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Abstract: Collisions can be classified as completely elastic or inelastic. Collision mechanics theory has
gradually developed from elastic to inelastic collision theories. Based on the Hertz elastic collision
contact theory and Zener inelastic collision theory model, we derive and explain the Hertz and Zener
collision theory model equations in detail in this study and establish the Zener inelastic collision
theory, which is a simple and fast calculation of the approximate solution to the nonlinear differential
equations of motion. We propose an approximate formula to obtain the Zener nonlinear differential
equation of motion in a simple manner. The approximate solution determines the relevant values of
the collision force, material displacement, velocity, and contact time.

Keywords: elastic collision; inelastic collision; approximate solution

1. Introduction

Theoretical research on collisions possesses significant value in engineering appli-
cation. It is widely used in various industrial engineering fields—including aerospace,
machinery, transportation, civil engineering, agriculture, and military applications. Colli-
sion is a mechanical phenomenon in which two or more objects in relative motion come
into contact with each other for an instant, with changes in speed. Collisions are considered
either elastic or inelastic based on the material properties and deformation types of the
colliding objects. An elastic collision means that only elastic deformations occur in the
colliding objects during collision, regardless of local contact deformation or if the entire
deformed structure can be restored. Inelastic collisions mainly occur during crashing of
metal objects in flexible systems. During these collisions, the structures of the colliding
objects undergo elastic and plastic deformations at the local contact surfaces or overall
systems. Therefore, even if the collision speed is low, the local contact stress exceeds the
yield limit, thereby causing irreversible plastic deformation.

1.1. Hertz and Zener Impact Theory Related Studies

Hertz proposed a static contact problem for elastic bodies [1], where the spherical
contact surface is approximated as a parabola. The two elastic balls contact problem was
solved analytically. The colliding objects underwent elastic deformations during the elastic
phase, which forms the basis of the Hertz elastic contact theory. The relationships between
the contact force, deformation, and compression of the object were established to obtain the
elastic collision contact time. Zener [2] extended the Hertz contact theory [1] and the effects
of thin plate bending. To describe this model, let us consider the situation of a stationary
plate or board impacted by a moving ball. In the Zener model, energy dissipation is
considered only by bending waves propagating radially from the contact area [3]. The
Zener model is not based on waves propagating through the thickness of the plate [4];
instead, it assumes that—during the collision of a large plate—the bending wave will
not return to the contact area after being reflected from the lateral boundary of the plate.
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Additionally, it assumes that the radius of curvature of the large flat plate is greater and
the contact radius is smaller than the thickness of the plate; that is, the sphere collides with
the thin plate. While the sphere is in contact with the surface, quasi-longitudinal waves
may propagate through the thickness of the board several times [2,5]. To calculate the
rebound velocity of the ball, Zener [2] combined the equations of motion of the ball and the
board—as described by Newton’s second law—to obtain the relationship between impulse
and board displacements. Many scholars have subsequently continued their research
based on the theoretical models of Hertz [1] and Zener [2,6]. Hunter [7] applied the kinetic
energy transferred from the elastic longitudinal waves, etc., to the Hertz model [5] to
consider the impact of small objects on infinite objects. Therefore, Hunter’s work was
based on Hertz’s perfect elastic impact theory, ignoring all the attenuation effects caused by
damping [7,8]. Boettcher et al. [8] modified the Hunter model [7] by considering the loss of
kinetic energy during impact (Hunter loss) [7,8], they further modified the collision model
proposed by Reed [9] to obtain more accurate elastic collision force–time parameters [5,8].
Mueller et al. [4] measured the coefficient of restitution and contact time for comparison
with the theoretical predictions of the Hertz and Zener models. The contact time of the
Hertz model does not consider the plate thickness as a parameter of influence. Hence, the
model predicts the same result for a glass plate of any thickness [4], which is why the model
is insufficient for predicting the contact time. The Hertz model can only accurately predict
the contact time when the impact of a large plate is being considered [4,10]. Thus, the Hertz
model represents a limiting case of the Zener model. In contrast, the contact time predicted
by the Zener theoretical model approaches the actual measured value. The aforementioned
research on collision is mostly based on the theories of the Hertz and Zener models.

1.2. Main Work and Purpose

In this study, we combined the Hertz contact theory and Zener inelastic collision
models to propose a fast and straightforward method of deriving and establishing the
Zener inelastic collision model. It is unnecessary to derive Newton’s second law from
the beginning to obtain the Zener collision equation and hence the collision displacement,
contact force, contact time, and speed. Another focus of this article is to provide a de-
tailed review of the equations of the Hertz and Zener’s contact theory models for better
understanding, along with their possible future applications for theoretical reference.

2. Review of Impact Mechanics
2.1. Hertz Model

This section refers to Hertz (1882) [1] and Timoshenko and Goodier (1970) [11]. Hertz’s
elastic collision theory [1] assumes that two spheres move linearly along their centers to
cause a collision. The distance between the centers of the two spheres reduces gradually,
and the speed of movement reduces to a static state. The collision that occurs at this moment
causes the two spheres to produce the maximum amount of compression deformations.
Finally, the two spheres gradually separate and return to their original conditions. This
process is known as an elastic collision.

We assume that the masses of the two spheres are m1 and m2. The contact compression
force P is generated during collision, and the speed reduces and changes after collision.
The velocities of the two spheres during collision are

⇀
v1 and

⇀
v2, as shown in Figure 1, and

are expressed by Equation (1) according to Newton’s second law of motion.

m1
d
⇀
v1

dt
= −P, m2

d
⇀
v2

dt
= −P. (1)
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Figure 1. Schematic illustration of the elastic collision of two spheres.

Assuming that the two spheres collide with the compression displacement
⇀
α , the

relative velocity of the spheres,
⇀
vr, can be expressed by Equation (2) below.

⇀
vr =

d
⇀
α

dt
=

⇀
v1 −

⇀
v2 = v1 ı̂ + v2 ı̂ = (v1 + v2)ı̂. (2)

From Equations (1) and (2), the relationship after collision of the spheres is

d
⇀
vr

dt
=

d2⇀α

dt2 =
d
⇀
v1

dt
− d

⇀
v2

dt
= −P

[
m1 + m2

m1·m2

]
= − P

M
, (3)

where M = 1(
1

m1
+ 1

m2

) = m1·m2
m1+m2

is the effective (average) mass after collision of the spheres.

When the two spheres come into contact, as shown in Figure 2, the vertical distance
between points M and O is z1, and the vertical distance between points N and O is z2;
hence, MN distance can be expressed as Equation (4)

MN = z1 + z2 = r2
(

1
2R1

+
1

2R2

)
=

r2(R1 + R2)

2R1R2
. (4)
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Figure 2. Schematic of compression changes after collision of two balls (a) coming into contact with
each other and (b) colliding with each other.

When the two spheres collide, the elastic deformations w1 and w2 of the collision point
change as shown in Figure 2a,b, and the contact surfaces of the two spheres are deformed.
Therefore, the collision compression distance between the two spheres can be expressed by
Equations (5) and (6) and are obtained using Equation (4).

α = w1 + w2 + z1 + z2, (5)

w1 + w2 = α− βr2, (6)
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where α is the collision compression displacement between the centers of the two spheres
after collision and β = R1+R2

2R1R2
. Assuming that the maximum pressure intensity of a

hemispherical collision is q0 and that it is distributed on the surface of the hemisphere with
radius b at the point of contact, the total maximum collision compressive force P can be
expressed as in Equation (7).

P =
q0

b
2
3

πb3 = q0
2
3

πb2. (7)

Here, α = (k1 + k2)
aπ2q0

2 , b = (k1 + k2)
π2q0

4β , and β = R1+R2
2R1R2

can be obtained from
Equations (7) and (6). Then, α, b, and β are applied in Equation (7) to obtain Equation (8).

α =

[
9π2

16
·P

2(k1 + k2)
2(R1 + R2)

R1R2

] 1
3

. (8)

Equation (9) can be obtained from Equation (8) as

P = nα
3
2 , (9)

where α is the contact displacement, n is the Hertzian stiffness constant where

n = 4
3π(k1+k2)

√
R1R2

R1+R2
.

Equation (9) is substituted with Equation (3) and updated as d
(

dα
dt

)2
= 2 d2α

dt2 dα to
obtain Equation (10).

1
2

[
d
(

dα

dt

)2
]
= − n

M
α

3
2 dα. (10)

At the beginning of the collision, the compression is 0 and relative velocity is v0.
During the compression process, the relative speed is vr =

dα
dt , and Equation (11) can be

obtained by integrating Equation (10). At the end of the collision compression, the final
relative speed is vr and maximum compression is αmax.

1
2

[(
dα

dt

)2
− v0

2

]
= −2

5
n
M

α
5
2 ⇒ v0

2 =
4
5

n
M

αmax
5
2 ⇒ αmax =

[
5
4

M
n

v0
2
] 2

5
. (11)

Equation (11) gives time t for the distance compression of the centroids of the two
spheres and the maximum compression time t f of the two colliding bodies as

dα

dt
=

√
v02 − 4

5
n
M

α
5
2 ⇒ dt =

dα

v0

√
1− 4

5
n

Mv0
2 α

5
2

(12)

Suppose that at the initiation of the collision, the centers of the masses of the two
spheres collide with a compression distance α = 0, t = 0. For x = 0 the maximum
compression distance of the two collision bodies after collision is = αmax, t = t f , where
x = 1, and t f is the end time of the collision. Let x = α/αmax, αmaxdx = dα, after integrating
Equation (12), the time t required for compression of the distance between the centroids of
the two spheres can be obtained through Equation (13).

dt =
αmaxdx

v0

√
1− 4

5
n

Mv0
2 (αmaxx)

5
2

⇒ t =
αmax

v0

∫ 1

0

dx√
1− x

5
2

(13)
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Using the initial conditions of Equation (13), we obtain Equation (14). y = x
5
2 ⇒ dx = 2

5 y−
3
5 dy

x = 0; y = 0
x = 1; y = 1

t f =
αmax

v0

2
5

∫ 1

0
y−

3
5 (1− y)−

1
2 dy. (14)

Using the beta function, B(m, n) =
∫ 1

0 xm−1(1− x)n−1dx = Γ(m)Γ(n)
Γ(m+n) , m, n > 0 and

gamma function, Γ(n)
∫ ∞

0 xn−1e1xdx, Γ(n− 1) = nΓ(n) = n!, n = 1, 2, 3. The maximum
compression time of the colliding bodies of the two spheres (t f ) is given by Equation (15).

t f =
αmax

v0

2
5

Γ
( 2

5
)
Γ
(

1
2

)
Γ
(

2
5 + 1

2

) = 1.47
αmax

v0
. (15)

The Hertz perfect elastic collision time is 2t f and is given as in Equation (16)

2t f = 2.94
αmax

v0
= 2.94

[
5
4

M
n

v0
2
] 2

5 1
v0

= 3.215

(
M

nv0
1
2

) 2
5

= 3.215(T)
2
5 , (16)

where T = M

nv0
1
2

.

2.2. Zener Model

This section refers to Zener (1941) [2]. When a collision occurs between two spheres,
it is generally not completely elastic, as assumed in Hertz theory [1]. Because of the
energy consumed during a collision, inelastic collision occurs instead. During the impact,
pressure is generated in the contact area. Local deformation causes a stress wave, which
propagates inward through the object from the excitation point [4]. In addition, the
generation of collision waves from the surfaces of the object and body can cause energy
loss at the impact area. Elastic waves propagate through solids and exhibit characteristic
velocities. Therefore, multiple refractions or reflections of waves at the interface cause
energy dissipation. The Hertz model [1] is a conservative force field; hence, it does not
consider the energy consumption during actual collision. As a result, there is a gap in the
analysis results of actual collisions.

Zener [2] extended the Hertz theory through the bending effect of the board; thus, it
is assumed that the board extends infinitely in the horizontal direction. The Zener model
describes a sphere hitting a thin plate, and as per the model, bending waves do not return to
the contact area after reflecting from the lateral boundary of the plate. Zener [2] combined
the sphere and plate motion equations explained by Newton’s second law to describe the
interaction between the bending effect of the ball colliding with the plate and its process.

First, we assume that the radius of curvature of the plate and the angle between the
plate and arrival plate overall are small. However, it is large compared to its thickness.
For the theory of thin plates with the reaction to localized impulsivity, the transverse
displacement U(x, y, t) of the plate can be represented by the differential equation(

D∇4 + 2ρh
d2

dt2

)
U = f , (17)

where f is the surface density of the normal force, ρ is the density, 2h is the thickness of the
plate, D = 2

3 h3 E
1−ν2 the rigidity modulus, and ν is Poisson’s ratio of the impacting bodies.

∇2 :
∂2

∂x2 +
∂2

∂y2 , ∇4 :
∂4

∂x4 + 2
∂4

∂x2∂y2 +
∂4

∂y4 .Let U(x, y, t) = ∑
n

Cn(t)Un(x, y), (18)
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where Cn(t) is an eigenvalue, and Un(x, y) are normalized eigenfunctions. Substituting
Equation (18) into Equation (17) and multiplying by Uk, with dA being integrated over the
surface of plate, we get Equation (19).

2ρhωk
2Ck =

∫
Uk f dA= Uk(0)F(t), (19)

where ωk and Uk are the eigenvalues and normalized eigenfunctions, respectively. Uk(0) is
the value of Uk at the point of application of force F(t), which gives
Ck = (2ρhωk)

−1Uk(0)
∫ t

0 F(t′) sin ωk(t− t′)dt′. For the integral of t′, as long as t is suf-
ficiently small, the boundaries do not reflect the disturbance. Hence, this integration
process does not depend on the shape of the plate and boundary conditions.

U(0, t) = ∑
n

Cn(t)Un(0), (20)

= (2ρh)−1 ∑
n

ωn
−1Un

2(0)
∫ t

0
F
(
t′
)

sin ωn
(
t− t′

)
dt′, (21)

= ξ
∫ t

0
F
(
t′
)
dt′, (22)

where the ξ is the bending coefficient given as

ξ =

(
3ρ
E′

) 1
2

16ρh2 , (23)

Here, h is the plate thickness, ρ is the density of the plate, and E′ is the modulus of
elasticity of the plate.

Suppose that when a sphere hits the plate, as it falls freely from a height, the ball and
plate collide through an ideal elastic collision, and the total displacement (s) is as shown in
Figure 3a. On the other hand, in the case of an inelastic collision, the total displacement
caused by the actual collision is (Z), and the irreversible deformation of the plate after
collision is (U), as shown in Figure 3b. The total displacements of the elastic and inelastic
collisions are as follows.

Z = s + U. (24)
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The acceleration obtained using the second differential of the displacement in Equation (24)
as well as Equations (1) and (23) gives Zener’s nonlinear motion equation as

ds2

dt2 +
1
M

F(s) + ξ
dF(s)

dt
= 0. (25)

The nonlinear differential equation proposed by Zener [2] is transformed to pro-
vide an analytical solution by simplifying the Hertzian contact force as a function of the
displacement. Thus, Equation (9) is rewritten as

ds2

dt2 +
1
M

F(s) + ξ
dF(s)

dt
= 0. (26)
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where s is the contact displacement, k is the Hertzian stiffness constant, and Equation (26)
can be written in dimensionless form using transformations σ(τ) =

s(t)
Tv0

and τ = t
T ; σ and τ

are dimensionless displacement and time, respectively; t is the time and T is a characteristic
time constant that reflects the mechanical material properties of the sphere and plate as

T =

(
M

nv0
1
2

) 2
5

. (27)

Equation (25) can be transformed into a dimensionless differential equation of Equation (28),
which is given as [2]

d2σ

dτ2 +

(
1 + λ

d
dτ

)
σ

3
2 = 0. (28)

According to Zener [2], all parameters that influence the impact are summarized using
a dimensionless inelasticity parameter, λ, as per Equation (29)

λ = ξkv0
1
2 T

3
2 = ξM

(
k
M

v0
1
2 T

3
2

)
= ξM

(
T−

5
2 ·T

3
2

)
=

ξM
T

. (29)

3. Results and Discussion

When the ball collides with the plate material, the inelasticity parameter (λ) between
the two and force time during the impact change owing to different material properties.
The Zener collision theory equation was numerically analyzed and complex calculations
were performed. Furthermore, the force–time collision curve diagram was drawn with λ
at 0, 0.5, 1.0, and 1.5, as shown in Figure 4a. Figure 4a shows the process of change in the
impact contact time and the magnitude of the contact force. Through the Hertzian contact
force as a function of the displacement (Equation (26)), the impact force was converted to
material displacement and other parameters. Next, the material inelasticity parameter (λ)
was calculated using Equation (29).
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normalized force–time collision curve graph obtained from the analysis of the Zener equation [12].

Boettcher et al. [12] revised the nonlinear motion equation (Equation (25)) [2] pro-
posed by Zener with a dimensionless parameter, ω0, to be adjusted (determined by adapt-
ing the ω0 dimensionless analytical displacement–time function), and Hertz’s equation
(Equation (26)) [1], and established a method that simply analyzes the nonlinear motion
equation of the Zener collision [3,12]. Boettcher et al. also simplified the Zener nonlinear
collision equation (Equation (28)) to a linear differential equation, which can be regarded as
a damped oscillation equation. When λ = 0, an ideal elastic collision without damping is
indicated, whereas λ > 0 is an inelastic collision and has a damping state [12]. The process
obtains the force–time impact curve of λ = 0, which is a perfect elastic collision equation,
and then adjusts ω0 to obtain λ > 0, that is, the inelastic collision [3,12]. Figure 4b shows
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the normalized impact force curve obtained by Boettcher et al. after a simplified analysis
of Zener’s nonlinear motion equation [12]. This work is based on the nonlinear motion
equation provided by Zener [2], which establishes the force–time collision curve equation
in different ways.

As observed in Figure 4, the sphere collides with the plate, and the contact force
changes with time. Additionally, the force ascends from zero to the maximum value and
then decreases gradually. It is considered to be an ideal elastic collision when the inelasticity
parameter is zero. The impact process is not affected by the friction force and causes energy
attenuation. Consequently, the force–time variation curve is a symmetrical graph. When
the inelasticity parameter is larger (λ 6= 0), it is an inelastic collision. Energy loss was
generated during the collision between the sphere and the plate, and the contact force was
smaller, while the contact time was longer. As seen in Figure 4, the force–time collision
curve based on Equation (28) correlates well with the dimensionless displacement (σ) and
time (τ). As shown in Figure 5, the force–time curve is a graph of the quadratic function.
First, we used the approximation method, and the curve was drawn based on Equation (30).

Force
Fm

= σ
3
2 =

[
τ

(
1− τ

τel

)] 3
2
. (30)
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The relationship between the elastic collision time (τ) and the inelasticity param-
eter (λ) of the plate is based on the equation τel = 2.762 + 0.4568e1.27λ provided by
Müller et al. [4]. Additionally, the displacement (σ) can be converted into force using
Equation (26). Equation (30) provides the left–right symmetrical quadratic function graph.
When the elasticity parameter is 0, it is an elastic collision curve. Consequently, the inelas-
ticity parameter value (λ 6= 0) and impact force are greater and the contact time is longer,
as shown in Figure 5.

However, in the actual collision process, λ 6= 0. After the sphere collides with the
plate, the force on the plate shows an exponential attenuation as the sphere leaves the plate.
Therefore, we multiply the σ in Equation (30) by e−λτ to obtain Equation (31), as

Force
Fm

= σ
3
2 =

[
τ

(
1− τ

τel

)
e−λτ

] 3
2
. (31)

Equation (31), as seen from Figure 6a, shows an exponential decay change with time
in the force process of different inelasticity parameter materials. The selection range of e−λτ

coefficient is from e−0.3λτ to e−0.5λτ . When multiplied by e−0.4λτ , the force is an attenuated
process of the contact time. As per the comparison curve between Figure 6b and the σ of
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Equation (30) multiplied by e−0.4λτ and Figure 4a, Zener’s standard force–time collision
curve is the closest.
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Figure 6b shows that λ = 0, and the maximum collision force (Force/Fm) is not equal
to 1. Therefore, the correction Equation (31), multiplied by 4

τel
, aims to correct the change

in contact time and force of different inelasticity parameters, and the force (Force/Fm) of
λ = 0 can be corrected to 1, as shown in Figure 7a.

Force
Fm

= σ
3
2 =

[
4τ

τel

(
1− τ

τel

)
e−0.4λτ

] 3
2
. (32)
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The force–time collision curve of Equation (32) is quite close to the original Zener
force–time diagram (Figure 4), as shown in Figure 7a. However, when the inelasticity
parameters are 1 and 1.5, the maximum force curve is very different from the Zener curve;
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hence, we multiply the σ in Equation (32) by (λn + (1− λ)) to modify the same, as shown
in Equation (33).

Force
Fm

= σ
3
2 =

[
(λn + (1− λ))

4τ

τel

(
1− τ

τel

)
e−0.4λτ

] 3
2
. (33)

When the σ of Equation (32) is multiplied by (λn + (1− λ)), the force–time curve
with n > 0 and λ = 1 does not change, as shown in Figure 7b–d. However, when the
value of n in Equation (33) becomes larger, and λ = 0.5, the impact force curve gradually
becomes smaller, whereas for λ = 1.5, it gradually becomes larger, as shown in Figure 7b–d.
Additionally, the value of n gradually increases from 1.0, 1.3, and 1.5 for comparison.
Finally, the value of n = 1.3 is the maximum force peak value of the force–time curve
drawn using Equation (33) established in this study is between the peak force value of the
inelasticity parameter 0.5 to 1.5 and the Zener value, and the peaks of the force–time curve
are equidistant, as shown in Figure 7c.

As shown in Figure 7c, the force–time curve peak values of the inelasticity parame-
ters 0.5–1.5 are approximately equidistant from the Zener force–time curve peak values.
Therefore, the correction Equation (33) adjusts the peak force of the force–time curve and
multiplies it by (1 + n× λ)2 to provide Equation (34).

Force
Fm

= σ
3
2 = (1 + n× λ)2

[
(λ1.3 + (1− λ))

4τ

τel

(
1− τ

τel

)
e−0.4λτ

] 3
2
. (34)

When λ = 0, (1 + n× λ)2, n is any value, the force is 1, and the force–time curve
remains constant. Thus, the inelasticity parameter is between 0.5 and 1.5. When the value
of n in Equation (34) is larger, the force–time curve of the inelasticity parameter gradually
increases the force value, as shown in Figure 8. When n = 0.2, it is nearly identical to the
time–force curve of the original Zener, and the curve drawn with inelasticity parameters of
1–1.5 uses Equation (34). Therefore, n = 0.2 is the most suitable. As shown in Figure 9a,b,
the force–time collision curve given using Equation (34) and that given by Boettcher et al.
are different from the analytical methods that provide graphs and equations that are
considerably similar to the diagrams of the force–time collisions proposed by Zener.
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4. Conclusions

The nonlinear collision motion equation proposed by Zener [2] is the force–time
collision curve of the inelasticity parameter (0 ≤ λ ≤ 1.5) considered in the collision
process through numerical analysis. In this study, we have proposed an approximate
solution to Zener’s inelastic collision theory, which is expressed as

Force
Fm

= σ
3
2 = (1 + 0.2λ)2

[
(λ1.3 + (1− λ))

4τ

τel

(
1− τ

τel

)
e−0.4λτ

] 3
2
.

The contribution of the present study to literature includes an approximate solution
that is simple and can be used directly without complex calculations. The contact time,
magnitude of the material impact force and displacement, and inelasticity parameter
can be obtained simply by substituting the parameters into the equation. Using the
approximate solution, the inelasticity parameter can be obtained from the thickness, density,
and modulus of elasticity of the material, and the relationship between thickness and
contact time can be obtained by simple and fast calculation. Furthermore, the method can
be applied to nondestructive impact quality inspections of commercial materials, such
as internal defects and thickness differences of liquid crystal glass panels. It can also be
applied to the quality inspection of golf club heads in the future. In summary, the use of
the proposed formula does not require complex numerical calculations and can be verified
easily to obtain the collision-related parameters. Furthermore, the proposed approximate
solution can be adjusted for application based on user requirements.
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