.15634
100 × 8 0.79468 0.14633 0.93958 0.10413
100 × 10 0.84412 0.10980 0.93745 0.13495

Mean 0.81763 0.12056 0.93951 0.07107
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Table 11. IGD-metric for SDABC and IMDABC.

Problem
IMDABC SDABC

AVG SD AVG SD

20 × 3 0.09976 0.03581 0.00663 0.01234
20 × 5 0.05147 0.03417 0.00869 0.01174
20 × 8 0.07184 0.03675 0.01113 0.01998

20 × 10 0.07962 0.03873 0.01176 0.01615
40 × 3 0.11765 0.04426 0.00600 0.00950
40 × 5 0.10199 0.05379 0.00720 0.00759
40 × 8 0.07725 0.05090 0.02156 0.01843

40 × 10 0.08825 0.05355 0.02981 0.02419
60 × 3 0.12603 0.06153 0.00790 0.00855
60 × 5 0.12552 0.05599 0.01545 0.01365
60 × 8 0.07575 0.04625 0.01527 0.01209

60 × 10 0.08662 0.06164 0.02675 0.04270
80 × 3 0.12157 0.10182 0.00800 0.01224
80 × 5 0.15439 0.09136 0.01543 0.02934
80 × 8 0.11297 0.08460 0.00951 0.01343

80 × 10 0.09190 0.06572 0.01140 0.01092
100 × 3 0.15286 0.08546 0.01482 0.02365
100 × 5 0.15846 0.09721 0.02767 0.03839
100 × 8 0.14235 0.09122 0.01025 0.01173
100 × 10 0.11993 0.09412 0.00646 0.00858

Mean 0.10781 0.06424 0.01358 0.01726

Table 12. IGD-metric for SDABC and MDABC.

Problem
MDABC SDABC

AVG SD AVG SD

20 × 3 0.04353 0.03879 0.00829 0.01226
20 × 5 0.02825 0.02566 0.01355 0.01575
20 × 8 0.05191 0.02136 0.00551 0.00716

20 × 10 0.05523 0.03113 0.01197 0.01563
40 × 3 0.03621 0.02506 0.01228 0.01483
40 × 5 0.04554 0.03478 0.02105 0.02939
40 × 8 0.06442 0.05616 0.03238 0.04255

40 × 10 0.06916 0.04299 0.02161 0.02047
60 × 3 0.04003 0.02879 0.02216 0.02420
60 × 5 0.04527 0.02730 0.02194 0.02262
60 × 8 0.06443 0.04546 0.01398 0.02034

60 × 10 0.04712 0.03247 0.01629 0.01596
80 × 3 0.07120 0.06431 0.02195 0.03317
80 × 5 0.13071 0.06473 0.00966 0.01330
80 × 8 0.08625 0.04796 0.00926 0.01318

80 × 10 0.05353 0.03556 0.02344 0.02623
100 × 3 0.06290 0.05063 0.02225 0.02473
100 × 5 0.06074 0.03328 0.02962 0.02276
100 × 8 0.06374 0.05757 0.02619 0.04760
100 × 10 0.06049 0.04981 0.02627 0.04505

Mean 0.05903 0.04069 0.01848 0.02336
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Table 13. IGD-metric for SDABC and NSGAII.

Problem
NSGAII SDABC

AVG SD AVG SD

20 × 3 0.11426 0.05009 0.00008 0.00028
20 × 5 0.12345 0.03838 0.00003 0.00013
20 × 8 0.12013 0.04920 0.00024 0.00098

20 × 10 0.07980 0.04905 0.01939 0.03984
40 × 3 0.18873 0.09539 0.00145 0.00633
40 × 5 0.14942 0.08224 0.00299 0.00774
40 × 8 0.15783 0.08214 0.00319 0.01391

40 × 10 0.16789 0.09567 0.00303 0.00927
60 × 3 0.19377 0.08821 0.00019 0.00082
60 × 5 0.20634 0.10966 0.00194 0.00843
60 × 8 0.23376 0.13245 0.00425 0.00973

60 × 10 0.19724 0.10722 0.00435 0.00995
80 × 3 0.21405 0.10015 0.00240 0.00795
80 × 5 0.22440 0.11524 0.00139 0.00267
80 × 8 0.25470 0.16455 0.01070 0.01762

80 × 10 0.20225 0.16029 0.03841 0.05594
100 × 3 0.22540 0.12751 0.00505 0.01453
100 × 5 0.19644 0.10497 0.00318 0.00710
100 × 8 0.19358 0.16121 0.01789 0.02596
100 × 10 0.26764 0.19026 0.01394 0.03123

Mean 0.18555 0.10519 0.00670 0.01352

References
1. Ruiz, R.; Vázquez-Rodríguez, J.A. The hybrid flow shop scheduling problem. Eur. J. Oper. Res. 2010, 205, 1–18. [CrossRef]
2. Qin, T.; Du, Y.; Chen, J.H.; Sha, M. Combining mixed integer programming and constraint programming to solve the integrated

scheduling problem of container handling operations of a single vessel. Eur. J. Oper. Res. 2020, 285, 884–901. [CrossRef]
3. Pan, Q.; Wang, L.; Mao, K.; Zhao, J.; Zhang, M. An effective artificial bee colony algorithm for a real-world hybrid flowshop

problem in steelmaking process. IEEE Trans. Autom. Sci. Eng. 2013, 10, 307–322. [CrossRef]
4. Li, J.Q.; Pan, Q.K.; Mao, K. A hybrid fruit fly optimization algorithm for the realistic hybrid flowshop rescheduling problem in

steelmaking systems. IEEE Trans. Autom. Sci. Eng. 2016, 13, 932–949. [CrossRef]
5. Lin, Y.K.; Huang, D.H. Reliability analysis for a hybrid flow shop with due date consideration. Reliab. Eng. Syst. Saf. 2020, 199,

105905. [CrossRef]
6. Lin, P.; Shen, L.; Zhao, Z.; Huang, G.Q. Graduation manufacturing system: Synchronization with IoT-enabled smart tickets. J.

Intell. Manuf. 2019, 30, 2885–2900. [CrossRef]
7. Ali, D.; Frimpong, S. Artificial intelligence models for predicting the performance of hydro pneumatic suspension struts in large

capacity dump trucks. Int. J. Ind. Ergon. 2018, 67, 283–295. [CrossRef]
8. Worasan, K.; Sethanan, K.; Pitakaso, R.; Moonsri, K.; Nitisiri, K. Hybrid particle swarm optimization and neighborhood strategy

search for scheduling machines and equipment and routing of tractors in sugarcane field preparation. Comput. Electron. Agric.
2020, 178, 105733. [CrossRef]

9. Fortemps, P. Jobshop scheduling with imprecise durations: A fuzzy approach. IEEE Trans. Fuzzy Syst. 1997, 5, 557–569. [CrossRef]
10. Lei, D.; Gao, L.; Zheng, Y. A Novel Teaching-Learning-Based Optimization Algorithm for Energy-Efficient Scheduling in Hybrid

Flow Shop. IEEE Trans. Eng. Manag. 2018, 65, 330–340. [CrossRef]
11. Zhang, Z.; Tang, R.; Peng, T.; Tao, L.; Jia, S. A method for minimizing the energy consumption of machining system: Integration

of process planning and scheduling. J. Clean. Prod. 2016, 137, 1647–1662. [CrossRef]
12. Wang, L.; Wang, J.; Wu, C. Advances in green shop scheduling and optimization. Control Decis. 2018, 33, 385–391.
13. Fu, Y.; Zhou, M.; Guo, X.; Qi, L. Scheduling Dual-Objective Stochastic Hybrid Flow Shop With Deteriorating Jobs via Bi-Population

Evolutionary Algorithm. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 5037–5048. [CrossRef]
14. Yankai, W.; Shilong, W.; Dong, L.; Chunfeng, S.; Bo, Y. An improved multi-objective whale optimization algorithm for the

hybrid flow shop scheduling problem considering device dynamic reconfiguration processes. Expert Syst. Appl. 2021, 174,
114793. [CrossRef]

15. Gao, H.; Shi, Y.; Pun, C.; Kwong, S. An improved artificial bee colony algorithm with its application. IEEE Trans. Ind. Inf. 2019, 15,
1853–1865. [CrossRef]

16. Gao, W.; Liu, S.; Huang, L. A novel artificial bee colony algorithm based on modified search equation and orthogonal learning.
IEEE Trans. Cybern. 2013, 43, 1011–1024. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ejor.2009.09.024
http://doi.org/10.1016/j.ejor.2020.02.021
http://doi.org/10.1109/TASE.2012.2204874
http://doi.org/10.1109/TASE.2015.2425404
http://doi.org/10.1016/j.ress.2017.07.008
http://doi.org/10.1007/s10845-018-1429-4
http://doi.org/10.1016/j.ergon.2018.06.005
http://doi.org/10.1016/j.compag.2020.105733
http://doi.org/10.1109/91.649907
http://doi.org/10.1109/TEM.2017.2774281
http://doi.org/10.1016/j.jclepro.2016.03.101
http://doi.org/10.1109/TSMC.2019.2907575
http://doi.org/10.1016/j.eswa.2021.114793
http://doi.org/10.1109/TII.2018.2857198
http://doi.org/10.1109/TSMCB.2012.2222373
http://www.ncbi.nlm.nih.gov/pubmed/23086528


Mathematics 2021, 9, 2250 29 of 29

17. Karaboga, D.; Akay, B. A comparative study of Artificial Bee Colony algorithm. Appl. Math. Comput. 2009, 214,
108–132. [CrossRef]

18. Li, J.; Pan, Q. Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony
algorithm. Inf. Sci. 2015, 316, 487–502. [CrossRef]

19. Wang, F.; Rao, Y.; Zhang, C.; Tang, Q.; Zhang, L. Estimation of distribution algorithm for energy-efficient scheduling in turning
processes. Sustainability 2016, 8, 762. [CrossRef]

20. Xuan, H.; Zhag, H.; Li, B. An Improved Discrete Artificial Bee Colony Algorithm for Flexible Flowshop Scheduling with Step
Deteriorating Jobs and Sequence-Dependent Setup Times. Math. Probl. Eng. 2019, 2019, 1–13. [CrossRef]

21. Yue, L.; Guan, Z.; Zhang, L.; Ullah, S.; Cui, Y. Multi objective lotsizing and scheduling with material constraints in flexible parallel
lines using a Pareto based guided artificial bee colony algorithm. Comput. Ind. Eng. 2019, 128, 659–680. [CrossRef]

22. Gong, G.; Chiong, R.; Deng, Q.; Gong, X. A hybrid artificial bee colony algorithm for flexible job shop scheduling with worker
flexibility. Int. J. Prod. Res. 2020, 58, 4406–4420. [CrossRef]

23. Zadeh, M.S.; Katebi, Y.; Doniavi, A. A heuristic model for dynamic flexible job shop scheduling problem considering variable
processing times. Int. J. Prod. Res. 2019, 57, 3020–3035. [CrossRef]

24. Lei, D.; Liu, M. An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive
maintenance. Comput. Ind. Eng. 2020, 141, 106320. [CrossRef]

25. Xie, Z.; Yang, D.; Ma, M.; Yu, X. An Improved Artificial Bee Colony Algorithm for the Flexible Integrated Scheduling Problem
Using Networked Devices Collaboration. Int. J. Coop. Inf. Syst. 2020, 29, 2040003. [CrossRef]

26. Li, J.; Bai, S.; Duan, P.; Sang, H.; Han, Y.; Zheng, Z. An improved artificial bee colony algorithm for addressing distributed flow
shop with distance coefficient in a prefabricated system. Int. J. Prod. Res. 2019, 57, 6922–6942. [CrossRef]

27. Li, J.; Song, M.; Wang, L.; Duan, P.; Han, Y.; Sang, H.; Pan, Q. Hybrid Artificial Bee Colony Algorithm for a Parallel Batching
Distributed Flow-Shop Problem With Deteriorating Jobs. IEEE Trans. Cybern. 2020, 50, 2425–2439. [CrossRef]

28. Gong, D.; Han, Y.; Sun, J. A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop
scheduling problems. Knowl. -Based Syst. 2018, 148, 115–130. [CrossRef]

29. Pan, Q.; Gao, L.; Wang, L.; Liang, J.; Li, X. Effective heuristics and metaheuristics to minimize total flowtime for the distributed
permutation flowshop problem. Expert Syst. Appl. 2019, 124, 309–324. [CrossRef]

30. Li, X.; Tang, H.; Yang, Z.; Wu, R.; Luo, Y. Integrated Optimization Approach of Hybrid Flow-Shop Scheduling Based on Process
Set. IEEE Access 2020, 8, 223782–223796. [CrossRef]

31. Peng, K.; Pan, Q.; Gao, L.; Zhang, B.; Pang, X. An Improved Artificial Bee Colony algorithm for real-world hybrid flowshop
rescheduling in Steelmaking-refining-Continuous Casting process. Comput. Ind. Eng. 2018, 122, 235–250. [CrossRef]

32. Zhong, Y.; Yang, F.; Liu, F. Solving multi-objective fuzzy flexible job shop scheduling problem using MABC algorithm. J. Intell.
Fuzzy Syst. 2019, 36, 1455–1473. [CrossRef]

33. Li, Y.; Huang, W.; Wu, R.; Guo, K. An improved artificial bee colony algorithm for solving multi-objective low-carbon flexible job
shop scheduling problem. Appl. Soft Comput. 2020, 95, 106544. [CrossRef]

34. Zhang, B.; Pan, Q.; Gao, L.; Li, X.; Meng, L.; Peng, K. A multiobjective evolutionary algorithm based on decomposition for hybrid
flowshop green scheduling problem. Comput. Ind. Eng. 2019, 136, 325–344. [CrossRef]

35. Linn, R.; Zhang, W. Hybrid flow shop scheduling: A survey. Comput. Ind. Eng. 1999, 37, 57–61. [CrossRef]
36. Ribas, I.; Leisten, R.; Framinan, J.M. Review and classification of hybrid flow shop scheduling problems from a production system

and a solutions procedure perspective. Comput. Oper. Res. 2010, 37, 1439–1454. [CrossRef]
37. Chang, D.Y. Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. [CrossRef]
38. Fang, K.; Uhan, N.; Zhao, F.; Sutherland, J.W. A new approach to scheduling in manufacturing for power consumption and

carbon footprint reduction. J. Manuf. Syst. 2011, 30, 234–240. [CrossRef]
39. Zadeh, L.A. Fuzzy logic. Computer 1988, 21, 83–93. [CrossRef]
40. Gao, D.; Wang, G.; Pedrycz, W. Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection

mechanism. IEEE Trans. Fuzzy Syst. 2020, 28, 3265–3275. [CrossRef]
41. Ozturk, C.; Hancer, E.; Karaboga, D. A novel binary artificial bee colony algorithm based on genetic operators. Inf. Sci. 2015, 297,

154–170. [CrossRef]
42. Fathollahi-Fard, A.M.; Hajiaghaei-Keshteli, M.; Mirjalili, S. Multi-objective stochastic closed-loop supply chain network design

with social considerations. Appl. Soft Comput. 2018, 71, 505–525. [CrossRef]
43. Riquelme, N.; Lücken, C.V.; Baran, B. Performance metrics in multi-objective optimization. In Proceedings of the 2015 Latin

American Computing Conference (CLEI 2015), Arequipa, Peru, 19 October 2015; pp. 1–11.
44. Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007,

11, 712–731. [CrossRef]

http://doi.org/10.1016/j.amc.2009.03.090
http://doi.org/10.1016/j.ins.2014.10.009
http://doi.org/10.3390/su8080762
http://doi.org/10.1155/2019/8520503
http://doi.org/10.1016/j.cie.2018.12.065
http://doi.org/10.1080/00207543.2019.1653504
http://doi.org/10.1080/00207543.2018.1524165
http://doi.org/10.1016/j.cie.2020.106320
http://doi.org/10.1142/S0218843020400031
http://doi.org/10.1080/00207543.2019.1571687
http://doi.org/10.1109/TCYB.2019.2943606
http://doi.org/10.1016/j.knosys.2018.02.029
http://doi.org/10.1016/j.eswa.2019.01.062
http://doi.org/10.1109/ACCESS.2020.3044606
http://doi.org/10.1016/j.cie.2018.05.056
http://doi.org/10.3233/jifs-181152
http://doi.org/10.1016/j.asoc.2020.106544
http://doi.org/10.1016/j.cie.2019.07.036
http://doi.org/10.1016/S0360-8352(99)00023-6
http://doi.org/10.1016/j.cor.2009.11.001
http://doi.org/10.1016/0377-2217(95)00300-2
http://doi.org/10.1016/j.jmsy.2011.08.004
http://doi.org/10.1109/2.53
http://doi.org/10.1109/TFUZZ.2020.3003506
http://doi.org/10.1016/j.ins.2014.10.060
http://doi.org/10.1016/j.asoc.2018.07.025
http://doi.org/10.1109/TEVC.2007.892759

	Introduction 
	Related Works 
	FHFGSP 
	Description of the Problem 
	TFN Concepts and Operations 
	Mathematical Models 

	SDABC of FHFGSP 
	The Framework of ABC 
	Coding Scheme 
	Initialization and Energy Saving Procedures 
	Employed Bees 
	Onlooker Bees 
	Scouting Bees 
	The Whole Process of the Algorithm 

	Experiment 
	Test Data 
	Performance Metrics 
	Effect of Search Strategy 
	Effect of Selection Strategy 
	Evaluation of SDABC 

	Conclusions 
	
	References

