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Abstract: In many real-life problems, decision-making is reckoned as a powerful tool to manipulate
the data involving imprecise and vague information. To fix the mathematical problems containing
more generalized datasets, an emerging model called q-rung orthopair fuzzy soft sets offers a
comprehensive framework for a number of multi-attribute decision-making (MADM) situations
but this model is not capable to deal effectively with situations having bipolar soft data. In this
research study, a novel hybrid model under the name of q-rung orthopair fuzzy bipolar soft set
(q-ROFBSS, henceforth), an efficient bipolar soft generalization of q-rung orthopair fuzzy set model,
is introduced and illustrated by an example. The proposed model is successfully tested for several
significant operations like subset, complement, extended union and intersection, restricted union and
intersection, the ‘AND’ operation and the ‘OR’ operation. The De Morgan’s laws are also verified for
q-ROFBSSs regarding above-mentioned operations. Ultimately, two applications are investigated by
using the proposed framework. In first real-life application, the selection of land for cropping the
carrots and the lettuces is studied, while in second practical application, the selection of an eligible
student for a scholarship is discussed. At last, a comparison of the initiated model with certain
existing models, including Pythagorean and Fermatean fuzzy bipolar soft set models is provided.

Keywords: q-rung orthopair fuzzy soft set; bipolar soft set; score function; algorithm;
decision-making

1. Introduction

Nowadays, MADM is playing a vital role in dealing with the vague information
having multi-attributes by offering better mathematical modeling in case of various real-
life problems. Actually, such kinds of issues arise in Social Sciences, Medical Sciences,
Environmental Sciences, Engineering, Ecology, Economics, and several different domains,
which are highly dependent on the target of modeling uncertainties that cannot be solved
using traditional mathematical theories, including probability theory. A good decision
exhibits proper illustration of a dataset and helps to move further in the right direction.
Zadeh [1] was credited for proposing the fuzzy set theory to deal with uncertain infor-
mation and for introducing new research directions in several domains of science and
technology, especially, decision-making. He assigned the objects by the belongingness
(membership) grades in the real-valued interval [0, 1]. However, it was observed that some
other extensions was also required to deal with non-belongingness (dissatisfaction) values
of objects in different vague and uncertain situations. Later, Atanassov [2] generalized
fuzzy sets and put forward the idea of intuitionistic fuzzy set (IFS) via belongingness and
non-belongingness grades whose sum lies in [0, 1]. The theory of IFSs has rich potential
applications in various domains ranging from medical to engineering. However, in some
practical decision-making situations, IFSs cannot be employed. For example, consider that
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a team of senior professors is invited to provide their opinions on the performance of em-
ployees for promotion purpose. There may be a possibility that half of them express their
belongingness degrees as 0.8 with respect to a particular parameter, while the remaining
provide their non-belongingness degrees as 0.6 with respect to the same parameter. This
situation cannot be illustrated by the IFSs because 0.8 + 0.6 = 1.4 > 1.

After two decades of this powerful invention of IFSs, Yager [3] was the first who pre-
sented a natural extension of IFSs called Pythagorean fuzzy sets (PFSs) in 2013, because IFSs
were not sufficient for handling the data involving belongingness and non-belongingness
grades whose sum does not lie in [0, 1]. PFSs came with a major feature that the sum of
squares of belongingness and non-belongingness grades bounded by 1, which actually
provided more space to this model for dealing with numerous real-life problems, i.e., in
the above-mentioned situation, PFSs work well because 0.82 + 0.62 = 1. Note that PFSs
are equivalent to the Atanassov’s IFSs of second type [4]. With the production of PFSs,
many researchers put forward their attention to this fruitful model and introduced several
useful results by generalizing this concept or by its implementation to different uncertainty
theories. For example, Yager and Abbasov [5] discussed about an association between
Pythagorean membership values and complex numbers. In order to solve MADM situ-
ations with PFSs, Zhang and Xu [6] presented an extended TOPSIS approach based on
PFSs. Yager [7] presented a number of aggregation operators based on PFSs to solve the
decision-making problems. Peng and Yang [8] studied subtraction and division of PFSs
and discussed their significant properties. The same authors [9] introduced interval-valued
PFSs as a natural generalization of PFSs.

In the last few decades, many scholars attracted towards MADM methods to deter-
mine some more generalized novel mathematical tools for dealing with different types of
uncertainties in numerous real-world problems. MADM models explain how attributes
information is to be processed to compute a suitable object or ranking order of the objects
to support decision-making. In the literature, MADM methods have been used in different
domains, including engineering. No doubt, PFS theory is playing a significant role in
solving of different real-world MADM problems but there is still a flaw in this model,
that is, PFS fails to deal a situation where the sum of the square of belongingness and
non-belongingness values is not bounded by one. To overcome this issue, Yager’s [10]
contribution came in the form of q-rung orthopair fuzzy sets (q-ROFSs) with the char-
acteristic of the sum of the qth power of belongingness and non-belongingness values
of elements not being more than one. The q-ROFSs are generally reduced to IFSs [2],
PFSs [3], and Fermatean fuzzy sets (FFSs) [11] for q = 1, 2 and q = 3, respectively (see
Figure 1). A number of problems have been solved by using q-ROFS model. For instance,
Hussain et al. [12] proposed the q-rung orthopair fuzzy soft aggregation operators and
discussed their multi-criteria decision-making applications. The q-ROFS model was found
to be more effective when extended to range of parameterizations and used in different
domains [13–16].

Pawlak [17] initiated the theory of rough sets to handle imprecise data while he
was working on the problems related to intelligent systems. According to him, different
parameterized values help experts in establishing an opinion during a variety of decision-
making problems. The theories of both fuzzy and rough sets suffer from the drawback
of not being able to describe the consideration of multiple parameters. To resolve this
issue, Molodtsov [18], in 1999, proposed a new set, known as soft set (SS). This set was
mainly centered on application of mathematical models for handling vague information
by means of parametric perspective. Ali et al. [19], then extended the known literature
and introduced a number of new notions. They further claimed that De Morgan’s laws
were applicable for SSs. They also paved way for a new direction in this field by linking
several ideas to the notion of SSs. After that, Maji et al. [20,21] used SSs to define fuzzy
soft sets (FSSs) and intuitionistic fuzzy soft sets (IFSSs). Since then, a host of research was
published based on different aspects of FSSs and IFSSs and these sets were effectively used
in decision-making for real-life problems [22–24]. Recently, Hamid et al. [13] proposed
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a new model called q-rung orthopair fuzzy soft sets (q-ROFSSs) by combining q-ROFSs
with SSs.

Figure 1. Comparison between the IFSs [2], PFSs [3], FFSs [11], and q-ROFSs [10].

Due to the existence of bipolar information in several practical situations, Shabir
and Naz [25] extended their applications to bipolar soft sets (BSSs) and elaborated their
algebraic structures. This concept was built to distinguish between preferred and adverse
sides of the data. Dubois and Prade [26] introduced the role of polarity to give the reason
for the positive and negative sides of alternatives. Currently, the hybrid environment of
BSSs in decision-making problems has been used frequently [27–29]. Very recently, Ali and
Ansari [30] presented a novel MADM model, namely, Fermatean fuzzy BSSs together with
its two applications, including selection of a best surgeon robot and evaluation of the most
affected country due to coronavirus disease 2019 (COVID-19). The existing models, namely,
IFS, PFS, FFS, q-ROFS, IFSS, and q-ROFSS often lack in precision regarding bipolar soft
knowledge when they come to decision-making with imprecise data. It can be elucidated
from the above discussion that a hybrid model having the ability to depict bipolarity of
soft data with q-rung orthopair fuzzy information is still unattended. Keeping in view
the shortcomings of the existing systems, we offer a new direction for the research in the
emerging era of decision-making techniques. For other useful terminologies the readers
are suggested to [31–36].

The motivations of the proposed model are elaborated as follows:
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1. The main feature of FFSs to handle the uncertainties in people decisions make it more
cogent and efficient because FFSs deal with two dimensional (i.e., belongingness and
non-belongingness) information in more wider space than IFSs and PFSs;

2. BSSs and q-ROFSs are two different mathematical models to address uncertain MADM
situations. Therefore, there is a need of such hybrid model which have characteristics
of both these models;

3. Note that for q = 2, 3, our proposed q-ROFBSS model can be converted into existing
Pythagorean fuzzy BSSs (PFBSSs) [28] and Fermatean fuzzy BSSs
(FFBSSs) [30], respectively;

4. The existing PFBSS model is inefficient to solve decision-making problems in which
an expert evaluates the given information with the satisfactory and unsatisfactory
degrees, whose sum of squares is not less than 1. To provide more space for evaluation
values, the q-ROFBSS model is established, in which the sum of qth power of satisfac-
tory and unsatisfactory degrees should be bounded by 1. Thus, q-ROFBSSs are more
flexible for different vague environments as compared to certain existing models.

The major contributions of this research article are provided as below:

1. Our work focuses on the improvement of efficiency of q-ROFBSS model by increasing
the number of acceptable orthopairs. The illustration of the proposed work comes
with an example;

2. To investigate our hybrid model, we propose subset, complement, extended union
and intersection, restricted union and intersection, and OR and AND operations;

3. Certain De Morgan’s laws for q-ROFBSSs are also verified;
4. Ultimately, we combine these ideas and offer an application with algorithm regarding

selection of land for cropping carrots and lettuces. We also use this model to offer
another application to help in the selection of an eligible student for scholarship;

5. Furthermore, a comparison analysis with some existing models in qualitative and
quantitative formats is provided;

6. At the end, some concluding remarks and future directions are given.

This paper is organized as: In Section 2, some fundamental notions are reviewed,
including BSSs, q-ROFSs, and q-ROFSSs. In Section 3, q-ROFBSSs are discussed along
with several significant operations for q-ROFBSSs, namely, subsets, complement, ex-
tended union and intersection, restricted union and intersection, and OR and AND oper-
ations. In Section 4, two applications are investigated by using the proposed framework.
Section 5 gives comparison of the developed model with certain existing models, including
Pythagorean and Fermatean fuzzy BSSs. In Section 6, some concluding remarks and future
directions are given.

2. Preliminaries

This section recalls some fundamental notions, namely, BSS, q-ROFSS, and q-ROFS
with score and accuracy functions.

Definition 1 ([25]). Let U be a universal set and P be a universe of parameters. For everyR ⊆ P,
a triple ( f , g,R) is called a bipolar soft set or BSS on U, where f and g are functions defined as

f : R → P(U) and g : ¬R → P(U),

such that f (ϑ) ∩ g(¬r) = ∅, ∀ r ∈ R, ¬r ∈ ¬R where ¬R is the ‘Not set’ of parameters.

Definition 2 ([10]). Let U be a universal set. Then, a pair G = (λ+, λ−) is called the q-rung or-
thopair fuzzy set or q-ROFS over U, where λ+ is a belongingness function given by λ+ : U→ [0, 1]
and λ− is a non-belongingness function given by λ− : U→ [0, 1]with 0 ≤ (λ+(d))q + (λ−(d))q ≤ 1
where q ≥ 1, λ+(d), λ−(d) ∈ [0, 1]. In set form, a q-ROFS on U is defined as

G = {〈u, (λ+(d), λ−(d))〉 | d ∈ U},
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where λ+(d), λ−(d) ∈ [0, 1] denotes the belongingness and non-belongingness values, respectively,
and satisfies 0 ≤ (λ+(d))q + (λ−(d))q ≤ 1. Moreover, (λ+(d), λ−(d)) is known as a q-rung
orthopair fuzzy number (q-ROFN) and denoted by O = (λ+

O , λ−O). The degree of hesitance for
q-ROFN O = (λ+

O , λ−O) is defined as

πO = q
√

1− ((λ+
O(d))q + (λ−O(d))q).

Assume that E(U) is the family of all q-ROFSs on U.

Definition 3 ([15]). Let O = (λ+
O , λ−O) be a q-ROFN. The score function of O is defined as

s(O) = (λ+
O)q − (λ−O)q, q ≥ 1. (1)

Definition 4 ([15]). Let O = (λ+
O , λ−O) be a q-ROFN. The accuracy function of O is defined as

h(O) = (λ+
O)q + (λ−O)q, q ≥ 1. (2)

Definition 5 ([15]). Let O1 = (λ+
O1

, λ−O1
) and O2 = (λ+

O2
, λ−O2

) be any two q-ROFNs, s(O1)

and s(O2) be the score functions of O1 and O2, and h(O1) and h(O2) be the accuracy functions of
O1 and O2, then

1. if s(O1) > s(O2) then O1 > O2,
2. if s(O1) = s(O2) and

• if h(O1) > h(O2) then O1 > O2,
• if h(O1) = h(O2) then O1 = O2.

Definition 6 ([13]). Let U and P be the universal set and universe of parameters, respectively.
Assume thatR ⊆ P, then the pair (A,R) is said to be a q-rung orthopair fuzzy soft set or q-ROFSS
over U, if A is a mapping given as A : R → E(U). Consider d ∈ U and r ∈ R, then A(r) is a
q-ROFS on U, which is defined as

A(r) = {〈u, (λ+
A(r)(d), λ−A(r)(d))〉 | d ∈ U},

where λ+
A(r)(d), λ−A(r)(d) ∈ [0, 1] denotes the belongingness and non-belongingness values,

respectively, and satisfy 0 ≤ (λ+
A(r)(d))

q + (λ−A(r)(d))
q ≤ 1.

3. q-Rung Orthopair Fuzzy Bipolar Soft Sets

This section provides a novel hybrid structure by the mixture of BSSs and q-ROFSs
which is named as q-ROFBSSs. Here, we also present some operations and then investigate
by means of numerical examples.

Definition 7. Consider a universal set U and P a universe of parameters. For anyR ⊆ P, a triplet
(Q,S ,R) is called a q-rung orthopair fuzzy bipolar soft set or q-ROFBSS over U, if Q and S are
mappings given as Q : R → E(U) and S : ¬R → E(U), respectively, and satisfy

0 ≤(λ+
Q(r)(d)) + (λ+

S (¬r)(d)) ≤ 1, (3)

0 ≤(λ−Q(r)(d)) + (λ−S (¬r)(d)) ≤ 1, (4)

for all r ∈ R, ¬r ∈ ¬R, and d ∈ U. Moreover, λ+
Q(r)(d) and λ+

S (¬r)(d) are belongingness and
non-belongingness values of an object ‘d’ over U and for any q ≥ 1 satisfy

0 ≤(λ+
Q(r)(d))

q + (λ+
Q(¬r)(d))q ≤ 1, (5)

0 ≤(λ−S (r)(d))
q + (λ−S (¬r)(d))q ≤ 1, (6)

respectively.
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On the other hand, a q-ROFBSS over U gives two parameterized q-rung orthopair
fuzzy subsets on U, which satisfy the Equations (3) and (4). For any r ∈ R, Q(r) and
S(¬r) are described as the sets of r- and ¬r-approximate elements of the q-ROFBSS
(Q,S ,R), respectively.

The following example illustrate the Definition 7 precisely.

Example 1. Let U = {d1, d2, d3, d4} be the set of four refrigerators from different companies.
Ahmad wants to buy a refrigerator. Consider the attribute set for the objects di ∈ U, i = 1, 2, 3, 4 is
given by

P = {r1(expensive), r2(big size), r3(attractive), r4(long warranty time)}.

Denote the “Not set of P” as

¬P = {¬r1(cheap), ¬r2(small size), ¬r3(ugly),¬r4(small warranty time)}.

For R = {r1(expensive), r2(big size), r3(attractive)} ⊆ P, we define a q-ROFBSS
(Q,S ,R) with q = 5, which describe the requirements of Ahmad about the refrigerator, he wishes
to buy. Then, a 5-ROFBSS (Q,S ,R) is given by

Q(r1) =
{
(d1, 0.8, 0.9), (d2, 0.7, 0.6), (d3, 0.4, 0.9), (d4, 0.98, 0.3)

}
,

Q(r2) =
{
(d1, 0.6, 0.9), (d2, 0.5, 0.5), (d3, 0.6, 0.3), (d4, 0.9, 0.1)

}
,

Q(r3) =
{
(d1, 0.6, 0.7), (d2, 0.4, 0.5), (d3, 0.9, 0.0), (d4, 0.7, 0.8)

}
,

S(¬r1) =
{
(d1, 0.2, 0.1), (d2, 0.3, 0.3), (d3, 0.5, 0.1), (d4, 0.01, 0.7)

}
,

S(¬r2) =
{
(d1, 0.4, 0.1), (d2, 0.5, 0.4), (d3, 0.4, 0.7), (d4, 0.1, 0.8)

}
,

S(¬r3) =
{
(d1, 0.4, 0.3), (d2, 0.6, 0.5), (d3, 0.1, 0.9), (d4, 0.3, 0.2)

}
.

The 5-ROFBSS (Q,S ,R) can be represented in tabular form as shown in Table 1.

Table 1. Table for the 5-ROFBSS (Q,S ,R).

(Q,S ,R) r1 r2 r3

d1 〈(0.8, 0.9), (0.2, 0.1)〉 〈(0.6, 0.9), (0.4, 0.1)〉 〈(0.6, 0.7), (0.4, 0.3)〉
d2 〈(0.7, 0.6), (0.3, 0.3)〉 〈(0.5, 0.5), (0.5, 0.4)〉 〈(0.4, 0.5), (0.6, 0.5)〉
d3 〈(0.4, 0.9), (0.5, 0.1)〉 〈(0.6, 0.3), (0.4, 0.7)〉 〈(0.9, 0.0), (0.1, 0.9)〉
d4 〈(0.98, 0.3), (0.01, 0.7)〉 〈(0.9, 0.1), (0.1, 0.8)〉 〈(0.7, 0.8), (0.3, 0.2)〉

Thus, (Q,S ,R) is a 5-ROFBSS based on expensiveness, attractiveness, and few other param-
eters associated with the selection of refrigerator. For instance, from Table 1, 〈(0.8, 0.9), (0.2, 0.1)〉
represents that the support of the belongingness of refrigerator d1 is 0.8 and 0.9 is the support
against belongingness of d1 based expensiveness. In a similar manner, for the parameter ‘cheap’
which gives totally opposite meaning to the parameter ‘expensive’, 0.2 is the belongingness degree
in the support of d1, and 0.1 is the belongingness degree against the support of d1 based cheapness.

The 5-ROFBSS (Q,S ,R) on U, displayed by Table 1 can also be given by Tables 2
and 3.

Table 2. Table for belongingness and non-belongingness values for the parameter setR.

Q r1 r2 r3

d1 (0.8, 0.9) (0.6, 0.9) (0.6, 0.7)
d2 (0.7, 0.6) (0.5, 0.5) (0.4, 0.5)
d3 (0.4, 0.9) (0.6, 0.3) (0.9, 0)
d4 (0.98, 0.3) (0.9, 0.1) (0.7, 0.8)
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Table 3. Table for belongingness and non-belongingness values for the set ¬R.

S ¬r1 ¬r2 ¬r3

d1 (0.2, 0.1) (0.4, 0.1) (0.4, 0.3)
d2 (0.3, 0.3) (0.5, 0.4) (0.6, 0.5)
d3 (0.5, 0.1) (0.4, 0.7) (0.1, 0.9)
d4 (0.01, 0.7) (0.1, 0.8) (0.3, 0.2)

Remark 1. Note that intuitionistic fuzzy BSSs, Pythagorean fuzzy BSSs [28] and Fermatean fuzzy
BSSs [30] are special cases of our proposed q-ROFBSS model for q = 1, 2 and q = 3, respectively.

Basic Operations

In this subsection, we explore some basic notions of q-ROFBSSs and investigate them
with corresponding numerical examples.

Definition 8. Let U be a universal set and ξ1 = (Q1,S1,R1), ξ2 = (Q2,S2,R2) be two q-
ROFBSSs over U. The set ξ1 is called a q-rung orthopair fuzzy bipolar soft subset of ξ2, denoted as
ξ1⊂̃ξ2, if

1. R1 ⊆ R2,
2. Q1(r) ⊆ Q2(r) (that is, λ+

Q1
(r)(d) ≤ λ+

Q2
(r)(d), λ−Q1

(r)(d) ≥ λ−Q2
(r)(d)) and S1(¬r) ⊇

S2(¬r) (that is, λ+
S2
(¬r)(d) ≤ λ+

S1
(¬r)(d), λ−S2

(¬r)(d) ≥ λ−S1
(¬r)(d)) for all r ∈ R1

and d ∈ U.

Example 2. Let 5-ROFBSS (Q,S ,R) on U be as defined in Example 1, forR1 = {r1 = expensive,
r2 = big size} ⊆ R, we give a new 5-ROFBSS (Q1,S1,R1), which is given by Table 4:

Table 4. Table for the 5-ROFBSS (Q1,S1,R1).

(Q1,S1,R1) r1 r2

d1 〈(0.6, 0.9), (0.4, 0.1)〉 〈(0.5, 0.9), (0.5, 0.1)〉
d2 〈(0.6, 0.7), (0.4, 0.3)〉 〈(0.4, 0.6), (0.6, 0.4)〉
d3 〈(0.3, 0.9), (0.7, 0.1)〉 〈(0.5, 0.5), (0.5, 0.45)〉
d4 〈(0.9, 0.6), (0.1, 0.4)〉 〈(0.8, 0.4), (0.2, 0.6)〉

It is clear from Definition 8 that (Q1,S1,R1)⊂̃(Q,S ,R).

Definition 9. Let U be a universal set. Consider ξ1 = (Q1,S1,R1) and ξ2 = (Q2,S2,R2) are
two q-ROFBSSs over U. Then, ξ1 and ξ2 are said to be equal, if ξ1⊂̃ξ2 and ξ2⊂̃ξ1.

Definition 10. Let U be a universal set and ξ = (Q,S ,R) be a q-ROFBSS. Then, its com-
plement ξc = (Qc, Sc, R) is a q-ROFBSS over U with Qc(r)(d) = (λ−Q(r)(d), λ+

Q(r)(d)) and
S c(¬r)(d) = (λ−S (¬r)(d), λ+

S (¬r)(d)) for all r ∈ R,¬r ∈ ¬R and d ∈ U.

Example 3. Let ξ = (Q,S ,R) be the 5-ROFBSS over a universe U as considered in Example 1.
Then, by Definition 10, its complement ξc = (Qc, Sc, R) is computed in Table 5.

Table 5. Table for the complement of (Q,S ,R).

ξc r1 r2 r3

d1 〈(0.9, 0.8), (0.1, 0.2)〉 〈(0.9, 0.6), (0.1, 0.4)〉 〈(0.7, 0.6), (0.3, 0.4)〉
d2 〈(0.6, 0.7), (0.3, 0.3)〉 〈(0.5, 0.5), (0.4, 0.5)〉 〈(0.5, 0.4), (0.5, 0.6)〉
d3 〈(0.9, 0.4), (0.1, 0.5)〉 〈(0.3, 0.6), (0.7, 0.4)〉 〈(0, 0.9), (0.9, 0.1)〉
d4 〈(0.3, 0.98), (0.7, 0.01)〉 〈(0.1, 0.9), (0.8, 0.1)〉 〈(0.8, 0.7), (0.2, 0.3)〉
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Definition 11. A q-ROFBSS on a universe U is refereed to as a relative null q-ROFBSS, rep-
resented by (Φ,U,R), if Φ(r)(d) = (λ+

Φ(r)(d) = 0, λ−Φ(r)(d) = 1) and U(¬r)(d) = (1, 0)
∀ r ∈ R, ¬r ∈ ¬R, d ∈ U.

Definition 12. A q-ROFBSS on a universe U is refereed to as a relative absolute q-ROFBSS,
represented by (U, Φ,R), if U(r)(d) = (λ+

U (r)(d) = 1, λ−U (r)(d) = 0) and Φ(¬r)(d) = (0, 1)
∀ r ∈ R, ¬r ∈ ¬R, d ∈ U.

Definition 13. Let (Q1,S1,R1) and (Q2,S2,R2) be two q-ROFBSSs over a universe U. Then,
the “AND” operation on (Q1,S1,R1) and (Q2,S2,R2), denoted by (Q1,S1,R1)Z (Q2,S2,R2),
is defined as (Q1,S1,R1) Z (Q2,S2,R2) = (Q,S ,R1 ×R2) where for all (ri, rj) ∈ R1 ×R2,
(¬ri,¬rj) ∈ ¬R1 ×¬R2, and d ∈ U,

Q(ri, rj)(d) =
(
λ+
Q1

(ri)(d) ∧ λ+
Q2

(rj)(d), λ−Q1
(ri)(d) ∨ λ−Q2

(rj)(d)
)
,

S(¬ri,¬rj)(d) =
(
λ+
S1
(¬ri)(d) ∨ λ+

S2
(¬rj)(d), λ−S1

(¬ri)(d) ∧ λ−S2
(¬rj)(d)

)
.

Definition 14. Let (Q1,S1,R1) and (Q2,S2,R2) be two q-ROFBSSs over a universe U. Then
the “OR” operation on (Q1,S1,R1) and (Q2,S2,R2), denoted by (Q1,S1,R1) Y (Q2,S2,R2),
is defined as (Q1,S1,R1) Y (Q2,S2,R2) = (Q′, S′,R1 ×R2) where for all (ri, rj) ∈ R1 ×R2,
(¬ri,¬rj) ∈ ¬R1 ×¬R2, and d ∈ U,

Q′(ri, rj)(d) =
(
λ+
Q1

(ri)(d) ∨ λ+
Q2

(rj)(d), λ−Q1
(ri)(d) ∧ λ−Q2

(rj)(d)
)
,

S ′(¬ri,¬rj)(d) =
(
λ+
S1
(¬ri)(d) ∧ λ+

S2
(¬rj)(d), λ−S1

(¬ri)(d) ∨ λ−S2
(¬rj)(d)

)
.

Example 4. Let U = {d1, d2, . . . , d6} be a set of six cars and let ξ1 = (Q1,S1,R1) and ξ2 =
(Q2,S2,R2) be two q-ROFBSSs over U. Consider a universal set of parameters P = {r1 =
less weight, r2 = high engine power, r3 = large size, r4 = high speed, r5 = safe driving} ,
whereR1 = {r1 = less weight, r2 = high engine power}, andR2 = {r3 = large size} ⊆ P
are the set of parameters. Then, q-ROFBSSs ξ1 and ξ2 for q = 7 are displayed in Tables 6
and 7, respectively.

Table 6. Table for the 7-ROFBSS (Q1,S1,R1).

(Q1,S1,R1) r1 r2

d1 〈(0.5, 0.9), (0.4, 0.1)〉 〈(0.7, 0.6), (0.3, 0.4)〉
d2 〈(0.7, 0.8), (0.3, 0.1)〉 〈(0.8, 0.7), (0.1, 0.2)〉
d3 〈(0.9, 0.4), (0.1, 0.5)〉 〈(0.6, 0.7), (0.4, 0.3)〉
d4 〈(0.5, 0.5), (0.5, 0.4)〉 〈(0.1, 0.2), (0.9, 0.7)〉
d5 〈(0.9, 0.9), (0.1, 0)〉 〈(0.5, 0.8), (0.4, 0.1)〉
d6 〈(1, 0), (0, 1)〉 〈(0.4, 0.5), (0.6, 0.4)〉

Table 7. Table for the 7-ROFBSS (Q2,S2,R2).

(Q2,S2,R2) r3

d1 〈(0.5, 0.7), (0.4, 0.3)〉
d2 〈(0.9, 0.8), (0.1, 0.2)〉
d3 〈(0.7, 0.5), (0.3, 0.5)〉
d4 〈(0.2, 0.8), (0.8, 0.1)〉
d5 〈(0.5, 0.7), (0.5, 0.3)〉
d6 〈(0.9, 0.5), (0.1, 0.5)〉

Then, the “AND” and “OR” operation between (Q1,S1,R1) and (Q2,S2,R2) are given by
Tables 8 and 9, respectively.
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Table 8. Table for the 7-ROFBSS ξ1 Z ξ2.

(Q1,S1,R1) Z (Q2,S2,R2) (r1, r3) (r2, r3)

d1 〈(0.5, 0.9), (0.4, 0.1)〉 〈(0.5, 0.7), (0.4, 0.3)〉
d2 〈(0.7, 0.8), (0.3, 0.1)〉 〈(0.8, 0.8), (0.1, 0.2)〉
d3 〈(0.7, 0.5), (0.3, 0.5)〉 〈(0.6, 0.7), (0.4, 0.3)〉
d4 〈(0.2, 0.8), (0.8, 0.1)〉 〈(0.1, 0.8), (0.9, 0.1)〉
d5 〈(0.5, 0.9), (0.5, 0)〉 〈(0.5, 0.8), (0.5, 0.1)〉
d6 〈(0.9, 0.5), (0.1, 0.5)〉 〈(0.4, 0.5), (0.6, 0.4)〉

Table 9. Table for the 7-ROFBSS ξ1 Y ξ2.

(Q1,S1,R1) Y (Q2,S2,R2) (r1, r3) (r2, r3)

d1 〈(0.5, 0.7), (0.4, 0.3)〉 〈(0.7, 0.6), (0.3, 0.4)〉
d2 〈(0.9, 0.8), (0.1, 0.2)〉 〈(0.9, 0.7), (0.1, 0.2)〉
d3 〈(0.9, 0.4), (0.1, 0.5)〉 〈(0.7, 0.5), (0.3, 0.5)〉
d4 〈(0.5, 0.5), (0.5, 0.4)〉 〈(0.2, 0.2), (0.8, 0.7)〉
d5 〈(0.9, 0.7), (0.1, 0.3)〉 〈(0.5, 0.7), (0.4, 0.3)〉
d6 〈(1, 0), (0, 1)〉 〈(0.9, 0.5), (0.1, 0.5)〉

The following proposition describes that certain De Morgan’s laws verify with the
AND operation and the OR operation.

Proposition 1. Let U be a universe and let ξ1 = (Q1,S1,R1) and ξ2 = (Q2,S2,R2) be q-
ROFBSSs on U. Then

1. (ξ1 Y ξ2)
c = (ξ1)

c Z (ξ2)
c,

2. (ξ1 Z ξ2)
c = (ξ1)

c Y (ξ2)
c.

Proof.

1. From Definitions 10 and 14, (ξ1 Y ξ2)
c = (Q′c,S ′c,R1 × R2) where Q′c(r, s) =

Qc
1(r) Z Qc

2(s) and S ′c(¬r,¬s) = S c
1(¬r) Y S c

2(¬s) for all (r, s) ∈ R1 × R2 and
(¬r,¬s) ∈ ¬R1 ×¬R2.
Now by using Definition 10, (ξ1)

c = (Qc
1,S c

1,R1) and (ξ2)
c = (Qc

2,S c
2,R1). There-

fore, (ξ1)
c Z (ξ2)

c = (Qc,S c,R1 ×R2) (by Definition 13) where Qc(r, s) = Qc
1(r) Z

Qc
2(s) and S c(¬r,¬s) = S c

1(¬r) Y S c
2(¬s) for all (r, s) ∈ R1 × R2 and (¬r,¬s) ∈

¬R1 ×¬R2. Thus, (ξ1 Y ξ2)
c = (ξ1)

c Z (ξ2)
c.

2. It proof is similar to part 1.

Definition 15. Let ξ1 = (Q1,S1,R1) and ξ2 = (Q2,S2,R2) be two q-ROFBSSs on U. Then,
the extended union of ξ1 and ξ2, represented by ξ1 ∪E ξ2, is a q-ROFBSS ((Q1 dQ2), (S1 e S2),
R1 ∪R2) on U, defined as follows:

(Q1 dQ2)(r) =


Q1(r), i f r ∈ R1 −R2,
Q2(r), i f r ∈ R2 −R1,
Q1(r)∪Q2(r) i f r ∈ R1 ∩R2.

(S1 e S2)(¬r) =


S1(¬r), i f ¬r ∈ (¬R1)− (¬R2),
S2(¬r), i f ¬r ∈ (¬R2)− (¬R1),
S1(¬r)∩S2(¬r) i f ¬r ∈ (¬R1) ∩ (¬R2),
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where

Q1(r)∪Q2(r) =
{〈

u,
(
λ+
Q1

(ri)(d) ∨ λ+
Q2

(rj)(d), λ−Q1
(ri)(d) ∧ λ−Q2

(rj)(d)
)〉
| d ∈ U

}
,

S1(¬r)∩S2(¬r) =
{〈

u,
(
λ+
S1
(¬ri)(d) ∧ λ+

S2
(¬rj)(d), λ−S1

(¬ri)(d) ∨ λ−S2
(¬rj)(d)

)〉
| d ∈ U

}
.

Definition 16. Let ξ1 = (Q1,S1,R1) and ξ2 = (Q2,S2,R2) be two q-ROFBSSs over U. Then,
the restricted union of ξ1 and ξ2, denoted by ξ1 ∪R ξ2, is a q-ROFBSS ((Q1 dQ2), (S1 e S2),
R1 ∩R2) on U, where (Q1 dQ2)(r) = Q1(r)∪Q2(r) for all r ∈ R1 ∩R2 and (S1 eS2)(¬r) =
S1(¬r)∩S2(¬r) for all ¬r ∈ (¬R1) ∩ (¬R2), providedR1 ∩R2 6= ∅, (¬R1) ∩ (¬R2) 6= ∅.

Definition 17. Let ξ1 = (Q1,S1,R1) and ξ2 = (Q2,S2,R2) be two q-ROFBSSs over U. Then,
the extended intersection of ξ1 and ξ2, represented by ξ1 ∩E ξ2, is a q-ROFBSS ((Q1 eQ2),
(S1 d S2),R1 ∪R2) on U, defined as follows:

(Q1 eQ2)(r) =


Q1(r), i f r ∈ R1 −R2,
Q2(r), i f r ∈ R2 −R1,
Q1(r)∩Q2(r), i f r ∈ R1 ∩R2.

(S1 d S2)(¬r) =


S1(¬r), i f ¬r ∈ (¬R1)− (¬R2),
S2(¬r), i f ¬r ∈ (¬R2)− (¬R1),
S1(¬r)∪S2(¬r), i f ¬r ∈ (¬R1) ∩ (¬R2).

where

Q1(r)∩Q2(r) =
{〈

u,
(
λ+
Q1

(ri)(d) ∧ λ+
Q2

(rj)(d), λ−Q1
(ri)(d) ∨ λ−Q2

(rj)(d)
)〉
| d ∈ U

}
,

S1(¬r)∪S2(¬r) =
{〈

u,
(
λ+
S1
(¬ri)(d) ∨ λ+

S2
(¬rj)(d), λ−S1

(¬ri)(d) ∧ λ−S2
(¬rj)(d)

)〉
| d ∈ U

}
.

Definition 18. Let ξ1 = (Q1,S1,R1) and ξ2 = (Q2,S2,R2) be any two q-ROFBSSs over
a universe U. Then, the restricted intersection of ξ1 and ξ2, represented by ξ1 ∩R ξ2, is a q-
ROFBSS ((Q1 eQ2), (S1 d S2),R1 ∩R2) on U, where (Q1 eQ2)(r) = Q1(r)∩Q2(r) for all
r ∈ R1 ∩ R2 and (S1 d S2)(¬r) = S1(¬r)∪S2(¬r) for all ¬r ∈ (¬R1) ∩ (¬R2), provided
R1 ∩R2 6= ∅, (¬R1) ∩ (¬R2) 6= ∅.

Example 5. Let ξ2 = (Q2,S2,R2) be a 7-ROFBSS over U, with R2 = {r1, r2, r3} given by
Table 10 and ξ1 = (Q1,S1,R1) be the 7-ROFBSS on the universe U, as considered in Example 4.
Then, their extended union ξ1 ∪E ξ2 and the extended intersection ξ1 ∩E ξ2 are, respectively,
displayed in Tables 11 and 12. The tabular arrangements of the restricted intersection and union are
provided by Tables 13 and 14, respectively.

Table 10. Table for the 7-ROFBSS (Q2,S2,R2).

(Q2,S2,R2) r1 r2 r3

d1 〈(0.3, 0.9), (0.5, 0.1)〉 〈(0.6, 0.3), (0.4, 0.7)〉 〈(0.7, 0.9), (0.3, 0.1)〉
d2 〈(0.5, 0.8), (0.4, 0.2)〉 〈(0.9, 0.5), (0.1, 0.5)〉 〈(0.5, 0.7), (0.4, 0.2)〉
d3 〈(0.9, 0.8), (0.1, 0.1)〉 〈(0.7, 0.7), (0.05, 0.2)〉 〈(0.7, 0.7), (0.3, 0.3)〉
d4 〈(0.2, 0.7), (0.8, 0.2)〉 〈(0.4, 0.4), (0.6, 0.5)〉 〈(0.9, 0.8), (0.1, 0.1)〉
d5 〈(0.5, 0.6), (0.4, 0.4)〉 〈(0.3, 0.9), (0.7, 0.1)〉 〈(0.8, 0.4), (0.2, 0.5)〉
d6 〈(0.6, 0.9), (0.25, 0.1)〉 〈(0.5, 0.3), (0.4, 0.1)〉 〈(0.6, 0.6), (0.4, 0.2)〉
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Table 11. Table for the extended union ξ1 ∪E ξ2.

ξ1 ∪E ξ2 r1 r2 r3

d1 〈(0.5, 0.9), (0.4, 0.1)〉 〈(0.7, 0.3), (0.3, 0.7)〉 〈(0.7, 0.9), (0.3, 0.1)〉
d2 〈(0.7, 0.8), (0.3, 0.2)〉 〈(0.9, 0.5), (0.1, 0.5)〉 〈(0.5, 0.7), (0.4, 0.2)〉
d3 〈(0.9, 0.4), (0.1, 0.5)〉 〈(0.7, 0.7), (0.05, 0.3)〉 〈(0.7, 0.7), (0.3, 0.3)〉
d4 〈(0.5, 0.5), (0.5, 0.4)〉 〈(0.4, 0.2), (0.6, 0.7)〉 〈(0.9, 0.8), (0.1, 0.1)〉
d5 〈(0.9, 0.6), (0.1, 0.4)〉 〈(0.5, 0.8), (0.4, 0.1)〉 〈(0.8, 0.4), (0.2, 0.5)〉
d6 〈(1, 0), (0, 1)〉 〈(0.5, 0.3), (0.4, 0.4)〉 〈(0.6, 0.6), (0.4, 0.2)〉

Table 12. Table for the extended intersection ξ1 ∩E ξ2.

ξ1 ∩E ξ2 r1 r2 r3

d1 〈(0.3, 0.9), (0.5, 0.1)〉 〈(0.6, 0.6), (0.4, 0.4)〉 〈(0.7, 0.9), (0.3, 0.1)〉
d2 〈(0.5, 0.8), (0.4, 0.1)〉 〈(0.8, 0.7), (0.1, 0.2)〉 〈(0.5, 0.7), (0.4, 0.2)〉
d3 〈(0.9, 0.8), (0.1, 0.1)〉 〈(0.6, 0.7), (0.4, 0.2)〉 〈(0.7, 0.7), (0.3, 0.3)〉
d4 〈(0.2, 0.7), (0.8, 0.2)〉 〈(0.1, 0.4), (0.6, 0.5)〉 〈(0.9, 0.8), (0.1, 0.1)〉
d5 〈(0.5, 0.9), (0.4, 0)〉 〈(0.3, 0.9), (0.7, 0.1)〉 〈(0.8, 0.4), (0.2, 0.5)〉
d6 〈(0.6, 0.9), (0.25, 1)〉 〈(0.4, 0.5), (0.6, 0.1)〉 〈(0.6, 0.6), (0.4, 0.2)〉

Table 13. Table for the restricted intersection ξ1 ∩R ξ2.

ξ1 ∩R ξ2 r1 r2

d1 〈(0.3, 0.9), (0.5, 0.1)〉 〈(0.6, 0.6), (0.4, 0.4)〉
d2 〈(0.5, 0.8), (0.4, 0.1)〉 〈(0.8, 0.7), (0.1, 0.2)〉
d3 〈(0.9, 0.8), (0.1, 0.1)〉 〈(0.6, 0.7), (0.4, 0.2)〉
d4 〈(0.2, 0.7), (0.8, 0.2)〉 〈(0.1, 0.4), (0.6, 0.5)〉
d5 〈(0.5, 0.9), (0.4, 0)〉 〈(0.3, 0.9), (0.7, 0.1)〉
d6 〈(0.6, 0.9), (0.25, 1)〉 〈(0.4, 0.5), (0.6, 0.1)〉

Table 14. Table for the restricted union ξ1 ∪R ξ2.

ξ1 ∪R ξ2 r1 r2

d1 〈(0.5, 0.9), (0.4, 0.1)〉 〈(0.7, 0.3), (0.3, 0.7)〉
d2 〈(0.7, 0.8), (0.3, 0.2)〉 〈(0.9, 0.5), (0.1, 0.5)〉
d3 〈(0.9, 0.4), (0.1, 0.5)〉 〈(0.7, 0.7), (0.05, 0.3)〉
d4 〈(0.5, 0.5), (0.5, 0.4)〉 〈(0.4, 0.2), (0.6, 0.7)〉
d5 〈(0.9, 0.6), (0.1, 0.4)〉 〈(0.5, 0.8), (0.4, 0.1)〉
d6 〈(1, 0), (0, 1)〉 〈(0.5, 0.3), (0.4, 0.4)〉

Lemma 1. Let ξ1 = (Q1,S1,R1) and ξ2 = (Q2,S2,R2) be two q-ROFBSSs on a universe
U. Then

1. ξ1 ∪E ξ2 is the smallest q-ROFBSS over U which contains both ξ1 and ξ2;
2. ξ1 ∩R ξ2 is the largest q-ROFBSS over U which is subset of both ξ1 and ξ2.

Proof. Straightforward.

In the following theorem, we verify that certain De Morgan’s laws hold with the
extended (restricted) union and intersection.

Theorem 1. Let ξ1 = (Q1,S1,R1) and ξ2 = (Q2,S2,R2) be two q-ROFBSSs on the universe
U. Then,

1. (ξ1 ∪E ξ2)
c = (ξ1)

c ∩E (ξ2)
c,

2. (ξ1 ∩E ξ2)
c = (ξ1)

c ∪E (ξ2)
c,
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3. (ξ1 ∪R ξ2)
c = (ξ1)

c ∩R (ξ2)
c,

4. (ξ1 ∩R ξ2)
c = (ξ1)

c ∪R (ξ2)
c.

Proof.

1. By Definition 10 and 15, we obtain (ξ1 ∪E ξ2)
c = ((Q1 dQ2)

c, (S1 e S2)
c,R1 ∪R2),

where

(Q1 dQ2)
c(r) =


Qc

1(r), i f r ∈ R1 −R2,
Qc

2(r), i f r ∈ R2 −R1,
Qc

1(r)∩Qc
2(r) i f r ∈ R1 ∩R2.

= (Qc
1 eQc

2)(r). (by Definition 17), and

(S1 e S2)
c(¬r) =


S c

1(¬r), i f ¬r ∈ (¬R1)− (¬R2),

S c
2(¬r), i f ¬r ∈ (¬R2)− (¬R1),

S c
1(¬r)∪S c

2(¬r) i f ¬r ∈ (¬R1) ∩ (¬R2).

= (S c
1 d S2

2 )(¬r). (by Definition 17)
Hence, (ξ1 ∪E ξ2)

c = (ξ1)
c ∩E (ξ2)

c.

The remaining parts (2–4) can be easily followed.

Here, we define a q-rung orthopair fuzzy weighted average operator to aggregate the
q-rung orthopair fuzzy information.

Definition 19. Let O1, O2, . . . , On be a family of q-ROFNs and every Oi = (λ+
Oi

, λ−Oi
) be related

with an important weight wi ∈ [0, 1] (i = 1, 2, . . . , n), such that
n
∑

i=1
wi = 1, then the q-rung

orthopair fuzzy weighted average (q-ROFWA) operator is given by

H(O1, O2, . . . , On) =
( n

∑
i=1

wiλ
+
Oi

,
n

∑
i=1

wiλ
−
Oi

)
. (7)

4. Applications

MADM technique plays a significant role to handle many complicated real-life
decision-making situations. Here, we describe two practical applications with MADM
method based on q-ROFBSSs.

4.1. Selection of Land for Cropping Carrots and Lettuces

With the growing world population the food demands are increasing day-by-day.
Crops play a major role to fulfill these food requirements. There are various factors involve
in the development of crops production, like soil condition, environment, etc. Actually,
soil condition is a very important part in the production process of any crop. The fertility
of land is very important for good yield of any crop. For instance, land containing clay
soil is not suited for various vegetables and field crops like wheat, rice, etc. However, fruit
trees, ornamental trees and shrubs can thrive on clay soil. Therefore, the land selection is
very significant for the crops growth because a crop production may vary from one land
piece to another. It is an uncertain problem for agriculture experts to choose best land for
crops development. That is why, we investigate this daily-life problem by applying our
proposed methodology.

Suppose a farmer wants to buy a land, through a land dealer company, which should
be suitable for the cropping of carrots and lettuces. According to the dealer, a land with
high porosity (i.e., land with many pores so that water can penetrate through soil pores
easily), good soil texture, neutral pH (i.e., neither basic nor acidic), and even colour
soil is suitable for farmer. There are fifteen lands which make the set of alternatives,
U = {L1, L2, . . . , L15}. According to the company, consider P = {r1, r2, . . . , r5} be a set of
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parameters. For j = 1, 2, . . . , 5, the parameters rj stand for “good soil texture”, “crumbly
soil”,“high porosity”, “neutral pH soil”, and “single colour soil”, respectively. Let the ‘Not
set of P’ be ¬P = {¬r1 = bad soil texture,¬r2 = coarse soil,¬r3 = low porosity,¬r4 =
basic pH soil,¬r5 = multi− colour soil}. After a detailed discussion among the committee
members of dealer company, they decide the evaluation of every piece of land will be
done with a favorable subset R = {r1, r2, r3} of P. According to the committee, the q-
ROFBSS (Q,S ,R) with q = 4 describes the “requirements of the lands” which is given by
Table 15 below.

Table 15. Table for the 4-ROFBSS (Q,S ,R).

(Q,S ,R) r1 r2 r3

L1 〈(0.7, 0.4), (0.3, 0.5)〉 〈(0.9, 0.6), (0.1, 0.4)〉 〈(0.76, 0.3), (0.2, 0.7)〉
L2 〈(0.9, 0.7), (0.1, 0.3)〉 〈(0.3, 0.5), (0.7, 0.5)〉 〈(0.4, 0.8), (0.6, 0.1)〉
L3 〈(0.3, 0.2), (0.7, 0.8)〉 〈(0.4, 0.6), (0.6, 0.4)〉 〈(0.3, 0.8), (0.6, 0.2)〉
L4 〈(0.75, 0.6), (0.1, 0.4)〉 〈(0.49, 0.7), (0.51, 0.3)〉 〈(0.59, 0.1), (0.4, 0.9)〉
L5 〈(0.4, 0.4), (0.5, 0.6)〉 〈(0.3, 0.9), (0.7, 0.1)〉 〈(0.7, 0.3), (0.3, 0.7)〉
L6 〈(0.3, 0.9), (0.7, 0.1)〉 〈(0.75, 0.4), (0.25, 0.6)〉 〈(0.99, 0.8), (0.01, 0.2)〉
L7 〈(0.1, 0.85), (0.9, 0.1)〉 〈(0.4, 0.9), (0.6, 0.1)〉 〈(0.1, 0.7), (0.84, 0.3)〉
L8 〈(0.5, 0.7), (0.3, 0.3)〉 〈(0.9, 0.4), (0.1, 0.6)〉 〈(0.9, 0.45), (0.1, 0.55)〉
L9 〈(0.9, 0.6), (0.1, 0.3)〉 〈(0.8, 0.5), (0.15, 0.5)〉 〈(0.7, 0.7), (0.3, 0.3)〉
L10 〈(0.7, 0.7), (0.3, 0.25)〉 〈(0.2, 0.9), (0.75, 0.1)〉 〈(0.1, 0.2), (0.9, 0.7)〉
L11 〈(0.84, 0.8), (0.1, 0.15)〉 〈(0.9, 0.7), (0.05, 0.3)〉 〈(0.79, 0.4), (0.2, 0.6)〉
L12 〈(0.5, 0.8), (0.5, 0.2)〉 〈(0.7, 0.6), (0.3, 0.3)〉 〈(0.3, 0.9), (0.6, 0.1)〉
L13 〈(0.1, 0), (0.9, 0.7)〉 〈(0.65, 0.5), (0.35, 0.5)〉 〈(0.5, 0.79), (0.5, 0.2)〉
L14 〈(0, 1), (1, 0)〉 〈(0.4, 0.9), (0.55, 0.1)〉 〈(0.28, 0.8), (0.71, 0.2)〉
L15 〈(0.45, 0.7), (0.5, 0.3)〉 〈(0.7, 0.3), (0.3, 0.6)〉 〈(0.5, 0.75), (0.48, 0.25)〉

Based on the significant of every parameter rj (j = 1, 2, 3), the committee gives a
specific weight to each parameter which are:

w1 = 0.2, w2 = 0.3, w3 = 0.5.

By using q-ROFWA operator (see Definition 19), we calculate

O1 =
( 3

∑
j=1

wjλ
+
1j,

3

∑
j=1

wjλ
−
1j

)
,

=
(
w1λ+

11 + w2λ+
12 + w3λ+

13, w1λ−11 + w2λ−12 + w3λ−13
)
,

= (0.2× 0.7 + 0.3× 0.9 + 0.5× 0.76, 0.2× 0.4 + 0.3× 0.6 + 0.5× 0.3),

= (0.79, 0.41).

Similarly,

O2 = (0.47, 0.69), O3 = (0.33, 0.62), O4 = (0.592, 0.38),

O5 = (0.52, 0.5), O6 = (0.78, 0.7), O7 = (0.19, 0.79),

O8 = (0.82, 0.485), O9 = (0.77, 0.62), O10 = (0.25, 0.51),

O11 = (0.833, 0.57), O12 = (0.46, 0.79), O13 = (0.465, 0.545),

O14 = (0.26, 0.87), O15 = (0.55, 0.605).
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Now

¬O1 =
( 3

∑
j=1

wjγ
+
1j,

3

∑
j=1

wjγ
−
1j

)
,

=
(
w1γ+

11 + w2γ+
12 + w3γ+

13, w1γ−11 + w2γ−12 + w3γ−13
)
,

= (0.2× 0.3 + 0.3× 0.1 + 0.5× 0.2, 0.2× 0.5 + 0.3× 0.4 + 0.5× 0.7),

= (0.19, 0.57).

Similarly,

¬O2 = (0.53, 0.26), ¬O3 = (0.62, 0.38), ¬O4 = (0.373, 0.62),

¬O5 = (0.46, 0.5), ¬O6 = (0.22, 0.3), ¬O7 = (0.78, 0.2),

¬O8 = (0.14, 0.515), ¬O9 = (0.215, 0.36), ¬O10 = (0.735, 0.43),

¬O11 = (0.135, 0.42), ¬O12 = (0.49, 0.18), ¬O13 = (0.535, 0.39),

¬O14 = (0.72, 0.13) ¬O15 = (0.43, 0.365).

By Definition 3, we have

s(O1) = −0.3612, s(O2) = −0.1779, s(O3) = −0.1359,

s(O4) = 0.1020, s(O5) = 0.0106, s(O6) = 0.1300,

s(O7) = −0.3882, s(O8) = 0.3968, s(O9) = 0.2038,

s(O10) = −0.0637, s(O11) = 0.3759, s(O12) = −0.3447,

s(O13) = −0.0414, s(O14) = −0.5683, s(O15) = −0.0425.

Now, the final scores are computed as:

s(O1)− s(¬O1) = 0.4655,
s(O2)− s(¬O2) = −0.2522,
s(O3)− s(¬O3) = −0.2628,
s(O4)− s(¬O4) = 0.2304,
s(O5)− s(¬O5) = 0.0283,
s(O6)− s(¬O6) = 0.1358,
s(O7)− s(¬O7) = −0.7567,
s(O8)− s(¬O8) = 0.4667,
s(O9)− s(¬O9) = 0.2184,
s(O10)− s(¬O10) = −0.3214,
s(O11)− s(¬O11) = 0.4067,
s(O12)− s(¬O12) = −0.4013,
s(O13)− s(¬O13) = −0.1003,
s(O14)− s(¬O14) = −0.8368,
s(O15)− s(¬O15) = −0.0589.

Clearly, L8 is the optimal alternative. Therefore, the committee will suggest the farmer
to buy the land L8 for cropping carrots and lettuces.

The algorithm based on q-ROFBSSs for the selection process of most appropriate
option is given as below (see Algorithm 1):

Now we apply our developed model to another real situation under q-ROFBSSs.
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Algorithm 1: Selection of a suitable object using q-ROFBSSs
Input:
(i). U = {d1, d2, . . . , dn}, a universal set of n alternatives,
(ii). R ⊆ P, a set of parameters containing m elements,
(iii). a q-ROFBSS (Q,S ,R), where q-rung orthopair fuzzy bipolar soft decision matrix

is provided by o =
〈
(Oij)n×m, (¬Oij)n×m

〉
=
〈
(λ+

ij , λ−ij )n×m, (γ+
ij , γ−ij )n×m

〉
in

tabular format,

(iv). wj, weights for every parameter rj, where j = 1, 2, . . . , m with condition
m
∑

j=1
wj = 1.

Output: The object having maximum final score value will be the decision object.
begin
1. for i = 1 to n do
2. for j = 1 to m do
3. By applying the q-ROFWA operator (Definition 19), compute the q-ROFNs (Oi)

and (¬Oi) for all di ∈ U as;

Oi = H(Oi1, Oi2, . . . , Oim) =
( m

∑
j=1

wjλ
+
ij ,

m

∑
j=1

wjλ
−
ij

)
;

¬Oi = H(¬Oi1,¬Oi2, . . . ,¬Oim) =
( m

∑
j=1

wjγ
+
ij ,

m

∑
j=1

wjγ
−
ij

)
;

where each ¬Oi serves as the q-rung orthopair fuzzy belongingness value of
the alternative of the universe with respect to “Not set of parameters”;

4. end for
5. end for
6. for i = 1 to n do
7. Determine the score functions s(Oi) and s(¬Oi) of every alternative di via

Equation (1);
8. end for
9. for i = 1 to n do
10. Calculate final scores for each object by maxi{s(Oi)− s(¬Oi)};
11. end for
end

4.2. Selection of Student for Scholarship

The basic process for evaluating applicants and awarding scholarships depends on
different factors which are surely uncertain. For instance, financial information about the
applicant is an important factor for awarding a scholarship. It is possible that a student
who is not deserving may provide incorrect financial information. Then, it is on the experts
(interviewers) to decide whether he or she is deserving or not. Thus, it is an uncertain
problem. Similarly, there exist many other factors which effects the selection procedure of
deserving and brilliant students for scholarships, such as morality, honesty, etc.

Suppose the Higher Education Commission (HEC) of Pakistan announces a merit
and need based scholarship for undergraduate students of universities. This task is given
to a team of 5 senior employees. Consider there are twenty applicants from a univer-
sity XYZ which make the set of alternatives, U = {D1, D2, . . . , D20}. According to the
HEC, let P = {r1, r2, r3, r4, r5} be a set of parameters for the selection of candidates for
scholarships. For j = 1, 2, . . . , 5, the parameters rj serve as “high CGPA”, “Good Charac-
ter”, “Poor financial state”, “punctual”and “cooperative”, respectively. Let the ‘Not set
of P’ be ¬P = {¬r1 = low CGPA,¬r2 = bad character,¬r3 = good financial state,¬r4 =
not punctual,¬r5 = not cooperative}. With a brief discussion among the members of
selection team appointed by HEC, they decide that the evaluation of every applicant will
be done with a favorable subset of parameters R = {r1, r2, r3} of P. According to the
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team members, the q-ROFBSS (Q,S ,R) with q = 5 describes the “qualities of the students”
which are displayed in the Table 16 below.

Table 16. Table for the 5-ROFBSS (Q,S ,R).

(Q,S ,R) r1 r2 r3

D1 〈(0.3, 0.8), (0.7, 0.2)〉 〈(0.8, 0.9), (0.2, 0.1)〉 〈(0.8, 0.5), (0.2, 0.5)〉
D2 〈(0.8, 0.7), (0.2, 0.3)〉 〈(0.5, 0.7), (0.3, 0.3)〉 〈(0.5, 0.6), (0.45, 0.4)〉
D3 〈(0.4, 0.8), (0.6, 0.2)〉 〈(0.7, 0.8), (0.3, 0)〉 〈(0.9, 0.7), (0.1, 0.3)〉
D4 〈(0.2, 0.9), (0.8, 0.1)〉 〈(0.8, 0.5), (0.2, 0.5)〉 〈(0.2, 0.3), (0.8, 0.7)〉
D5 〈(0.6, 0.9), (0.4, 0.1)〉 〈(0.5, 0.7), (0.3, 0.2)〉 〈(0.56, 0.6), (0.4, 0.3)〉
D6 〈(0.1, 0.8), (0.8, 0.2)〉 〈(0.9, 0.6), (0.1, 0.4)〉 〈(0.7, 0.3), (0.3, 0.7)〉
D7 〈(0.8, 0.5), (0.1, 0.5)〉 〈(0.4, 0.9), (0.6, 0)〉 〈(0.5, 0.9), (0.5, 0.1)〉
D8 〈(0.6, 0.1), (0.4, 0.9)〉 〈(0.5, 0.8), (0.5, 0.2)〉 〈(0.7, 0.8), (0.3, 0.2)〉
D9 〈(0.9, 0.8), (0.1, 0.1)〉 〈(0.2, 0.3), (0.8, 0.7)〉 〈(0.3, 0.8), (0.7, 0.2)〉
D10 〈(0.1, 0.5), (0.9, 0.5)〉 〈(0.9, 0.8), (0.1, 0.2)〉 〈(0.5, 0.6), (0.5, 0.4)〉
D11 〈(0.3, 0.3), (0.7, 0.7)〉 〈(0.1, 0.9), (0.9, 0.1)〉 〈(0.2, 0.1), (0.8, 0.9)〉
D12 〈(0.7, 0.9), (0.3, 0.1)〉 〈(0.3, 0.8), (0.7, 0.2)〉 〈(0.1, 0.9), (0.9, 0.1)〉
D13 〈(0.4, 0.8), (0.6, 0.2)〉 〈(0.8, 0.7), (0.2, 0.3)〉 〈(0.5, 0.9), (0.5, 0)〉
D14 〈(0.8, 0.7), (0.2, 0.3)〉 〈(0.5, 0.6), (0.5, 0.4)〉 〈(0.3, 0.8), (0.7, 0.2)〉
D15 〈(0.6, 0.8), (0.4, 0.2)〉 〈(0.2, 0.9), (0.8, 0.1)〉 〈(0.8, 0.45), (0.1, 0.5)〉
D16 〈(0.5, 0.6), (0.5, 0.3)〉 〈(0.5, 0.8), (0.5, 0.2)〉 〈(0.9, 0.4), (0.1, 0.6)〉
D17 〈(0.9, 0.4), (0.1, 0.6)〉 〈(0.7, 0.7), (0.3, 0.3)〉 〈(0.8, 0.1), (0.2, 0.9)〉
D18 〈(0.6, 0.1), (0.4, 0.9)〉 〈(0.55, 0.9), (0.45, 0.1)〉 〈(0.9, 0.2), (0.1, 0.8)〉
D19 〈(0.5, 0.75), (0.5, 0.25)〉 〈(0.5, 0.8), (0.5, 0.2)〉 〈(0.5, 0.2), (0.5, 0.8)〉
D20 〈(0.3, 0.5), (0.7, 0.5)〉 〈(0, 0.9), (0.9, 0.1)〉 〈(0.9, 0.7), (0.1, 0.3)〉

Based upon the significant of every parameter rj (j = 1, 2, 3), the team members give
a specific weight to each parameter which are:

w1 = 0.3, w2 = 0.4, w3 = 0.3.

By using q-ROFWA operator (see Definition 19), we calculate

O1 =
( 3

∑
j=1

wjλ
+
1j,

3

∑
j=1

wjλ
−
1j

)
,

=
(
w1λ+

11 + w2λ+
12 + w3λ+

13, w1λ−11 + w2λ−12 + w3λ−13
)
,

= (0.3× 0.3 + 0.4× 0.8 + 0.3× 0.8, 0.3× 0.8 + 0.4× 0.9 + 0.3× 0.5),

= (0.65, 0.75).

Similarly,

O2 = (0.59, 0.67), O3 = (0.67, 0.77), O4 = (0.44, 0.56),

O5 = (0.548, 0.73), O6 = (0.6, 0.57), O7 = (0.55, 0.78),

O8 = (0.59, 0.59), O9 = (0.44, 0.6), O10 = (0.54, 0.65),

O11 = (0.19, 0.48), O12 = (0.36, 0.86), O13 = (0.59, 0.79),

O14 = (0.53, 0.69), O15 = (0.5, 0.735), O16 = (0.62, 0.62),

O17 = (0.79, 0.43), O18 = (0.67, 0.45), O19 = (0.5, 0.605),

O20 = (0.36, 0.72).
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Now

¬O1 =
( 3

∑
j=1

wjγ
+
1j,

3

∑
j=1

wjγ
−
1j

)
,

=
(
w1γ+

11 + w2γ+
12 + w3γ+

13, w1γ−11 + w2γ−12 + w3γ−13
)
,

= (0.3× 0.7 + 0.4× 0.2 + 0.3× 0.2, 0.3× 0.2 + 0.4× 0.1 + 0.3× 0.5),

= (0.35, 0.25).

Similarly,

¬O2 = (0.36, 0.33), ¬O3 = (0.33, 0.15), ¬O4 = (0.56, 0.44),

¬O5 = (0.36, 0.2), ¬O6 = (0.37, 0.43), ¬O7 = (0.42, 0.18),

¬O8 = (0.41, 0.41), ¬O9 = (0.56, 0.37), ¬O10 = (0.46, 0.35),

¬O11 = (0.81, 0.52), ¬O12 = (0.64, 0.14), ¬O13 = (0.41, 0.18),

¬O14 = (0.47, 0.31) ¬O15 = (0.47, 0.25), ¬O16 = (0.38, 0.35),

¬O17 = (0.21, 0.57), ¬O18 = (0.33, 0.55), ¬O19 = (0.5, 0.395),

¬O20 = (0.6, 0.28).

By Definition 3, we have

s(O1) = −0.1213, s(O2) = −0.0635, s(O3) = −0.1357,

s(O4) = −0.0386, s(O5) = −0.1579, s(O6) = 0.0176,

s(O7) = −0.2384, s(O8) = 0, s(O9) = −0.0613,

s(O10) = −0.0701, s(O11) = −0.0252, s(O12) = −0.4644,

s(O13) = −0.2362, s(O14) = −0.1146, s(O15) = −0.1833,

s(O16) = 0, s(O17) = 0.2930, s(O18) = 0.1166,

s(O19) = −0.0498, s(O20) = −0.1874.

Additionally, we get

s(¬O1) = 0.0043, s(¬O2) = 0.0022, s(¬O3) = 0.0038,

s(¬O4) = 0.0386, s(¬O5) = 0.0057, s(¬O6) = −0.0078,

s(¬O7) = 0.0129, s(¬O8) = 0, s(¬O9) = 0.0481,

s(¬O10) = 0.0153, s(¬O11) = 0.3106, s(¬O12) = 0.1073,

s(¬O13) = 0.0114, s(¬O14) = 0.0201, s(¬O15) = 0.0220,

s(¬O16) = −0.0027, s(¬O17) = −0.0598, s(¬O18) = −0.0464,

s(¬O19) = 0.0216, s(¬O20) = 0.0760.

Now we compute the final score values as follows:

s(O1)− s(¬O1) = −0.1256,
s(O2)− s(¬O2) = −0.0656,
s(O3)− s(¬O3) = −0.1395,
s(O4)− s(¬O4) = −0.0772,
s(O5)− s(¬O5) = −0.1636,
s(O6)− s(¬O6) = 0.0254,
s(O7)− s(¬O7) = −0.2513,
s(O8)− s(¬O8) = 0,
s(O9)− s(¬O9) = −0.1094,
s(O10)− s(¬O10) = −0.0854,
s(O11)− s(¬O11) = −0.3359,
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s(O12)− s(¬O12) = −0.5717,
s(O13)− s(¬O13) = −0.2476,
s(O14)− s(¬O14) = −0.1346,
s(O15)− s(¬O15) = −0.2052,
s(O16)− s(¬O16) = 0.0027,
s(O17)− s(¬O17) = 0.3528,
s(O18)− s(¬O18) = 0.1627,
s(O19)− s(¬O19) = −0.0714,
s(O20)− s(¬O20) = −0.2635.

Clearly, D17 is the most suitable student. Therefore, the HEC will select student D17
for the merit and need based scholarship.

5. Sensitivity Analysis

To prove the efficiency and cogency of the developed q-ROFBSS model, this section
discusses its advantages and comparative analysis with PFBSSs [28] and FFBSSs [30].

• Advantages: A quick analysis of recent years show that a rapid progress has been
done for dealing with uncertain information in many MADM situations which is
the evidence of this fruitful era. Due to the existence of various practical MADM
situations in this universe, it is a wish of every researcher to establish a new model or
its hybridized version. It is a limitless approach. Currently, BSS model and its fuzzy
and Pythagorean fuzzy formats are arising as very powerful tools but a generalized
fuzzy version of these models is not introduced yet. With the motivation of these
facts, a new hybrid model, namely, q-ROFBSSs is presented which have ability to deal
with many real situations involving q-rung orthopair fuzzy bipolar soft knowledge.
The developed q-ROFBSS approach is more efficient and flexible to tackle vague
information in different MADM problems. Particularly, if the given information
involving parameters with opposite meanings. It can be easily see that existing MADM
models, i.e., fuzzy BSS model is not capable to consider the non-belongingness values
of alternatives in a MADM problem while PFBSS model is not able to handle the
belongingness and non-belongingness degrees whose sum of their squares is not
bounded by 1. Thus, developed q-ROFBSS method has ability to handle both fuzzy
and Pythagorean fuzzy bipolar soft information.

• Comparison: The production of IFSs and PFSs is enough to show the importance
of non-membership function in different real situations. However, there are some
limitations of these models, such as they fail to handle the MADM problems in which
the sum of squares of belongingness and non-belongingness values is greater than
1. In these days, to solve such critical problems, q-ROFSs are arising as more flexible
tool as compared to IFSs and PFSs. In the literature, several soft computing models,
including fuzzy BSSs [37], PFBSSs [28], FFBSSs [30] and m-polar fuzzy BSSs [29] have
been introduced for dealing with different kinds of uncertain real-world MADM
problems. Inspired by these facts, q-ROFBSSs are proposed to deal with different
fuzzy versions of bipolar soft information. Our proposed model provided more
space to belongingness and non-belongingness degrees as compared to FBSSs [37]
and PFBSSs [28]. Notice that the existing MADM methods, namely, PFBSSs [28] and
FFBSSs [30] fail to solve the developed applications in this study. Therefore, to check
the comparison of PFBSSs [28], FFBSSs [30], and our proposed q-ROFBSS model (for
q = 4), we apply them on the data-sets of Applications 1 and 2 in [28]. From the
Tables 17 and 18, it can be easily see that not only optimal decision objects by applying
these models are equal, that is x19 and y13 in Applications 1 and 2 of [28], respectively,
but also ranking order are similar (for more clarification see the Figures 2 and 3). Thus,
our presented MADM hybrid model is more flexible and efficient than certain existing
models, including PFBSSs [28] and FFBSSs [30].
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Table 17. Comparison table for the Application 1 (Selection of an employee) in [28].

Models x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

PFBSSs [28]
(q = 2) −0.038 0.154 −0.121 −0.226 −0.003 0.444 0.156 0.431 0.145 0.196

FFBSSs [30]
(q = 3) −0.027 0.111 −0.088 −0.132 0.002 0.312 0.147 0.324 0.099 0.143

Proposed q-ROFBSSs
(q = 4) −0.017 0.0721 −0.059 −0.106 0.004 0.201 0.127 0.225 0.060 0.095

Models x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

PFBSSs [28]
(q = 2) 0.342 −0.060 −0.0439 −0.066 0.125 −0.117 −0.399 0.165 0.815 0.596

FFBSSs [30]
(q = 3) 0.256 −0.036 −0.030 −0.040 0.088 −0.085 −0.312 0.110 0.615 0.444

Proposed q-ROFBSSs
(q = 4) 0.178 −0.021 −0.018 −0.022 0.060 −0.056 −0.226 0.067 0.440 0.304

Table 18. Comparison table for the Application 2 (Selection of a house) in [28].

Models y1 y2 y3 y4 y5 y6 y7 y8

PFBSSs [28]
(q = 2) −0.2244 0.1313 0.3497 −0.3281 0.2221 0.4297 0.6080 0.6060

FFBSSs [30]
(q = 3) −0.5022 0.1028 0.2527 −0.2726 0.1719 0.3016 0.4534 0.4621

Proposed q-ROFBSSs
(q = 4) −0.101 0.073 0.165 −0.216 0.123 0.192 0.312 0.324

Models y9 y10 y11 y12 y13 y14 y15

PFBSSs [28]
(q = 2) 0.1936 0.4413 0.0015 −0.1756 0.6687 0.0719 0.4215

FFBSSs [30]
(q = 3) 0.1304 0.3318 −0.0036 −0.1185 0.4868 0.0563 0.2925

Proposed q-ROFBSSs
(q = 4) 0.079 0.226 −0.005 −0.073 0.331 0.039 0.186

Figure 2. Comparison between PFBSSs [28], FFBSSs [30], and proposed q-ROFBSSs by applying on
Application 1 (Selection of an employee) in [28].
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Figure 3. Comparison between PFBSSs [28], FFBSSs [30], and proposed q-ROFBSSs by applying on
Application 2 (Selection of a house) in [28].

6. Conclusions

Decision-making performs a significant role in mathematical modeling to refine the
selection of logical attributes in almost every real-life problem. In this study, we have
proposed a novel hybrid model called q-ROFBSSs for MADM by combining q-ROFSs and
BSSs. The developed model leads us to use parametrization tool regarding bipolarity
during problem-solving as compared to existing mathematical tools for dealing with
uncertain information. Furthermore, we have described some fundamental operations
defined on q-ROFBSSs and investigated them with examples. We have also developed
decision-making methods by the means of novel constructions in Section 3. Moreover,
we have provided justification of our proposed work by solving two real-world problems
involving uncertain information, which are: (a) selection of land for cropping the carrots
and the lettuces; (b) selection of eligible student for scholarship. Hence, it is observed that
hybridization of different models make us able to get more accurate and best information
than other existing models. In last, we have studied a comparison analysis of developed
approach with certain existing models, including Pythagorean and Fermatean fuzzy BSS
models. The presented work can therefore be extended in the following lines:

• q-rung orthopair fuzzy bipolar soft sets can be generalized to interval-valued q-rung or-
thopair fuzzy bipolar soft sets to evaluate different MADM problems more effectively;

• A novel hybrid model, namely, q-rung orthopair picture fuzzy bipolar soft sets can
be established by combining q-rung orthopair fuzzy bipolar soft sets and picture
fuzzy sets;

• q-rung orthopair fuzzy bipolar soft sets can be extended to q-rung orthopair fuzzy
bipolar soft expert sets to solve different group decision-making problems.
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