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Abstract: The asymptotic phase is a fundamental quantity for the analysis of deterministic limit-cycle
oscillators, and generalized definitions of the asymptotic phase for stochastic oscillators have also
been proposed. In this article, we show that the asymptotic phase and also amplitude can be defined
for classical and semiclassical stochastic oscillators in a natural and unified manner by using the
eigenfunctions of the Koopman operator of the system. We show that the proposed definition gives
appropriate values of the phase and amplitude for strongly stochastic limit-cycle oscillators, excitable
systems undergoing noise-induced oscillations, and also for quantum limit-cycle oscillators in the
semiclassical regime.

Keywords: oscillations; stochastic systems; Koopman operator analysis

1. Introduction

Spontaneous rhythmic oscillations and synchronization are widely observed in various
fields of science and technology [1–6]. Regular rhythmic oscillations are generally modeled
by using nonlinear dynamical systems possessing stable limit-cycle attractors.

The notion of asymptotic phase [1–5], which increases with a constant frequency in the
basin of the limit-cycle attractor, is a fundamental quantity that provides a basis for phase
reduction [1–7], a standard dimensionality-reduction method for analyzing synchronization
of limit-cycle oscillators under the effect of weak perturbation or coupling.

Recently, the asymptotic phase and isochrons (level sets of the asymptotic phase), clas-
sical notions in the theory of nonlinear oscillations since Winfree [8] and Guckenheimer [9],
have been studied from a viewpoint of the Koopman operator theory by Mauroy, Mezić,
and Moehlis [10], and their relationship with the Koopman eigenfunction associated with
the fundamental frequency of the oscillator has been clarified [10–14]. Moreover, they
have shown that the (asymptotic) amplitude and isostables, which characterize deviation of
the system state from the limit cycle and extend the Floquet coordinates [13,15,16] to the
nonlinear regime, can be introduced naturally in terms of the Koopman eigenfunctions
associated with the Floquet exponents with non-zero real parts [10–14,17]. By using the
asymptotic phase and amplitude functions, we can obtain a reduced description of limit-
cycle oscillators, which is useful for the analysis and control of synchronization dynamics
of limit-cycle oscillators [18–24]. The theory can also be generalized to delay-differential
systems [25] and spatially extended systems [26].

How to generalize the definition of the conventional asymptotic phase, which was essen-
tially deterministic [8,9], to stochastic systems has been an intriguing problem [27–36]. When
the stochasticity is sufficiently weak, the phase and also amplitude can be defined by using
the drift term of the stochastic differential equation (SDE) describing the deterministic
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vector field of the oscillator. This approach can also be employed for quantum nonlinear
oscillators in the semiclassical regime described by a quantum Fokker–Planck equation
(FPE) [33,37]. However, this definition is no longer applicable to strongly stochastic oscilla-
tory systems for which the deterministic vector field does not serve as a clear reference due
to the strong effect of noise.

To cope with this problem, Schwabedal and Pikovsky [34] introduced a definition of
the phase in terms of the mean first return time, and Thomas and Lindner [35] proposed a
definition of the asymptotic phase in terms of the slowest decaying eigenfunction of the
backward Fokker–Planck (Kolmogorov) operator describing the mean first passage time,
both of which yield phase values that increase with a constant frequency on average for
stochastic oscillations in a similar way to the ordinary asymptotic phase for deterministic
oscillators. Recently, we pointed out that the definition of the stochastic asymptotic phase by
Thomas and Lindner [35] can be seen as a natural extension of the deterministic definition
from the viewpoint of the Koopman operator theory; namely, it is given by the argument
of the Koopman eigenfunction associated with the fundamental frequency [38] (see also
Reference [39]) and extended this idea to the definition of the asymptotic phase for quantum
oscillatory systems.

In this article, based on the Koopman operator theory for stochastic systems, we pro-
pose a definition of the asymptotic phase and amplitude for strongly stochastic oscillators.
They are introduced in terms of the eigenfunctions of the Koopman operator associated
with the complex eigenvalues with the largest non-zero real part and with the largest
non-zero real eigenvalue, respectively, which gives a natural extension of the definition in
the deterministic case. The validity of the proposed definition is illustrated for stochastic
limit-cycle oscillations and noise-induced oscillations of excitable systems using noisy
Stuart–Landau [2,4] and FitzHugh–Nagumo [40,41] models as examples. Moreover, we ap-
ply the proposed definition of the stochastic phase and amplitude to a quantum limit-cycle
oscillator in the semiclassical regime and show that they also yield appropriate results.

2. Phase and Amplitude for Deterministic Limit-Cycle Oscillators
2.1. Classical Definition of the Asymptotic Phase and Amplitude

In this section, we review the definition of the asymptotic phase and amplitude
for deterministic limit-cycle oscillators and discuss their relationship with the Koopman
eigenfunctions [10–14,19,26]. We consider a deterministic dynamical system

Ẋ(t) = A(X(t)), (1)

where X(t) ∈ RN is the system state at time t, A : RN → RN is a sufficiently smooth vector
field representing the system dynamics, and the dot (̇) represents the time derivative. We
assume that the system has an exponentially stable limit-cycle solution X0(t) with a natural
period T and frequency ω = 2π/T, satisfying X0(t + T) = X0(t). We denote this limit
cycle as χ and its basin of attraction as Bχ ⊆ RN . Instead of the time t, we can parameterize
a point on the limit cycle χ using a phase φ ∈ [0, 2π) as χ(φ) = X0(ωt) (0 ≤ t < T), where
the phase value φ = ωt increases linearly with time t from 0 to 2π (2π is identified with 0),
and the origin of the phase φ = 0 is assigned to the state X0(0) without loss of generality.

The linear stability of χ is characterized by the Floquet exponents λj ∈ C
(j = 0, 1, ..., N− 1) [15,42], which we sort in decreasing order of their real parts, i.e., Re(λ0) ≥
Re(λ1) ≥ Re(λ2) ≥ · · · ≥ Re(λN−1). Here, the exponent λ0 is zero and associated with the
phase direction tangent to χ, and the other exponents λ1, . . . , λN−1 possess negative real
parts because χ is exponentially stable and is associated with the amplitude directions de-
viating from χ. We further assume that λ1 is real and λ1 � Re(λ2), namely, the relaxation
of the slowest decaying mode is non-oscillatory and much slower than the other faster
decaying modes. Such a situation often occurs in realistic models of limit-cycle oscillators.
We can then focus only on the slowest decaying mode and introduce a single real amplitude
associated with it.
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The asymptotic phase function Φ0 : Bχ → [0, 2π) and amplitude function R0 : Bχ → R
of the limit cycle χ are defined in the basin Bχ of χ such that

A(X) · ∇Φ0(X) = ω,

A(X) · ∇R0(X) = λ1R0(X), (2)

are satisfied for all X ∈ Bχ [13]. Here, the inner product is defined as a · b = ∑N
j=1 ajbj (the

overline denotes complex conjugate) and ∇ = ∂/∂X represents the gradient with respect
to X. As stated above, we focus only on the phase associated with λ0 = 0 and the slowest
decaying amplitude associated with real λ1. In general, we can introduce N − 1 amplitude
variables associated with N − 1 exponents λ1, . . . , λN−1, which are in general complex,
and obtain a closed set of equations for the phase and amplitudes [13]. The level sets of
the phase function are called isochrons [8,9] and those of the amplitude function are called
isostables [10].

By using the above definition, we can introduce the phase and amplitude variables for
the oscillator state X(t) ∈ Bχ at time t as φ(t) = Φ0(X(t)) and r(t) = R0(X(t)), which obey

φ̇(t) = Φ̇0(X(t)) = A(X(t)) · ∇Φ0(X(t)) = ω,

ṙ(t) = Ṙ0(X(t)) = A(X(t)) · ∇R0(X(t)) = λ1R0(X) = λ1r(t), (3)

that is, the phase φ always increases with a constant frequency ω and the amplitude r
decays exponentially with the rate λ1 as X evolves in Bχ toward χ.

Note that the phase function is determined only up to an arbitrary constant and the
scale of the amplitude function R0(X) is also arbitrary, because Φ0(X) + c1 and c2R0(X)
with arbitrary constants c1, c2 ∈ R also satisfy Equation (2). Suppose that the initial
state is X0 ∈ Bχ at t = 0. If we assign the phase φ(0; X0) and amplitude r(0; X0) to the
initial state X0, we obtain φ(t; X0) = ωt + φ(0; X0) and r(t; X0) = r(0; X0) exp(λ1t), whose
dependence on X0 is explicitly shown.

By focusing only on the asymptotic phase and amplitude, we can perform phase-
amplitude reduction (or isochron-isostable reduction) of a limit-cycle oscillator [12,14,18,19],
in which we reduce the dimensionality of the system dynamics from N to 2 and approxi-
mately describe it by a simple set of two-dimensional phase and amplitude equations. The
phase equation has been extensively used for the analysis of weakly coupled limit-cycle
oscillators [1–6], and the amplitude equation has also been used recently for the analysis
and control of limit-cycle oscillators [18–21,24].

2.2. Koopman Operator Viewpoint

The asymptotic phase and amplitude introduced in the previous subsection are closely
related to the Koopman operator of the system [18–21]. The Koopman operator Uτ , which
describes the evolution of a general observable g of the system state X ∈ RN , is defined as

(Uτ g)(X) = g(SτX), (4)

where g : RN → C is the observable, i.e., an observation function that maps a system state to
an observed value, and Sτ : RN → RN is a flow of the system satisfying X(t + τ) = SτX(t)
for τ ≥ 0. When the flow Sτ is analytic, it can be expanded as

SτX = X + τA(X) + O(τ2) (5)

for |τ| � 1. Considering an analytic observable g, we can expand it as

g(SτX) = g(X) + τA(X) · ∇g(X) + O(τ2). (6)
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Therefore, the infinitesimal time evolution of g can be expressed as

d
dt

g(X) = lim
τ→0

Uτ g(X)− g(X)

τ
= lim

τ→0

g(SτX)− g(X)

τ
= A(X) · ∇g(X). (7)

The operator

A = A(X) · ∇, (8)

which appeared in Equation (3), can thus be interpreted as an infinitesimal generator of the
Koopman operator Uτ .

For the limit-cycle oscillator described by Equation (1), we can easily confirm that the
complex exponential of the phase function Φ0(X),

Ψ0(X) = eiΦ0(X), (9)

is an eigenfunction of the operator A with an eigenvalue iω1 where i =
√
−1, because

AΨ0(X) = iωΨ0(X) (10)

is satisfied for X ∈ Bχ. Therefore, from the viewpoint of the Koopman operator theory,
the asymptotic phase can be introduced as the argument (polar angle) of the Koopman
eigenfunction Ψ0(X) associated with the eigenvalue iω, which is determined by the natural
frequency ω of the oscillator [18–21], as

Φ0(X) = Arg Ψ0(X), (11)

where Arg represents the principal argument of a complex number in the range [0, 2π).
Moreover, the asymptotic amplitude function R0(X) is nothing but the eigenfunction of
the linear operator A associated with the eigenvalue λ1 for X ∈ Bχ, i.e.,

AR0(X) = λ1R0(X). (12)

Thus, the Koopman operator theory provides a natural and unified definition of the
asymptotic phase and amplitude, and the simplified Equation (3) in the phase-amplitude
coordinates can be interpreted as a global linearization of the nonlinear dynamics of the
limit-cycle oscillator by using the Koopman eigenfunctions. In References [18,43], Mauroy
and Mezić pointed out these facts and explicitly calculated the phase and amplitude
functions for several models of limit-cycle oscillators.

3. Fokker–Planck Equation and Stochastic Koopman Operator
3.1. Forward and Backward Fokker–Planck Equations

In the previous section, we considered deterministic limit-cycle oscillators and in-
troduced the asymptotic phase and amplitude functions from the Koopman-operator
viewpoint. Our aim in this study is to generalize the idea to stochastic oscillatory systems.
In this section, we review some basic facts on the Fokker–Planck equations and stochastic
Koopman operator for stochastic dynamical systems.

We consider a stochastic dynamical system described by a time-homogeneous SDE of
Ito type [44–46],

dX(t) = A(X(t))dt + B(X(t))dW(t), (13)

where X(t) ∈ RN is the system state at time t, A : RN → RN is a drift term representing
the deterministic vector field of the oscillator, B : RN → RN×N is a matrix character-
izing the intensity of the noise, and W(t) is a Wiener process in RN representing the
N-dimensional independent Gaussian-white noise. We assume that A and B satisfy the
Lipschitz condition |A(X)− A(Y)|+ |B(X)− B(Y)| ≤ K|X −Y | and the growth condition
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|A(X)|2 + |B(X)|2 ≤ K2|(1 + |X|2) with some constant K for Equation (13) to possess a
unique strong solution X(t) [44,46].

The FPE equivalent to the above SDE, describing the time evolution of the probability
density function (PDF) p(X, t) : RN ×R→ R of X at time t is given by

∂

∂t
p(X, t) = LX p(X, t) =

[
− ∂

∂X
A(X) +

1
2

∂2

∂X2 D(X)

]
p(X, t), (14)

where

LX = − ∂

∂X
A(X) +

1
2

∂2

∂X2 D(X) (15)

is a (forward) Fokker–Planck operator. Here, the drift vector A : RN → RN is the same
as in Equation (13) and D = BBT : RN → RN×N is a symmetric diffusion matrix, where
T indicates matrix transposition. We also assume that the functions A(X) and D(X) are
smooth, satisfy the growth conditions |D(X)| ≤ M, | − A(X) +∇ · D(X)| ≤ M(1 + |X|),
and | − ∇ · A(X) + (1/2)∇ · (∇ · D(X))| ≤ M(1 + |X|2) with some constant M, and the
uniform parabolicity (λ · D(X)λ) ≥ α|λ|2 for all λ ∈ RN with a constant α > 0 in order
that Equation (14) possesses a classical solution for t > 0 [44,46–48].

The transition probability density p(X, t|Y , s), satisfying p(X, t) =
∫

p(X, t|Y , s) p(Y , s)dY
for t > s and limt→s+0 p(Y , t|X, s) = δ(X−Y)where δ(X−Y) is Dirac’s delta measure [44–46],
obeys the forward FPE

∂

∂t
p(X, t|Y , s) = LX p(X, t|Y , s) (16)

and also the corresponding backward FPE

∂

∂s
p(X, t|Y , s) = −L+

Y p(X, t|Y , s) = −
[

A(Y)
∂

∂Y
+

1
2

D(Y)
∂2

∂Y2

]
p(X, t|Y , s). (17)

Here, the backward Fokker–Planck operator

L+
X = A(X)

∂

∂X
+

1
2

D(X)
∂2

∂X2 (18)

is the adjoint linear operator of LX with respect to the L2 inner product

〈G(X), H(X)〉 =
∫

G(X)H(X)dX (19)

of two functions G, H : RN → C, i.e.,

〈L+
X G(X), H(X)〉 = 〈G(X), LX H(X)〉, (20)

where the overline indicates complex conjugate and the integration is taken over the whole
range of X here and hereafter.

3.2. Eigensystem of the Fokker–Planck Operators

The linear differential operators LX and L+
X have the eigensystem {Λk, Pk, Qk}k≥0

consisting of the eigenvalue Λk and eigenfunctions Pk(X), Qk(X) satisfying

LX Pk(X) = ΛkPk(X),

L+
X Qk(X) = ΛkQk(X), (21)
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and the biorthogonality conditions

〈Qk(X), Pl(X)〉 = δkl , (22)

where k, l = 0, 1, 2, . . . and δkl represents Kronecker’s delta [35,45,49]. Here, Qk(X) is the
complex conjugate of Qk(X), which is an eigenfunction of L+

X associated with the eigen-
value Λk, i.e., L+

X Qk(X) = ΛkQk(X). Because LX is a Fokker–Planck operator, the eigen-
value Λ0 is zero and the associated eigenfunction P0(X) gives the stationary PDF of the FPE,
i.e., LX P0(X) = 0, when appropriately normalized. All other eigenvalues have negative
real parts and the associated eigenfunctions represent the relaxation eigenmodes of the
FPE that eventually decay as t→ ∞ [35,45,49].

3.3. Stochastic Koopman Operator

We here introduce the stochastic Koopman operator following Mezić [50] and discuss
its relationship with the backward Fokker–Planck operator.

Definition 1. For an observable g : RN → C and τ > 0, the stochastic Koopman operator Uτ
st is

defined as

Uτ
stg(X) = E[g(Sτ

stX)] =
∫

p(Y , τ|X, 0)g(Y)dY (23)

for X ∈ RN , where E[·] represents the expectation over realizations of the stochastic flow Sτ
st of

Equation (13) and p(Y , τ|X, 0) is the transition probability density satisfying Equation (16).

In the second expression of Equation (23), the expectation E[g(Sτ
stX)] is represented

as an average over the transition probability density p(Y , τ|X, 0). The initial time can be
taken as 0 without loss of generality because the process is time-homogeneous. We also
introduce the infinitesimal generator of the stochastic Koopman operator.

Definition 2. For an observable g : RN → C, the infinitesimal generator Ast of the stochastic
Koopman operator Uτ

st is defined by

Astg(X) = lim
τ→+0

Uτ
stg(X)− g(X)

τ
. (24)

From the above definitions, it can be shown that the infinitesimal generator of the
stochastic Koopman operator is given by the backward Fokker–Planck operator.

Lemma 1. The infinitesimal generator Ast of the stochastic Koopman operator Uτ
st is given by the

backward Fokker–Planck operator L+
X in Equation (18).

The proof can be found in the textbook by Øksendal [51] (Section 7.3, The generator
of an Ito diffusion, Theorem 7.3.3).

Thus, the infinitesimal generator of the stochastic Koopman operator is given by the
backward Fokker–Planck operator, i.e., Ast = L+

X . Before proceeding to the definition of
the asymptotic phase and amplitude, we show a result on the time evolution of the average
of the eigenfunction Qk (k = 0, 1, 2, · · · ) of Ast = L+

X .

Lemma 2. Let X(t) = St
stX0 be a solution to Equation (13) with an initial condition X0 ∈ RN ,

where St
st : RN → RN (t ≥ 0) is the stochastic flow of Equation (13). Then, the average

E[Qk(St
stX0)] =

∫
Qk(X)p(X, t|X0, 0)dX (25)
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of Qk(X(t)) = Qk(St
stX0) obeys

d
dt
E[Qk(St

stX0)] = ΛkE[Qk(St
stX0)] (26)

for arbitrary X0, where E[·] represents the expectation over realizations of the stochastic flow St
st

and p(X, t|X0, 0) is the transition probability density satisfying Equation (16).

Proof.

d
dt
E[Qk(St

stX0)] =
d
dt

∫
Qk(X)p(X, t|X0, 0)dX

=
∫

Qk(X)
∂

∂t
p(X, t|X0, 0)dX =

∫
Qk(X)LX p(X, t|X0, 0)dX

=
∫

L+
X Qk(X)p(X, t|X0, 0)dX =

∫
ΛkQk(X)p(X, t|X0, 0)dX

= ΛkE[Qk(St
stX0)]. (27)

We use the above result for discussing the evolution of the averaged phase and
amplitude in the next section.

4. Phase and Amplitude for Stochastic Oscillatory Systems
4.1. Stochastic Oscillatory Systems

The definitions of the phase and amplitude in Section 2 are based on the deterministic
limit-cycle solution. These definitions are still applicable to noisy limit-cycle oscillators
when the noise can be regarded as a weak perturbation [1–5]. However, they are no longer
valid when the oscillator is subjected to stronger noise because we cannot rely on the
deterministic limit-cycle solution in defining the phase and amplitude functions.

In Reference [35], Thomas and Lindner proposed a definition of the asymptotic phase
for strongly stochastic oscillators without relying on the limit-cycle solution of the deter-
ministic system, where they used the slowest decaying eigenfunction of the backward
Fokker–Planck operator as the phase function based on the consideration of the mean first
passage time. In this section, we show that their definition can be viewed as a natural
extension of the deterministic definition in the sense that it is given by the argument of the
Koopman eigenfunction associated with the fundamental frequency [38,39].

4.2. Assumptions on the Eigenvalues

Since we consider oscillatory stochastic systems, we introduce the following assump-
tions on the eigenvalues of the Fokker–Planck operator LX in Equation (15).

(i) We assume that the eigenvalues with the largest non-zero real part are given by
a complex-conjugate pair, i.e., the slowest decaying eigenmode is oscillatory, and regard
this eigenmode as the fundamental oscillation of the system. These eigenvalues are repre-
sented as

Λ1 = µ1 + iω1, Λ1 = µ1 − iω1, (28)

where µ1 < 0 and ω1 > 0 characterize the decay rate and fundamental frequency of the
oscillation, respectively.

(ii) We assume that the largest non-zero eigenvalue on the real axis, denoted as Λ2, is
smaller than µ1, i.e., Λ2 < Re Λ1, and consider that this eigenvalue characterizes the decay
rate of the amplitude of the system, i.e., the deviation of the system state from the averaged
oscillatory state.
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When the system has a stable limit cycle as discussed in the previous section in the
limit of vanishing noise intensity, these eigenvalues are expected to converge to iω and λ1
of the deterministic limit cycle in the limit of vanishing noise, i.e., ω1 → ω and Λ2 → λ1.

4.3. Definition of the Asymptotic Phase Function

Thomas and Lindner [35] defined an asymptotic phase for the stochastic oscillatory
system, Equation (13), by using the argument of the (complex conjugate of the) eigenfunc-
tion Q1(X) of the backward Fokker–Planck operator L+

X associated with the eigenvalue
Λ1 characterized by the fundamental frequency ω1 (in the notation of the present study),
satisfying L+

X Q1(X) = Λ1Q1(X), as

Φ(X) = Arg Q1(X), (29)

and showed that this Φ(X) gives an appropriate phase value that increases with a constant
frequency ω1 with the evolution of X on average. They showed that, in the limit of van-
ishing noise where the system is described by the vector field A(X) possessing a stable
limit-cycle solution, this definition of the asymptotic phase coincides with the deterministic
definition in Section 2 [35]. In Reference [38], we pointed out that the above definition
of the phase function by the backward Fokker–Planck operator can also be understood
from the viewpoint of the Koopman operator theory. In what follows, we introduce the
asymptotic phase and also the amplitude from the Koopman-operator viewpoint.

Let us rephrase the above definition of the asymptotic phase Φ(X) for stochastic
oscillators from the Koopman-operator viewpoint.

Definition 3. We define the asymptotic phase Φ(X) of the oscillator state X ∈ RN described by
Equation (13) by using the eigenfunction Q1(X) of the infinitesimal generator of the Koopman
operator Ast = L+

X in Equation (18) associated with the eigenvalue Λ1 as

Φ(X) = Arg Q1(X). (30)

Note that the above phase Φ(X) has a discontinuity at 2π, which causes difficulty
in taking ensemble averages of Φ(X) over realizations of X. Rather, as in the standard
convention in directional statistics [52], we consider a ‘wrapped’ distribution of the phase
values and use the circular mean to calculate the average phase. This is accomplished
by taking the ensemble average of Q1(X) over many realizations and then calculate its
argument, rather than calculating the ensemble average of Arg Q1(X).

Definition 4. We define the averaged asymptotic phase of the stochastic oscillator described by
Equation (13) at time t, started from an initial condition X0 at time 0, as

φ(t; X0) = Arg E[Q1(St
stX0)] = Arg

∫
Q1(X)p(X, t|X0, 0)dX, (31)

where E[·] represents the expectation over realizations of the stochastic flow St
st of Equation (13)

and p(X, t|X0, 0) is the transition probability density satisfying Equation (16).

Let us confirm that the above definition of the phase function yields appropriate phase
values on average.

Lemma 3. The average asymptotic phase in Equation (31) increases with a constant frequency ω1,
i.e.,

d
dt

φ(t; X0) = ω1, (32)

for arbitrary X0 ∈ RN .
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Proof. From Lemma 2, the average E[Q1(St
stX0)] of Q1(X(t)) = Q1(St

stX0) obeys

d
dt
E[Q1(St

stX0)] = Λ1E[Q1(St
stX0)], (33)

where Λ1 = µ1 + iω1. By integration, we obtain

E[Q1(St
stX0)] = e(µ1+iω1)tE[Q1(X0)], (34)

where we used that S0
stX0 = X0. The averaged asymptotic phase is thus given by

φ(t; X0) = Arg E[Q1(St
stX0)] = ω1t + Arg E[Q1(X0)] = ω1t + φ(0; X0), (35)

which yields Equation (32) by differentiation by t.

Thus, the averaged asymptotic phase φ(t; X0) of the oscillator satisfies

φ̇(t; X0) = ω1, (36)

namely, φ(t; X0) increases with a constant frequency ω1 on average for any X0. This result
indicates that the definition of the asymptotic phase in Equation (29) for the stochastic oscil-
lators by Thomas and Lindner [35] is a natural extension of the definition in Equation (11)
for the deterministic oscillators from the Koopman-operator viewpoint.

4.4. Definition of the Amplitude Function

We have seen that the definition of the stochastic asymptotic phase by using the
backward Fokker–Planck operator can be naturally interpreted as a generalization of the
deterministic definition from the viewpoint of the Koopman operator theory. Furthermore,
as explained in Section 2, the asymptotic amplitude can be naturally defined by using the
Koopman eigenfunction associated with the largest non-zero real eigenvalue in determinis-
tic systems. Therefore, to generalize the definition of the amplitude to stochastic oscillators,
it appears natural to use the eigenfunction of the stochastic Koopman operator.

Definition 5. We define the amplitude of the oscillator state X ∈ RN described by Equation (13)
by using the Koopman eigencfunction Q2(X) of L+

X in Equation (18) associated with the largest
non-zero real eigenvalue Λ2 as

R(X) = Q2(X). (37)

Let us confirm that the above definition of the amplitude function yields appropriate
amplitude values on average.

Definition 6. We define the averaged amplitude of the stochastic oscillator described by Equation (13)
at time t, started from the initial condition X(0) = X0 at time 0, as

r(t; X0) = E[Q2(St
stX0)] =

∫
Q2(X)p(X, t|X0, 0)dX, (38)

where E[·] represents the expectation over realizations of the stochastic flow St
st of Equation (13)

and p(X, t|X0, 0) is the transition probability density satisfying Equation (16).

Lemma 4. The averaged amplitude r(t; X0) in Equation (37) decays at a constant rate Λ2, i.e.,

d
dt

r(t; X0) = Λ2r(t; X0), (39)

for arbitrary X0 ∈ RN .
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Proof. From Lemma 2,

d
dt

r(t; X0) =
d
dt
E[Q2(St

stX0)] = Λ2E[Q2(St
stX0)] = Λ2r(t; X0). (40)

Thus, the averaged amplitude r(t; X0) obeys

ṙ(t; X0) = Λ2r(t; X0) (41)

and hence r(t; X0) = eΛ2tr(0; X0) as expected for any X0. Since Λ2 is real and negative
by assumption, r(t; X0) decays exponentially with time. This result indicates that the
definition of the amplitude in Equation (37) for stochastic oscillators is a natural extension
of the definition in Equation (12) for the deterministic systems from the Koopman-operator
viewpoint. As we illustrate in the next section with a few examples, the above definition
yields an amplitude value that decays linearly with t on average and characterizes the
deviation of the system state from the steady oscillation.

4.5. Limit of Vanishing Noise Intensity

Before proceeding to examples, we point out that the results for the stochastic oscilla-
tors formally reduce to the results for deterministic limit-cycle oscillators in the limit of
vanishingly small noise.

If we assume that the noise does not exist, i.e., D(X)→ 0 in the forward and backward
Fokker–Planck Equations (14) and (17), we obtain the forward and backward Liouville
equations [45,46,48,53],

∂

∂t
p(X, t|Y , s) = LX p(X, t|Y , s),

∂

∂s
p(X, t|Y , s) = −L†

Y p(X, t|Y , s), (42)

where the forward Liouville operator is given by

LX = − ∂

∂X
A(X) (43)

and the backward Liouville operator is given by

L+X = A(X) · ∂

∂X
= A(X) · ∇. (44)

Because the backward Liouville operator L+X coincides with the infinitesimal generator
of the Koopman operator A in the deterministic case given in Equation (8), the Koopman
eigenfunction Ψ0(X) of A in Equation (10) is an eigenfunction of L+X with an eigenvalue
iω. Thus, the definition of the asymptotic phase for stochastic oscillators in Equation (30)
can be considered a natural generalization of the definition of the asymptotic phase for
deterministic oscillators in Equation (11). Similarly, the Koopman eigenfunction R0(X) of
A in Equation (12) is an eigenfunction of L+X with an eigenvalue Λ2 = λ1, so the definition
of the amplitude for stochastic oscillators in Equation (37) also corresponds to that for
deterministic oscillators in Equation (12).

5. Examples
5.1. Numerical Methods

To demonstrate the validity of the phase and amplitude functions introduced in
Section 4, we consider two classical examples of noisy limit-cycle oscillators, i.e., the Stuart–
Landau model [2,4] and the FitzHugh–Nagumo model [40,41]. We numerically calculate
the eigenvalues and eigenfunctions of the backward Fokker–Planck operator and evaluate
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the phase and amplitude functions. We also analyze a quantum limit-cycle oscillator in the
semiclassical regime, which can be described by the same stochastic differential equations
as those for the classical noisy limit-cycle oscillators.

In the numerical calculations, we truncated the state space and approximated it as a
finite square domain −D ≤ x ≤ D,−D ≤ y ≤ D with a large enough value of D. In all
models considered, the stationary PDF of the FPE rapidly decayed with the distance from
the origin and took numerically negligible values at the edges of the domain. We discretized
the domain into N × N grids and represented the PDF as a N2-dimensional vector. We
then represented the operator L+

X as a N2 × N2 matrix, calculated the eigenvalues and
eigenvectors, and obtained the phase and amplitude functions.

5.2. Example 1: Noisy Stuart–Landau Model

As the first example, we consider the Stuart–Landau model (the normal form of the
supercritical Hopf bifurcation [2,42]) under the effect of noise, described by

dx = {ax− by− (cx− dy)(x2 + y2)}dt +
√

DxdWx,

dy = {bx + ay− (dx + cy)(x2 + y2)}dt +
√

DydWy, (45)

where x and y are real variables, a, b, c, and d are real parameters, Wx and Wy are indepen-
dent Wiener processes, and Dx and Dy represent the intensities of the noise acting on x
and y, respectively. The noiseless system with Dx = Dy = 0 has a stable limit cycle with
a natural frequency ω = b− ad/c and the largest non-zero Floquet exponent λ1 = −2a
when a > 0 and c > 0. For this system, we can explicitly calculate the limit cycle and the
phase and amplitude functions as [4]

(x0(φ), y0(φ))
T =

√
a
c
(cos φ, sin φ)T ,

Φ0(x, y) = tan−1
( y

x

)
− d

c
ln
√

c
a
(x2 + y2),

R0(x, y) = C0

(
c− a

x2 + y2

)
. (46)

where C0 is an arbitrary scalar constant. The basin Bχ of this limit cycle χ is the whole
complex plane except the origin.

In the following numerical simulations, we set the parameter values as (a, b, c, d, Dx,
Dy) = (0.5, 1.5, 0.25, 0.25, 1, 1). The natural frequency and the largest non-zero Floquet
exponent are ω = 1 and λ1 = −1, respectively. It is noted that the fundamental frequency
ω1 = Im Λ1 and decay rate Λ2 under the effect of noise are generally different from these
deterministic values. We used D = 3.6 and N = 151 for the numerical analysis.

Figure 1a shows the eigenvalues of the Koopman operator L+
X near the imaginary axis

obtained numerically, where the eigenvalues Λ1 = µ1 + iω1 and Λ2 are shown by orange
and red dots, respectively. The rightmost branch of the eigenvalues is approximately given
by a parabola λ̂n = iω1n− µ1n2 (n = 0,±1,±2, . . .) passing through Λ1 [35].

Figure 1b,c show the phase function Φ(x, y) and amplitude function |R(x, y)| asso-
ciated with Λ1 = µ1 + iω1 and Λ2, respectively. We can observe that a circular region
representing the local minima of the amplitude exists along the limit-cycle solution in the
deterministic case and the phase increases from 0 to 2π along this circle. In contrast to
the deterministic case, Equation (46), the amplitude does not diverge at the unstable fixed
point at the origin (x, y) = (0, 0), because the system state can escape from this point in a
finite time due to the effect of noise.

To confirm that these functions yield appropriate values of the phase and ampli-
tude on average, we obtained 10, 000 trajectories by direct numerical simulations of the
Equation (45) from the initial point (x0, y0) = (−1.5,−1.5) and calculated the averaged
phase φ = Arg

[
Q1(x, y)

]
and amplitude |r| =

[
|Q2(x, y)|

]
, where

[
·
]

represents a sample
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average over all obtained trajectories. Figure 1d,e show that these values are in good
agreement with the analytical solutions φ = ω1t + φ0 and |r| = |r0| exp(Λ2t), where the
fundamental frequency ω1 = 0.728 and the decay rate Λ2 = −1.680 are numerically
evaluated from the eigenvalues plotted in Figure 1a. For comparison, we also show the
analytical solutions for the deterministic case without noise (Dx = Dy = 0), namely,
φ = ωt + φ0 = t + φ0 and |r| = |r0| exp(λ1t) = |r0| exp(−t). The averaged phase in-
creases more slowly and the averaged amplitude decays more quickly than those in the
deterministic case due to the effect of noise.
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Figure 1. Phase and amplitude functions of a noisy Stuart–Landau model. (a) Eigenvalues of L+
X near

the imaginary axis. Orange and red dots represent Λ1 and Λ2, respectively. (b) Phase function Φ(x, y).
The phase origin is chosen as (x, p) = (1.5, 0). (c) Amplitude function |R(x, y)|. (d) Evolution of
averaged phase φ. (e) Evolution of averaged amplitude |r|. In (b,c), red-thin lines represent the
deterministic limit-cycle solution. In (d,e), averaged results over 10, 000 trajectories (orange and
red thin lines) and analytical solutions (blue-dotted lines) for the stochastic case and results for the
deterministic case (green-dotted lines) are shown.

5.3. Example 2: Noisy FitzHugh–Nagumo Model

Next, we consider the FitzHugh–Nagumo model [40,41] subjected to noise, described by

dx = (x− a1x3 − y)dt +
√

DxdWx,

dy = η1(x + b1)dt +
√

DydWy, (47)

where x and y are real variables, a1, b1, and η1 are real parameters, Wx and Wy are indepen-
dent Wiener processes, and Dx and Dy represent the intensities of the noise, respectively.

First, we consider parameter set (A): (a1, b1, η1, Dx, Dy) = (1/3, 0.5, 0.5, 0.2, 0.2), at
which the deterministic vector field possesses a stable limit-cycle solution with the natural
frequency ω = 0.588 and the largest non-zero Floquet exponent λ1 = −1.11. We used
D = 4.2 and N = 151 for the numerical analysis.

Figure 2a shows the eigenvalues of the Koopman operator L+
X near the imaginary

axis obtained numerically, where Λ1 = µ1 + iω1 and Λ2 are shown by orange and red
dots, respectively. The rightmost branch of the eigenvalues is approximately a parabola
λ̂n = iω1n− µ1n2 (n = 0,±1,±2, . . .) passing through Λ1, which is qualitatively similar
to the one for the noisy Stuart–Landau model in Figure 1a. Figure 2b,c show the phase
Φ(x, y) and amplitude |R(x, y)| associated with Λ1 = µ1 + iω1 and Λ2. As in the case of
the noisy Stuart–Landau model, a circular region corresponding to the local minima of
the amplitude function exists around the deterministic limit-cycle solution and the phase
increases along this region. The amplitude does not diverge at the unstable fixed point due
to the effect of noise.
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Figure 2. Phase and amplitude functions of a noisy FitzHugh–Nagumo model with parameter
set (A). The deterministic vector field possesses a limit-cycle solution. (a) Eigenvalues of L+

X near
the imaginary axis. Orange and red dots represent Λ1 and Λ2, respectively. (b) Phase function Φ.
(c) Amplitude function |R|. (d) Evolution of averaged phase φ. (d) Evolution of averaged amplitude
|r|. In (b), (x, p) = (1.5, 0) is chosen as the phase origin. In (b,c), red-thin lines represent the
deterministic limit-cycle solution. In (d,e), averaged results over 10,000 trajectories (orange and
red thin lines) and analytical solutions (blue-dotted lines) for the stochastic case and results for the
deterministic case (green-dotted lines) are shown.

We calculated the time evolution of Φ(x, y) and |R(x, y)| by direct numerical simula-
tions of Equation (47) from the initial point (x0, y0) = (0.1, 0.1) and averaged the results
over 10,000 trajectories. Figure 2d,e show the averaged phase φ = Arg

[
Q1(x, y)

]
and

amplitude |r| =
[
|Q2(x, y)|

]
. They are in good agreement with the analytical solutions

φ = ω1t + φ0 and |r| = |r0| exp(Λ2t), where the fundamental frequency ω1 = 0.582
and the decay rate Λ2 = −0.778 are numerically evaluated from the eigenvalues plot-
ted in Figure 2a. For comparison, we also show the analytical solution for the deter-
ministic case without noise (Dx = Dy = 0), namely, φ = ωt + φ0 = 0.588t + φ0 and
|r| = |r0| exp(λ1t) = |r0| exp(−1.11t). The phase evolves more slowly and also the ampli-
tude decays more slowly than those in the deterministic case due to the effect of noise.

Next, we consider parameter set (B): (a1, b1, η1, Dx, Dy) = (1/3, 1.05, 0.25, 0.1, 0.1). In
this case, the deterministic vector field does not have a stable limit-cycle, but the system
is close to a supercritical Hopf bifurcation of a limit cycle. Thus, relatively regular noise-
induced oscillations occur even though the system does not have a deterministic limit cycle,
a phenomenon known as the coherence resonance [54–56]. We used D = 3.9 and N = 151
for the numerical analysis.

Figure 3a shows the eigenvalues of the Koopman operator L+
X near the imaginary

axis obtained numerically, where Λ1 = µ1 + iω1 and Λ2 are shown by orange and red
dots, respectively. Figure 3b,c show the phase Φ(x, y) and amplitude |R(x, y)| associated
with Λ1 = µ1 + iω1 and Λ2, respectively. Interestingly, although the deterministic system
does not have a limit-cycle solution, we can still observe in Figure 3b,c a circular region
representing the local minima of the amplitude function. This region corresponds to the
noise-induced oscillations and the phase increases along this circular region.

Figure 3d,e show the time evolution of the average values of the phase and am-
plitude, which are averaged over 10,000 trajectories by direct numerical simulations
of the Equation (47) from the initial point (x0, y0) = (0.1, 0.1). The averaged phase
φ = Arg

[
Q1(x, y)

]
and amplitude r =

[
|Q2(x, y)|

]
show good agreement with the ana-

lytical solutions φ = ω1t + φ0 and |r| = |r0| exp(Λ2t), where the fundamental frequency
ω1 = 0.287 and the decay rate Λ2 = −0.815 are numerically evaluated from the eigenvalues
in Figure 3a.
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Thus, we can introduce the phase and amplitude functions also in this case without a
deterministic limit cycle by using the present definition using the Koopman eigenfunctions.
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Figure 3. Phase and amplitude functions of a noisy FitzHugh–Nagumo model with parameter
set (B). The deterministic vector field does not possess a limit cycle, but regular noise-induced
oscillations occur. (a) Eigenvalues of L+

X near the imaginary axis. Orange and red dots represent
Λ1 and Λ2, respectively. (b) Phase function Φ. The phase origin is chosen as (x, p) = (1.5, 0).
(c) Amplitude function |R|. (d) Evolution of averaged phase φ. (e) Evolution of averaged amplitude
|r|. In (d,e), averaged results over 10,000 trajectories (orange-thin or red-thin lines) and analytical
solutions (blue-dotted lines) are shown.

5.4. Example 3: Semiclassical Stuart–Landau Model

Finally, we apply the proposed definition of the stochastic phase and amplitude
functions to a quantum limit-cycle oscillator in the semiclassical regime. As an example,
we use the quantum Stuart–Landau model [57,58] (also known as the quantum van der Pol
model [59]) with a Kerr effect [33,60] in quantum optics.

Employing the phase space approach [61,62], the system state can be represented by
a Wigner function W(x, y) (see References [33,60] for details). In the semiclassical regime,
the quantum noise is sufficiently weak and W(x, y) approximately obeys a quantum FPE,
which has the same form as the ordinary FPE for classical systems. Thus, we can derive the
corresponding Ito SDE from the quantum FPE as

d
(

x
y

)
=

(
γ1+2γ2

2 x− (ω0 + 2K)p− (γ2x− 2Kp)(x2 + p2)

(ω0 + 2K)x + γ1+2γ2
2 p− (2Kx + γ2 p)(x2 + p2)

)
dt +

√
β(x, y)

2

(
dWx
dWy

)
, (48)

where β(x, y) = γ1
2 + 2γ2

(
x2 + y2 − 1

2

)
, ω0 is a frequency parameter of the oscillator, K

represents the Kerr parameter, and γ1 and γ2 are the decay rates for the negative damping
and nonlinear damping, respectively, and Wx and Wy are independent Wiener processes.
The semiclassical approximation is valid when γ2 and K are sufficiently small [33,60].

The deterministic part of Equation (48) is equivalent to the Stuart–Landau model used
in Example 1 and only the coefficient of the noise term differs. Therefore, the deterministic
limit cycle and the phase and amplitude functions can be obtained from the results for
Equation (46), where the parameters are given by a = γ1+2γ2

2 , b = ω0 + 2K, c = γ2, d = 2K.
We set the parameter values as (γ1, γ2, ω0, K) = (1, 0.05, 1, 0.025). With these values, the
deterministic vector field of Equation (48) possesses a stable limit-cycle solution with the
natural frequency ω = ω0 − Kγ1/γ2 = 0.5 and the largest non-zero Floquet exponent
λ1 = γ1 + 2γ2 = −1.1. We used D = 6.7 and N = 151 for the numerical analysis.

Figure 4a shows the eigenvalues of the Koopman operator L+
X , where Λ1 = µ1 + iω1

and Λ2 are indicated by orange and red dots, respectively. Figure 4b,c show the phase
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function Φ(x, y) and amplitude function R(x, y) associated with Λ1 = µ1 + iω1 and Λ2.
For comparison, we also show in Figure 4d the deterministic phase function Φ0(x, y)
in Equation (46). The stochastic phase function Φ(x, y) in Figure 4b is slightly different
from the deterministic phase function Φ0(x, y) in Figure 4d, in particular near the origin,
because the stochastic phase function includes the effect of weak quantum noise. Figure 4c
shows that the amplitude function takes the minima around the deterministic limit cycle.
We note that the amplitude function does not diverge at the origin in contrast to the
deterministic case. Here, we used a color map with the maximum value of 0.005 to enhance
the local minima of the amplitude function, and the region near the origin where the
amplitude is larger than 0.005 is shown in the same color (the true maximum amplitude is
0.0876 at the origin).
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Figure 4. Phase and amplitude functions of a quantum Stuart–Landau model with a quantum Kerr
effect in the semiclassical regime. (a) Eigenvalues of L+

X near the imaginary axis. Orange and red
dots represent eigenvalues Λ1 and Λ2, respectively. (b) Phase function Φ. (c) Amplitude function |R|.
(d) Phase function Φ0 of the deterministic system. (e) Evolution of averaged phase φ. (f) Evolution
of averaged amplitude |r|. In (b,d), (x, p) = (2.5, 0) is chosen as the phase origin. In (e,f), averaged
results over 10,000 trajectories (orange and red thin lines) and analytical solutions for the semiclassical
case (blue-dotted lines) and results for the deterministic case (green-dotted lines) are shown.

Figure 4e,f show the time evolution of the values of the phase and amplitude averaged
over 10,000 trajectories obtained by direct numerical simulations of the semiclassical
Equation (45) from the initial point (x0, y0) = (2.5, 0). They show good agreement with
the analytical solutions φ = ω1t + φ0 and |r| = |r0| exp(Λ2t), where the values of the
fundamental frequency ω1 = 0.496 and the decay rate Λ2 = −0.798 are numerically
evaluated from the eigenvalues shown in Figure 4a.

Thus, the present definition of the phase and amplitude functions is also applicable to
a quantum Stuart–Landau model in the semiclassical regime and yields reasonable values.
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6. Discussion

We proposed a definition of the asymptotic phase and amplitude functions for stochas-
tic oscillatory systems by generalizing the definition for deterministic limit-cycle oscillators
on the basis of the Koopman operator theory, motivated by the definition of the stochastic
asymptotic phase introduced by Thomas and Lindner [35].

The proposed asymptotic phase and amplitude for strongly stochastic oscillatory
systems may be used for systematic and quantitative analysis of synchronization phe-
nomena in stochastic oscillators. We may also be able to develop a phase-amplitude
reduction theory for strongly stochastic oscillators by using the phase and amplitude
functions, which allows us to reduce the system dynamics subjected to weak external
inputs to a simple two-dimensional set of equations. Such theories will facilitate detailed
analysis, control, and optimization of noise-induced oscillatory phenomena, including the
coherence-resonance and self-induced-stochastic-resonance oscillations [63,64].

It will also be interesting to introduce amplitude functions for strongly quantum
oscillatory systems on the basis of the Koopman operator theory [38]. We have recently
defined the quantum asymptotic phase of strongly quantum oscillators by using the
eigenoperator of the adjoint Liouville superoperator and found that it can largely differ
from the asymptotic phase in the classical limit [38]. The amplitude function, which can be
defined similarly, may also be very different from the classical counterpart and characterize
the quantum signatures of synchronization observed in the strong quantum regime.

7. Conclusions

We proposed a definition of the asymptotic phase and amplitude functions for stochas-
tic oscillatory systems. The proposed phase and amplitude functions are introduced in
terms of the backward Fokker–Planck operator, which can be interpreted as the Koopman
operator for the stochastic system. The validity of the phase and amplitude functions was
numerically demonstrated for noisy Stuart–Landau and FitzHugh–Nagumo models and
also for a quantum Stuart–Landau model in the semiclassical regime.

Note added—During the preparation of this article, we noticed a new, closely related
study by Pérez-Cervera, Lindner, and Thomas [65], which introduced the isostables (level
sets of the asymptotic amplitude function) for stochastic oscillators on the basis of the
backward Kolmogorov equation and analyzed the examples of a spiral sink, a noisy
Stuart–Landau oscillator, and a noisy heteroclinic oscillator. Our present results differ from
Reference [65] in that we explicitly discussed the relationship with the Koopman operator
theory and analyzed a noisy excitable system and quantum limit-cycle oscillator in the
semiclassical regime, in addition to noisy limit-cycle oscillators. We thus believe our results
provide different insights and are complementary to Reference [65].
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