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Abstract: This paper deals with the extreme value analysis for the triangular arrays which appear
when some parameters of the mixture model vary as the number of observations grows. When
the mixing parameter is small, it is natural to associate one of the components with “an impurity”
(in the case of regularly varying distribution, “heavy-tailed impurity”), which “pollutes” another
component. We show that the set of possible limit distributions is much more diverse than in
the classical Fisher–Tippett–Gnedenko theorem, and provide the numerical examples showing the
efficiency of the proposed model for studying the maximal values of the stock returns.
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1. Introduction

Consider the mixture model

F(x; ε,~θ) = (1− ε)F(1)(x;~θ(1)) + εF(2)(x,~θ(2)), (1)

where ε ∈ (0, 1) is a mixture parameter, F(1)(x;~θ(1)) and F(2)(x;~θ(2)) are cumulative
distribution functions (CDFs) of two distributions parametrised by vectors ~θ(1),~θ(2) cor-
respondingly, and ~θ = (~θ(1),~θ(2)). In this paper we focus on the case when the second
component in this mixture corresponds to some heavy-tailed distribution, while the first
one can be either light or heavy tailed. When ε is small, the second component can be
referred to as the heavy-tailed impurity (the term “heavy-tailed impurity” is known in the
context of percolation theory, see [1]. Here we use it in a more general set-up, following [2]).
Some applications of this approach are described by Grabchak and Molchanov (2015) [2].
For instance, in population dynamics, this approach can be used for modelling the migra-
tion of species: The distance of migration of most species can be modelled by light-tailed
distribution, but there is a small number of species with “very active” behaviour.

It would be worth mentioning that the parameters ε and~θ may depend on the number
of available observations, denoted below by n. For instance, in the aforementioned example
from population dynamics, the proportion of “very active” species decays when the total
number of species grows. In this context, the distribution of the resulting variable changes
with n, and this model can be considered as the infinitesimal triangular array—a collection
of real random variables {Xnj, j = 1, . . . , kn}, kn → ∞ as n → ∞, such that Xn1, . . . , Xnkn

are independent for each n. The classical limit theorems for this class of models are
well known in the literature, see, e.g., monographs by Petrov (2012) [3], Meerschaert and
Scheffler (2001) [4]. For instance, it is known that the class of possible non-degenerate
limit laws of the sums Xn1 + · · ·+ Xnkn − cn with deterministic cn and triangular array
{Xnj, j = 1, . . . , kn} satisfying the assumption of infinite smallness,
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∀ δ > 0 : sup
j=1,...,kn

P
{∣∣Xnj

∣∣ > δ
}
→ 0, n→ ∞,

coincides with the class of infinitely divisible distributions.
Surprisingly, there are very few papers dealing with the extreme value analysis for

this model. To the best of our knowledge, there exist no general statements describing the
class of non-degenerate limits of

( max
j=1,...,kn

Xnj − cn)/sn, n→ ∞, (2)

with deterministic cn, sn. Clearly, the convergence to types theorem is applicable to this
situation and guarantees that the limit law is determined up to the change of location and
scale. Nevertheless, unlike the well-known Fisher–Tippett–Gnedenko theorem, the class
of limit distributions in (2) includes not only the Gumbel, Fréchet and max-Weibull laws.
Some conditions guaranteeing the convergence of the triangular array to some limit are
given by Freitas and Hüsler (2003) [5], but their results essentially employ the assumption
that the limit distribution is twice differentiable, which is violated in the examples of the
model (1) provided below. Let us mention here that other known papers on this topic are
concentrated on some particular examples yielding convergence to the classical extreme
value distributions, such as the Gumbel law, and those related to them, see Anderson,
Coles and Hüsler (1997) [6], Dkengne, Eckert and Naveau (2016) [7].

In the first part of the paper (Section 2) we consider the particular case of (1), when the
first component has the Weibull distribution (and therefore it is in the maximum domain of
attraction (MDA) of the Gumbel law), while the heavy-tailed impurity is modelled by the
regularly varying distribution (MDA of the Fréchet law). Note that in the classical setting,
when the parameters ε and~θ are fixed, the limit behaviour of the sum is determined by the
second component, and therefore the maximum under proper normalisation converges to
the Fréchet law. Interestingly enough, even in the case when only one parameter (namely
the mixing parameter ε) varies, the set of possible limit distributions includes Gumbel and
Fréchet distributions and also one discontinuous law. The exact statement is formulated
in Theorem 1.

In Section 3 we turn towards a more complicated model, which appears when one uses
the truncated regularly varying distribution for the second component, and the truncation
level M grows with n. This part of our research is motivated by a discussion concerning the
choice between truncated and non-truncated Pareto-type distributions, see Beirlant, Fraga
Alves and Gomes (2016) [8]. The asymptotic behaviour depends on the rate of growth
of M: As we show, the resulting conditions are related to the soft, hard and intermediate
truncation regimes introduced by Chakrabarty and Samorodnitsky (2012) [9]. Note that in
that paper it is shown that the softly truncated regularly varying distribution has heavy
tails (understood in the sense of the non-Gaussian limit law for the sum), and therefore the
term “heavy-tailed impurity” can be also used for models of this kind.

The main theoretical contribution of our research is formulated as Theorem 2, dealing
with the case when both ε and M depend on n. It turns out that the set of possible limit laws
in (2) includes six different distributions, and, for some sets of parameters, the maximal
value diverges under any (also nonlinear) normalisation. Our theoretical findings are
illustrated by the simulation study (Section 4).

The choice of the Weibull distribution for the first component in (1) is partially based
on the great popularity of this distribution in applications, see, e.g., the overview by
Laherrere and Sornette (1998) [10]. As we show in Section 5, our model with heavy-tailed
impurity is more appropriate for modelling the stock returns as a “pure” model. In this
context, our paper continues the discussion started in the paper by Malevergne, Pisarenko
and Sornette (2005) [11], where it is shown that the tails of the empirical distribution
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of log-returns decay slower than the tails of the Weibull distribution but faster than the
power law.

2. Weibull-RV Mixture

In this section, we focus on a particular case of the model (1), namely

F(x; ε,~θ) = (1− ε)F1(x; λ, τ) + εF2(x; α) (3)

where~θ = (λ, τ, α), F1 is the distribution function of the Weibull law,

F1(x; λ, τ) = F1(x) = 1− e−λxτ
, x ≥ 0, λ > 0, τ > 0, (4)

and F2 corresponds to the regularly varying distribution on [m, ∞),

F2(x; α) = F2(x) = 1− x−αL(x), α > 0, x ∈ [m, ∞), (5)

with m = inf{x > 0 : F2(x) > 0} and a continuous slowly varying function L(·). Let us
recall that by definition,

lim
x→∞

L(tx)/L(x) = 1, ∀t > 0,

and the term “slow variation” comes from the property

x−εL(x)→ 0 and xεL(x)→ ∞ as x → ∞ (6)

for every ε > 0. The extensive overview of the properties of slowly varying functions is
given in [12,13].

As we already mentioned in the introduction, the first component is in the MDA of the
Gumbel law, while the second is in the MDA of the Fréchet law. In Appendix A, we show
that the the mixture distribution function F is in the MDA of the Fréchet law, provided that
the parameters ε and~θ are fixed.

In what follows we consider the case when the mixing parameter ε = εn decays to
zero as n grows. It is natural to slightly generalise the model to the form of row-wise
independent triangular array

Xnj ∼ F(x; εn,~θ), n ≥ 1, j = 1, . . . , kn, (7)

where kn is an unbounded increasing sequence, and for any n the random variables
Xnj, j = 1, . . . , kn are independent. The set-up allowing various numbers of elements in
different rows is standard both in studying the classical limit laws (see [3]) and in the
extreme value theory (see [7]).

As we show in the next theorem, the asymptotic behaviour of the maximum in this
model is determined by the rate of growth of kn, the rate of decay of εn and the slowly
varying function L. Note that the rates of log kn and knεn are compared in terms of the
following three alternative conditions,

∃β >
τ

α
: lim

n→∞

log kn

(knεn)β
= ∞, (8)

∃β ∈ (0,
τ

α
) : lim

n→∞

log kn

(knεn)β
= 0, (9)

∃c > 0 : knεn∼c(log kn)
α
τ . (10)
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Theorem 1. Consider the row-wise independent triangular array (7). Assume that limx→∞ L(x) ∈
[0, ∞] (this assumption means that the slowly varying function L(x) does not exhibit infinite os-
cillation. The counterexample to this condition is given in [14], Example 1.1.6). Then for any
sequences kn → ∞, εn → 0 there exist deterministic sequences cn, sn such that

lim
n→∞

P
{

max
j=1,...,kn

Xnj ≤ snx + cn

}
= H(x), ∀x ∈ R (11)

with some non-degenerate limit law H(x). More precisely, H(x) belongs to the type of the following
three distribution functions (due to the convergence to types theorem (Theorem A1.5 from [15]),
if H(x) is the distribution function of the limit law in (11), then any other non-degenerate law
appearing in (11) under another normalisation is of the form H(ax + b) with some constants a, b):

1. Gumbel distribution, H(x) = e−e−x
, x ∈ R, if and only if any of the following conditions

is satisfied

(a) knεn → const ∈ [0, ∞) as n→ ∞;
(b) knεn → ∞ as n→ ∞, and (8) holds;
(c) (10) holds, and L(u)→ 0 as u→ ∞.

In all cases, possible choice of the normalising sequences is

sn = (λτ)−1(λ−1 log kn)
1
τ−1 and cn = (λ−1 log kn)

1
τ . (12)

2. Fréchet distribution with parameter α, H(x) = e−x−α
, x ≥ 0, if and only if any of the

following conditions is satisfied

(a) (9) holds;
(b) (10) holds, and L(u)→ ∞ as u→ ∞.

In all cases, one can take

sn = F←2 (1− (knεn)
−1), and cn = 0, (13)

where F←2 (y) = inf{x ∈ R : F2(x) ≥ y} for y ∈ [0, 1].
3. Discontinuous distribution with cdf

H(x) =


0, x < λ−

1
τ (cc̃)−

1
α ,

e−(1+x−α), x = λ−
1
τ (cc̃)−

1
α ,

e−x−α
, x > λ−

1
τ (cc̃)−

1
α ,

if (10) holds, and L(u) → c̃ for some c̃ > 0 as u → ∞. The normalising sequences can be
fixed in the form (13).

Proof. The proof is given in Appendix B.

The graphical representation of this result is presented in Figure 1.
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knεn −−−→n→∞
∞

∃β ∈ (0, τ
α ) : lim

n→∞
log kn
(knεn)β = 0

Fréchet
knεn∼c(log kn)

α
τ

L(u) −−−→
u→∞

∞

Fréchet L(u) −−−→
u→∞

c̃ > 0
0, x < λ−

1
τ (cc̃)−

1
α ,

e−(1+x−α), x = λ−
1
τ (cc̃)−

1
α ,

e−x−α
, x > λ−

1
τ (cc̃)−

1
α

L(u) −−−→
u→∞

0

Gumbel

∃β > τ
α : lim

n→∞
log kn
(knεn)β = ∞

Gumbel

Figure 1. Possible limit distributions for maxima of the triangular array (3).

3. Weibull-Truncated RV Mixture

Now we consider one more complicated model, such that the distribution of the
second component in (3) also changes as n grows. Consider the mixture distribution

F(x; ε, M,~θ) = (1− ε)F1(x; λ, τ) + εF̃2(x; α, M), (14)

whereas before, ~θ = (λ, τ, α), F1 is the distribution function of the Weibull law (see (4)),
while F̃2 is the upper-truncated regularly varying distribution,

F̃2(x; α, M) =

{ F2(x;α)
F2(M;α) , if x ∈ [m, M],

1, if x > M
(15)

with F2(x; α) corresponding to a regularly varying distribution (5).
It would be an interesting mentioning that the components in this model correspond

to different maximum domains of attraction: the maximum for the first component under
proper normalisation converges to the Gumbel law, while the second—to the max-Weibull
law, see Appendix C.

By analogy with (7), we consider the triangular array

Xnj ∼ F(x; εn, Mn,~θ), n ≥ 1, j = 1, . . . , kn, (16)

where kn, Mn are unbounded increasing sequences, and for any n the random variables
Xnj, j = 1, . . . , kn are independent. Note that the classical limit laws for this model (law of
large numbers and limit theorems for the sums) are essentially established in [16].

The next theorem reveals the asymptotic behaviour of the maximal value depending
on the rates of εn, Mn, kn, and the properties of the slowly varying function L. An important
difference from the model considered in Section 2 is that in some cases the limit distribution
is degenerate for any (also non-linear) normalising sequence.

It turns out that if knεn tends to any finite constant, then the limit distribution is
Gumbel. Our findings in the remaining case knεn → ∞ are presented in Table 1. The
asymptotic behaviour of the maximum is determined by the asymptotic properties of the
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sequences kn, εn in terms of (8)–(10), and the rate of growth of Mn in terms of the following
three alternating conditions:

∃γ >
1
α

: lim
n→∞

Mn

(knεn)γ
= ∞, (17)

∃γ ∈ (0,
1
α
) : lim

n→∞

Mn

(knεn)γ
= 0; (18)

∃c̆ > 0 : Mn∼c̆(knεn)
1
α . (19)

The conditions (17)–(19) are related to the notion of hard and soft truncation. Follow-
ing [9], we say that that a variable η is truncated softly, if

lim
n→∞

knP
{
|η| ≥ Mn

}
= 0. (20)

For a regularly varying distribution of η, the condition (20) holds if there exists
γ > 1/α such that Mn/kγ

n → ∞. This fact follows from

knP
{
|η| ≥ Mn

}
= kn M−α

n L(Mn) . kn M−α+ε
n = (Mn/k1/(α−ε)

n )(−α+ε)

for any ε > 0 (here and below we mean by fn & gn that lim
n→∞

( fn/gn) = ∞). Analogously, η

is truncated hard, that is,

lim
n→∞

knP
{
|η| ≥ Mn

}
= ∞,

if there exists γ ∈ (0, 1/α) such that Mn/kγ
n → 0.

The paper [9] deals with the asymptotic behaviour of the sums of random variables
with truncated regularly varying distributions. It is demonstrated that the behaviour
significantly depends on the truncation regime. This research was further extended by
Paulauskas [17], who studied the convergence of sums of linear processes with softly and
hardly tapered innovations.

Our results for the case (17) (see first raw in Table 1) coincide with the findings from [9]:
“In the soft truncation regime, truncated power tails behave, in important respects, as if no
truncation took place”. In fact, in our setup, the results are completely the same as for the
non-truncated distribution considered in Theorem 1.

Our outcomes for (18) (second raw in Table 1) are quite close to another finding
from [9], namely, “in the hard truncation regime much of “heavy tailedness” is lost”.
Actually, we get that the behaviour is determined by the first component except the case (9)
with limn→∞ kne−λMτ

n 6= ∞.
Finally, the intermediate case (19) (third row in Table 1) is divided into various sub-

cases. The comparison with [9] is not possible because the authors decide to “largely leave”
this question “aside in this article, in order to keep its size manageable”. In our research,
we provide the complete study of this case.

The exact result is formulated below.

Theorem 2. Consider the row-wise independent triangular array (16) under the assumption that
εn → 0, Mn → ∞, kn → ∞ as n→ ∞. Assume also that limx→∞ L(x) ∈ [0, ∞].

Then the non-degenerate limit law H(x) for the properly normalised row-wise maximum
max

j=1,...,kn
Xnj (see (11)) belongs to the type of the following distributions.

1. Gumbel distribution, H(x) = e−e−x
, x ∈ R, if and only if any of the following conditions

is satisfied

1.1 knεn → const ∈ [0, ∞) as n→ ∞;
1.2 knεn → ∞ as n→ ∞, and moreover
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• (17) and (8) hold;
• (17) and (10) hold, and L(u)→ 0 as u→ ∞;
• (18) and (8) hold;
• (18) and (9) hold, and kn & eλMτ

n ;
• (18) and (10) hold;
• (19) and (8) hold;
• (19) and (10) hold, and L(u)→ 0 as u→ ∞;

• (19) and (10) hold, L(u)→ c̃ ∈ (0, ∞] as u→ ∞, and λ
1
τ c̆c

1
α ∈ (0, 1).

In all cases, possible choice of the normalising sequences is given by (12).
2. Fréchet distribution with parameter α, H(x) = e−x−α

, x ≥ 0, if and only if any of the
following conditions is satisfied

• (17) and (9) hold;
• (17) and (10) hold, and L(u)→ ∞ as u→ ∞;
• (19) and (9) hold, and L(u)→ 0 as u→ ∞.

In all cases, one can take sn, cn in the form (13).
3. Special cases:

(I)

H(x) =


0, x < λ−

1
τ (cc̃)−

1
α ,

e−(1+x−α), x = λ−
1
τ (cc̃)−

1
α ,

e−x−α
, x > λ−

1
τ (cc̃)−

1
α ,

provided (17) and (10) hold, and L(u)→ c̃ ∈ (0, ∞);
(II)

H(x) =

{
ec̃c̆−α−x−α

, x ∈ (0, c̆c̃−
1
α ],

1, x > c̆c̃−
1
α ,

provided (19) and (9) hold, L(u)→ c̃ ∈ (0, ∞);
(III)

H(x) =


0, x < λ−

1
τ (cc̃)−

1
α ,

exp
{
−1 + c̃c̆−α − λ

α
τ cc̃
}

, x = λ−
1
τ (cc̃)−

1
α ,

exp{c̃c̆−α − x−α}, x ∈ (λ−
1
τ (cc̃)−

1
α , c̆c̃−

1
α ],

1, x > c̆c̃−
1
α ,

provided (19) and (10) hold, L(u)→ c̃ ∈ (0, ∞) as u→ ∞, and λ
1
τ c̆c

1
α > 1;

(IV)

H(x) =


0, x < c̆c̃−

1
α ,

e−1, x = c̆c̃−
1
α ,

1, x > c̆c̃−
1
α ,

provided (19) and (10) hold, L(u)→ c̃ ∈ (0, ∞) as u→ ∞, and λ
1
τ c̆c

1
α = 1.

In all cases the normalising sequences can be chosen as in (13).

The limit distribution is degenerate for any sequences sn and cn in the following three cases:

• (18) and (9) hold, and the condition kn & eλMτ
n is not fulfilled;

• (19) and (9) hold, and L(u)→ ∞ as u→ ∞;

• (19) and (10) hold, L(u)→ ∞ as u→ ∞, and λ
1
τ c̆c

1
α ≥ 1.

Moreover, in these cases the distribution of

lim
n→∞

P
{

max
j=1,...,kn

Xnj ≤ vn(x)
}



Mathematics 2021, 9, 2208 8 of 23

is degenerate for any increasing sequence vn(x), which is unbounded in n and x.

Proof. The proof is given in Appendix D.

Table 1. Possible limit distributions for maxima of the triangular array (16).

knεn −→n→∞
∞ (8) (9) (10)

(17) Gumbel Fréchet

Gumbel,
if L(u) −→

u→∞
0

Fréchet,
if L(u) −→

u→∞
∞

Distribution I,
if L(u) −→

u→∞
c̃ ∈ (0, ∞)

(18) Gumbel

Gumbel,

Gumbel
if kn & eλMτ

n

no limit,
if kn & eλMτ

n is not fulfilled

(19) Gumbel

Fréchet,
Gumbel,

if L(u) −→
u→∞

0

if L(u) −→
u→∞

0
Gumbel,

if L(u) −→
u→∞

c̃ ∈ (0, ∞],

and λ
1
τ c̆c

1
α ∈ (0, 1)

Distribution II,
Distribution III,

if L(u) −→
u→∞

c̃ ∈ (0, ∞),

and λ
1
τ c̆c

1
α > 1

if L(u) −→
u→∞

c̃ ∈ (0, ∞)
Distribution IV,

if L(u) −→
u→∞

c̃ ∈ (0, ∞),

and λ
1
τ c̆c

1
α = 1

no limit, no limit,

if L(u) −→
u→∞

∞ if L(u) −→
u→∞

∞,

and λ
1
τ c̆c

1
α ≥ 1

4. Simulation Study

The aim of the current section is to illustrate the dependence of limit distribution for
maxima in the model (16) on the rates of the mixing parameter εn and of the truncation
level Mn. For this purpose we consider four triangular arrays (16) with kn = n having all
permanent parameters the same, namely,~θ = (1, 1, 1.5), L = 1 and m = 0.1. The sequences
εn and Mn are chosen to satisfy the following pairs of conditions: (8)–(17), (9)–(17), (8)–(18)
and (9)–(18). The exact form of mixing and truncation parameters are presented in Table 2.

As previously, the primary separation is made due to the rates of log kn and knεn:
We fix εn = n−1(log n) and εn = n−1(log n)2, which imply conditions (8) and (9), respec-
tively. Next, the models are divided according to the rate of growth of Mn in the form
Mn = (log(n + 1))a with a = 1/2, 1, 2. Recall that from Theorem 2, it follows that the limit
distribution is Gumbel for the pairs (8)–(17), (8)–(18) and (9)–(18) (note that for the last two
cases kn & eλMτ

n under our choice), and Fréchet for the pair (9)–(17).
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Table 2. The values of εn and Mn chosen for the numerical study.

(8) (9)

(17)
εn = n−1 log n, εn = n−1(log n)2,

Mn = log(n + 1) Mn = (log(n + 1))2

(18)
εn = n−1 log n, εn = n−1(log n)2,

Mn =
√

log(n + 1) Mn =
√

log(n + 1)

For each case we simulate 1000 samples of length 1000, and find the maximal value of
each sample. The goodness-of-fit of the limit distributions of the maximal values suggested
by Theorem 2 is tested by the Kolmogorov–Smirnov criterion. Figure 2 depicts the kernel
density estimates of the densities of normalised maxima in each case superimposed with
the limit distributions implied by Theorem 2. It can be seen that for all groups the density
estimates are quite close to the theoretical densities, and the Kolmogorov–Smirnov test does
not reject the null of the corresponding theoretical distributions (corresponding p-values
are given on the same figure).

Figure 2. Densities of sample maxima for groups (8)–(17) (top left), (9)–(17) (top right), (8)–(18)
(bottom left) and (9)–(18) (bottom right) superimposed with the theoretical limit distributions sug-
gested by Theorem 2.

5. Modelling the Log-Returns of BMW Shares

Starting from the prominent paper by Mandelbrot [18], heavy-tailedness of distribu-
tions of price changes is a well-known stylised fact, leading to the frequent choice of power
laws for the modelling, see, e.g., [19]. However, numerous papers admit that the tails
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of the distributions used for modelling the returns are though heavier than normal, yet
lighter than of a power law. For instance, Laherrère and Sornette [10] demonstrate that
daily price variations on the exchange market can be successfully described by the Weibull
distribution with parameter smaller than one. Malevergne et al. [11] intently analyse
financial returns on different time scales, ranging from daily to 5- and 1-minute data, and
come to the conclusion that the Pareto distribution fits the highest 5% of the data, while
the remaining 95% are most efficiently described by the Weibull law. Thus, it is reasonable
to expect that the overall distribution of returns should be successfully described by the
model which (in some sense) lies in between of these two distributions. This idea serves as
a motivation of the application of the model (3) to modelling the log-returns.

In our study we consider hourly logarithmic returns of BMW shares in 2019. Follow-
ing [11], we analyse positive and negative returns separately. The sample sizes are equal
to 1130 and 1062, respectively. The plots for positive and negative log returns are presented
in the first plot in Figure 3. In what follows, we assume that the log-returns are jointly
independent. This assumption was checked by the chi-squared test resulting in p-values
0.234 and 0.111 for positive and negative returns, respectively.

Figure 3. First (second) row: The plot of data; p-values for Weibull fit for positive (absolute negative)
log returns.

The analysis consists of four steps. Below we denote the positive log-returns by X1, . . . , X1130
and the negative log-returns by Y1, . . . , Y1062.

1. Separation of components. For each n = 1, . . . , 1130, the sample X1, . . . , Xn is divided
into two parts corresponding to the first and the second components in (14), where
the slowly varying function L is equal to a constant. For such partition we assign
all observations except the b1130 · ε1130c greatest order statistics of the whole sample
to the first component and test the goodness-of-fit for Weibull distribution by the
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Kolmogorov–Smirnov criterion. The values of ε1130 are taken on a grid from 0 to 0.5
with a step of 0.001. From the second plot in Figure 3 it can be seen that there is an
evident peak in p-values, which corresponds to some value of the mixture parameter,
which we denote by ε̂1130. The b1130 · ε̂1130c upper order statistics are assumed to
come from the heavy-tailed part.
Next, let us show that the sequence εn vanishes as n grows. For all n = 1, . . . , 1129
the parameter εn is estimated as the proportion of elements corresponding to the
second component. The same procedure is applied for each n = 1, . . . , 1062 to the
sample Y1, . . . , Yn. The results are illustrated by Figure 4. The first plot in two rows
indicates that in both cases ε̂n declines with n, though in case of negative log returns
the decrease is not so evident. From the second plot one can see that kn ε̂n with kn = n
appear to tend to infinity. Therefore, as suggested by Theorems 1 and 2, we examine
the asymptotic behaviour of the ratio log kn/(kn ε̂n)β for different values of β > 0. For
both positive and absolute values of negative log returns we get that for β = 0.45 this
ratio decreases rapidly.

2. Model selection. Based on the partition obtained on the previous step, the decision
between truncated and non-truncated distributions for the second component is made
based on the test proposed by Aban, Meerschaert and Panorska [20]. From Figure 5
one observes that the null hypothesis of non-truncated law is not rejected for both
positive and negative log returns since the p-values are significantly larger than 0.05.
Thus, it can be concluded that the model (3) is more appropriate for the considered
data. The Kolmogorov–Smirnov test does not reject the null of Pareto distribution for
the observations assigned to the second component with p-values 0.971 and 0.925 for
positive and negative log returns, respectively. It should be noted that in both cases
the Pareto distribution does not fit the whole sample, since the p-values are smaller
than 10−16.

3. Estimation of parameters. The parameters of the first and second components are
estimated by the maximum-likelihood approach. The estimated values are presented
in Table 3. Since τ̂/α̂ is equal to 0.483 for positive log returns and 0.484 for absolute
values of negative, from Figure 4 we conclude that the assumption (9) is fulfilled with
β = 0.45, and therefore the limit distribution for maxima is the Fréchet distribution,
see item 2 in Theorem 1.

Figure 4. ε̂n against n (left), kn ε̂n against n (middle), log kn(kn ε̂n)−0.45 against n (right) for positive
log returns of BMW (first row) and absolute values of negative log returns of BMW (second row).
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Figure 5. The p-values of the Aban’s test for positive (left) and absolute values of negative (right)
log returns.

It is worth mentioning that for both positive and absolute values of negative log
returns we get α̂ > 2, which is completely coherent with general empirical results
for financial returns and addresses the common critique against models with infinite
variance, see [19].

Table 3. Estimated values of the parameters of mixture distribution for positive and absolute values
of negative log returns of BMW, 2019.

Estimates λ̂ τ̂ α̂ m̂ ε̂

Positive log returns 0.003 1.278 2.649 0.009 0.051
Abs. negative log returns 0.003 1.246 2.573 0.01 0.04

4. Validation of the model. Figure 6 depicts the true density of positive (top left) and
absolute values of negative (top right) log returns superimposed with densities of
100 simulations from the mixture (3) with the corresponding parameter estimates.
The constructed model is also verified by the empirical confidence intervals for the
sample quantiles based on 100 simulations. The results are given in Tables 4 and 5
and illustrated by Figure 6. These intervals are reasonably small and contain all true
values of quantiles. Next, we apply the chi-squared test with the maximum likelihood
estimates of parameters. Due to the known theory (see Section 4.4 from [21]), the
statistics of this test converge to the chi-squared distribution with K− 1− D degrees
of freedom, where K is the number of subintervals used for the chi-squared test, and
D is the dimension of the parameter space (in our setting, D = 5). Using K = 15, we
get the p-values 0.73 and 0.21 for positive and negative log returns, and therefore do
not reject the null hypothesis. Finally, we arrive at the outcome that the model (3) is
appropriate both for positive and absolute values of negative log returns of BMW at
the considered time scale.
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Figure 6. Top left (right): Real (red) and simulated (grey) density of positive (negative) log returns;
bottom left (right): Empirical quantiles of positive (negative) log returns and the corresponding
confidence intervals.

Table 4. Empirical quantiles of positive log returns of BMW, 2019, and the estimated
confidence intervals.

Quantiles·103 10% 20% 30% 40% 50% 60% 70% 80% 90%

Lower CI 0.416 0.783 1.154 1.548 1.982 2.509 3.164 4.013 5.679
Estimate 0.452 0.825 1.232 1.64 2.085 2.611 3.289 4.183 6.383
Upper CI 0.537 0.946 1.33 1.747 2.223 2.79 3.498 4.493 6.657

Table 5. Empirical quantiles of absolute values of negative log returns of BMW, 2019, and the
estimated confidence intervals.

Quantiles ·103 10% 20% 30% 40% 50% 60% 70% 80% 90%

Lower CI 0.417 0.778 1.134 1.562 2.021 2.583 3.262 4.191 5.884
Estimate 0.431 0.892 1.231 1.654 2.14 2.73 3.501 4.619 6.62
Upper CI 0.554 0.962 1.393 1.829 2.321 2.914 3.684 4.784 6.905
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6. Conclusions

This paper contributes to the existing literature in the following respects.

1. We model the heavy-tailed impurity via the mixture distribution with varying param-
eters and (following the ideas from [8,9]) consider the resulting model as a triangular
array. The notion of heavy-tailed impurity is not new, but all previously known
probabilistic results are concentrated only on the classical limit laws, see [2,16]. In this
paper, we establish the limit laws for the maximum in these models.

2. The paper delivers an example of the triangular array such that its row-wise maximum
has (under proper normalisation) 6 different distributions, depending on the rates
of the varying parameters. To the best of our knowledge, all previous articles on the
extreme value analysis for triangular arrays deal with the convergence to the limit
law having twice differentiable cdf ([5,7]) or closely related to the classical extreme
value distributions ([6]), while some limits in our examples are discontinuous and
very different from the classical laws.

3. We show the difference between various types of truncation for the regularly varying
distributions used for modelling the impurity. Our conditions (17)–(18) are close
to soft and hard truncation regimes introduced in [9], leading to similar (but not
completely the same) outcomes for our mixture model as for the model considered
in [9]. Moreover, unlike previous papers, we study in details the case of intermediate
truncation regime (19).

4. For practical purposes we describe the four-step scheme for the application of this
model to the asset price modelling. This approach can be considered as a possible
development of the idea that the distribution of stock returns is in some sense between
exponential and power law. A comprehensive discussion of this idea can be found
in [11].
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Appendix A. Classical EVA for the Mixture Model

Let us analyse the asymptotic behaviour of maxima of a sequence of i.i.d. random vari-
ables X1, X2, . . . , Xn, n ≥ 2, with cumulative distribution function (3). That is, we consider

lim
n→∞

P
{

max
i=1,...,n

Xi ≤ vn(x)
}

,

where vn(x) = snx + cn is some non-decreasing normalising sequence unbounded in n
and x. Since Xi, i = 1, . . . , n are independent,
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lim
n→∞

P
{

max
i=1,...,n

Xi ≤ vn(x)
}

= lim
n→∞

(P{X1 ≤ vn(x)})n

= lim
n→∞

(
(1− ε)(1− e−λvτ

n(x)) + ε(1− v−α
n (x)L(vn(x)))

)n

= exp
{
− lim

n→∞
n
(
(1− ε)e−λvτ

n(x) + εv−α
n (x)L(vn(x))

)}
= exp

{
− lim

n→∞
nεv−α

n (x)L(vn(x))

×
(

1− ε

ε
· vα

n(x)
eλ(vn(x))τ L(vn(x))

+ 1
)}

.

Since vn(x)→ ∞ as n→ ∞, lim
n→∞

vα
n(x)

(
eλ(vn(x))τ

L(vn(x))
)−1

= 0, and therefore

lim
n→∞

P
{

max
i=1,...,n

Xi ≤ vn(x)
}

= exp
{
− lim

n→∞
nεv−α

n (x)L(vn(x))
}

.

Thus, the limit distribution for maxima is determined by the second component, leading to
the Fréchet limit. In fact, choosing

cn = 0, sn = (1/F̄2)
←(n),

we get

lim
n→∞

P
{

max
i=1,...,n

Xi ≤ vn(x)
}

= exp
{
−εx−α

}
,

that is the Fréchet-type distribution.

Appendix B. Proof of Theorem 1

For given sequences sn, cn, the left-hand side of (11) can be represented as

lim
n→∞

(P{X1 ≤ vn(x)})kn = lim
n→∞

((
1− εn

)(
1− e−λvτ

n(x))+ εn
(
1− v−α

n (x)L(vn(x))
))kn

= lim
n→∞

(1− e−λvτ
n(x) − εnv−α

n (x)L(vn(x)))kn

= exp
{
− lim

n→∞

(
kne−λvτ

n(x) + knεnv−α
n (x)L(vn(x))

)}
, (A1)

where vn(x) = snx + cn. Our aim is to find the sequences sn, cn guaranteeing that
this limit (denoted by H(x)) is non-degenerate. We divide the range of possible rates of
convergence of kn, εn into several essentially different cases.

(i) Let knεn → c ∈ [0, ∞). As v−α
n (x)L(vn(x)) → 0 as n → ∞ by the slow variation of

L(·) (see (6)), we get

H(x) = exp
{
− lim

n→∞
kne−λvτ

n(x)
}

,

and therefore we deal with the extreme value analysis of the Weibull law. Since
F̄1(x) = e−λxτ

, λ > 0, τ ≥ 1 is a von Mises function, i.e., F̄1(x) can be represented as

F̄1(x) = c̆ · exp

−
x∫

0

1
a(u)

du

, 0 < x < ∞,
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with c̆ = 1 and a(u) = (λτ)−1u1−τ , x > 0, we get that the limit distribution is Gumbel
under the choice vn(x) = snx + cn with

cn := F←1

(
1− 1

kn

)
=

(
log kn

λ

) 1
τ

sn := a(cn) = (λτ)−1
(

log kn

λ

) 1
τ−1

.

(ii) Let knεn → ∞ as n→ ∞. This case is divided into several subcases, depending on the
relation between sn and cn.

1. First, let us consider sn & |cn|. Then

vn(x) = snx + cn = snx
(

1 +
cn

snx

)
= snx(1 + ō(1))

as n→ ∞. Therefore,

H(x) = exp
{
− lim

n→∞

(
kne−λsτ

nxτ
+ knεns−α

n x−αL(sn)
)}

,

as L(snx) ∼ L(sn) for all fixed x ∈ R as n→ ∞. Clearly, since cn is not present in the
above limit, one can take cn = 0. As for sn, we have

s−α
n L(sn) =

1
knεn

, (A2)

i.e., sn := F←2
(
1− (knεn)−1). We have

lim
n→∞

kne−λsτ
nxτ

= lim
n→∞

exp
{
−sτ

n

(
λxτ − log kn

sτ
n

)}
,

and therefore the limit distribution in (A1) is non-degenerate (and is actually the
Fréchet distribution) if and only if

lim
n→∞

log kn

sτ
n

= 0. (A3)

It would be a worth mentioning that sn depends on the function L via the equality (A2).
Let us recall that L(·) is slowly varying and therefore

L(sn) & s−ε
n ∀ε > 0.

Thus, from (A2) we get

1
knεn

= s−α
n L(sn) & s−α−ε

n ∀ε > 0,

and
sn & (knεn)

1
(α+ε) ∀ε > 0.

Now, since
log kn

sτ
n

.
log kn

(knεn)
τ

(α+ε)

,
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we get that for the condition (A3) to be fulfilled, it is sufficient that the right-hand side
tends to zero as n→ ∞, i.e.,

lim
n→∞

log kn

(knεn)
τ

(α+ε)

= 0,

or, equivalently,

∃β ∈ (0,
τ

α
) : lim

n→∞

log kn

(knεn)β
= 0. (A4)

We conclude that the condition (A4) yields (A3), and in this case the limit distribution
is Fréchet.

2. Now, let sn > 0 and cn ∈ R be such that sn . |cn|. In this case

vn(x) = snx + cn = cn

(
sn

cn
x + 1

)
= cn(1 + ō(1))

as n→ ∞. Thus, the limit in (A1) takes the form

H(x) = exp
{
− lim

n→∞

(
kne−λ(snx+cn)τ

+ knεnc−α
n L(cn)

)}
.

Let the norming constants cn and sn be chosen in the form (12). Then H(x) is the cdf
of the Gumbel law if

lim
n→∞

knεnL
(
(log kn)

1
τ

)
(log kn)

α
τ

= 0. (A5)

As previously, we would like to replace (A5) with another condition without L(·).
Once more, we would like to recall that by slow variation of L(·)

L(x) . xε ∀ε > 0.

From this we conclude that

knεnL
(
(log kn)

1
τ

)
(log kn)

α
τ

.
knεn

(log kn)
(α−ε)

τ

and the fact that the right-hand side tends to zero as n→ ∞ will imply (A5). In other
words, we obtain the Gumbel limit if

lim
n→∞

knεn

(log kn)
(α−ε)

τ

= lim
n→∞

(
(knεn)

τ
(α−ε)

log kn

) (α−ε)
τ

= 0,

or, equivalently, if

∃β >
τ

α
: lim

n→∞

log kn

(knεn)β
= ∞. (A6)

3. The last possible situation is when neither (A4), nor (A6) is satisfied. Clearly, this is
the case only when knεn∼c · (log kn)

α
τ for some c > 0. Not surprisingly, it turns out

that the final answer now depends on the asymptotic behaviour of L(·).
(a) Let us first consider L(·) the case L(u)→ ∞ as u→ ∞. Then one can take cn = 0 and

find sn as the solution to the equation

s−α
n L(sn) =

1
knεn
∼ 1

c · (log kn)
α
τ

.
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The limit for the second component in (A1) coincides with the corresponding one in
item 2(i) (and leads to the cdf of the Fréchet law), while for the first component we get

lim
n→∞

kne−λsτ
nxτ

= lim
n→∞

kn exp

{
−λ

(
s−α

n L(sn)

L(sn)

)− τ
α

xτ

}

= lim
n→∞

k1−λ(cL(sn))
τ
α xτ

n . (A7)

The value of the latter limit is zero for all fixed x > 0 since L(sn)→ ∞ as n→ ∞, and
therefore the limit distribution is Fréchet.

(b) Now, let L(·) be such that L(u)→ c̃ > 0 as u→ ∞. Then the same choice of norming
constants as when L(u)→ ∞ as u→ ∞ leads to the same limits as before. However,
the value of (A7) now depends on x, namely,

lim
n→∞

k1−λ(cL(sn))
τ
α xτ

n =


∞, x ∈ (0, λ−

1
τ (cc̃)−

1
α ),

1, x = λ−
1
τ (cc̃)−

1
α ,

0, x > λ−
1
τ (cc̃)−

1
α .

Thus, in this case the limit distribution is equal to

lim
n→∞

P
{

max
j=1,...,kn

Xnj ≤ vn(x)
}

=


0, x < λ−

1
τ (cc̃)−

1
α ,

e−(1+x−α), x = λ−
1
τ (cc̃)−

1
α ,

e−x−α
, x > λ−

1
τ (cc̃)−

1
α .

An interesting point is that we get the limit distribution that is not from the extreme
value family, having an atom at x = λ−

1
τ (cc̃)−

1
α .

(c) Finally, let L(·) be such that L(u)→ 0 as u→ ∞. Then the normalising sequence can
be chosen as in item 1, and for the first component we get

lim
n→∞

kne−λvτ
n(x) = e−x ∀x ∈ R,

while for the second one

lim
n→∞

knεnL(cn)

cα
n

= lim
n→∞

c · (log kn)
α
τ L
(
(log kn)

1
τ

)
(log kn)

α
τ

= lim
n→∞

c · L
(
(log kn)

1
τ

)
= 0.

Therefore, in this case the limit distribution is again Gumbel.

Appendix C. Limit Law for the Truncated RV Distribution

Lemma A1. Let F̃2(x; α, M) be the upper-truncated regularly varying distribution defined as (15).
Then F̃2 is in the maximum domain of attraction of the max-Weibull law Ψτ having the distribu-
tion function

Ψτ = e−(−x)τ I{x ≤ 0}+ I{x > 0}

with τ = 1.

Proof. As it is known, F ∈ MDA(Ψτ) for some τ > 0 if and only if x∗ = sup{x ∈ R : F(x) < 1}
< ∞ and F

(
x∗ − 1

x

)
∈ RV−τ, see, e.g., [15]. Thus, F̃2 ∈ MDA(Ψτ) for some τ > 0 if and only if

F̃2

(
M− 1

x

)
= x−τ L̃(x), τ > 0,
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for some slowly varying function L̃(·), or, equivalently, iff

G(x) := xτ F̃2

(
M− 1

x

)
∈ RV0, τ > 0.

Therefore, to prove this statement of this lemma , we need to show that limx→∞(G(tx)/G(x)) =
1 for any t > 0, that is,

lim
x→∞

G(tx)
G(x)

= lim
x→∞

tτ
F̃2

(
M− 1

tx

)
F̃2

(
M− 1

x

)
= lim

x→∞
tτ

(
M− 1

tx

)−α
L
(

M− 1
tx

)
−M−αL(M)(

M− 1
x

)−α
L
(

M− 1
x

)
−M−αL(M)

= 1 ∀t > 0. (A8)

First,

lim
x→∞

(
M− 1

x

)−α

= lim
x→∞

M−α

(
1− 1

Mx

)−α

= M−α + αM−α−1 · 1
x
(1 + ō(1)).

Then, assuming that L(·) is continuous and differentiable,

lim
x→∞

L
(

M− 1
x

)
= L(M)− L′(M) · 1

x
(1 + ō(1)).

Therefore,

lim
x→∞

tτ

(
M− 1

tx

)−α
L
(

M− 1
tx

)
−M−αL(M)(

M− 1
x

)−α
L
(

M− 1
x

)
−M−αL(M)

= lim
x→∞

tτ

(
M−α + αM−α−1

tx (1 + ō(1))
)(

L(M)− L′(M)
tx (1 + ō(1))

)
−M−αL(M)(

M−α + αM−α−1

x (1 + ō(1))
)(

L(M)− L′(M)
x (1 + ō(1))

)
−M−αL(M)

= lim
x→∞

tτ

(
M−α L′(M)

tx + αM−α−1

tx L(M)
)
(1 + ō(1))(

M−α L′(M)
x + αM−α−1

x L(M)
)
(1 + ō(1))

.

Clearly, the latter limit is equal to one if τ = 1, meaning that F̃2 ∈ MDA(Ψ1).

Appendix D. Proof of Theorem 2

Step 1. Several simple cases. As in the proof of Theorem 1, we use the notation vn(x) =
snx + cn. We have

H(x) = lim
n→∞

(
(1− εn)(1− e−λvτ

n(x))

+εn

(
1− v−α

n (x)L(vn(x))
1−M−α

n L(Mn)
I{vn(x)∈[m,Mn ]} + I{vn(x)>Mn}

))kn

= lim
n→∞

(
1− (1− εn)e−λvτ

n(x)

+εn

(
M−α

n L(Mn)− v−α
n (x)L(vn(x))

1−M−α
n L(Mn)

I{vn(x)∈[m,Mn ]} − I{vn(x)<m}

))kn

,
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where we use that I{vn(x)>Mn} = 1− I{vn(x)∈[m,Mn ]} − I{vn(x)<m}. Since εn → 0, Mn → ∞
and M−α

n L(Mn)→ 0 as n→ ∞ by slow variation of L(·), we get

H(x) = lim
n→∞

(
1− e−λvτ

n(x)

+εn((M−α
n L(Mn)− v−α

n (x)L(vn(x)))I{vn(x)∈[m,Mn ]} − I{vn(x)<m})
)kn

= exp
{
− lim

n→∞

(
kne−λvτ

n(x)

−knεn(M−α
n L(Mn)− v−α

n (x)L(vn(x)))I{vn(x)∈[m,Mn ]} + knεnI{vn(x)<m}

)}
.

(i) Let knεn → 0 as n → ∞. By slow variation of L(·), v−α
n (x)L(vn(x)) → 0 as n →

∞, therefore, the whole second component disappears. We deal with maxima of
a Weibull random variable and obtain the Gumbel limit under the normalisation
vn(x) = snx + cn with sn, cn in the form (A3).

(ii) Let knεn = const. By a similar argument as in the previous item,

H(x) = lim
n→∞

(
1− 1

kn
[kne−λvτ

n(x) + knεnI{vn(x)<m}]

)kn

.

Under the same choice of normalising sequences, we get

vn(x) =
x

λτ

(
log kn

λ

) 1
τ−1

+

(
log kn

λ

) 1
τ

=

(
log kn

λ

) 1
τ
(

x
τ log kn

+ 1
)
→ ∞

for all fixed x ∈ R as n→ ∞. Therefore, the limit distribution is again Gumbel.
(iii) Let knεn → ∞ as n→ ∞. The further analysis depends on the asymptotic properties

of Mn. If (17) holds, the proof is based on the observation that

M−α
n L(Mn) . M−α+ε

n ∀ε > 0,

and therefore,
knεn M−α

n L(Mn) . knεn M−α+ε
n ∀ε > 0.

From (17) it follow that for any ε ∈ (0, α− 1
γ ] the right-hand side tends to zero as

n → ∞, and therefore knεn M−α
n L(Mn) → 0 as n → ∞. The rest of the proof in this

situation follows the same lines as the proof of Theorem 1. Other cases are more
complicated, and we divide the further proof into several steps.

Step 2. Case (18). Recalling again that L(·) ∈ RV0, we get that

knεn M−α
n L(Mn) & knεn M−α−ε

n ∀ε > 0.

Therefore, for any ε ∈ (0, 1
γ − α], knεn M−α

n L(Mn)→ ∞ as n→ ∞. Now, assume that vn(x)
is such that vn(x) ≤ Mn for all x ∈ R and n large enough. Then

lim
x→∞

H(x)

= exp
{
− lim

n→∞
lim

x→∞

(
kne−λvτ

n(x) − knεn(M−α
n L(Mn)− v−α

n (x)L(vn(x)))I{vn(x)∈[m,Mn ]}

+ knεnI{vn(x)<m}

)}
= e

lim
n→∞

knεn M−α
n L(Mn)

= ∞,

and therefore the limit distribution does not exist. We conclude that there is a non-
degenerate limit distribution only if vn(x) > Mn for all x ∈ R and n large enough. In
this case,

kne−λvτ
n(x) = − log(H(x))(1 + ō(1)).
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The condition vn(x) > Mn leads to the inequality

kn

eλMτ
n
> − log(H(x))(1 + ō(1)) (A9)

for n sufficiently large. Finally, as − log(H(x)) takes only non-negative values, and the
sequences kn, Mn tend to infinity as n→ ∞, we conclude that the necessary condition for
the existence of non-degenerate limit distribution is

Mτ
n . log kn. (A10)

1. Now let us consider the case when (8) holds. We have

Mτ
n

log kn
.

Mτ
n

(knεn)β
.
(

Mn

(knεn)γ

)τ

,

since β > τ
α > τγ. The right-hand side tends to zero as n → ∞ and therefore (A10)

holds. Choosing sn and cn as in (12), we get that vn(x) > Mn for all x ∈ R, and
therefore the limit distribution is Gumbel.

2. Now assume that (9) holds. In this case, (A10) can be violated. In fact,

Mτ
n

log kn
=

(
Mn

(log kn)
1
τ

)τ

.

(
(knεn)γ

(log kn)
1
τ

)τ

=
(knεn)τγ

log kn

with some γ ∈ (0, 1
α ). From (18), it follows that the right-hand side is infinite if

τγ ≥ β, and has an unknown asymptotic behaviour otherwise. The lower bound is
given by

Mτ
n

log kn
&

Mτ
n

(knεn)β
=

(
Mn

(knεn)
β
τ

)τ

,

where for β ≥ τγ, the right-hand side tends to zero as n → ∞, while otherwise
the asymptotic behaviour is again unknown. In this case, we conclude that if Mn is
such that (A10) holds, the non-degenerate limit distribution exists and is in fact the
Gumbel distribution.

3. Finally, in the case (10),

Mτ
n

log kn
∼
(

c
1
α Mn

(knεn)
1
α

)τ

.

(
c

1
α Mn

(knεn)γ

)τ

,

because γ ∈ (0, 1
α ). Since by (A10) there exists γ ∈ (0, 1

α ) such that the right-hand
side tends to zero as n → ∞, we get under proper normalisation the Gumbel limit
distribution.

Step 3. Case (19).

1. If (8) is satisfied, it is possible to obtain the Gumbel limit under the same choice of
normalising sequence (12). Indeed, in this case

Mτ
n

log kn
∼ c̆τ(knεn)

τ
α

log kn
.

(knεn)β

log kn
,

because β > τ
α . Therefore, (A10) follows from (8), and we obtain the Gumbel distribu-

tion as a limit.
2. If (9) holds, then the result turns out to depend on the asymptotic behaviour of L(·).

Let us recall that knεn M−α
n is asymptotically equal to a constant.
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(a) If L(u)→ ∞ as u→ ∞, we have that knεn M−α
n L(Mn)→ ∞ as n→ ∞. Thus, as

was argued above, the non-degerated limit H(x) exists if and only if (A10) holds
for all x and n large enough. However, for any β ∈ (0, τ

α ),

Mτ
n

log kn
∼ c̆τ(knεn)

τ
α

log kn
&

(knεn)β

log kn
,

and therefore the assumption (A10) is violated due to (9). Thus, in this case there
exists no non-degenerate limit distribution.

(b) Now consider the case L(u)→ c̃ for some c̃ > 0 as u→ ∞. Let us fix sn, cn in the

form (13). The inequality vn(x) = snx > Mn is equivalent to x > c̆c̃−
1
α . Under

this normalisation, we have

lim
n→∞

kne−λvτ
n(x) = 0,

and therefore

H(x) =

{
ec̃c̆−α−x−α

, x ∈ (0, c̆c̃−
1
α ],

1, x > c̆c̃−
1
α .

(c) If L(u) → 0 as u → ∞, one can take the norming constants as in the previous
item and obtain the Fréchet limit distribution since knεn M−α

n L(Mn) → 0 and
knεns−α

n L(sn)x−α → x−α as n → ∞. The last thing which is crucial here is to
check that vn(x) ≤ Mn for all x ∈ R. This inequality follows from

snx = (knεn)
1
α L

1
α (sn)x∼c̆−1MnL

1
α (sn)x . Mn.

3. Finally, let us consider the case (10). As in the previous situations, the limit distribution
depends on the asymptotic behaviour of L(·).
(a) Let L(u) → ∞ as u → ∞. Since then knεn M−α

n L(Mn) → ∞ as n → ∞, we
conclude that the non-degenerate limit exists only if (A9) holds. In the considered
case, (A9) is equivalent to

λ1/τ c̆c1/α < 1

The normalising sequence (12) again leads to the Gumbel limit distribution.
(b) If L(u)→ c̃ for some c̃ > 0 as u→ ∞, we have that knεn M−α

n L(Mn)∼c̃c̆−α.

• If λ
1
τ c̆c

1
α < 1, a linear normalising sequence as in (12) leads to the Gumbel limit,

since vn(x) > Mn for all x ∈ R and n large enough; see the previous item.
• If λ

1
τ c̆c

1
α > 1, the choice (13) of normalising constants yields snx > Mn for all

x > c̆c̃−
1
α , while

lim
n→∞

kne−λsτ
nxτ

= k1−(cc̃)
τ
α xτ

n =


∞, x ∈ (0, λ−

1
τ (cc̃)−

1
α ),

1, x = λ−
1
τ (cc̃)−

1
α ,

0, x > λ−
1
τ (cc̃)−

1
α

and
lim

n→∞
knεns−α

n L(sn)x−α = x−α.

Therefore, we get

H(x) =


0, x ∈ (0, λ−

1
τ (cc̃)−

1
α ),

exp
{
−1 + c̃c̆−α − λ

α
τ cc̃
}

, x = λ−
1
τ (cc̃)−

1
α ,

exp{c̃c̆−α − x−α}, x ∈ (λ−
1
τ (cc̃)−

1
α , c̆c̃−

1
α ],

1, x > c̆c̃−
1
α .
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As we see, the limit distribution does not belong to the extreme value family,
and has an atom at x = λ−

1
τ (cc̃)−

1
α .

• If λ
1
τ c̆c

1
α = 1, the choice (13) leads to the discrete limit distribution having a

unique atom at x = c̆c̃−
1
α with probability mass 1/e.

(c) Lastly, let L(·) be such that L(u)→ 0 as u→ ∞. Then the Gumbel limit can be
obtained under the normalisation (12) since knεn M−α

n L(Mn)→ 0 as n→ ∞, see
item (i,c) in Theorem 1. This observation completes the proof.

References
1. van den Berg, J.; Nolin, P. Near-critical percolation with heavy-tailed impurities, forest fires and frozen percolation. arXiv 2018,

arXiv:1810.08181.
2. Grabchak, M.; Molchanov, S. Limit theorems and phase transitions for two models of summation of independent identically

distributed random variables with a parameter. Theory Prob. Appl. 2015, 59, 222–243. [CrossRef]
3. Petrov, V. Sums of Independent Random Variables; Springer Science & Business Media: Norwell, MA, USA, 2012; Volume 82.
4. Meerschaert, M.; Scheffler, H.-P. Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice; John

Wiley & Sons: New York, NY, USA, 2001; Volume 321.
5. Freitas, A.; Hüsler, J. Condition for the convergence of maxima of random triangular arrays. Extremes 2003, 6, 381–394. [CrossRef]
6. Anderson, C.; Coles, S.; Hüsler, J. Maxima of Poisson-like variables and related triangular arrays. Ann. Appl. Probab. 1997, 7, 953–971.

[CrossRef]
7. Dkengne, P.S.; Eckert, N.; Naveau, P. A limiting distribution for maxima of discrete stationary triangular arrays with an

application to risk due to avalanches. Extremes 2016, 19, 25–40. [CrossRef]
8. Beirlant, J.; Fraga, A.I.; Gomes, I. Tail fitting for truncated and non-truncated Pareto-type distributions. Extremes 2016, 19, 429–462.

[CrossRef]
9. Chakrabarty, A.; Samorodnitsky, G. Understanding heavy tails in a bounded world or, is a truncated heavy tail heavy or not?

Stoch. Model. 2012, 28, 109–143. [CrossRef]
10. Laherrere, J.; Sornette, D. Stretched exponential distributions in nature and economy: “Fat tails” with characteristic scales. Eur.

Phys. J. -Condens. Matter Complex Syst. 1998, 2, 525–539. [CrossRef]
11. Malevergne, Y.; Pisarenko, V.; Sornette, D. Empirical distributions of stock returns: Between the stretched exponential and the

power law? Quant. Financ. 2005, 5, 379–401. [CrossRef]
12. Bingham, N.H.; Goldie, C.M.; Teugels, J.L. Regular Variation; Cambridge University Press: Cambridge, UK, 1987.
13. Resnick, S. Extreme Values, Regular Variation and Point Processes; Springer: New York, NY, USA, 2013.
14. Mikosch, T. Regular Variation, Subexponentiality and Their Applications in Probability Theory; Report Eurandom; Eurandom:

Eindhoven, The Netherlands, 1999; Volume 99013.
15. Embrechts, P.; Klüppelberg, C.; Mikosch, T. Modelling Extremal Events for Insurance and Finance; Springer: New York, NY, USA, 1997.
16. Panov, V. Limit theorems for sums of random variables with mixture distribution. Stat. Probab. Lett. 2017, 129, 379–386. [CrossRef]
17. Paulauskas, V. A note on linear processes with tapered innovations. Lith. Math. J. 2020, 60, 64–79. [CrossRef]
18. Mandelbrot, B. The variation of certain speculative prices. J. Bus. 1963, 1, 223. [CrossRef]
19. Cont, R. Empirical properties of asset returns: Stylized facts and statistical issues. Quant. Financ. 2001, 1, 223–236. [CrossRef]
20. Aban, I.B.; Meerschaert, M.M.; Panorska, A.K. Parameter estimation for the truncated Pareto distribution. J. Am. Stat. Assoc.

2006, 101, 270–277. [CrossRef]
21. Suhov, Y.; Kelbert, M. Probability and Statistics by Example: Volume I. Basic Probability and Statistics; Cambridge University Press:

Cambridge, UK, 2005.

http://doi.org/10.1137/S0040585X97T987090
http://dx.doi.org/10.1007/s10687-004-4726-y
http://dx.doi.org/10.1214/aoap/1043862420
http://dx.doi.org/10.1007/s10687-015-0234-0
http://dx.doi.org/10.1007/s10687-016-0247-3
http://dx.doi.org/10.1080/15326349.2012.646551
http://dx.doi.org/10.1007/s100510050276
http://dx.doi.org/10.1080/14697680500151343
http://dx.doi.org/10.1016/j.spl.2017.06.017
http://dx.doi.org/10.1007/s10986-019-09445-w
http://dx.doi.org/10.1086/294632
http://dx.doi.org/10.1080/713665670
http://dx.doi.org/10.1198/016214505000000411

	Introduction
	Weibull-RV Mixture
	Weibull-Truncated RV Mixture
	Simulation Study
	Modelling the Log-Returns of BMW Shares
	Conclusions
	Classical EVA for the Mixture Model
	Proof of Theorem 1
	Limit Law for the Truncated RV Distribution
	Proof of Theorem 2
	References

