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Abstract: In a series of three articles, spline approximation is presented from a geodetic point of
view. In part 1, an introduction to spline approximation of 2D curves was given and the basic
methodology of spline approximation was demonstrated using splines constructed from ordinary
polynomials. In this article (part 2), the notion of B-spline is explained by means of the transition from
a representation of a polynomial in the monomial basis (ordinary polynomial) to the Lagrangian form,
and from it to the Bernstein form, which finally yields the B-spline representation. Moreover, the
direct relation between the B-spline parameters and the parameters of a polynomial in the monomial
basis is derived. The numerical stability of the spline approximation approaches discussed in part 1
and in this paper, as well as the potential of splines in deformation detection, will be investigated on
numerical examples in the forthcoming part 3.

Keywords: spline; B-spline; polynomial; monomial; basis change; Lagrange; Bernstein; interpolation;
approximation; least squares adjustment

1. Introduction

In engineering geodesy, the use of point clouds derived from areal measurement
methods, such as terrestrial laser scanning or photogrammetry, results in the necessity
to approximate them by a curve or surface that can be described using a continuous
mathematical function, often by means of splines. In part 1 of a three-part series of articles,
presented by Ezhov et al. [1], the basic methodology of spline approximation was shown
by means of ordinary cubic polynomials concatenated under constraints for continuity,
smoothness, and continuous curvature. The resulting linear adjustment problem can be
solved within the Gauss-Markov model with constraints for the unknowns.

However, a starting point for advanced considerations in engineering geodesy are
almost always the formulas for B-spline curves and B-spline surfaces given in the textbook
by Piegl and Tiller [2] (pp. 81 and 100), where the functional values of the B-spline basis
functions are recursively computed according to the formulas by de Boor [3] and Cox [4].
As these formulas have a very complex mathematical derivation, but are still very easy to
use, they are mostly used like a given recipe. Attempts to explain B-splines in an illustrative
way often only include explanations of the application of the de Boor’s algorithm, as, for
example, in the contribution by Lowther and Shene [5]. A derivation of the B-spline with
the help of quadratic Bézier spline curves was presented by Berkhahn [6] (p. 73 ff.).

In this paper, we take the spline representation presented by Ezhov et al. [1] as a
starting point to derive the B-spline form by means of basis changes. This is to show
the user that the de Boor’s algorithm can be interpreted as another, very elegant and
numerically stable, representation of the simple and intuitive representation based on
ordinary polynomials.

Mathematics 2021, 9, 2198. https://doi.org/10.3390/math9182198 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7241-0656
https://orcid.org/0000-0002-0744-577X
https://doi.org/10.3390/math9182198
https://doi.org/10.3390/math9182198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9182198
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9182198?type=check_update&version=2


Mathematics 2021, 9, 2198 2 of 24

A brief overview of the historical development of the B-spline can be found, for
example, in the textbook by Farin [7] (p. 119). He explains that the forerunner of the
B-spline first appeared in a publication on approximation theory by the mathematician
Lobatschewsky [8]. It was constructed as a convolution of certain probability distributions.
However, at that time the term “spline” has not been introduced yet. Subsequently, in
1946, Schoenberg used B-splines in his seminal publications [9,10] for data approximation.
It is commonly accepted that, with these articles, the modern representation of spline
approximation began and the term “spline” was used for the first time, see the historical
notes in the textbook by Schumaker [11] (p. 10). Further on, many authors dealt with the
utilization and the development of the B-splines. Farin [7] (p. 119) points out that one of
the most important developments in this theory was the introduction of the recurrence
relations, discovered by de Boor [3], Cox [4], and Mansfield. The contribution of Mansfield
to this development is mentioned by de Boor in [3]. However, the recurrence relation had
already appeared in contributions by Popoviciu and Chakalov in the 1930s, see the article
by de Boor and Pinkus [12] and the literature cited therein.

B-splines were later fully exploited in computer graphics. Consequently, most papers
about B-splines were published in this field, see for example, the contributions by the
authors Piegl and Tiller [2], Szilvasi-Nagy [13], Farin [7], and Zheng et al. [14]. However,
there are several publications where B-splines were used for statistical data analysis, e.g.,
the contributions by Wold [15] or Anderson and Turner [16].

Applications of (B)-splines in geodesy can be traced back to 1975, when Sünkel began
using them for various problems. In [17], bicubic spline functions were used for the
reconstruction of functions from discrete data. In [18], the representation of geodetic
integral formulas by bicubic spline functions was shown using splines constructed from
ordinary cubic polynomials, see [18] (p. 10 ff.), similar to the representation used later
by Ezhov et al. [1]. In [19], the local interpolation of gravity data by spline functions was
derived, and in [20] (p. 18 ff.) B-splines were used for smooth surface representation. As
references for the B-spline functions, the publications of Schoenberg [21], Schumaker [22],
and Späth [23] are listed by Sünkel [20].

On the basis of B-splines on the line, Jekeli [24] (p. 7 ff.) showed the use of spherical
B-splines for representations of functions on a sphere for geopotential modeling. Mautz
et al. [25] used B-splines to develop a representation of global ionosphere maps based on
B-spline wavelets. The local improvement of the International Reference Ionosphere (IRI)
by means of an N-dimensional B-spline surface was developed by Koch and Schmidt [26].

The application of (B)-splines in engineering geodesy can be traced back to 1985, when
Dzapo et al. [27] used cubic splines for the determination of the lengths of railroad tracks. A
recent application of B-spline curves and B-spline surfaces is the approximation of 3D point
cloud data, as shown e.g., by Bureick et al. [28]. Kermarrec et al. [29] applied hierarchical
B-splines for the approximation of 3D point cloud data obtained from measurements
with a terrestrial laser scanner. Furthermore, B-spline models play an important role in
spatio-temporal deformation analysis as shown by Harmening [30].

The main goal of this paper is to present an alternative derivation of the B-spline
function to the purely mathematical derivation presented by Schoenberg [9] and the
recursion formulas for the B-spline function developed by de Boor [3]. This derivation
is based on the transition from the representation of a polynomial in the monomial basis
(ordinary polynomial) to the Lagrangian form and, from there, to the Bernstein form,
which finally results in the B-spline representation. In all investigations, univariate splines
are used in form of a spline function y = f (x). For the derivation of the formulas, we
first consider the case of interpolation. The developed formulas are then used for spline
approximation using least squares adjustment.

The general interpolation problem is, to find for n + 1 given data points (x0, y0),
(x1, y1), . . . , (xn, yn), with x0 < x1 < . . . < xn a function f : R→ R in such a way that the
interpolation condition

f (xi) = yi, i = 0, 1, . . . , n (1)
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is fulfilled. The choice of a suitable function f depends on the properties of the data, e.g.,
its smoothness or periodicity. Furthermore, the choice of f is influenced by computa-
tional aspects, i.e., the computational effort for the determination of the coefficients and
numerical stability of the resulting equation system. Functions that are commonly used for
interpolation are:

- Polynomials;
- Trigonometric functions;
- Exponential functions;
- Logarithmic functions;
- Rational functions.

Ezhov et al. [1] elaborated a spline approximation using piecewise ordinary cubic poly-
nomials. In the following, we will take a closer look at the interpolation using polynomials
in different representations to bridge the gap to the B-spline representation.

In general, the set of functions for interpolating given data points consists of coeffi-
cients ai and so-called basis functions φ0(x), . . . , φn(x) and the interpolating function is
defined as a linear combination

f (x) =
n

∑
i=0

aiφi(x) (2)

of these basis functions. Considering the interpolation condition (1), we obtain

f (xi) =
n

∑
i=0

aiφi(xi) = yi, i = 0, 1, . . . , n. (3)

The simplest and most common type of interpolation uses polynomials. These poly-
nomials can be represented in different ways, as shown by Gander [31], but all of them will
give the same result for the interpolation.

To avoid excessive formula derivations and to illustrate the geometric relationships in
the formula derivations, quadratic splines that consist of piecewise parabola segments
are considered in the following. The generalization to splines of a higher degree is
relatively straightforward.

Using the example of a parabola, we start with the representation of a polynomial in
the monomial basis (ordinary polynomial) and perform the following transitions:

(i) From ordinary polynomial to Lagrangian form (Section 2);
(ii) From Lagrangian form to Bernstein form (Section 3);
(iii) From Bernstein form to B-spline representation (Section 4).

The reason for the representation of a polynomial in a different basis than the well-
known monomial basis applied by Ezhov et al. [1] often lies in the fact that for the com-
putation of the polynomial coefficients equation systems result, whose solution requires
less computational effort and is numerically more stable. However, it is important to
understand that the change of the basis functions still results in the same interpolating
polynomial for the given data, and only the representation of the polynomial changes. After
the derivation of the B-spline representation, this form is used for spline approximation
using least squares adjustment (Section 5). The interesting fact that the determined spline
parameters can be used for a transition “backwards” from B-spline to ordinary polynomial
is shown in Appendix A. The transition “forwards” from ordinary polynomial to B-spline
is shown in Appendix B.

2. Transition from Ordinary Polynomial to Lagrangian Form

With the monomial basis functions

φi(x) = xi, i = 0, 1, . . . , n, (4)
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we obtain for the parabola with n = 2 from (3)

P2(x) = a0 + a1x + a2x2. (5)

A polynomial in the monomial basis is often referred to as standard form or ordinary
polynomial. Arranging the monomials in a vector m(x) = [1, x, x2]

T and the coefficients in
a vector a = [a0, a1, a2]

T, we obtain

P2(x) = aTm(x). (6)

A visualization of the monomial functions for the parabola is shown in Figure 1.
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Considering the interpolation condition (1), the coefficients can be determined from
the solution of the linear equation system

y = Va, (7)

with y = [y0, y1, y2]
T and the Vandermonde matrix

V =

 1 x0 x2
0

1 x1 x2
1

1 x2 x2
2

, (8)

cf. the textbook by Farin [7] (p. 100). Using a numerical example with three points that
define a parabola from the handbook by Bronshtein et al. [32] (p. 918), see Table 1, the
determination of the coefficients will be demonstrated.

Table 1. Numerical example for interpolating a parabola.

i xi yi

0 0 1
1 1 3
2 3 2

From Equation (7), we obtain for this numerical example 1
3
2

 =

 1 0 0
1 1 1
1 3 9

 a0
a1
a2

. (9)
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This system of equations can be solved with, for example, the Gaussian elimination
method and the numerical result is a0 = 1, a1 = 17

6 , a2 = − 5
6 . Thus, the equation of the

parabola reads

P2(x) = 1 +
17
6

x− 5
6

x2. (10)

It can be stated that, when using the monomial basis, the numerical effort to determine
the coefficients requires roughly n3 operations using direct methods for solving systems of
linear equations, as stated e.g., by Farin [7] (p. 102), and is therefore comparably high. It
can be reduced by employing iterative methods. In addition, the matrix of the equation
system is increasingly ill-conditioned as the degree of the polynomial increases. Both
the conditioning of the resulting linear equation system and the computational effort for
determining the coefficients can be improved by using other basis functions. The result is
the same interpolating polynomial, but in a different representation.

In the following subsections we will illustrate two ways how to perform a transition
from the monomial basis to a representation with Lagrange polynomials.

2.1. Transition by Means of Basis Transformation

We want to solve the problem of basis transformation between two different sets of
coefficients ai and bi fulfilling

P2(x) =
2

∑
i=0

ai φi(x) =
2

∑
i=0

bi ψi(x), (11)

where φi(x) and ψi(x) are two different sets of basis functions. Using the monomial basis
function (4) in the first summation formula, we obtain

P2(x) =
2

∑
i=0

ai φi(x) = a0 + a1x + a2x2 =
[

a0 a1 a2
]  1

x
x2

, (12)

as already shown in (5) and (6). Multiplying out the second summation formula in
(11) yields

P2(x) =
2

∑
i=0

bi ψi(x) = b0ψ0(x) + b1ψ1(x) + b2ψ2(x) =
[

b0 b1 b2
]  ψ0(x)

ψ1(x)
ψ2(x)

 (13)

and, according to (11), we can write

[
a0 a1 a2

]  1
x
x2

 =
[

b0 b1 b2
]  ψ0(x)

ψ1(x)
ψ2(x)

. (14)

In the case of monomial basis, we selected basis functions and obtained the coefficients,
see (7), while here we do the opposite. We select b0 = y1, b1 = y2, b2 = y3 for the coefficients
to obtain corresponding basis functions for which we introduce the new notation li(x)
with i = 0, 1, 2. Furthermore, for a0, a1, a2 we introduce the solution according to (7) and
we obtain

[
y0 y1 y2

]  1 1 1
x0 x1 x2
x2

0 x2
1 x2

2

−1 1
x
x2

 =
[

y0 y1 y2
]  l0(x)

l1(x)
l2(x)

. (15)
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By comparing the coefficients of the vectors [ y0 y1 y2 ], we see that the basis
functions li(x) can be computed from l0(x)

l1(x)
l2(x)

 =

 1 1 1
x0 x1 x2
x2

0 x2
1 x2

2

−1 1
x
x2

. (16)

Introducing the vector l(x) =
[

l0(x) l1(x) l2(x)
]T yields

l(x) = (VT)
−1

m(x). (17)

The same formula can also be obtained taking the basis transformation from La-
grange to monomials VTl(x) = m(x), as presented by Gander [31], and solving it for l(x).
From (17), we obtain the result

l(x) =
[

(x−x1)(x−x2)
(x0−x1)(x0−x2)

(x−x0)(x−x2)
(x1−x0)(x1−x2)

(x−x0)(x−x1)
(x2−x0)(x2−x1)

]T
, (18)

which is called the Lagrange basis. A visualization of the Lagrange basis functions for the
parabola is shown in Figure 2.

Mathematics 2021, 9, x FOR PEER REVIEW 6 of 27 
 

 

In the case of monomial basis, we selected basis functions and obtained the coeffi-
cients, see (7), while here we do the opposite. We select 0 1b y= , 1 2b y= , 2 3b y=  for the 
coefficients to obtain corresponding basis functions for which we introduce the new no-
tation ( )il x  with 0,1, 2i = . Furthermore, for 0 1 2, ,a a a  we introduce the solution ac-
cording to Error! Reference source not found. and we obtain 

[ ] [ ]
1

0

0 1 2 0 1 2 0 1 2 1
2 2 2 2
0 1 2 2

1 1 1 1 ( )
( )
( )

l x
y y y x x x x y y y l x

x x x x l x

−
     
     =     
          

. (15)

By comparing the coefficients of the vectors 0 1 2[ ]y y y , we see that the basis 
functions ( )il x  can be computed from 

1
0

1 0 1 2
2 2 2 2

2 0 1 2

( ) 1 1 1 1
( )
( )

l x
l x x x x x
l x x x x x

−
     
     =     
          

. (16)

Introducing the vector [ ]T0 1 2( ) ( ) ( ) ( )x l x l x l x=l  yields 

T 1( ) ( ) ( )x x−=l V m . (17)

The same formula can also be obtained taking the basis transformation from La-
grange to monomials T ( ) ( )x x=V l m , as presented by Gander [31. ], and solving it for 
( )xl . From Error! Reference source not found., we obtain the result 

T

0 2 0 11 2

0 1 0 2 1 0 1 2 2 0 2 1

( )( ) ( )( )( )( )( )
( )( ) ( )( ) ( )( )

x x x x x x x xx x x xx
x x x x x x x x x x x x

 − − − −− −
=  − − − − − − 

l , (18)

which is called the Lagrange basis. A visualization of the Lagrange basis functions for the 
parabola is shown in Error! Reference source not found.. 

 
Figure 2. Lagrange basis functions for a parabola in the interval [0, 3] for the example 0 0x = , 

1 1x = and 2 3x = . 

Finally, the resulting polynomial reads 

0 2 0 11 2
2 0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

( )( ) ( )( )( )( )( )
( )( ) ( )( ) ( )( )

x x x x x x x xx x x xP x y y y
x x x x x x x x x x x x

− − − −− −
= + +

− − − − − −
. (19)

An alternative derivation of the Lagrange representation of a polynomial is pre-
sented in the following subsection. 
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and x2 = 3.

Finally, the resulting polynomial reads

P2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
y0 +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
y1 +

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
y2. (19)

An alternative derivation of the Lagrange representation of a polynomial is presented
in the following subsection.

2.2. Transition by Linear Combinations

In this subsection, we present an alternative derivation of the polynomial in the
Lagrange representation. We use the fact that each parabola can be represented as a
combination of two lines. In fact, if we take a look at (5), we find that it can be rearranged
into the form f (x) = a0 + (a1 + a2x)x, which represents a combination (product) of two
lines plus some constant value a0. By using this idea, the Lagrange representation of
a quadratic polynomial can be derived, which results in a linear combination of three
quadratic functions p(x) and the respective yi coordinates.

We consider the points (x0, y0), (x1, y1), (x2, y2), where x0 < x1 < x2. Now two lines

f0,1(x) = a0 + a1x (20)
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within the interval [x0, x1) and
f1,1(x) = b0 + b1x (21)

within the interval [x1, x2] are defined, see Figure 3. The subscripts i and d in fi,d represent
the number of the polynomial i for a given degree d.
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From two given points, the slope of the line (20) can be written as

a1 =
y1 − y0

x1 − x0
. (22)

The y-intercept can be computed from

a0 = y0 − x0
y1 − y0

x1 − x0
or a0 = y1 − x1

y1 − y0

x1 − x0
. (23)

Inserting (22) and (23) into (20) yields, after some rearrangement, for the first line

f0,1(x) =
x1 − x
x1 − x0

y0 +
x− x0

x1 − x0
y1. (24)

Analogously, the equation for the second line can be written as

f1,1(x) =
x2 − x
x2 − x1

y1 +
x− x1

x2 − x1
y2. (25)

By taking a combination of these two line equations, where x varies within the interval
[x0, x2], the expression

f0,2(x) =
x2 − x
x2 − x0

f0,1(x) +
x− x0

x2 − x0
f1,1(x) (26)

for the parabola is derived, which represents a linear combination of three quadratic
polynomial functions and the coordinates y0, y1 and y2.

To explain how the factors in front of the terms f0,1(x) and f1,1(x) in (26) are derived,
the idea behind the Lagrange polynomials has to be explained. Lagrange was looking
for an interpolation polynomial that could be constructed without solving a system of
equations, e.g., with Vandermonde matrix as design matrix, see (7). There is a widely
accepted assumption that his idea for the solution was to find a function that, at each given
data point (x0, y0), (x1, y1), . . . , (xn, yn), gives 1 and, at the rest of the other given points
gives 0. For a mathematician, this type of polynomials was, presumably, relatively easy to
find. We will take the case of a parabola into consideration. Therefore, for each given xi,
the following polynomials

px0(x) =
(x− x1) (x− x2)

(x0 − x1) (x0 − x2)
, (27)
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px1(x) =
(x− x0) (x− x2)

(x1 − x0) (x1 − x2)
, (28)

px2(x) =
(x− x0) (x− x1)

(x2 − x0) (x2 − x1)
(29)

can be created.
As previously mentioned, these functions pxi (x) are equal to 1 when the variable x is

equal to the corresponding coordinate xi of the given point and 0 at all other given points.
Therefore, by multiplying each of these functions pxi (x) with their corresponding values yi
ensures that, at the particular given point xi, the result will be yi and 0 at all other given
points. The summation of all these functions pxi (x), multiplied by their corresponding
values yi, results in a Lagrangian interpolation polynomial

f (x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
y0 +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
y1 +

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
y2. (30)

The quadratic polynomial (30) represents a linear combination of the Lagrangian basis
polynomials with the constants y0, y1 and y2 as coefficients. A general formula for the
definition of the Lagrange interpolation polynomials can be found e.g., in the handbook by
Bronshtein et al. [32] (p. 918).

As previously explained, a quadratic polynomial can be represented as a combination
of two lines. Using the Lagrangian form for a polynomial of first order, the following two
line equations

f0,1(x) =
x− x1

x0 − x1
y0 +

x− x0

x1 − x0
y1, (31)

f1,1(x) =
x− x2

x1 − x2
y1 +

x− x1

x2 − x1
y2 (32)

are derived. If we follow the already described Lagrange’s idea to obtain a quadratic
polynomial, the following multiplications

f0,2(x) =
x− x2

x0 − x2
f0,1(x) +

x− x0

x2 − x0
f1,1(x) (33)

must be performed.
Consequently, Equation (33) results in a Lagrangian polynomial of second order.

Looking at (33), the factors (x− x2)/(x0− x2) and (x− x0)/(x2− x0) are those that appear
in front of the terms f0,1(x) and f1,1(x) in (26). However, if we compare the Lagrange
polynomials in (31), (32), (33) with the expressions in (24), (25), (26), the only difference is
that (31), (32) and (33) have negative denominators and numerators at some points in the
Lagrange polynomials, e.g. (x− x2)/(x0 − x2). In (24), (25) and (26) there are no negative
denominators or numerators, although the equations are the same as in (31), (32) and (33).
This is for reasons of better analogy with the B-spline form.

After the origin of the factors in front of f0,1(x) and f1,1(x) in (26) is explained, inserting
(24) and (25) into (26) finally yields

f0,2(x) =
(x1 − x)(x2 − x)
(x1 − x0)(x2 − x0)

y0 +
(x− x0)(x2 − x)
(x1 − x0)(x2 − x1)

y1 +
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
y2. (34)

This form coincides with (19) and represents a second degree Lagrange interpolating
polynomial through three points, see the handbook by Bronshtein et al. [32] (p. 918). The
plot of the parabola is depicted in Figure 4.
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Inserting the values of the numerical example from Table 1 into (34) yields the La-
grangian form

f0,2(x) =
(1− x) (3− x)
(1− 0) (3− 0)

· 1 + (x− 0) (3− x)
(1− 0) (3− 1)

· 3 + (x− 0)(x− 1)
(3− 0)(3− 1)

· 2, (35)

which can be “simplified” to the monomial basis form

f0,2(x) = 1 +
17
6

x− 5
6

x2. (36)

The result is the same as in (10), but the values of the parameters a0, a1, a2 are
now derived with the advantage of not explicitly solving a linear equation system. A
disadvantage of Lagrange interpolation in practical application is directly visible from (19),
resp. (34), namely that each time a value x changes, the Lagrange basis polynomials must
be recalculated. Further general limits of Lagrange interpolation, e.g., that polynomial
interpolants may oscillate, are explained by Farin [7] (p. 101 ff.).

3. Transition from Lagrangian Form to Bernstein Form

The Bernstein form, named after S. N. Bernstein, was used to prove the Weierstrass
approximation theorem; see the explanation by Farin [7] (p. 90 ff.). The coefficients of
a Bernstein polynomial over the interval [0, 1] are all non-negative and sum up to 1, as
Farin [7] (p. 57 ff.) showed, which is called a convex combination; see the textbook by
Rockafellar [33] (p. 11). Therefore, by using the Bernstein form, numerical instabilities
are avoided.

Looking at Figure 3, the interpolating parts of the line segments can be extended
to both ends of the interval [x0, x2] in which the polynomial is defined. At the end of
the extended line segments, two additional y-coordinates for the values x0 and x2 are
computed, as seen in Figure 5. To distinguish these two y-coordinates from the given
values, a different notation, y′0 and y′2, is used (not to be confused with the derivation of a
function). In a general case, all five points have different coordinates which implies that the
coordinate x1 is not necessarily in the middle of the interval [x0, x2]. Therefore, in general
x1 6= (x0 + x2)/2.
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From Figure 5, as explained previously, the line equations

f0,1(x) =
x2 − x
x2 − x0

y0 +
x− x0

x2 − x0
y′2, f1,1(x) =

x2 − x
x2 − x0

y′0 +
x− x0

x2 − x0
y2 (37)

are derived. By taking combinations of these two lines, it follows

f0,2(x) =
(

x2 − x
x2 − x0

)2
y0 +

x2 − x
x2 − x0

x− x0

x2 − x0
y′2 +

x− x0

x2 − x0

x2 − x
x2 − x0

y′0 +
(

x− x0

x2 − x0

)2
y2, (38)

which can be brought into the form

f0,2(x) =
(

x2 − x
x2 − x0

)2
y0 + 2

x2 − x
x2 − x0

x− x0

x2 − x0

(
y′2 + y′0

2

)
+

(
x− x0

x2 − x0

)2
y2. (39)

A geometrical interpretation of the term (y′2 + y′0)/2 is depicted in Figure 6.
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Equation (39) is a more general representation of the Bernstein form, independent of
the limits of the interval [x0, x2], which means that x can vary between any two real values.
For proving the Weierstrass approximation theorem, Bernstein used a special interval of
length 1, i.e., [x0, x2] = [0, 1]. Using this interval simplifies the equations, which were later
used by Bézier and de Casteljau. Therefore, when using [x0, x2] = [0, 1], Equation (37)
results in

f0,1(x) = (1− x)y0 + xy′2, f1,1(x) = (1− x)y′0 + xy2 (40)

and (39) obtains the form

f0,2(x) = (1− x)2y0 + 2x(1− x)
(

y′2 + y′0
2

)
+ x2y2, (41)
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in which (1− x)2, 2x(1− x) and x2 are the Bernstein basis polynomials and y0, (y′2 + y′0)/2
and y2 are the Bernstein coefficients. In general, a polynomial in Bernstein form of degree
n can be written as

Pn(x) =
n

∑
i=0

βi Bi,n(x), (42)

where βi are the Bernstein coefficients and

Bi,n(x) =
(

n
i

)
xi(1− x)n−i, i = 0, 1, . . . , n (43)

are the Bernstein basis polynomials; see e.g., the handbook by Bronshtein et al. [32] (p. 935).
For a parabola, we obtain B0,2 = (1− x)2, B1,2 = 2x(1− x) and B2,2 = x2, cf. (41). These
basis polynomials for a parabola are depicted in Figure 7.
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In (39), the term (y′2 + y′0)/2, see Figure 6, reveals one fundamental property of the
quadratic polynomial that, to the best of our knowledge, is not described in the literature
so far. It can be stated as:

All pairs of line segments that have one end fixed at the beginning or at the end of
the parabola and the other end at the opposite sides of the interval, and intersect
themselves on the parabola, have an equal average of the coordinates at the ends
that are not fixed. Moreover, the extremum of the parabola lies on the intersection
of those line segments that have equal values at the opposite ends of the interval.

The proof of this statement is straightforward. A parabola is uniquely defined by three
points. If we retain end points (x0, y0) and (x2, y2), replacing the point (x1, y1) by any
other point on the same parabola, we will again obtain the equation of the form (39). The
equation of the parabola remains unchanged although y′0 and y′2 have changed, since
the only term depending on the new point is (y′0 + y′2)/2. A parabola is described by a
differentiable function. By computing its derivative, equating it with zero and solving the
resulting equation for x, we obtain the coordinate of the extremum xe. Consequently, the
resulting equation for the coordinate of the extremum ye can be solved. By substituting
these two values for xe and ye in a line equation constructed for y′0 and y′2, where x = x0
and x = x2 respectively, it can be shown that y′0 = y′2 = Cy. Therefore, y′0 6= y′2 implies
Cy = (y′0 + y′2)/2. This proves the above statement, which is illustrated in Figure 8. M
and N represent the fixed points at the beginning and at the end of the parabola, with
m1, . . . , m6 and n1, . . . , n6 as end points at the opposite sides of the interval. Every pair of
line segments is defined as

(
Mn0, NM

)
,
(

Mn1, Nm1
)
,
(

Mn2, Nm2
)
, . . . ,

(
MN, Nm6

)
and

depicted in light blue color. Figure 8 illustrates that all these pairs of line segments intersect
on the parabola.
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Considering the above, there are an infinite number of combinations defining the term
(y′2 + y′0)/2 depending on the position of the point (x1, y1), between M and N, that defines
the parabola, cf. Figure 6. All of these pairs of line segments, as previously explained, have
an equal average of the y-coordinates at the end points. Therefore, the term that uniquely
represents all these averages is written more generally in the form

Cy =
y′m + y′n

2
, (44)

where y′m and y′n represent any pair of y′-coordinates from the mentioned line segments
that intersect on the parabola. Correspondingly, the coordinate Cx is defined as

Cx =
xi + xi+1

2
, (45)

where xi and xi+1 define the ends of the interval in which the parabola varies. Hence, Cx is
always in the middle of the interval.

There is an additional property of the line segments Mn0 and Nm6. They intersect
at the point (Cx, Cy) and are tangential to the curve. This can be easily proven. We can
compute the first derivative and solve for y′m and y′n from (44), then construct two line
equations for (x0, y0)(x2, yn) and (x0, ym)(x2, y2) and solve for their intersection.

In the context of geometric modelling, the point defined by (Cx, Cy) is called control
point and, concerning basis splines (B-splines), it is named de-Boor-point. In Figure 8, this
point is marked with a blue dot. Moreover, the first and the last point of the parabola are
also referred to as control points, see e.g., the textbook by Piegl and Tiller [2] (pp. 389–390).

With (44), the general form of (39) can be written as

f0,2(x) =
(

x2 − x
x2 − x0

)2
y0 + 2

x2 − x
x2 − x0

x− x0

x2 − x0
Cy +

(
x− x0

x2 − x0

)2
y2. (46)

As a more general representation of the Bernstein polynomial, (46) is a convex com-
bination as well. The proof is obvious. Since x0 < x2, all functions in front of y0, Cy and
y2 are non-negative and have a sum of 1. The control points (x0, y0), (Cx, Cy) and (x2, y2)
form a convex hull, highlighted in grey in Figure 8, that encloses all realizations of x in (46),
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which means that all points of the parabola lie within the convex hull. A convex hull is
the smallest convex set that contains a given set, with a convex set being a set wherein
the straight line segment, connecting any two points of the set is completely contained
within the set; see e.g., the textbook by Farin [7] (p. 439). The advantage of the general
representation of the Bernstein polynomial is that it can be applied directly without scaling
the data set to the interval [x0, x2] = [0, 1].

If we now consider the example from Table 1 once again, we get, with y′0 = 3.5 and
y′2 = 7.0, from (44) the result Cy = 5.25 and therefore

f0,2(x) =
(

3− x
3− 0

)2
· 1 + 2 · 3− x

3− 0
· x− 0

3− 0
· 5.25 +

(
x− 0
3− 0

)2
· 2, (47)

which can be “simplified” to the monomial basis form

f0,2(x) = 1 +
17
6

x− 5
6

x2. (48)

This is of course the same as (10) and (36).
For the case of the interpolation by a parabola, it can be concluded that both the

Bernstein and the Lagrangian form yield the same result. However, the Bernstein form has
the advantage that all points of the parabola lie in the convex hull defined by its parameters.

4. Transition from Bernstein Form to B-spline

In the previous section, the Bernstein form was derived with a more general approach,
instead of the standard representation within the interval [0, 1]. This form can be easily
used for derivation of the B-spline.

In this section, Equation (46) is used for further derivations. It is assumed that the line
segments that define the quadratic polynomial intersect at the extremum of the parabola
and have an identical coordinate Cyi . Since the notion of spline is to be explained, only
the endpoints of two smoothly connected parabolas are considered, which are better
known as knots (x0, y0), (x1, y1) and (x2, y2). The problem of the constraints and how
they are imposed on the spline, for spline interpolation, is not taken into consideration.
It is presumed that the first parabola of the spline is already defined, e.g., by imposing a
constraint for the direction of the tangent in point x0 as boundary condition, and in this
case, is identical with the one from the previous section, see Figure 8.

The initial situation is depicted in Figure 9, where:

- One parabola already exists between the knots (x0, y0) and (x1, y1); and
- One knot (x2, y2) is given that is to be interpolated.
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indicate points to be interpolated.

The task is now to construct a second parabola between the knots (x1, y1) and (x2, y2)
which is tangential to the first one.
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The second parabola is constructed as follows:

- The line segment (x0, Cy1)(x1, y1) is extended from the end point (x1, y1) of the
parabola to the end of the interval [x1, x2], yielding the additional coordinates (x2, Cy2)

and therefore the new line segment (x1, y1)(x2, Cy2), see Figure 12;
- Between points (x1, Cy2) and (x2, y2), the line segment (x1, Cy2)(x2, y2) can be con-

structed, see Figure 10;
- By taking combinations of these two line segments, within the interval [x1, x2], another

parabola will be constructed, smoothly connected to the previous one. The whole
function constructed from these two smoothly connected parabolas represents a spline.
Both parabolas end tangentially at the point (x1, y1) w.r.t the line segment, defined as
(Cx1 , Cy1)(Cx2 , Cy2), see Figure 11.
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01
0,1 0
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( ) y
x xx xf x y C

x x x x
−−

= +
− −
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1 2
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1,1

2 0 2 0

( ) y y
x xx xf x C C

x x x x
−−

= +
− −

. (49)

By taking a combination of these two lines within the interval 0 1[ , ]x x , it follows 

1 2

2 2
0 0 01 1 2

0,2 0
1 0 1 0 1 0 1 0 2 0 2 0 1 0

( )( )
( ) ( )y y

x x x x x xx x x x x xf x y C C
x x x x x x x x x x x x x x

   − − −− − −
= + + +   − − − − − − −   

 .(50)

For the second parabola the same approach is applied. The second pair of line 
equations is defined in the same way as the previous one, yielding 

1 2

02
2,1

2 0 2 0

( ) y y
x xx xf x C C

x x x x
−−

= +
− −

, 
2

2 1
3,1 2

2 1 2 1

( ) y
x x x xf x C y
x x x x

− −
= +

− −
. (51)

Analogously to Error! Reference source not found., but in this case within the in-
terval 1 2[ , ]x x , we obtain 

Figure 10. Line segment (x1, Cy2 )(x2, y2). The extrema of the parabolas are marked with a red dot,
the control points with a blue dot, and the green dots indicate points to be interpolated.
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dots indicate points to be interpolated.



Mathematics 2021, 9, 2198 15 of 24

Mathematics 2021, 9, x FOR PEER REVIEW 15 of 27 
 

 

 
Figure 9. Initial situation before the construction of the second part of the spline. The extremum of 
the first parabola is marked with a red dot, the control point with a blue dot, and the green dots 
indicate points to be interpolated. 

The task is now to construct a second parabola between the knots 1 1( , )x y  and 

2 2( , )x y  which is tangential to the first one. 
The second parabola is constructed as follows: 

− The line segment 
10 1 1( , )( , )yx C x y  is extended from the end point 1 1( , )x y  of the pa-

rabola to the end of the interval 1 2[ , ]x x , yielding the additional coordinates 
22( , )yx C  

and therefore the new line segment 
21 1 2( , )( , )yx y x C , see Error! Reference source not 

found.; 
− Between points 

21( , )yx C  and 2 2( , )x y , the line segment 
21 2 2( , )( , )yx C x y  can be con-

structed, see Error! Reference source not found.; 
− By taking combinations of these two line segments, within the interval 1 2[ , ]x x , an-

other parabola will be constructed, smoothly connected to the previous one. The 
whole function constructed from these two smoothly connected parabolas repre-
sents a spline. Both parabolas end tangentially at the point 1 1( , )x y  w.r.t the line 
segment, defined as 

1 1 2 2
( , )( , )x y x yC C C C , see Error! Reference source not found.. 

 

Figure 10. Line segment 
21 1 2( , )( , )yx y x C . The extremum of the first parabola is marked with a red 

dot, the control point with a blue dot, and the green dots indicate points to be interpolated. 
Figure 12. Line segment (x1, y1)(x2, Cy2 ). The extremum of the first parabola is marked with a red
dot, the control point with a blue dot, and the green dots indicate points to be interpolated.

Finally, this is a type of spline that is constructed by using convex combinations and it
is exactly the same as the B-spline. This is shown by the equations derived further in the
text. Algebraically, this derivation is similar to the one in the previous section. The first
pair of line equations is written as

f0,1(x) =
x1 − x
x1 − x0

y0 +
x− x0

x1 − x0
Cy1 , f1,1(x) =

x2 − x
x2 − x0

Cy1 +
x− x0

x2 − x0
Cy2 . (49)

By taking a combination of these two lines within the interval [x0, x1], it follows

f0,2(x) =
(

x1 − x
x1 − x0

)2
y0 +

(
x1 − x
x1 − x0

x− x0

x1 − x0
+

x− x0

x1 − x0

x2 − x
x2 − x0

)
Cy1 +

(x− x0)
2

(x2 − x0) (x1 − x0)
Cy2 (50)

For the second parabola the same approach is applied. The second pair of line
equations is defined in the same way as the previous one, yielding

f2,1(x) =
x2 − x
x2 − x0

Cy1 +
x− x0

x2 − x0
Cy2 , f3,1(x) =

x2 − x
x2 − x1

Cy2 +
x− x1

x2 − x1
y2. (51)

Analogously to (50), but in this case within the interval [x1, x2], we obtain

f1,2(x) =
x2 − x
x2 − x1

x2 − x
x2 − x0

Cy1 +

(
x2 − x
x2 − x1

x− x0

x2 − x0
+

x− x1

x2 − x1

x2 − x
x2 − x1

)
Cy2 +

(
x− x1

x2 − x1

)2
y2. (52)

If the above derived expressions are compared to an explicit expression of a quadratic
B-spline it becomes clear that they are the same. However, for the sake of clarity we have
used a particular notation that does not correspond to the usual B-spline notation.

Looking at (50) and (52), the only unknowns are Cy1 and Cy2 , all other values are
given. It appears that a quadratic spline, constructed from two linear polynomials, can
be estimated with only two equations. This type of reasoning would lead to a paradox.
Therefore, for this type of a spline, since all constraints (smoothness and continuity) are
hidden inside the equations, at least four observations are necessary for a solution. For
comparison, a spline constructed from two polynomials of the form a0 + a1x+ a2x2 requires
at least three observations and three constraints.

The idea presented in this section can be used for constructing splines of higher
degrees as well. In those cases, depending on the degree of the spline, one would need
more knots and more control points for creating a spline segment, while the number of
combinations increases. Moreover, the expressions became more complicated, which makes
this approach unsuitable for practical applications. However, de Boor [3] developed an
algorithm for computing the basis functions that, in our case, constructs the expressions in
front of the coordinates of the control points in (50) and (52).

De Boor’s algorithm is based on the Cox-de Boor recursion formula that we will use
for explaining the computation of a B-Spline. Recursion itself is non-intuitive, which makes



Mathematics 2021, 9, 2198 16 of 24

this formula difficult to be explained analytically. The higher the degree of the spline, the
more cumbersome and harder to follow the equations become. Therefore, in order to make
a comparison with (50) and (52), we will use an explicit expression of a quadratic B-spline
that is derived from the Cox-de Boor recursion formula. For this purpose, we use the knots
and the naming convention from the previous example (49)–(52). For this formula to work,
we have to rename the parameters (control points) y0 to Cy0 and y2 to Cy3 . The Cox-de Boor
recursion requires additional knots at the beginning and at the end of the spline based on
the degree of the spline. If the spline degree is d = 2, two additional knots are presumed to
be both at the beginning and at the end of the spline. In our case, they are

x−2, x−1 andx3, x4, (53)

which is called knot multiplication. Additional knots with e.g.,

x−2 = x−1 = x0 and x2 = x3 = x4 (54)

are especially used to gain endpoint interpolation. The additional knots do not necessarily
have to be equal to x0 and x2, they are just required to follow the order x−2 ≤ x−1 ≤ x0
and x2 ≤ x3 ≤ x4. However, in our example we follow the convention of the knot
multiplication, and because of the knot multiplication, formula (56) has zero divisions, and
the solution for this problem is to declare that “anything divided by zero is equal to zero”.

The base case of the recursion formula is

Bi,0(x) =

{
1, xi ≤ x < xi+1,

0, otherwise,
(55)

with a recursive step to compute the basis functions

Bi,d(x) =
x− xi

xi+d − xi
Bi,d−1(x) +

xi+d+1 − x
xi+d+1 − xi+1

Bi+1,d−1(x), (56)

which is summed over the k-th interval of the spline fk,d(x), such as

fk,d(x) =
k

∑
i=k−d

Cyi+d Bi,d(x). (57)

At the beginning of the recursion (56), index d denotes the degree of the spline and i is
a computed index i = k− d, . . . , k. In each recursive step, d is lowered down for 1 until it
reaches 0. At d = 0, the recursion formula terminates and the base case (55) is evaluated.

The index k is the index of the interval [xk, xk+1] with k = 0, 1, . . . , l − 1, where l is the
number of knots. Therefore, for k = 0, the recursion formula (56) is computed for every
i of the sum (57) and evaluated in (55). Afterwards, for k = 1, the same computation is
performed, and so on, until the last interval. The parameters Cyi in (57) correspond to
each basis function terminated by Bi,0(x) in (55) at the end of the recursion. An example
of quadratic basis functions using the knots xk0 = 0, xk1 = 1 and xk2 = 3, resulting in two
intervals k = 0 and k = 1, and the knot sequence [0, 0, 0, 1, 3, 3, 3], is shown in Figure 13.
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Figure 13. Quadratic B-Spline basis functions using the knots xk0 = 0, xk1
= 1 and xk2 = 3, resulting

in two intervals k = 0 and k = 1, and the knot sequence [0, 0, 0, 1, 3, 3, 3]. The knots are marked with
black triangles on the x-axis.

To compare this approach with (50) and (52), we use an explicit expression of a generic
quadratic B-spline formula. For deriving it, we consider d = 2 in (56), then we follow
all recursive steps until d = 0 for every Bi,d(x), which yields the explicit expression of a
generic quadratic B-spline formula

Bi,2(x) = (x−xi)
2

(xi+2−xi) (xi+1−xi)
Bi,0(x)

+
(xi+3−x)2

(xi+3−xi+1) (xi+3−xi+2)
Bi+2,0(x)

+
(

(x−xi) (xi+2−x)
(xi+2−xi) (xi+2−xi+1)

+
(xi+3−x) (x−xi+1)

(xi+3−xi+1) (xi+2−xi+1)

)
Bi+1,0(x) .

(58)

For clearer description, we treat each part of (57) separately and, for the computation,
we use the knot sequence (53). At the interval k = 0, with index i = −2, the first element of
the sum is

Cy0 B−2,2(x) = Cy0

[
(x−x−2)

2

(x0−x−2) (x−1−x−2)
B−2,0(x)

+ (x1−x)2

(x1−x−1) (x1−x0)
B0,0(x)

+
(

(x−x−2) (x0−x)
(x0−x−2) (x0−x−1)

+ (x1−x) (x−x−1)
(x1−x−1) (x0−x−1)

)
B−1,0(x)

]
.

(59)

With i = −1, the second element of the sum is

Cy1 B−1,2(x) = Cy1

[
(x−x−1)

2

(x1−x−1) (x0−x−1)
B−1,0(x)

+ (x2−x)2

(x2−x0) (x2−x1)
B1,0(x)

+
(

(x−x−1) (x1−x)
(x1−x−1) (x1−x0)

+ (x2−x) (x−x0)
(x2−x0) (x1−x0)

)
B0,0(x)

] (60)

and, with i = 0, the last element of the sum is

Cy2 B0,2(x) = Cy2

[
(x−x0)

2

(x2−x0) (x1−x0)
B0,0(x)

+ (x3−x)2

(x3−x1) (x3−x2)
B2,0(x)

+
(

(x−x0) (x2−x)
(x2−x0) (x2−x1)

+ (x3−x) (x−x1)
(x3−x1) (x2−x1)

)
B1,0(x)

]
.

(61)
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Taking the knot multiplications (53) and (54) into account for all elements of the sums
(59)–(61) yields

Cy0 B−2,2(x) = Cy0

[
(x−x0)

2

(x0−x0) (x0−x0)
B−2,0(x)

+ (x1−x)2

(x1−x0) (x1−x0)
B0,0(x)

+
(

(x−x0) (x0−x)
(x0−x0) (x0−x0)

+ (x1−x) (x−x0)
(x1−x0) (x0−x0)

)
B−1,0(x)

]
,

(62)

Cy1 B−1,2(x) = Cy1

[
(x−x0)

2

(x1−x0) (x0−x0)
B−1,0(x)

+ (x2−x)2

(x2−x0) (x2−x1)
B1,0(x)

+
(

(x−x0) (x1−x)
(x1−x0) (x1−x0)

+ (x2−x) (x−x0)
(x2−x0) (x1−x0)

)
B0,0(x)

]
,

(63)

Cy2 B0,2(x) = Cy2

[
(x−x0)

2

(x2−x0) (x1−x0)
B0,0(x)

+ (x2−x)2

(x2−x1) (x2−x2)
B2,0(x)

+
(

(x−x0) (x2−x)
(x2−x0) (x2−x1)

+ (x2−x) (x−x1)
(x2−x1) (x2−x1)

)
B1,0(x)

]
.

(64)

The base case (55) evaluates only the functions in front of B0,0(x), all other base
functions are not taken into consideration nor are the fractions where division by zero
occurred. Finally, by summing up all results (62), (63) and (64) for the first interval, as
stated in (57), and evaluating by (55), we obtain

f0,2(x) =
0
∑

i=−2
Cyi+2 Bi,2(x)

= (x1−x)2

(x1−x0) (x1−x0)
Cy0

+
(

(x−x0) (x1−x)
(x1−x0) (x1−x0)

+ (x2−x) (x−x0)
(x2−x0) (x1−x0)

)
Cy1

+ (x−x0)
2

(x2−x0) (x1−x0)
Cy2 .

(65)

If Equation (65) is compared to (50), it can be concluded that they are identical. It must
just be taken into consideration, as stated previously, that y0 is renamed to Cy0 . If the same
procedure is applied to k = 1, the result is identical to (52), considering that y2 is renamed
to Cy3 .

Since spline functions y = f (x) are considered, only the component Cyi of a control
point (Cxi , Cyi ) appears as a factor in front of the basis functions Bi,d(x). Using a parametric
spline curve, both components of a control point appear in front of the basis functions as
e.g., applied by Bureick et al. [34].

The Cox-de Boor recursion Formulas (55) and (56) are the basis of the de Boor’s
algorithm. The presented functions in front of the parameters are called basis functions
and the curve is called B-spline curve.

5. B-spline Approximation

As pointed out by Ezhov et al. [1], in engineering geodesy it is not appropriate to apply
a spline interpolation due to the high point density and the fact that measurements are
affected by random measurement errors. Observation errors and other abrupt changes in
the data points would be modeled, resulting in a strongly oscillating spline. The solution to
this is to divide the sequence of points into not so many intervals, determined by predefined
knots. The distribution of the knots is a fundamental problem in spline approximation
and different knot placement strategies can be applied to solve it, as explained by Ezhov
et al. [1]. Within the resulting intervals, we consider an overdetermined configuration and,
hence, the parameters of a B-spline can be computed by least squares adjustment.
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Since the Cox-de Boor Formulas (55)–(57) manage the whole process of computing
the coefficients of the unknowns, the approximation can be performed with a simple linear
functional model. Here, we consider quadratic splines that consist of piecewise parabolic
segments. A generalization to splines of higher degree is straightforward.

5.1. Definition of the Problem

Let:

- y0, y1, . . . , yj, . . . , ym be a sequence of observed values;
- ΣLL = σ2

0 QLL be the variance-covariance matrix of the observations yj;
- x0 < x1 < . . . < xj < . . . < xm be a sequence of non-decreasing error-free values

referring to the observations;
- xk0 < . . . < xkn−1 be a non-decreasing sequence of user-defined values for the knots

on the x-axis which are regarded as error-free. To determine:
- Cy0 , Cy1 , . . . , Cyn , which represent the y-component of the control “points” of the

quadratic B-spline.

After defining these quantities, we can create a spline approximation from an overde-
termined configuration using the Gauss-Markov model.

5.2. Formulation of the Adjustment Problem

The observation equations are of the same form for each quadratic polynomial within
a spline. This is a consequence of the Cox-de Boor recursion formula. This approach (55),
(56) and (57) determines to which interval a value xj belongs. One has to consider that the
knot sequence must be given in advance.

Considering xj as fixed values, yields also Bi,d(x), computed from (55), (56), and (57),
as fixed values. Here, we assume that Bi,2(x) corresponds to the given parameter Cyi .
Explaining the observation equations explicitly by means of the Cox-de Boor’s formula is
too cumbersome. Hence, with yj as observations, the observation equations

y0 + v0 =
n
∑

i=1
Ĉyi Bi,2(x0) ,

y1 + v1 =
n
∑

i=1
Ĉyi Bi,2(x1) ,

...

ym + vm =
n
∑

i=1
Ĉyi Bi,2(xm)

(66)

can be set up. The observation vector

L =
[

y0 y1 y2 · · · ym
]T (67)

contains all observations, while the vector of unknown parameters can be written as

X̂ =
[

Ĉy0 Ĉy1 · · · Ĉyn

]T. (68)

From the stochastic model
ΣLL = σ2

0 QLL, (69)

with σ2
0 as theoretical variance factor, the corresponding weight matrix is obtained from

P = Q−1
LL , (70)

supposing the cofactor matrix to be non-singular. By looking at the observation Equation (66),
it is obvious that this spline approximation problem is linear and, hence, can easily be
written in matrix notation

L + v = AX̂, (71)
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where A is the design matrix that contains the coefficients of the unknowns. Equation (71),
together with (69), is denoted as Gauss-Markov model; see e.g., the textbook by Niemeier [35]
(p. 137). Considering the sequence of the unknowns in (68), the design matrix reads

A =


B0,2(x0) B1,2(x0) · · · Bn,2(x0)
B0,2(x1) B1,2(x1) · · · Bn,2(x1)

...
...

. . .
...

B0,2(xm) B1,2(xm) · · · Bn,2(xm)

. (72)

Even though the construction of this matrix is quite trivial, the presence of the basis
functions makes it rather unusual. However, with the derivations in Section 4, it is at least
clear how these basis functions can be obtained. Looking at the notation in (72), one might
be misled that A is a full matrix, which is not the case. To put it simply, the Cox-de Boor
formula evaluates only those xj that belong to a particular interval and everything else is
equal to zero.

5.3. Least Squares Adjustment

One feature of the B-splines is that constraints for continuity, smoothness and con-
tinuity of curvature are accounted for implicitly in the functional model. Therefore, no
additional constraints have to be introduced and the least squares solution for the un-
knowns can be obtained from

X̂ = (ATPA)
−1

ATPL. (73)

With the residuals
v = AX̂− L (74)

from (71), the a posteriori estimate of the reference standard deviation

s0 =

√
vTPv

r
(75)

can be computed, where r is the redundancy of the adjustment problem. Further details
on the a posteriori analysis of adjustment results and on knot placement strategies can be
found in the article by Ezhov et al. [1]. The fact that the solution for the unknowns (68) can
be used for a transition “backwards” from B-spline to ordinary polynomial is shown in
Appendix A.

6. Conclusions and Outlook

In engineering geodesy, point clouds derived from areal measurement methods, such
as terrestrial laser scanning or photogrammetry, are often approximated by a continuous
mathematical function for further analysis, such as deformation monitoring. In many
cases, the formulas for B-spline curves and B-spline surfaces, given in the textbook by Piegl
and Tiller [2] (pp. 81 and 100), are applied, where the functional values of the B-spline
basis functions are recursively computed according to the formulas by de Boor [3] and
Cox [4]. This approach is very easy to handle and results in a numerically stable solution
for the unknowns to be determined. As these formulas have a very complex mathematical
derivation, but are still very easy to use, they are mostly used like a given recipe without a
deeper understanding of their derivation.

In part 1 of a series of three articles, Ezhov et al. [1] explained the basic methodology of
spline approximation using splines constructed from ordinary polynomials. In this paper
(part 2) the goal was to develop an alternative derivation of the B-spline. To avoid excessive
formula derivations and to illustrate the geometric relationships, quadratic splines were
considered that consist of piecewise parabolic segments. Starting with the representation
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of a parabola in the monomial basis (ordinary polynomial) a transition to the Langrangian
form was performed and, from there, to the Bernstein form, which finally resulted in the
B-spline representation. In all investigations univariate splines were used, in the form of a
spline function y = f (x).

For the derivation of the formulas, we first considered the case of interpolation. The
developed formulas were then used for spline approximation by means of least squares
adjustment. With the values yi as observations and xi as error-free values, the resulting
linear adjustment problem could be solved within the Gauss-Markov model. Finally,
in Appendix A it was shown that the determined spline parameters can be used for a
transition “backwards” from B-spline to ordinary polynomial. The transition “forwards”
from ordinary polynomial to B-spline was shown in Appendix B.

The more general case, where both values yi and xi are introduced as observations
into an approximation with a spline function, was already elaborated by Neitzel et al. [36].
Investigations of the numerical stability of the spline approximation approaches, based on
ordinary polynomials and on truncated polynomials, discussed in part 1 and the B-splines
explained in this article, as well as the potential of splines in deformation detection, will be
presented in a forthcoming part 3 of this series of three articles.
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Appendix A. Transition from B-spline to Ordinary Polynomial

Through Sections 2–4, it was explained how a constituent part of the B-spline can be
derived from an ordinary second-degree polynomial. In Appendix A, the parameters of an
ordinary second-degree spline are to be expressed as functions of the B-spline parameters.
We consider the following case, cf. Figure 11:

- Three given points (x0, y0), (x1, y1), (x2, y2) are to be interpolated by a quadratic spline;
- using the given B-spline parameters Cy1 , Cy2 , i.e., the y-component of the control points.

Since the parameters of each polynomial of an ordinary second-degree spline are
derived in the same way, in the text that follows, only the derivation of the first polynomial
that varies within the interval [x0, x1] is described.

From the line segments (x0, y0)(x1, Cy1) and (x0, Cy1)(x2, Cy2), see Figure 11, two line
equations of the form f0,1(x) = a0 + a1x resp. f1,1(x) = b0 + b1x can be derived. From (49),
the slope for the first line equation is

a1 =
Cy1 − y0

x1 − x0
(A1)

and the y-intercept is

a0 = y0 − x0
Cy1 − y0

x1 − x0
. (A2)

Analogously, the parameters for the second line equation are

b1 =
Cy2 − Cy1

x2 − x0
(A3)

and

b0 = Cy1 − x0
Cy2 − Cy1

x2 − x0
. (A4)
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The spline segment of the form of a second degree polynomial is derived by taking
a combination

f0,2(x) =
x1 − x
x1 − x0

(a0 + a1x) +
x− x0

x1 − x0
(b0 + b1x) (A5)

of these two lines in the same way as in (50). Since x is the variable, after some rearrange-
ment, the coefficients in front of the variable can be expressed as

f0,2(x) =
a0x1 − b0x0

x1 − x0
+

(
b0 − a0 + a1x1 − b1x0

x1 − x0

)
x +

(
b1 − a1

x1 − x0

)
x2. (A6)

The derived coefficients of the polynomial that varies within the interval [x0, x1] read

A0 =
a0x1 − b0x0

x1 − x0
, A1 =

b0 − a0 + a1x1 − b1x0

x1 − x0
, A2 =

b1 − a1

x1 − x0
. (A7)

By inserting the terms from (A7) into (A6), we obtain the ordinary second-
degree polynomial

f0,2(x) = A0 + A1x + A2x2. (A8)

Only the interval [x0, x1] is considered as the domain of the definition of the spline.
The parameters of the ordinary second-degree polynomial, which varies within the interval
[x1, x2], can be derived analogously to the first one and would take the form

f1,2(x) = B0 + B1x + B2x2. (A9)

The spline function expressed by these two polynomials is identical with the one
expressed by a B-spline.

A more general derivation of the B-spline representation of polynomials was devel-
oped by Lyche et al. [37] (pp. 15–18), and it was shown that polynomials can be represented
in terms of B-splines of at least the same degree.

Appendix B. Transition from Ordinary Polynomial to B-spline

In Appendix A, we showed how second-degree B-spline parameters can be used to
derive the parameters for an equivalent representation in the form of ordinary second-
degree polynomials. In Appendix B, we explain the reverse procedure: how the ordinary
quadratic spline parameters A0, A1, A2, respectively B0, B1, B2, can be used for derivation
of the B-spline parameters y0, C1, C2 and y2.

With Equation (A8), we can express each parameter of the ordinary cubic polynomial
as follows:

A0(x1 − x0) = y0

(
x2

1
x1 − x0

)
+ C1

(
− x0x1

x1 − x0
− x0x2

x2 − x0

)
+ C2

(
x2

0
x2 − x0

)
, (A10)

A1(x1 − x0) = y0

(
− 2x1

x1 − x0

)
+ C1

(
2x0

x2 − x0
+

2x1

x1 − x0

)
+ C2

(
− 2x0

x2 − x0

)
, (A11)

A2(x1 − x0) = y0

(
1

x1 − x0

)
+ C1

(
− 1

x2 − x0
− 1

x1 − x0

)
+ C2

(
1

x2 − x0

)
. (A12)

According to this approach, the parameters in (A9) can be expressed as:

B0(x2 − x1) = C1

(
x2

2
x2 − x0

)
+ C2

(
x0x2

x2 − x0
− x1x2

x2 − x1

)
+ y2

(
x2

1
x2 − x1

)
, (A13)

B1(x2 − x1) = C1

(
− 2x2

x2 − x0

)
+ C2

(
2x1

x2 − x1
+

2x2

x2 − x0

)
+ y2

(
− 2x1

x2 − x1

)
, (A14)
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B2(x2 − x1) = C1

(
1

x2 − x0

)
+ C2

(
− 1

x2 − x1
− 1

x2 − x0

)
+ y2

(
1

x2 − x1

)
. (A15)

From Equations (A10)–(A15), two separate equation systems can be formed to solve
for the B-spline parameters. Since the equations are linear, they can be solved by applying
some of the methods from linear algebra, such as Gaussian elimination.

Once the systems are solved, the results for the parameters of the system (A10)–(A12) are

y0 = A0 + A1x0 + A2x2
0, (A16)

C1 = A0 + A1
x0 + x1

2
+ A2x0x1, (A17)

C2 = A0 + A1
x1 + x2

2
+ A2x1x2 (A18)

and for the system (A13)–(A15), the results are

C1 = B0 + B1
x0 + x1

2
+ B2x0x1, (A19)

C2 = B0 + B1
x1 + x2

2
+ B2x1x2, (A20)

y2 = B0 + B1x2 + B2x2
2. (A21)

In the terms of B-spline, y0 and y2 are parameters and, in this derivation, they are
treated as such. If y0 and y2 are considered as known values, we can also solve only for C1
and C2 as a system of two equations. However, in such case, the solutions for C1 and C2
are not as elegant as those from the equations above.
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