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Abstract: This paper focuses on planar typical Bézier curves with a single curvature extremum, which
is a supplement of typical curves with monotonic curvature by Y. Mineur et al. We have proven
that the typical curve has at most one curvature extremum and given a fast calculation formula of
the parameter at the curvature extremum. This will allow designers to execute a subdivision at the
curvature extremum to obtain two pieces of typical curves with monotonic curvature. In addition,
we put forward a sufficient condition for typical curve solutions under arbitrary degrees for the G1
interpolation problem. Some numerical experiments are provided to demonstrate the effectiveness
and efficiency of our approach.

Keywords: typical Bézier curves; monotonic curvature; curvature extremum; G1 interpolation

1. Introduction

In CAGD (Computer Aided Geometric Design) applications, it is preferable to generate
aesthetically pleasing surfaces, which are usually modeled by a set of feature curves with
the required fairing shape. The shape of such curves and surfaces is usually influenced by
curvature distribution; therefore, curvature plays a critical role in measuring the fairness
of curves and surfaces. Farin [1,2] pointed out that a curve is fair on the condition that it
has relatively few monotonic curvature variation segments. There is much research that
discusses how to control curvature distribution based on Bézier or B-spline curves [1,3–5],
which are effective design tools in CAD (Computer Aided Design) systems. However, the
conditions of conventional methods are complex, which leads to a limitation in usefulness.

Some research concentrates on realizing the monotonic variation of curvature. Dif-
ferent from traditional methods, a new class of geometric methods have been developed.
Mineur et al. [6] defined a special 2D Bézier curve with monotonic curvature called a “typi-
cal curve”, which has particular geometric constraints on control edges. In 2006, Farin [7]
put forward the concept of “Class A Bézier curves”, a generalization of typical curves in 3D
space. The key to obtain monotonic curvature and torsion is to construct a Class A matrix.
However, the conditions of a Class A matrix cannot guarantee monotonic curvature [8],
and several counter-examples have verified this [9]. Recently, new sufficient conditions
of a 2D and 3D Class A matrix have been proposed [10,11]. In addition, Wang et al. gave
other sufficient conditions for monotonic curvature of planar Bézier curves and B-spline
curves without a transformation matrix [12,13].

Although the conditions of monotonic curvature have been widely studied, it is
inevitable that curvature extrema are sometimes produced, such as with an interpolation
problem. In recent years, articles have focused on how to control the local maxima of
curvature at given points. According to [14], points with a curvature extremum are a
salient geometric feature of a curve, because human beings are more sensitive to minima
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and maxima of curvature. To better control curvature distribution, it makes sense to
identify the local maxima of curvature. Ref. [15] introduced kappa curves to interpolate a
series of points with local curvature maxima only appearing at given points. Kappa curves
consist of piecewise-quadratic Bézier curves and have G2 continuity over the whole curve
except for the inflection points, where only G1 continuity remains. In [16], the authors
similarly used piecewise rational curves as interpolatory curves to reproduce circles. Other
extensions of kappa curves include two types of εκ-curves [17], which make it possible to
control the magnitudes of local maximum curvature. In [18], a class of C2 interpolating
splines were introduced, showing the superiority of C2 continuity as well as local support
compared to kappa curves.

However, for the interpolatory methods mentioned above, obtaining the parameter
at the curvature extremum requires much computation. Considering the generality of
objective curves for the interpolation problem, we relaxed the constraints of typical Bézier
curves and provided a fast calculation of the parameter at the curvature extremum under
arbitrary degrees.

This paper is organized as follows. Section 2 introduces typical Bézier curves with
only one curvature extremum. Section 3 gives the formula of the parameter at the curvature
extremum. Section 4 shows the application in G1 interpolation. Finally, conclusions are
given in Section 5.

2. Typical Bézier Curves with One Curvature Extremum

A planar k-degree Bézier curve in parametric form is defined by

P(t) =
k

∑
i=0

biBi,k(t), t ∈ [0, 1] (1)

where {bi},
{

Bi,k(t) = Ci
kti(1− t)k−i

}
are control points and Bernstein polynomials, respec-

tively. In this paper we agree that all vectors are column vectors in a two-dimensional plane.
Typical Bézier curves belong to a special subset of Bézier curves, whose control edge

vector ∆bi = bi+1 − bi is given as follows:

∆bi = Mi · ∆b0, i = 0, 1, . . . , k− 1 (2)

where M = s ·
(

cos θ − sin θ
sin θ cos θ

)
with s > 0 and θ ∈ [−π, π], ∆b0 6= 0 is the first control

edge vector. In this way, we get 〈∆bi−1, ∆bi〉 ≡ θ and ‖∆bi‖/‖∆bi−1‖ ≡ s, where 〈 〉
denotes the angle formed by two vectors and ‖ ‖ denotes the Euclidean norm of a given
vector. If s · cos θ ≥ 1 (s ≥ 1) or s ≤ cos θ (0 < s < 1), then typical curves have monotonic
curvature variation [6]. In this paper, we mainly focus on the complementary relation{

s · cos θ < 1, s ≥ 1
s > cos θ, 0 < s < 1

, (3)

and prove that there exists only one curvature extremum under this condition.

Theorem 1. Planar typical Bézier curves with Equation (3) have only one curvature extremum.

Proof. In essence, the parameter direction for 0 < s < 1 is opposite to that of s ≥ 1, so the
conclusion for 0 < s < 1 can be made in the same way as for s ≥ 1. Similarly, the curve
with rotation angle for θ ∈ [−π, 0) is symmetric to that for θ ∈ [0, π]. Hence, only the
condition for s ≥ 1 and θ ∈ [0, π] will be verified.

The derivative of a Bernstein polynomial can be written as a combination of two lower
degree polynomials:

dBi,k(t)
dt

= k(Bi−1,k−1(t)− Bi,k−1(t)).
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Therefore, based on Equation (1), the first and second derivatives of the Bézier curve
can be expressed as [2]

P′(t) = k
k−1

∑
i=0

b1
i Bi,k−1(t), (4)

P′′ (t) = k(k− 1)
k−2

∑
i=0

b2
i Bi,k−2(t), (5)

where b1
i = bi+1 − bi = ∆bi and b2

i = b1
i+1 − b1

i are the control points of first and second
derivatives, respectively. Recall that the relative curvature is given by

κ(t) =
det(P′(t), P′′ (t))

‖P′(t)‖3 , (6)

where det(P′(t), P′′ (t)) is the determinant of matrix (P′(t), P′′ (t)). Since det(P′(t), P′′ (t)) =
‖P′(t)‖ · ‖P′′ (t)‖ · sin〈P′(t), P′′ (t)〉, Equation (6) can be transformed to

κ(t) =
‖P′′ (t)‖
‖P′(t)‖

· sin〈P′(t), P′′ (t)〉
‖P′(t)‖

. (7)

Based on Equations (4) and (5), P(t), P′(t) and P′′ (t) can be represented as in Figure 1.
Since the translation operation has no effect on the geometric property of P(t) and its
derivatives P′(t), P′′ (t), the i-th control point bi is taken as the origin and then bibi+1 = bib

1
i

as in Figure 1b.

Figure 1. The construction of typical Bézier curves. (a) Control edges are designed according to
(a) ∆bi = Mi · ∆b0; (b) bib

1
i+1 = bi+1bi+2, bib

1
i+2 = bi+2bi+3; (c) P′(t) and P′′ (t) are generated by the

de Casteljau algorithm.
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Following Figure 1 and Equation (2), it can be inferred that∥∥∥bib1
i+1

∥∥∥∥∥∥bib1
i

∥∥∥ =

∥∥∥bib1
i+2

∥∥∥∥∥∥bib1
i+1

∥∥∥ , ∠b1
i+1bib

1
i = ∠b1

i+2bib
1
i+1,

which indicates4bib
1
i b1

i+1 ∼ 4bib
1
i+1b1

i+2. Similarly, we find that4bib
1
i b1

i+1,4bib
1
i+1b1

i+2,
4bib

2
i b2

i+1,4bib
1
i,k−3b1

i+1,k−3,4bib
1
i,k−2b1

i+1,k−2 and4bib
2
i,k−3b2

i+1,k−3 are six similar trian-
gles. Since s · cos θ < 1 (s ≥ 1, θ ∈ [0, π]), b1

i+1 will be located in the green region in
Figure 2, then ∠bib

1
i b1

i+1 is an acute angle and the corresponding triangle4bib
1
i b1

i+1 is an
acute triangle. Hence, the above triangles are six similar acute triangles.

Figure 2. The domain of b1
i+1 for s · cos θ < 1 (s ≥ 1, θ ∈ [0, π]) in the local coordinate system.

Suppose bh is the endpoint of the segment bibh, which is perpendicular to the
segment b1

i,k−3b1
i+1,k−3 (Figure 3), and the corresponding parameter at bh is t∗. Since

4bib
1
i,k−3b1

i+1,k−3 is an acute triangle due to the similarity, the endpoint bh is located in the
segment b1

i,k−3b1
i+1,k−3. Accordingly, ∠bib

1
i,k−2b1

i+1,k−3 first increases from ∠bib
1
i,k−3b1

i+1,k−3

(< π/2) to π/2 then decreases to ∠bib
1
i+1,k−3b1

i,k−3. Meanwhile
∥∥∥bib

1
i,k−2

∥∥∥ first decreases

from
∥∥∥bib

1
i,k−3

∥∥∥ to the minimum ‖bibh‖ then increases to
∥∥∥bib

1
i+1,k−3

∥∥∥. It is not hard to
draw the conclusions (I), (II) and (III), as follows.

Figure 3. Acute triangle bibh⊥b1
i,k−3b1

i+1,k−3, where bh corresponds to parameter t∗.

(I). sin〈P′(t), P′′ (t)〉 increases in [0, t∗] then decreases in [t∗, 1].
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By4bib
2
i,k−3b2

i+1,k−3 ∼ 4bib
1
i,k−2b1

i+1,k−2, b2
i,k−3bi ‖ b1

i+1,k−3b1
i,k−3 and the de Casteljau

algorithm, we get 〈
P′(t), P′′ (t)

〉
= ∠b2

i,k−3bib1
i,k−2 = ∠bib1

i,k−2b1
i,k−3.

∠bib1
i,k−2b1

i,k−3 first increases from acute angle ∠bib1
i,k−3b1

i+1,k−3 to π/2, where t = t∗

and then decreases to∠bib1
i+1,k−3b1

i,k−3, so does 〈P′(t), P′′ (t)〉. Consequently, 〈P′(t), P′′ (t)〉
and sin〈P′(t), P′′ (t)〉 is increasing for [0, t∗] and decreasing for [t∗, 1].

(II). ‖P′′ (t)‖
‖P′(t)‖ increases in [0, t∗] then decreases in [t∗, 1].

From 4bib
2
i,k−3b2

i+1,k−3 ∼ 4bib
1
i,k−2b1

i+1,k−2 and the de Casteljau algorithm, we
can obtain

‖P′′ (t)‖
‖P′(t)‖

=

∥∥∥bib2
i,k−3

∥∥∥∥∥∥bib1
i,k−2

∥∥∥ .

In the above equation,
∥∥∥bib1

i,k−2

∥∥∥ decreases in [0, t∗] and then increases in [t∗, 1] while∥∥∥bib2
i,k−3

∥∥∥ keeps constant. For this reason, we deduce ‖P
′′ (t)‖
‖P′(t)‖ increases in [0, t∗] and then

decreases in [t∗, 1].

(III). 1
‖P′(t)‖ increases in [0, t∗] and then decreases in [t∗, 1].

By 4bib
1
i,k−3b1

i+1,k−3 ∼ 4bib
1
i,k−2b1

i+1,k−2, there holds ‖bib
1
i,k−2‖

‖P′(t)‖ =
‖bib

1
i,k−3‖

‖bib
1
i,k−2‖

, thus

we get

1
‖P′(t)‖

=

∥∥∥bib1
i,k−3

∥∥∥∥∥∥bib1
i,k−2

∥∥∥2 .

In acute triangle4bib
1
i,k−3b1

i+1,k−3,
∥∥∥bib1

i,k−2

∥∥∥ is decreasing for [0, t∗] then increasing for

[t∗, 1] while
∥∥∥bib1

i,k−3

∥∥∥ remains invariant; therefore 1
‖P′(t)‖ first increases and then decreases.

Based on (I), (II) and (III), the curvature function of Equation (7) first increases and then
decreases, which indicates that κ(t) possesses a single curvature extremum for t ∈ [0, 1]
when s · cos θ < 1 (s ≥ 1). �

Figures 4 and 5 illustrate two typical Bézier curves with a unimodal curvature profile
for s ≥ 1 and 0 < s < 1, respectively.

Figure 4. A typical Bézier curve with k = 4 when s · cos θ < 1 (s ≥ 1). (a) s = 1.4, θ = π/3 and
∆b0 = [1, 0]T; (b) curvature plot.
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Figure 5. A typical Bézier curve with k = 5 when s > cos θ (0 < s < 1). (a) s = 0.9, θ = π/4 and
∆b0 = [1, 0]T; (b) curvature plot.

3. Parameter Formula and Subdivision at Curvature Extremum

In this section, we provide a fast formula to calculate parameter t∗ at the point with
curvature extremum, which also proves Theorem 1 in an algebraic way. Then we show the
subdivision at t∗ and prove that the two obtained segments belong to typical curves with
monotonic curvature.

3.1. Fast Parameter Formula

Let b1
i,1 = (1− t)b1

i + tb1
i+1 = (1− t)b1

i + tMb1
i be the i-th auxiliary point in the first

recursive level by the de Casteljau algorithm. Here we introduce a new transformation
T(t) = (1− t)I + tM to describe linear interpolation between adjacent control edges of a

typical Bézier curve (Figure 6), where I is second order identity matrix. Take h =
‖b1

i,1‖
‖b1

i ‖
and

ϕ =
〈

b1
i , b1

i,1

〉
as the scale factor and rotation angle of T(t) for b1

i,1 = Tb1
i (Figure 6). They

can be specifically expressed as (see Appendix A)

h =

√
(1− t)2 + 2t(1− t)s · cos θ + (ts)2, (8)

sin ϕ =
st · sin θ

h
. (9)

Figure 6. Transformation effect of matrix M and T(t).

From the de Casteljau algorithm (Figure 7), the i-th auxiliary point of recursive level
m of the first derivative satisfies

b1
i,m = (1− t)b1

i,m−1 + tb1
i+1,m−1 = T(t)b1

i,m−1 (10)
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where m = 0, 1, . . . , k − 1, i = 0, 1, . . . , k − 1− m and b1
i,0 = b1

i . We can rewrite the first
derivative of the typical Bézier curve as

P′(t) = k
k−1

∑
i=0

b1
i Bi,k−1(t) = k · b1

0,k−1 = k · Tk−1(t)b1
0,0 = k · Tk−1(t)b1

0. (11)

Figure 7. The de Casteljau algorithm of P′(t).

Similarly, the second derivative of the typical Bézier curve can be rewritten as

P′′ (t) = k(k− 1) · Tk−2(t)b2
0. (12)

Therefore, the curvature κ(t) in Equation (7) now is

κ(t) =

∥∥∥k(k− 1) · Tk−2(t)b2
0

∥∥∥∥∥∥k · Tk−1(t)b1
0

∥∥∥ ·
sin
〈

k · Tk−1(t)b1
0, k(k− 1) · Tk−2(t)b2

0

〉
∥∥∥k · Tk−1(t)b1

0

∥∥∥ . (13)

After simplification, we get

κ(t) =
k− 1

k
· 1

hk

∥∥∥b2
0

∥∥∥∥∥∥b1
0

∥∥∥ · sin(δ− ϕ)∥∥∥b1
0

∥∥∥ . (14)

By the sine theorem, there holds sin(δ−ϕ)

‖Ob1
i ‖

= sin δ

‖Ob1
i,1‖

in4Ob1
i b1

i,1 and sin δ

‖Ob1
i+1‖

= sin θ

‖b1
i b1

i+1‖
in4Ob1

i b1
i+1, respectively (Figure 6); thus, we can obtain

sin(δ− ϕ) =
s sin θ

h

∥∥∥b1
i

∥∥∥∥∥∥b2
i

∥∥∥ (i = 0, 1, . . . , k− 2).

The curvature function of Equation (14) is then converted to

κ(t) =
k− 1

k
· 1

hk

∥∥∥b2
0

∥∥∥∥∥∥b1
0

∥∥∥2 ·
sin δ

h
=

k− 1
k
· s sin θ∥∥∥b1

0

∥∥∥ · 1
hk+1 (15)



Mathematics 2021, 9, 2148 8 of 16

Taking the derivative in Equation (15), we can obtain κ′(t) = − (k−1)(k+1)
k · s sin θ

‖b1
0‖
· h′

hk+2 .

From Equation (8), h′ = t−1+s sin θ(1−2t)+s2t
h ; thus the derivative of the curvature is

κ′(t) = − (k− 1)(k + 1)
k

· s sin θ∥∥∥b1
0

∥∥∥ ·
(
s2 − 2s cos θ + 1

)
t + s cos θ − 1

hk+3 (16)

The sign of κ′(t) is related to
(
s2 − 2s cos θ + 1

)
t+ s cos θ− 1, which is a linear function

of t and changes sign at most once in t ∈ [0, 1], so the number of curvature extremum is
either 0 or 1. Let κ′(t∗) = 0 and we get

t∗ =
1− s cos θ

s2 − 2s cos θ + 1
(17)

Since s2 − 2s cos θ + 1 = (s− cos θ)2 + sin2 θ ≥ 0, the equal sign holds only when
θ = 0 and s = 1. Under this condition, the typical Bézier curve degenerates into a straight
line, and the curvature equals zero constantly. For the non-degeneration case, we aim to
find out the relation between s and θ such that t∗ ∈ (0, 1), which means that κ′(t) changes
sign exactly once for t ∈ [0, 1] and the corresponding typical Bézier curve will have a
single curvature extremum. Thus, only when cos θ < s < 1/ cos θ there is 0 < t∗ < 1,
i.e., s cos θ < 1 for s ≥ 1 and s > cos θ for 0 < s < 1. Otherwise, there is t∗ /∈ (0, 1) and the
typical Bézier curve will have monotonic curvature for t ∈ [0, 1].

For t∗ /∈ (0, 1), whether curvature increases or decreases depends on the sign of κ′(t),
which is concerned with sin θ and

(
s2 − 2s cos θ + 1

)
t+ s cos θ− 1. We draw the domain for

curvature variation in s− θ coordinate system and divide it into several regions (Figure 8).
The horizontal axis is limited between −π and π, while the vertical axis extends infinitely
upward from 0. The colored areas and curves in Figure 8 are symmetric with respect to
θ = 0.

Figure 8. Regions for curvature variation of typical Bézier curves. Curvature decreases in the light
yellow area and increases in the light green area. While in the white area, curvature variation is not
monotonous and possesses only one extremum. Specifically, for θ < 0 there is a local minimum and
for θ > 0 there is a local maximum.

Equation (17) also gives a fast method to calculate the parameter at the curvature
extremum. In particular, when s = 1, t∗ ≡ 0.5 for all θ 6= 0. In this case, the typical
Bézier curve and associated curvature plot are symmetric with respect to parameter t = 0.5
(see Figure 9).
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Figure 9. Symmetric typical Bézier curve with k = 10 when s = 1. (a) θ = −π/6 and ∆b0 = [1, 1]T;
(b) symmetric curvature plot with a local minimum at t = 0.5.

3.2. Subdivision at Curvature Extremum

As analyzed before, the typical Bézier curve has exactly one curvature extremum at
t∗ = 1−s cos θ

s2−2s cos θ+1 when s · cos θ < 1 (s ≥ 1) or s > cos θ (0 < s < 1); thus we can subdivide
it into two Bézier curves with monotonic curvature (see Figure 10). This subsection will
show that these subdivided segments are still typical curves. For the first segment, the
scale factor s1 and rotation angle θ1 of the new transformation matrix M1 satisfy s1 = cos θ1,
while for the second segment, s2 cos θ2 = 1.

Figure 10. Subdivision of a cubic typical Bézier curve at curvature extremum.

By subdividing the typical Bézier curve at t∗ we obtain two new transformation
matrices M1 and M2, which can be expressed as

M1 = (1− t∗)I + t∗M (18)

M2 =
(

t∗I + (1− t∗)M−1
)−1

(19)

where M−1 means the inverse of M. By expanding Equation (18) we get

M1 =

(
1− t∗ 0

0 1− t∗

)
+ t∗ · s ·

(
cos θ − sin θ
sin θ cos θ

)
=

(
1− t∗ + t∗s cos θ −t∗s sin θ

t∗s sin θ 1− t∗ + t∗s cos θ

)
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By substituting t∗ = 1−s cos θ
s2−2s cos θ+1 into it, we then obtain

M1 =

(
s2 sin2 θ

s2−2s cos θ+1 − s sin θ−s2 sin θ cos θ
s2−2s cos θ+1

s sin θ−s2 sin θ cos θ
s2−2s cos θ+1

s2 sin2 θ
s2−2s cos θ+1

)

Finally, it can be reorganized as

M1 = σ

(
σ −

√
1− σ2

√
1− σ2 σ

)
(20)

where σ = |s sin θ|√
s2−2s cos θ+1

∈ [0, 1]. Equation (20) indicates that the associated segment
constructed by M1 belongs to a typical curve with s1 = cos θ1 = σ, where s1 ≤ 1 and
θ1 ∈ [−π/2, π/2].

For Equation (19), note that Minv = t∗I + (1− t∗)M−1; thus we have

Minv =

(
t∗ 0
0 t∗

)
+ (1− t∗) · 1

s ·
(

cos θ sin θ
− sin θ cos θ

)
=

(
t∗ + (1− t∗) cos θ

s (1− t∗) sin θ
s

−(1− t∗) sin θ
s t∗ + (1− t∗) cos θ

s

)
=

(
sin2 θ

s2−2s cos θ+1
(s−cos θ) sin θ
s2−2s cos θ+1

− (s−cos θ) sin θ
s2−2s cos θ+1

sin2 θ
s2−2s cos θ+1

)

Then, we obtain

Minv = τ

(
τ

√
1− τ2

−
√

1− τ2 τ

)

where τ = |sin θ|√
s2−2s cos θ+1

∈ [0, 1]. Now we can obtain

M2 = (Minv)
−1 =

1
τ

(
τ −

√
1− τ2

√
1− τ2 τ

)
(21)

Equation (21) indicates that the associated segment constructed by M2 belongs to a
typical curve with 1

s2
= cos θ2 = τ, where s2 ≥ 1 and θ2 ∈ [−π/2, π/2].

Here we show two examples to demonstrate the subdivision results of typical Bézier
curves. The first example is given for the case s · cos θ < 1 (s ≥ 1) with ∆b0 = [0,−1]T,

k = 8 and M = 1.1 ·
(

cos(−2π/7) − sin(−2π/7)
sin(−2π/7) cos(−2π/7)

)
(Figure 11), the minimal curvature

occurs at t∗ = 0.3747. After subdivision at t∗, we get M1 = 0.9393 ·
(

0.9393 0.3431
−0.3431 0.9393

)
and M2 = 1.7111 ·

(
0.8539 0.5204
−0.5204 0.8539

)
for each segment. Figure 12 illustrates these two

typical curves in different colors.
The original data of the second example are given by ∆b0 = [1,−1]T, k = 6 and

M = 0.85 ·
(

cos(π/3) − sin(π/3)
sin(π/3) cos(π/3)

)
for the case s > cos θ (0 < s < 1), the curva-

ture extremum corresponds to t∗ = 0.6590 (Figure 13). After subdivision at t∗, we get

M1 = 0.7881 ·
(

0.7881 −0.6156
0.6156 0.7881

)
and M2 = 1.0786 ·

(
0.9271 −0.3747
0.3747 0.9271

)
for each

segment. Figure 14 illustrates these two typical curves in different colors.
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Figure 11. Typical Bézier curve with degree k = 8 for s · cos θ < 1 (s ≥ 1). (a) Transformation

matrix M = 1.1 ·
(

cos(−2π/7) − sin(−2π/7)
sin(−2π/7) cos(−2π/7)

)
; point with curvature extremum is represented

by yellow dot; (b) curvature plot has a minimum at t∗ = 0.3747.

Figure 12. Results under subdivision. (a) Two typical curve segments join at t∗; (b) first segment has
decreasing curvature variation; (c) second segment has increasing curvature variation.
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Figure 13. Typical Bézier curve with degree k = 6 for s > cos θ (0 < s < 1). (a) Transformation matrix

M = 0.85 ·
(

cos(π/3) − sin(π/3)
sin(π/3) cos(π/3)

)
; point with curvature extremum is represented by yellow

dot; (b) curvature plot has a maximum at t∗ = 0.6590.

Figure 14. Results under subdivision. (a) Two typical curve segments join at t∗; (b) first segment has
increasing curvature variation; (c) second segment has decreasing curvature variation.

4. Solving G1 Interpolation with a Single Typical Bézier Curve
4.1. A Normalized form for G1 Interpolation

The aim of G1 interpolation is to construct a fairing curve matching given positions
and associated tangents at a pair of endpoints. bstart is the start endpoint and bend is
the end point. Since the geometric properties of Bézier curves are invariant under affine
transformation, we can set bstart at the origin and bend at (1, 0)T by a pre-process, with the
angle of associated tangents noted as α (−π < α < π) and β (−π < β < π) (Figure 15); we
call this normalized form. The limitation of angular values is mainly for appearance, which
requires the angular difference between two tangents to be less than 2π as Benjamin does
for shape completion in ref [19], i.e., 0 < |β− α| < 2π.
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Figure 15. The boundary constraints of G1 interpolation in normalized form.

In this section we provide sufficient conditions for G1 interpolation to have a typical
Bézier curve solution under arbitrary degree. The G1 interpolation problem with a typical
Bézier curve solution is equivalent to that where the following nonlinear system

k

∑
i=1
‖∆b0‖ · si−1 · cos(α + (i− 1) · θ) = 1 (22)

k

∑
i=1
‖∆b0‖ · si−1 · sin(α + (i− 1) · θ) = 0 (23)

has positive roots s > 0 and ‖∆b0‖ > 0, where θ = (β− α)/(k− 1). The interpolatory
curve will have at most one curvature extremum.

4.2. Sufficient Condition for G1 Interpolation with Typical Bézier Curve Solution

Theorem 2. If the given angles satisfy −π/2 < α < 0 < β < π/2 or −π/2 < β < 0 <
α < π/2, then there exists a typical Bézier curve solution for the corresponding G1 interpolation
problem for any degree k ≥ 2.

Proof. In fact, these two cases are symmetric about the X-axis, so we only need to verify
one of them. Here, we choose the case of −π/2 < α < 0 < β < π/2 (see Figure 15). We
can simplify Equation (23) as the following equation with respect to s:

k

∑
i=1

si−1 · sin(α + (i− 1) · θ) = 0 (24)

When −π/2 < α < 0 < β < π/2, then −π/2 < α ≤ α + (i− 1) · θ ≤ α + β < π/2,
and the series of coefficients sin(α + (i− 1) · θ) will change sign exactly once; thus, there
exists a positive root sr such that Equation (23) holds for arbitrary ‖∆b0‖ by Descartes’ rule
of signs [20]. Substituting sr into Equation (22), we get

‖∆b0‖r =
1

k
∑

i=1
·sri−1 · cos(α + (i− 1) · θ)

(25)

Since sr > 0 and cos(α + (i− 1) · θ) > 0 always holds for i = 1, 2, . . . , k, then
‖∆b0‖r > 0. This means that sr > 0 and ‖∆b0‖r > 0 such that Equations (22) and (23) hold,
i.e., the corresponding G1 interpolation has a typical Bézier curve solution for k ≥ 2. �

Theorem 2 indicates that to guarantee a typical Bézier curve solution for an arbitrary
degree, the two tangents in the G1 interpolation problem should be located on the opposite
side of the line formed by two endpoints, and each tangent should not deviate more than
π/2 from the line.
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We take k = 3 of typical Bézier curves as an example in the following part to realize
G1 interpolation in normalized form. The values of sr and ‖∆b0‖r can be easily obtained
because Equations (22) and (23) are degenerated to quadratic equations.

The boundary constraints of the first example are given as α = −π/4 and β = 2π/5
(see Figure 16), which belong to −π/2 < α < 0 < β < π/2. The green point-tangent pair
and blue pair are the starting constraints and the ending constraints, respectively.

Figure 16. Cubic typical Bézier curve solution for −π/2 < α < 0 < β < π/2. (a) sr = 0.7482,
‖∆b0‖r = 0.6220; (b) corresponding curvature plot.

The second boundary constraints satisfy−π/2 < β < 0 < α < π/2 with α = π/3 and
β = −π/3 (Figure 17). The point-tangent pairs are on a circular arc, and the interpolation
curve will be symmetric with sr = 1.

Figure 17. Cubic typical Bézier curve solution for −π/2 < β < 0 < α < π/2. (a) sr = 1,
‖∆b0‖r = 0.5; (b) corresponding curvature plot.

Theorem 2 presents a sufficient condition, but that does not mean there is no typical
Bézier curve solution while the values of angles exceed the limitation of ±π/2. In fact, as
degree k increases, the denominator of ‖∆b0‖r =

1
k
∑

i=1
·sr i−1·cos(α+(i−1)·θ)

is more likely to be

positive, for the number of positive terms will increase. However, the precise relationship
between degree k and the tangent angles requires further research.

5. Conclusions

Aesthetic curves play an important role in CAD and CAGD. It is important to realize
monotonously varying curvature distribution or to control the number of curvature extrema
to as few as possible. In this paper, we discuss the planar typical curves with one curvature
extremum, and both geometric proof and algebraic solutions are provided. The parameter
at the curvature extremum can be calculated directly from typical curves, which can help
us determine the point with maximal or minimal curvature quickly and subdivide it into
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two typical curves with monotonic curvature. Typical Bézier curves are more likely to have
a solution in G1 interpolation without the restriction of monotonic curvature, and we give
a sufficient condition to guarantee the interpolation solution for arbitrary degrees.

Future work should apply typical Bézier curves to geometric interpolation, matching
higher order such as G2 or G3 interpolation problems, and determine the relationship
between positive solutions and degree k. Furthermore, the constant s and θ for any typical
curve limit the degree of freedom; thus, another aim is to realize Bézier curves with
monotonic curvature using different values of s or θ.
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Appendix A

In Figure 6, h =
‖b1

i,1‖
‖b1

i ‖
=
‖Tb1

i ‖
‖b1

i ‖
, since

∥∥∥Tb1
i

∥∥∥ =
√
((1− t)I + tM)b1

i · ((1− t)I + tM)b1
i

=

√(
(1− t)b1

i + tMb1
i

)
·
(
(1− t)b1

i + tMb1
i

)
=
√
(1− t)2b1

i · b1
i + 2(1− t) · t ·Mb1

i · b1
i + (t · s)2 ·Mb1

i ·Mb1
i

=
√
(1− t)2 + 2(1− t) · t · s · cos θ + (t · s)2 ·

∥∥∥b1
i

∥∥∥
Substituting it into the previous equation, we get

h =
‖Tb1

i ‖
‖b1

i ‖
=

√
(1−t)2+2(1−t)·t·s·cos θ+(t·s)2·‖b1

i ‖
‖b1

i ‖
=
√
(1− t)2 + 2t(1− t)s · cos θ + (t · s)2

For ϕ =
〈

b1
i , b1

1,i

〉
, in4Ob1

i b1
i.1, there holds sin ϕ

‖b1
i b1

i,1‖
= sin δ

‖Ob1
i,1‖

= sin δ
h‖b1

i ‖
due to the sine

theorem. Thus,

sin ϕ =
sin δ

h
∥∥∥b1

i

∥∥∥ ·
∥∥∥b1

i b1
i,1

∥∥∥ =
sin δ

h
∥∥∥b1

i

∥∥∥ · t
∥∥∥b1

i b1
i+1

∥∥∥ (A1)

Similarly, sin θ

‖b1
i b1

i+1‖
= sin δ

‖Ob1
i+1‖

holds in4Ob1
i b1

i.1, and we can obtain

sin δ =
sin θ∥∥∥b1
i b1

i+1

∥∥∥ ·
∥∥∥Ob1

i+1

∥∥∥ =
sin θ∥∥∥b1
i b1

i+1

∥∥∥ · s
∥∥∥b1

i

∥∥∥ (A2)

Substituting (A1) into (A2), we get

sin ϕ =
st · sin θ

h
(A3)
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