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Abstract: This paper focuses on the construction of deterministic and stochastic extensions of the
Gompertz curve by means of generalized fractional derivatives induced by complete Bernstein
functions. Precisely, we first introduce a class of linear stochastic equations involving a generalized
fractional integral and we study the properties of its solutions. This is done by proving the existence
and uniqueness of Gaussian solutions of such equations via a fixed point argument and then by show-
ing that, under suitable conditions, the expected value of the solution solves a generalized fractional
linear equation. Regularity of the absolute p-moment functions is proved by using generalized Grön-
wall inequalities. Deterministic generalized fractional Gompertz curves are introduced by means
of Caputo-type generalized fractional derivatives, possibly with respect to other functions. Their
stochastic counterparts are then constructed by using the previously considered integral equations to
define a rate process and a generalization of lognormal distributions to ensure that the median of the
newly constructed process coincides with the deterministic curve.

Keywords: complete Bernstein function; Gaussian process; linear integral equation; lognormal distribution
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1. Introduction

In the context of population dynamics, the Gompertz curve represents one of the
most adaptable models of population growth with variable rate. Precisely, Gompertz
proposed the well-known curve to model population growth under the assumption that
the mortality rate grows exponentially with the age (see [1]). After this, the Gompertz
curve has been shown to be a quite useful model for phenomena that exhibit an intrinsic
ageing effect, as for instance tumour incidence (see [2]). Gompertz-type models are not
limited to phenomena involving human age. For instance, such kind of models have been
widely used in the context of tumour growth (see [3]), as the growth of the radius of a
multicell spheroid is influenced by the inhibition effect of its necrotic core (see [4]), which
grows together with the tumour itself.

Different generalizations of the Gompertz curve have been presented in literature.
An example is given by the generalized logistic curve (see [5]), which covers not only
the Gompertz curve, but a wide family of growth curves depending on the choice of the
exponents of the logistic equation and the rate function. On the other hand, to include
background noise effects, stochastic generalizations of the Gompertz curve, obtained
via diffusion processes, have been introduced in [6] and then further extended to non-
homogeneous diffusions in [7], while first passage time problems for them have been
studied, e.g., in [8,9]. Such models have been widely used, for instance, to study the effects
of therapy on tumours (see [10] and references therein). The importance of the stochastic
interpretation of the Gompertz curve is underlined in [11], where the crucial role of the
noise in growth phenomena is highlighted.

Among the generalizations of Gompertz-type models, we also find fractional order
Gompertz curves. Fractional calculus has been applied to a lot of different fields (see [12]
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and references therein) and several papers and books on fractional differential equations
have been produced (see, for instance [13–15] and references therein). Moreover, differ-
ent papers on numerical algorithms to solve fractional differential equations have been
published (see, for instance [16] for a survey of numerical methods). Several works on
the subject have been produced in the last two years, such as for instance [17], in which a
Crank–Nicolson scheme has been used to solve a fractional order PDE [18–21], in which
different methods involving Chelyshkov polynomials have been studied, and [22], in
which Gegenbauer wavelets are used. Moreover, fractional stochastic differential equa-
tions, which are defined by means of the Lévy–Liouville fractional Brownian motion, have
been recently studied in [23]. Among the applications of fractional differential equations,
in [24] a fractional order Gompertz curve has been considered to study a tumour growth
model whose rate exhibits a non-exponential trend. On the other hand, another fractional
order Gompertz curve has been proposed in [25] to study different biological phenomena,
such as dark fermentation. The latter fractional-order curve is constructed by means of
Caputo fractional derivatives with respect to increasing functions, that were introduced
in [26]. This type of derivative can be used to obtain chain rules for fractional derivatives of
composite functions (with increasing ones), as obtained for Riemann–Liouville fractional
derivatives in [27]. A similar chain rule can be obtained for the change of variables t 7→ −t,
by means of right-sided fractional derivatives that naturally arise in the integration by
parts formula, as shown in [28]. In [29] both the approaches in [24,25] have been considered
to introduce a Gompertz model with two, eventually different, fractional orders and its
stochastic counterpart.

Lately, fractional calculus has been further generalized to include more complicated
orders. This is the case, for instance, of the tempered fractional calculus [30] and of
the distributed order fractional calculus [31]. These new operators fall into the wider
setting of the generalized fractional calculus, introduced in [32] via Stieltjes measures and
in [33] via Lévy measures. Both approaches are correlated with the good properties of
Bernstein functions [34]. As observed in the aforementioned literature, there is a strict link
between the (generalized) fractional calculus and the theory of Lévy processes, which has
been underlined, for instance, in [35]. This link is revealed to be crucial to determining
different properties of solutions of linear and nonlinear generalized fractional differential
equations. In [36], relaxation equations for generalized fractional derivatives are studied
and different properties of the eigenfunctions of the aforementioned nonlocal derivatives
are obtained, underlining the connection between such relaxation pattern and semi-Markov
processes. The growth equation has been studied in [37] in the case of complete Bernstein
functions. In [38], the existence and uniqueness of solutions for nonlinear generalized
fractional differential equations have been proved by means of a fixed-point argument,
while a generalized Grönwall inequality is proved with the same strategy as in [39] for
the fractional case. In [36–38], eigenfunctions of the generalized fractional derivatives are
recognized as Laplace transform or moment generating functions of particular stochastic
processes. Explicit formulae for such functions are not known in the general case, while in
the standard fractional one they are recognized as Mittag–Leffler functions in [40]. In [41],
the existence, uniqueness and spectral decomposition of exact solutions of some time-
nonlocal parabolic equations are obtained by means of stochastic representation results.
Here, we will use both the representation of the eigenfunctions as obtained in [36–38] and
the regularity properties of solutions of generalized fractional linear differential equations
proved in [41].

As we already stated, fractional calculus was introduced in population dynamics mod-
els to consider phenomena with underlying memory effects, as done in [24,25]. However,
fractional calculus relies only on one particular type of memory kernel, that is, the Riesz
kernel. To consider more complicated memory effects, other more general kernels have
to be considered. This can be achieved by using the tools of the generalized fractional
calculus, as done, for instance, in [37] in the case of the (Malthusian) growth equation and
in [42] in the case of the logistic equation. On the other hand, the introduction of noise in
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growth phenomena is also mandatory to describe possible random fluctuations, as done
in [6,7] for the classical Gompertz curve and in [29] for the fractional Gompertz curves.

The problem we address in this paper is twofold: on one hand, we want to extend
the definition of fractional Gompert curves to cover a wider range of memory kernels; on
the other hand, we want to introduce noise in the aforementioned models in a coherent
way. Thus, here we consider a further generalization of the construction presented in [29]
to the case of fractional orders expressed in terms of complete Bernstein functions. In
particular, we first construct some deterministic generalized fractional Gompertz curves
and then we introduce their stochastic counterparts. Differently from [29], we consider a
generalization of lognormal processes to guarantee that the stochastic Gompertz curves
remain positive and, at the same time, their medians represent the deterministic ones. The
paper is structured as follows:

• In Section 2 we give some preliminaries on Bernstein functions;
• In Section 3 we introduce generalized fractional integrals and derivatives. In par-

ticular we give some chain rules involving generalized fractional derivatives with
respect to other functions and we study the properties of the eigenfunctions of the
defined operators;

• In Section 4, we study the properties of the solutions of some linear stochastic equations
involving generalized fractional integrals. In particular, we show that such equations
admit a unique Gaussian solution and that, under some suitable assumptions on the
noise process, its expectation solves a linear generalized fractional differential equation;

• In Section 5, we use the operators introduced in Section 3 to construct generalized
fractional Gompertz curves and the Gaussian processes given in Section 4 to determine
their stochastic counterparts;

• In Section 6 we present a short summary of the main results of the paper and we
compare them with some pre-existing literature. Finally, some highlights for future
works are given.

2. Preliminaries and Notation

In this section we provide some preliminary definitions and lemmas.

Definition 1. We say that a function Φ ∈ C∞(R+) (where R+ := (0,+∞)) is a Bernstein
function (see [34]) if and only if Φ(λ) ≥ 0 and, for any n ∈ N = {1, 2, . . . }, it holds

(−1)n dnΦ
dλn ≤ 0.

The convex cone (see [34] [Corollary 3.7]) of Bernstein functions will be denoted as BF .
A Bernstein function Φ is said to be special if and only if the conjugate function

Φ?(λ) =
λ

Φ(λ)

is still a Bernstein function. The class of special Bernstein functions will be denoted as SBF .

To characterize Bernstein functions, let us recall the following theorem, known as
Lévy-Khinchine representation theorem (see [34] [Theorem 3.2]).

Theorem 1. A function Φ : R+ → R belongs to BF if and only if there exist two constants
aΦ, bΦ ≥ 0 and a non-negative measure νΦ on R+ such that∫ +∞

0
(1∧ x)νΦ(dx) < +∞, (1)

and
Φ(λ) = aΦ + bΦλ +

∫ +∞

0
(1− e−λx)νΦ(dx). (2)
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The measure νΦ is called the Lévy measure of Φ. Vice versa, any triplet (aΦ, bΦ, νΦ), where
aΦ, bΦ ≥ 0 and νΦ is a non-negative measure on R+ satisfying condition (1), defines a unique
Φ ∈ BF via Equation (2).

The constants aΦ and bΦ are called respectively the killing and the drift coefficient of
Φ. We will denote νΦ(t) = νΦ(t,+∞). However, we need Bernstein functions whose Lévy
measure is more regular. To do this, we refer to the following definition.

Definition 2. A Bernstein function Φ is said to be complete if its Lévy measure νΦ(dt) admits a
completely monotone density, that is, νΦ(dt) = νΦ(t)dt for some function νΦ ∈ C∞(R+) such that

(−1)n dnνΦ

dtn ≥ 0, ∀n ∈ N0 := N∪{0}.

We denote the convex cone (see [34] [Corollary 7.6]) of complete Bernstein functions as CBF .

Bernstein functions can be recognized as Laplace exponents of particular Lévy pro-
cesses. Indeed, let us recall the following definition.

Definition 3. A subordinator σ(t) (see [43] [Chapter I I I]) is a non-decreasing Lévy process.
Given a subordinator σ(t) and a positive constant a > 0, the process

σ(a)(t) =

{
σ(t) t < τa

∞ t ≥ τa,

where τa is an exponentially distributed random variable, with rate a, independent of σ(t), is called
a subordinator killed at rate a.

Concerning the link between subordinators and Bernstein functions, we have the
following Theorem (see [34] [Theorem 5.2]).

Theorem 2. For any Φ ∈ BF there exists a unique (possibly killed) subordinator σΦ(t) such that

E[e−λσΦ(t)] = e−tΦ(λ). (3)

Vice versa, for any (possibly killed) subordinator σ(t) there exists a Bernstein function Φσ(t)
such that Equation (3) holds.

Since we focus on Bernstein functions, we will usually denote a subordinator by σΦ(t),
referring to the fact that its Laplace exponent is given by Φ.

For any subordinator, the following occupation measure can be defined.

Definition 4. Let σΦ(t) be a subordinator. The potential measure of σΦ(t) on R+
0 := [0,+∞) is

defined as

UΦ(A) = E
[∫ ∞

0
1A(σΦ(s))ds

]
, A ∈ B(R+

0 ),

where B(R+
0 ) is the Borel σ-algebra of R+

0 and 1A is the indicator function of the Borel set A.
We will denote the distribution function of the potential measure UΦ(t) := UΦ(0, t) and we will
usually refer to it directly as a potential measure.

Moreover, we can define a right-continuous inverse for the process σΦ(t).

Definition 5. Let σΦ be a subordinator. For any y ≥ 0 we define

LΦ(t) = inf{y > 0 : σΦ(y) > t},
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called inverse subordinator.

Remark 1. As shown in [35] [Theorem 3.1], if νΦ(R+) = +∞, then LΦ(t) is an absolutely
continuous random variable for any t > 0. Let us denote by fΦ(s; t) its probability density function.

Once we have defined the inverse subordinator, by using the fact that σΦ and LΦ are
increasing, we have

UΦ(t) = E[LΦ(t)].

Concerning special Bernstein functions, the associated potential measure is almost
absolutely continuous, except at most for a jump in 0, as stated in the following theorem
(see [34] [Theorem 10.3]).

Theorem 3. Let Φ ∈ BF . Then Φ ∈ SBF if and only if there exists a non-negative and
non-increasing function uΦ(t) such that

∫ 1
0 uΦ(t)dt < +∞ and

UΦ(dt) = cΦδ0(dt) + uΦ(t)dt,

where δ0(dt) is Dirac’s δ measure centered in 0 and

cΦ =

{
0 bΦ > 0

1
aΦ+νΦ(R+)

bΦ = 0.

In particular, if bΦ > 0 or bΦ = 0 and νΦ(R+) = +∞, then UΦ is absolutely continuous
with density given by uΦ, called the potential density of Φ.

Remark 2. Let us emphasize that, for fixed Φ ∈ SBF , denoting by a?Φ, b?Φ, ν?Φ respectively the
killing coefficient, the drift coefficient and the Lévy measure of Φ?, it holds (see [34] [Equation (10.9)]):

a?Φ =

0 aΦ > 0
1

bΦ+
∫
(0,+∞) tνΦ(dt) aΦ = 0

b?Φ =

{
0 bΦ > 0

1
aΦ+νΦ(0,+∞)

bΦ = 0

uΦ(t) = a?Φ + ν?Φ(t,+∞).

Hence, uΦ ≡ ν?Φ if and only if a?Φ = 0, that is to say if and only if aΦ > 0 or∫
(0,+∞)

tνΦ(dt) = +∞.

Let us recall that the following inclusion holds:

CBF ⊂ SBF ⊂ BF .

We will work with a specific subset of complete Bernstein functions. Hence, let us
introduce the following notation:

CBF ? = {Φ ∈ CBF : aΦ = bΦ = 0, νΦ(0,+∞) = +∞} ∪ {ι},

where ι(λ) = λ is the identity map. Hereafter, we consider the following Assumption.

Assumption 1. Φ ∈ CBF ? and there exist t0 > 0, C > 0 and β ∈ (0, 1) such that

uΦ(t) ≤ Ctβ−1, t ∈ (0, t0).
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Remark 3. The previous Assumption guarantees that, for any T > 0, there exists a constant C
such that

UΦ(t) ≤ Ctβ, t ∈ [0, T].

3. Generalized Fractional Integrals and Derivatives

Let us first introduce some generalized fractional integrals.

Definition 6. Set a Banach space (X, | · |). For any T > 0, given a function f : [0, T] → X,
we say that f ∈ L1([0, T]; X) if f is Bochner-integrable, that, by Bochner’s Theorem (see [44]
[Theorem 1.1.4]) is equivalent to asking that f is measurable and | f | is Lebesgue-integrable, i.e.,
| f | ∈ L1([0, T]). Given a function f : R+

0 → X we say that f ∈ L1
loc(R

+
0 ; X) if and only if

f 1[0,T] ∈ L1([0, T]; X) for any T > 0.
For any function f ∈ L1

loc(R
+
0 ; X) we define the generalized fractional integral of the first

kind of f induced by Φ ∈ CBF ? as

IΦ f (t) =
∫ t

0
uΦ(t− τ) f (τ)dτ, (4)

where uΦ is the potential density of Φ and the integral is a Bochner integral.
We define the generalized fractional integral of the second kind of f induced by Φ ∈ CBF ? as

IΦ f (t) =
∫ t

0
ν?Φ(t− τ) f (τ)dτ, (5)

where ν?Φ is the tail of the Lévy measure of Φ? and the integral is a Bochner integral.
If Φ = ι, we define

IΦ f (t) = IΦ f (t) =
∫ t

0
f (τ)dτ.

Remark 4. First, let us observe that, by [44] [Proposition 1.3.1], the quantites defined in
Equations (4) and (5) are well-defined.

Let us also underscore that, by Remark 2, as Φ ∈ CBF ?, the operators IΦ and IΦ coincide if
and only if

∫
(0,+∞) tνΦ(dt) = +∞ or Φ = ι. In general, it holds, for any f ∈ L1

loc(R
+
0 ; X),

IΦ f (t) = a?Φ
∫ t

0
f (τ)dτ + IΦ f (t), t ≥ 0. (6)

With the help of the previously introduced operators, we can define the following
generalizations of both Riemann–Liouville and Caputo derivatives, introduced first in [32]
for complete Bernstein functions and then in [33] in the general case.

Definition 7. Set a Banach space (X, | · |). For any function f ∈ L1(R+
0 ; X) we define the

generalized Riemann–Liouville derivative induced by Φ ∈ CBF ?, with Φ 6= ι, as

DΦ
t f (t) =

d
dt

∫ t

0
νΦ(t− s) f (s)ds =

d
dt

IΦ?
f (t), (7)

where the integral is a Bochner integral, provided that the involved quantities exist.
Given T > 0, we say that a function f : [0, T]→ X is absolutely continuous if there exists a

function f ′ : (0, T)→ X such that f ′ ∈ L1((0, T); X) and

f (t) = f (0) +
∫ t

0
f ′(τ)dτ, ∀t ∈ [0, T],

and we denote it by f ∈ AC([0, T]; X). We denote by ACloc(R+
0 ; X) the set of functions f : R+

0 →
X such that for any T > 0 it holds f ∈ AC([0, T]; X). When X = R, we do not specify X.
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For any f ∈ ACloc(R+
0 ; X) we define the generalized Caputo derivative of f induced by

Φ ∈ CBF ?, with Φ 6= ι, as

dΦ

dtΦ f (t) =
∫ t

0
νΦ(t− s) f ′(s)ds = IΦ? d

dt
f (t), (8)

where the integral is a Bochner integral.

Remark 5. Let us remark that, if f ∈ ACloc(R+
0 ; X), then one can show that IΦ?

f ∈ ACloc(R+
0 ; X).

Thus, the quantity defined in Equation (7) is well-defined for any
f ∈ ACloc(R+

0 ; X). However, if Φ ∈ CBF ? \{ι}, there exist some functions f 6∈ ACloc(R+
0 ; X)

such that IΦ f ∈ ACloc(R+
0 ; X). For instance, if X = R, this is the case of f (t) = νΦ(t). Indeed,

by Equation (6) and [34] [Theorem 10.9] we get

IΦ νΦ(t) = IΦ νΦ(t)− a?Φ
∫ t

0
νΦ(τ)dτ = 1− a?Φ

∫ t

0
νΦ(τ)dτ,

thus IΦ νΦ ∈ ACloc(R+
0 ). However, since Φ ∈ CBF ? \{ι}, we have limt→0+ νΦ(t) = +∞,

hence νΦ 6∈ ACloc(R+
0 ). Thus, in general, the domain of DΦ

t properly contains ACloc(R+
0 ; X).

On the other hand, the quantities defined in Equation (8) are well-defined if and only if
f ∈ ACloc(R+

0 ; X) by [44] [Proposition 1.3.1].

Such operators are generalizations of the well-known Caputo and Riemann–Liouville
fractional derivatives, which are achieved in the case Φ(λ) = λα with α ∈ (0, 1). Indeed, in
this case, Φ?(λ) = λ1−α and ν?Φ?(t) = νΦ(t) = t−α

Γ(1−α)
.

Remark 6. If Φ(λ) = ι(λ) = λ, then we define Dι
t =

dι

dtι =
d
dt . In general, for Φ ∈ BF such

that aΦ = 0 the operators are defined as

DΦ
t f (t) = bΦ f ′(t) +

d
dt

∫ t

0
νΦ(t− s) f (s)ds

and
dΦ

dtΦ f (t) = bΦ f ′(t) +
∫ t

0
νΦ(t− s) f ′(s)ds.

Let us consider any f ∈ ACloc(R+
0 ; X). By a simple application of Fubini’s theorem

we get ∫ t

0

∫ τ

0
νΦ(s) f ′(τ − s)dsdτ =

∫ t

0

∫ t

s
νΦ(s) f ′(τ − s)dτds

=
∫ t

0
νΦ(s)

∫ t−s

0
f ′(z)dzds

=
∫ t

0
νΦ(s)( f (t− s)− f (0))ds,

(9)

where we also used [45] [Chapter 6, Theorem 11]. Differentiating (almost everywhere) in
both sides of the previous relation we get

dΦ

dtΦ f (t) =
d
dt

∫ t

0
νΦ(s)( f (t− s)− f (0))ds = DΦ

t ( f (·)− f (0))(t), for almost any t > 0.

(10)
With this relation in mind we can extend the definition of generalized Caputo deriva-

tive to a (possibly) larger class of functions.



Mathematics 2021, 9, 2140 8 of 32

Definition 8. Set a Banach space (X, | · |). For any function f : R0
+ → X we define the regularized

generalized Caputo derivative induced by Φ ∈ CBF ? as

dΦ

dtΦ f (t) = DΦ
t ( f (·)− f (0))(t),

whenever the right-hand side is well-defined.

Remark 7. Equation (10) justifies the fact that we are using the same symbol of the generalized
Caputo derivative.

Concerning the inversion of such operators, let us observe that, as shown in [36]
[Section 2.2], if f is a function such that dΦ

dtΦ f is well defined, then

IΦ dΦ

dtΦ f (t) = f (t)− f (0),
dΦ

dtΦ I
Φ f (t) = f (t), (11)

thus we can see the operator IΦ
t as the inverse of the generalized Caputo derivative dΦ

dtΦ .
In the case Φ(λ) = λα, it holds IΦ = IΦ = I1−α, where I1−α is the fractional

integral of order 1− α (see [13] [Chapter 2]), DΦ
t = Dα

t is the Riemann–Liouville fractional
derivative of order α and dΦ

dtΦ = dα

dtα is the Caputo fractional derivative of order α.
Here, we also need other generalized fractional operators, that is, the integral and the

derivative of a function with respect to an increasing function. The definitions we give
are analogous to the ones given in [27] for the Riemann–Liouville fractional derivative
and [26] for the Caputo one.

Definition 9. Set a Banach space (X, | · |) and consider a strictly increasing function
Ψ ∈ C1(R+) ∩ C0(R+

0 ). For any measurable function f : R+
0 → X, we define the general-

ized fractional integral of the second kind of f induced by Φ ∈ CBF ? with respect to the function
Ψ as

IΦ,Ψ f (t) =
∫ t

0
Ψ′(τ)ν?Φ(Ψ(t)−Ψ(τ)) f (τ)dτ, (12)

where ν?Φ is the tail of the Lévy measure of Φ? and the integral is a Bochner integral, provided that
the involved quantities exist.

Suppose now Ψ′(t) 6= 0 some t > 0. For any measurable function f : R+
0 → X we define the

generalized Riemann–Liouville derivative induced by Φ ∈ CBF ?, Φ 6= ι, with respect to Ψ as

DΦ,Ψ
t f (t) =

1
Ψ′(t)

d
dt

∫ t

0
Ψ′(s)νΦ(Ψ(t)−Ψ(s)) f (s)ds =

1
Ψ′(t)

d
dt

IΦ? ,Ψ f (t),

where the integral is a Bochner integral, provided that the involved quantities exist.
Moreover, for any f ∈ ACloc(R+

0 ; X), we define the generalized Caputo derivative of f
induced by Φ ∈ CBF ?, Φ 6= ι, as(

1
Ψ′(t)

d
dt

)Φ
f (t) =

∫ t

0
νΦ(Ψ(t)−Ψ(s)) f ′(s)ds = IΦ? ,Ψ

(
1

Ψ′
d
dt

f
)
(t), (13)

where the integral is a Bochner integral, provided that the involved quantities exist.

Remark 8. Let us underline that we do not really need Ψ′(t) 6= 0 for all t > 0, but only on the
points in which we want to define DΦ,Ψ

t . Moreover, we can formally define the Caputo derivative(
1

Ψ′(t)
d
dt

)Φ
even if Ψ′(t) = 0, since Ψ′ does not play any role in the first equality of Formula (13).
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Finally, if Φ ≡ ι, we define, for any f ∈ ACloc(R+
0 ; X),

Dι,Ψ
t f (t) =

(
1

Ψ′(t)
d
dt

)ι

f (t) =
f ′(t)
Ψ′(t)

.

Let us stress that if Φ(λ) = λα the operators coincide with the ones introduced in [26,27].
Now we want to prove a chain rule, analogous to the one given in [29] [Proposition 1].

Proposition 1. Fix Ψ ∈ C1(R+) ∪ C0(R+
0 ) strictly increasing with Ψ(0) = 0 and Φ ∈ CBF ?.

Let g ∈ L1(R+; X) and f (t) := g(Ψ(t)) for t ≥ 0. Then, the following properties are true:

1. It holds
IΦ,Ψ f (t) = IΦ g(Ψ(t)); (14)

2. If Ψ′(t) 6= 0 it holds
DΦ,Ψ

t f (t) = DΦ
t g(Ψ(t)),

provided one of the involved quantities exists;
3. If g ∈ ACloc(R+

0 ; X) and Ψ is locally Lipschitz in R+
0 , then f ∈ ACloc(R+

0 ; X) and it holds(
1

Ψ′(t)
d
dt

)Φ
f (t) =

dΦ

dtΦ g(Ψ(t));

4. If Ψ′(t) 6= 0, Ψ is locally Lipschitz in R+
0 and g ∈ ACloc(R+

0 ; X), it holds

DΦ,Ψ
t ( f (·)− f (0))(t) =

(
1

Ψ′(t)
d
dt

)Φ
f (t).

Proof. Let us argue for Φ 6= ι, since the case Φ = ι is trivial.
By the definitions of IΦ,Ψ in Equation (12) and IΦ in Equation (5) we have

IΦ,Ψ f (t) =
∫ t

0
Ψ′(τ)ν?Φ(Ψ(t)−Ψ(τ))g(Ψ(τ))dτ

=
∫ Ψ(t)

0
ν?Φ(Ψ(t)− s)g(s)ds = IΦ g(Ψ(t)),

where we used the change of variables s = Ψ(τ).
Concerning claim (2), it follows from (1) by considering Φ? in place of Φ, differentiat-

ing both sides of (14) and multiplying by 1
Ψ′(t) .

Let us prove claim (3). First of all f ∈ ACloc(R+
0 ; X) since it is composition of an

absolutely continuous function with a locally Lipschitz one. In particular, it holds

f ′(t) = Ψ′(t)g′(Ψ(t)), for almost any t > 0

and then (
1

Ψ′(t)
d
dt

)Φ
f (t) =

∫ t

0
νΦ(Ψ(t)−Ψ(τ))Ψ′(τ)g′(Ψ(τ))dτ

=
∫ Ψ(t)

0
νΦ(Ψ(t)− s)g′(s)ds =

dΦ

dtΦ g(Ψ(t)),

where we again used the change of variables s = Ψ(τ).
Finally, concerning claim (4), we have, by claims (2) and (3) and the fact that Ψ(0) = 0

(and thus f (0) = g(0)),
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DΦ,Ψ
t ( f (·)− f (0))(t) = DΦ

t (g(·)− g(0))(Ψ(t)) =
dΦ

dtΦ g(Ψ(t)) =
(

1
Ψ′(t)

d
dt

)Φ
f (t).

Remark 9. Let us observe that claims (3) and (4) also hold if Ψ is not locally Lipschitz, but
g ∈ C1(R+) ∩ C0(R+

0 ). Indeed, both claims directly follow from the fact that in such case
f ′(t) = Ψ′(t)g′(Ψ(t)).

Moreover, the last Proposition tells us that the quantity (12) is well defined for any measurable
function f : R+

0 → X with the property that there exists g ∈ L1(R+
0 ; X) such that f (t) = g(Ψ(t))

(equivalently f ◦ Ψ−1 ∈ L1(R+
0 ; X)). This is the case, for instance, of f ∈ C0(R+

0 ), since, by
Continuous Inverse Theorem [46] [Theorem 5.6.5], f ◦Ψ−1 ∈ C0(R+

0 ). Finally, the quantity in
Equation (13) is well defined if Ψ is locally Lipschitz in R+

0 whenever f ∈ ACloc(R+
0 ; X) with

the property that there exists g ∈ ACloc(R+
0 ; X) such that f (t) = g(Ψ(t)) (this is, for instance,

the case in which f ∈ ACloc(R+
0 ; X) and Ψ is bi-Lipschitz). If Ψ is not locally Lipschitz, then

the quantity in Equation (13) is still well-defined if the function g defined as above belongs to
C1(R+) ∩ C0(R+

0 ).

Eigenfunctions of the Generalized Fractional Derivatives of Caputo Type

In the following we need to characterize the eigenfunctions of the generalized frac-
tional derivatives of Caputo type that have been previously introduced. First of all, let us
recall that the function,

eΦ(t; λ) = E[eλLΦ(t)], t ≥ 0,

is well-defined for any λ ∈ R (see [38] [Lemma 4.1]). Let us also recall the following
Proposition (see [38] [Proposition 4.3]).

Proposition 2. Consider Φ ∈ BF , with aΦ = bΦ = 0 and νΦ(R+) = +∞, and λ ∈ R. Then
eΦ(·; λ) is the unique solution of 

dΦ

dtΦ f (t) = λ f (t) t > 0

f (0) = 1.

Remark 10. If Φ = ι then eι(t; λ) = eλt.

Remark 11. As a consequence of [41] [Theorem 3.3], if Φ ∈ CBF ? then eΦ(·; λ) not only belongs
to C∞(0,+∞), but also admits an analytic extension on a sector
C(α) = {z ∈ C : z 6= 0, | arg(z)| < α} for some 0 < α < π/2.

In the following we need to extend the definition of eΦ for fixed λ ∈ R to negative
values of t. To do this we set

e±Φ(t; λ) :=

{
eΦ(t; λ) t ≥ 0
eΦ(−t;−λ) t < 0,

that is a continuous monotone function.

Remark 12. Observe that e±ι (t; λ) = eλt.

e±Φ(·; λ) can be recognized as the eigenfunction of a particular non-local operator.
Indeed, let us define the following operator.
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Definition 10. Set a Banach space (X, | · |). We say that a measurable function f : R−0 → X
belongs to L1

loc(R
−
0 ; X), where R−0 = (−∞, 0], if and only if the function g : R+

0 → X, defined as
g(t) = f (−t) for any t ≥ 0, belongs to L1

loc(R
+
0 ; X).

For any function f ∈ L1
loc(R

−
0 ; X) we define the right generalized Riemann–Liouville deriva-

tive induced by Φ ∈ CBF ?, with Φ 6= ι, as

−DΦ
t f (t) = − d

dt

∫ 0

t
νΦ(s− t) f (s)ds, t < 0.

We say that f : R−0 → X belongs to ACloc(R−0 ; X) if and only if the function g : t ∈ R+
0 7→

f (−t) ∈ X belongs to ACloc(R+
0 ; X).

Moreover, for any f ∈ ACloc(R−0 ; X), we define the right generalized Caputo derivative
induced by Φ ∈ CBF ?, with Φ 6= ι, as

dΦ,−

dtΦ f (t) = −
∫ 0

t
νΦ(s− t) f ′(s)ds, t < 0.

Since for any f ∈ ACloc(R−0 ; X) it holds

dΦ,−

dtΦ f (t) = −DΦ
t ( f (·)− f (0))(t), (15)

we can extend the definition of right generalized Caputo derivative to non absolutely continuous functions
via Equation (15), supposed that the function admits a generalized Riemann–Liouville derivative.

If Φ = ι, we define −Dι
t =

dι,−
dtι = − d

dt .
We say that a measurable function f : R→ X belongs to L1

loc(R; X) if f 1R±0 ∈ L1
loc(R

±
0 ; X).

We say that a measurable function f : R→ X belongs to AC±loc(R; X) if f 1R±0 ∈ ACloc(R±0 ; X).

For any function f ∈ L1
loc(R; X) we define the bilateral generalized Riemann–Liouville

derivative induced by Φ ∈ CBF ? as

±DΦ
t f (t) =

{
DΦ

t f (t) t > 0
−−DΦ

t f (t) t < 0,

and the bilateral generalized Caputo derivative induced by Φ ∈ CBF ? as

dΦ,±

dtΦ f (t) =


dΦ

dtΦ f (t) t > 0

−dΦ,−

dtΦ f (t) t < 0,

provided the involved quantities exist.

Remark 13. The definition of right derivative is given by taking in consideration the integration
by parts formula (see, for instance [28]). However, with dΦ,±

dtΦ we want to mimic the behaviour of the
derivative on the whole real line, thus we need to introduce another − sign on the right derivative.
Recall that if Φ = ι we get dι,±

dtι = d
dt .

Obviously, the bilateral derivatives are well-defined on AC±loc(R; X).

Proposition 3. Fix Φ ∈ CBF ? and let g ∈ L1
loc(R

+
0 ; X) and f ∈ L1(R−0 ; X) such that

f (t) = g(−t) for any t ≤ 0. The following properties are true:

1. It holds
−DΦ

t f (t) = −DΦ
t g(−t),

provided one of the involved quantities exists;
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2. It holds
dΦ,−

dtΦ f (t) = − dΦ

dtΦ g(−t),

provided one of the involved quantities exists.

Proof. Let us first observe that∫ 0

t
νΦ(τ − t)g(−τ)dτ =

∫ −t

0
νΦ(−t− s)g(s)ds,

where we used the change of variables s = −τ. Differentiating on both sides we get

−DΦ
t f (t) = −DΦ

t g(−t).

By using (15), we conclude the proof.

As a direct consequence of Propositions 1–3, we obtain the following result.

Proposition 4. Fix Φ ∈ CBF ? and Ψ ∈ C1(R+) ∩ C0(R+
0 ) with Ψ(0) = 0. The following

statements hold:

• The function t ≥ 0 7→ eΦ(Ψ(t); λ) is the unique solution of
(

1
Ψ′(t)

d
dt

)Φ
f (t) = λ f (t) t > 0

f (0) = 1.

• The function t ∈ R 7→ e±Φ(t; λ) is the unique solution of
dΦ,±

dtΦ f (t) = λ f (t) t 6= 0

f (0) = 1.

We already know, by definition, that sign(λ) e±Φ(t; λ) is nondecreasing. We want to
prove that sign(λ) e±Φ(t; λ) is strictly increasing. We actually have a stronger result.

Proposition 5. Let Φ ∈ CBF ? satisfy Assumption 1. Then, for any λ > 0, it holds
eΦ(·; λ) ∈ C∞(R+) and

d
dt

eΦ(t; λ) > 0, ∀t > 0.

Proof. By the fact that Φ ∈ CBF ?, we know, by Remark 11, that eΦ(·; λ) ∈ C∞(0,+∞).
Moreover, let us recall, from [38] [Lemma 4.5],

eΦ(t; λ) =
+∞

∑
k=0

λku∗k (t), (16)

where 
u∗0(t) = 1
u∗1(t) = UΦ(t)
u∗k+1(t) = I

Φ u∗k (t), k ≥ 1.

First of all, since Φ ∈ CBF ?, then u∗1 = UΦ ∈ C1(R+) with derivative uΦ ∈ L1
loc(R

+
0 )

and UΦ(0) = 0. Moreover, let us observe that, by definition,

u∗k (t) =
E[Lk

Φ(t)]
k!

, t ≥ 0,
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and then u∗k (0) = 0 for any k ≥ 1. Observe also that IΦ uΦ(t) is well defined as
uΦ ∈ L1

loc(R
+
0 ).

Now let us show that if u∗k ∈ C1(R+) with derivative d
dt u∗k ∈ L1

loc(R
+
0 ), then also

u∗k+1 ∈ C1(R+) with derivative d
dt u∗k+1 ∈ L1

loc(R
+
0 ). Indeed, we have that u∗k is absolutely

continuous with u∗k (0) = 0 and then

d
dt

u∗k+1(t) =
d
dt
IΦ u∗k (t)

=
d
dt

(
a?
∫ t

0
u∗k (τ)dτ + IΦ u∗k (t)

)
= a?u∗k (t) +DΦ u∗k (t)

= a?u∗k (t) + IΦ
(

d
dt

u∗k

)
(t).

(17)

Now let us observe that IΦ
(

d
dt u∗k

)
∈ C0(R+) ∩ L1

loc(R
+
0 ), being the convolution

product of uΦ and d
dt u∗k that are both in C0(R+) ∩ L1

loc(R
+
0 ). Thus, d

dt u∗k+1(t) is sum of
two functions in C0(R+) ∩ L1

loc(R
+
0 ). By induction, we know that, for any k ≥ 1, it holds

u∗k ∈ C1(R+) with derivative d
dt u∗k ∈ L1

loc(R
+
0 ).

Furthermore, let us observe that uΦ(t) ≥ 0 for t > 0 and that, if d
dt u∗k (t) ≥ 0, then

Equation (17) implies that d
dt u∗k+1(t) ≥ 0, so that we can conclude that

d
dt

u∗k (t) ≥ 0, ∀t > 0, ∀k ∈ N . (18)

Being Φ ∈ CBF ?, then, by [34] [Proposition 7.1], also Φ? ∈ CBF . By Remark 2 we
know that b?Φ = 0 and

uΦ(t) = a?Φ + ν?Φ(t).

If
∫ +∞

0 tνΦ(dt) < +∞, then a?Φ > 0 and uΦ(t) > 0 for any t > 0. If
∫ +∞

0 tνΦ(dt) = +∞,
then a?Φ = 0. Hence, by [34] [Proposition 10.16], being Φ? ∈ CBF ⊂ SBF , we know that
ν?Φ cannot have bounded support. As it is also decreasing, it holds ν?Φ(t) > 0 for any t > 0.
Thus, in general, we conclude that

uΦ(t) > 0, ∀t > 0. (19)

By [47] [Lemma 7.25] we can differentiate both sides of (16) to achieve, by also using
Equations (18) and (19),

d
dt

eΦ(t; λ) =
+∞

∑
k=1

λk d
dt

u∗k (t) = λuΦ(t) +
+∞

∑
k=2

λk d
dt

u∗k (t) > 0,

concluding the proof.

Corollary 1. Let Φ ∈ CBF ?. Then, for any λ ∈ R, the function sign(λ) e±Φ(·; λ) is continuous
and strictly increasing.

Proof. Let us prove the statement for λ > 0, since the proof is analogous as λ < 0.
Let us first recall that if Φ ∈ CBF , then eΦ(t;−λ) is completely monotone (see [36]
[Theorem 2.1]). Thus, we have that eΦ(−t;−λ) is strictly increasing on R−0 . On the other
hand, Proposition 5 implies that eΦ(t; λ) is strictly increasing on R+

0 . Finally, the fact that
eΦ(0;−λ) = eΦ(0; λ) = 1 concludes the proof.
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Remark 14. The function eΦ(t; λ) could be non (right-)differentiable in 0. For instance, consider
Φ(λ) = λα with α ∈ (0, 1). Then it is known (see [40]) that eΦ(t; λ) = Eα(λtα), where Eα(t) is
the Mittag–Leffler function defined as

Eα(t) =
+∞

∑
n=0

tn

Γ(αn + 1)
, t ∈ C. (20)

In particular it holds

E′α(t) =
+∞

∑
n=1

ntn−1

Γ(αn + 1)
=

+∞

∑
n=1

ntn−1

αnΓ(αn)
=

+∞

∑
n=0

tn

αΓ(αn + α)
.

Thus, we have
d
dt

Eα(λtα) = αλtα−1E′α(λtα),

and then limt→0+
d
dt Eα(λtα) = +∞.

However, since eΦ(t; λ) is monotone, by [47] [Theorem 7.21] we know that
d
dt eΦ(·; λ) ∈ L1

loc(R
+
0 ).

4. Gaussian Solutions for a Linear Stochastic Integral Equation with
Constant Coefficients

From now on, let us fix a complete filtered probability space (Ω,F , {F t}t≥0,P). For a
fixed Φ ∈ CBF ?, we want to exhibit the solution of the following stochastic integral equation

Y(t) = Y0 + IΦ(aY + b)(t) + G(t), t ≥ 0, (21)

where G is a suitable Gaussian stochastic process, Y0 is a Gaussian random variable
independent of G and a, b ∈ R. Before proving an existence and uniqueness result, we
need to set some notations.

4.1. Properties of Generalized Fractionally-Integrated Gaussian Processes

For any 0 < T ≤ +∞, let us denote by J = [0, T] a time interval with horizon T. If
T = +∞, we set J = R+

0 . For T 6= +∞, we can define the Banach space (C0(J), ‖·‖0) of
continuous functions equipped with the supremum norm

‖ f ‖0 = max
t∈J
| f (t)|, ∀ f ∈ C0(J).

Let us consider the following class of stochastic processes:

S(J) := { f : Ω× J → R : G is F t -adapted, and P(G ∈ C0(J)) = 1},

and its subclass of Gaussian processes:

G(J) = {G ∈ S(J) : G is Gaussian}.

To study Hölder-regularity properties of the sample paths of the solution of (21), we
consider the following subclass of G(J):

Gr(J) = {G ∈ G(J) : G is a.s. locally r-Hölder continuous}.

Remark 15. If J = [0, T] for some T > 0, then, J being compact, G ∈ Gr(J) is a.s. r-Hölder
continuous on J.

As a preliminary result, let us show that if we fix 0 < T ≤ +∞ and we integrate a
process Z ∈ G(J), we obtain a process in G(J).
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Lemma 1. Let 0 < T ≤ +∞, Φ ∈ CBF ? and Z ∈ G(J). Then there exists a set A ⊆ Ω such that
P(A) = 1 and the process ZΦ(ω, t) := IΦ Z(ω, ·)(t) is well defined for any ω ∈ A. Moreover, if
Assumption 1 is satisfied, then ZΦ ∈ Gβ(J).

Proof. Let
A = {ω ∈ Ω : Z(ω, ·) ∈ C0(J)}

and observe that, being Z ∈ G(J), P(A) = 1. Hence, for any ω ∈ A, ZΦ(ω, ·) is well-
defined. We omit the proof of the fact that ZΦ ∈ G(J) as it is identical to the first part of the
proof of [29] [Lemma 1].

Let us show that ZΦ ∈ Gβ(J). To do this, fix any T′ ∈ J, ω ∈ A and define J′ = [0, T′].
We want to show that ZΦ(ω, ·) is β-Hölder continuous in J′. To do this, fix t ∈ J′ and h ∈ R
such that t + h ∈ J′. Let us first assume h > 0. We have

|ZΦ(ω, t + h)− ZΦ(ω, t)| =
∣∣∣∣∫ t+h

0
uΦ(t + h− τ)Z(ω, τ)dτ −

∫ t

0
uΦ(t− τ)Z(ω, τ)dτ

∣∣∣∣
≤
∫ t

0
(uΦ(t− τ)− uΦ(t + h− τ))|Z(ω, τ)|dτ

+
∫ t+h

t
uΦ(t + h− τ)|Z(ω, τ)|dτ

≤ ‖Z(ω, ·)‖0(UΦ(t)−UΦ(t + h) + 2UΦ(h))

≤ 2‖Z(ω, ·)‖0UΦ(h),

where we could take the supremum norm since, being ω ∈ A, Z(ω, ·) ∈ C0(J′), and we
also used the fact that UΦ(t)−UΦ(t + h) ≤ 0, being UΦ increasing. Finally, by Remark 3,
we obtain

|ZΦ(ω, t + h)− ZΦ(ω, t)| ≤ 2C‖Z(ω, ·)‖0hβ.

If h < 0 the argument is analogous except for the fact that we control
UΦ(t)−UΦ(t + h) ≤ UΦ(|h|), by subadditivity of the potential measure. Thus, in general,
we get

|ZΦ(ω, t + h)− ZΦ(ω, t)| ≤ 3C‖Z(ω, ·)‖0|h|
β,

concluding the proof.

Now let us recall the definition of compatibility, as given in [29].

Definition 11. Let G, Z ∈ G(J). We say that Z is compatible with G if the coupled process (Z, G)
is a F t-adapted Gaussian process with a.s. continuous sample paths. Let us recall that this implies
that Z + G ∈ G(J).

We denote
G(J, G) = {Z ∈ G(J) : Z is compatible with G on J}.

Let us give the following Lemma.

Lemma 2. Let 0 < T ≤ +∞, Φ ∈ CBF ?, G ∈ G(J) and Z ∈ G(J, G). Let A ⊂ Ω and ZΦ be
defined as in Lemma 1. Then ZΦ ∈ G(J, G).

We omit the proof, since it is identical to the one of [29] [Lemma 2].

Remark 16. Let us also stress that any continuous function f : J → R belongs to G(J, G)
(considering it as a degenerate stochastic process). Moreover, if Z ∈ G(J) is independent of G, then
Z ∈ G(J, G). Finally, if Z ∈ G(J, G) and fi : J → R are continuous functions for i = 1, 2, 3, then
f1Z + f2G + f3 ∈ G(J, G).
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4.2. Existence and Uniqueness of a Gaussian Solution

Now we are ready to prove the following Theorem.

Theorem 4. Consider Φ ∈ CBF ? satisfying Assumption 1, G ∈ G(R+
0 ) and Y0 a Gaussian

random variable independent of G. Then Equation (21) admits a Gaussian solution Y ∈ G(R+
0 ),

in the sense that there exists a Gaussian process Y ∈ G(R+
0 ) and a set A ⊆ Ω with P(A) = 1

such that

Y(ω, t) = Y0(ω) + IΦ(aY(ω, ·) + b)(t) + G(ω, t), t ≥ 0, ω ∈ A. (22)

Moreover, the solution is unique, in the sense that, if Y′ is another solution of (21),

P(Y(t) = Y′(t), ∀t ≥ 0) = 1.

Finally, if G ∈ G
β̃
(R+

0 ) for some β̃ ∈ (0, 1], then Y ∈ Gmin{β̃,β}(R
+
0 ).

Proof. First of all, fix T > 0 and define J = [0, T]. On the space C0(J) of continuous
functions on J define the norm

‖ f ‖γ = max
t∈[0,T]

| f (t)|e−γt, f ∈ C0(J),

where γ > 0 is a suitable constant. For any f ∈ C0(J) it holds

e−γT‖ f ‖0 ≤ ‖ f ‖γ ≤ ‖ f ‖0, (23)

thus (C0(J), ‖·‖γ) is a Banach space.
Let us consider

A = {ω ∈ Ω : G(ω, ·) is continuous} (24)

and fix ω ∈ A. Define the operator A(T)
ω : (C0(J), ‖·‖γ)→ (C0(J), ‖·‖γ) as

A(T)
ω f (t) = Y0(ω) + IΦ(a f + b)(t) + G(ω, t), ∀ f ∈ C0(J). (25)

Let us first show that A(T)
ω is well-defined. Consider f ∈ C0(J), t ∈ J and δ ∈ R such

that t + δ ∈ J. If δ > 0, we have

| A(T)
ω f (t + δ)−A(T)

ω f (t)| ≤
∫ t

0
(uΦ(t− τ)− uΦ(t + δ− τ))|a f (τ) + b|dτ

+
∫ t+δ

t
uΦ(t + δ− τ)|a f (τ) + b|dτ

+ |G(ω, t + δ)− G(ω, t)|
≤ (UΦ(t)−UΦ(t + δ) + 2UΦ(δ))‖a f + b‖L∞(J)

+ |G(ω, t + δ)− G(ω, t)|
≤ 2Cδβ‖a f + b‖0 + |G(ω, t + δ)− G(ω, t)|,

where we used the fact that UΦ(t)−UΦ(t + δ) ≤ 0 and Remark 3. If δ < 0, arguing in the
same way, we get

| A(T)
ω f (t + δ)−A(T)

ω f (t)| ≤ 3C|δ|β‖a f + b‖L∞(J) + |G(ω, t + δ)− G(ω, t)|, (26)

where we used, in this case, the fact that UΦ(t)−UΦ(t + δ) ≤ UΦ(|δ|). Being ω ∈ A, this
is enough to guarantee that A(T)

ω f ∈ C0(J).
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Now let us show that A(T)
ω is a contraction. To do this, consider fi ∈ C0(J), i = 1, 2,

and observe that

| A(T)
ω f1(t)−A

(T)
ω f2(t)| =

∣∣∣∣a ∫ t

0
uΦ(t− τ)( f1(τ)− f2(τ))dτ

∣∣∣∣
≤ |a|

∫ t

0
uΦ(t− τ)| f1(τ)− f2(τ)|dτ

= |a|
∫ t

0
uΦ(t− τ)| f1(τ)− f2(τ)|e−γτeγτdτ

≤ C‖ f1 − f2‖γ|a|
∫ t

0
(t− τ)β−1eγτdτ,

where we used Assumption 1. Now let us observe that 0 > β − 1 > −1, thus we can
choose p > 1 such that 0 > p(β− 1) > −1. Let q > 1 be such that 1

p + 1
q = 1. By Hölder’s

inequality we get

| A(T)
ω f1(t)−A

(T)
ω f2(t)| ≤ C‖ f1 − f2‖γ|a|

(∫ t

0
(t− τ)p(β−1)dτ

) 1
p
(∫ t

0
eqγτdτ

) 1
q

= C‖ f1 − f2‖γ|a|

(
tp(β−1)+1

) 1
p

(p(β− 1) + 1)
1
p

1

(qγ)
1
q
(eqγt − 1)

1
q

≤ C‖ f1 − f2‖γ|a|
Tβ−1+ 1

p

(p(β− 1) + 1)
1
p

1

(qγ)
1
q

eγt.

Multiplying both sides of the previous inequality by e−γt we get

| A(T)
ω f1(t)−A

(T)
ω f2(t)|e−γt ≤ C‖ f1 − f2‖γ|a|

Tβ−1+ 1
p

(p(β− 1) + 1)
1
p

1

(qγ)
1
q

,

that implies

∥∥∥A(T)
ω f1 −A

(T)
ω f2

∥∥∥
γ
≤ C‖ f1 − f2‖γ|a|

Tβ−1+ 1
p

(p(β− 1) + 1)
1
p

1

(qγ)
1
q

. (27)

Now let us observe that

lim
γ→+∞

C|a| Tβ−1+ 1
p

(p(β− 1) + 1)
1
p

1

(qγ)
1
q
= 0,

hence we can choose γ to be big enough to have

C|a| Tβ−1+ 1
p

(p(β− 1) + 1)
1
p

1

(qγ)
1
q
< 1,

and then A(T)
ω is a contraction on (C0(J), ‖·‖γ). By the contraction theorem (see [48]

[Theorem 3.1]), we know that A(T)
ω admits a unique fixed point in C0(J) that we denote

Y(T)(ω). Now we need to extend (in some sense) this solution to the space C0(R+
0 ).

For any ω ∈ A, let us define the operator Aω : C0(R+
0 )→ C0(R+

0 ) as:

Aω f (t) = A(T)
ω f (t), t ≤ T, ∀T > 0.
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Let us first show that Aω is well defined. Indeed, if T1 > T2 > 0 and t < T2 we have

A(T1)
ω f (t) = Y0(ω) + IΦ(a f + b)(t) + G(ω, t) = A(T2)

ω f (t), ∀ f ∈ C0(J).

Now let us show that Aω admits a fixed point. Let us consider the function

Y(ω, t) = Y(T)(ω, t), t ≤ T, ∀T > 0.

Let us first show that it is well-posed. Fix T1 > T2 > 0 and t ≤ T2. Then we have

Y(T1)(ω, t) = A(T1)
ω Y(T1)(ω, ·)(t)

= Y0(ω) + IΦ(aY(T1)(ω, ·) + b)(t) + G(ω, t) = A(T2)
ω Y(T1)(ω, ·)(t),

thus Y(T1)(ω) is also a fixed point for A(T2)
ω . Being the fixed point of A(T2)

ω unique we get

Y(T1)(ω, t) = Y(T2)(ω, t), t ≤ T2.

Now let us show that Y(ω) is a fixed point for Aω . To do this, consider any t ≥ 0 and
T > t. Then we have

Aω Y(ω, ·)(t) = A(T)
ω Y(T)(ω, ·)(t) = Y(T)(ω, t) = Y(ω, t).

Being t ≥ 0 arbitrary we conclude that Aω Y(ω) = Y(ω). Now let us show that Y(ω)
is the unique fixed point of Aω . To do this, suppose Aω admits another fixed point Y′(ω).
Consider any T > 0. Then we have

Y′(ω, t) = Aω Y′(ω, ·)(t) = A(T)
ω Y′(ω, ·)(t), ∀t ∈ [0, T]

hence Y′(ω) is a fixed point for A(T)
ω , thus it holds

Y′(ω, t) = Y(T)(ω, t) = Y(ω, t), ∀t ∈ [0, T].

Being T > 0 arbitrary we get Y′(ω, t) = Y(ω, t) for any t ≥ 0.
Now, for any stochastic process f ∈ S(R+

0 ), let us define the set

A f = {ω ∈ Ω : f (ω, ·) ∈ C0(J)}. (28)

Then we can define the operator A : S(R+
0 )→ S(R

+
0 ) as

A f (ω, t) =

{
Aω f (ω, ·)(t) ω ∈ A ∩ A f

0 ω ∈ Ω \ (A ∩ A f ),

where we recall that A is defined in Equation (24). Let us also define Y(ω, ·) ≡ 0 as
ω ∈ Ω \ A, so that Y ∈ S(R+

0 ) and AY = Ω. Now let us show that Y is a fixed point for A.
If ω ∈ A we get

AY(ω, t) = Aω Y(ω, ·)(t) = Y(ω, t), t ≥ 0,

while for ω ∈ Ω \ A we have AY(ω, ·) ≡ 0 and Y(ω, ·) ≡ 0 by definition. Hence Y is a
fixed point for A in S(R+

0 ). Moreover, by definition, Y(ω, ·) is continuous as ω ∈ A and

Y(ω, t) = Y0(ω) + IΦ(aY(ω, ·) + b)(t) + G(ω, t), t ≥ 0, ω ∈ A,

thus Y is solution of Equation (21).
Now let us show that Y is a Gaussian process. By definition, it is sufficient to show

that Y(T) are Gaussian processes for any T > 0. Moreover, since P(A) = 1, we can restrict
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the probability space to (A,F , {F t},P) without loss of generality. Fix T > 0, set J = [0, T]
and consider the sequence of stochastic processes:{

f0(ω, t) ≡ 0, ω ∈ A, t ∈ J

fn(ω, t) = A(T)
ω fn−1(ω, ·)(t) ω ∈ A, t ∈ J, n ≥ 1.

(29)

As A(T)
ω is a contraction for fixed ω ∈ A, we have that fn → Y(T) pointwise with

respect to ω ∈ Ω. Moreover f0 is degenerate, hence f0 ∈ G(J, G). Let us suppose fn ∈
G(J, G). Then, by Lemma 2 and Remark 16 we have that fn+1 ∈ G(J, G). By induction, we
get that fn ∈ G(J, G) for any n ≥ 0 and in particular, being the limit of Gaussian processes,
Y(T) ∈ G(J). Since T > 0 is arbitrary we conclude that Y ∈ G(R+

0 ).
Now let us show the uniqueness of the solution. Let Y′ ∈ G(R+

0 ) be another solution
of Equation (21) and let A′ be the set on which (22) holds for Y′. Let A′′ = A ∩ A′ and
observe that P(A′′) = 1. Let ω ∈ A′′ and observe that

Y′(ω, t) = AY′(ω, t) = Aω Y′(ω, ·)(t),

that is, the function Y′(ω, ·) is a fixed point of Aω. However, we know that Aω admits a
unique fixed point Y(ω, ·), thus Y(ω) = Y′(ω) for ω ∈ A′′. In conclusion, we get

P(Y(t) = Y′(t), ∀t ≥ 0) ≥ P(A′′) = 1.

Now let us show the last part of the statement of the Theorem. Suppose G ∈ G
β̃
(R+

0 )

for some β̃ ∈ (0, 1]. Then there exists a set B ⊆ A with P(B) = 1 such that for any ω ∈ B
and any T > 0 it holds:

|G(ω, t + δ)− G(ω, t)| ≤ H(ω, T)|δ|β, t ∈ [0, T],

for some constant H(ω, T) > 0. In particular, if β̃ < β, Equation (26) becomes

| A(T)
ω f (t + δ)−A(T)

ω f (t)| ≤ (3C‖a f + b‖0|δ|
β−β̃ + H(ω, T)|)|δ|β̃.

Using Y in place of f in the previous inequality and the fact thatA(T)
ω Y(ω, ·) = Y(ω, ·),

we get Y ∈ G
β̃
(R+

0 ). On the other hand, if β ≤ β̃, Equation (26) becomes

| A(T)
ω f (t + δ)−A(T)

ω f (t)| ≤ (3C‖a f + b‖0 + H(ω, T)||δ|β̃−β)|δ|β,

thus obtaining, in this case, Y ∈ Gβ(R+
0 ). This concludes the proof.

Remark 17. The initial guess f0(ω, t) ≡ 0 in Equation (29) can be substituted with any process
f0 ∈ S(J). This tells us, in a certain sense, that the Picard iteration method proposed to solve (21)
in J = [0, T] for some T ∈ R+ is stable with domain of attraction S(J).

4.3. Speed of Convergence of the Iteration Method

We can use again the contraction theorem to estimate the speed of convergence of the
iteration procedure we presented in Theorem 4 in the finite-horizon case.

Proposition 6. Consider Φ ∈ CBF ? satisfying Assumption 1, T ∈ R+, J = [0, T], G ∈ G(J)
and Y0 a Gaussian random variable independent of G. Consider A as in Equation (24) and define
the operator A : S(J)→ S(J) as

A f (ω, t) =

{
A(T)

ω f (ω, ·)(t) ω ∈ A ∩ A f

0 ω ∈ Ω \ (A ∩ A f ),
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where A(T)
ω is defined in Equation (25) and A f is defined in Equation (28). Fix f0 ∈ S(J) and

define fn = A fn−1 for n ≥ 1. Consider any p ∈
(

0, 1
1−β

)
, q > 1 such that 1

p +
1
q = 1 and γ > 0

big enough to have

L := C|a| Tβ−1+ 1
p

(p(β− 1) + 1)
1
p

1

(qγ)
1
q
< 1, (30)

where C and β are defined in Assumption 1. Let Y ∈ G(J) be the unique Gaussian solution of
Equation (21) and define

G̃ = Y0 + IΦ(a f0 + b) + G− f0.

Then,

‖ fn −Y‖0 ≤
eγT Ln

1− L

∥∥∥G̃
∥∥∥

0
, (31)

almost surely. As a consequence, for any ε > 0, it holds

P(‖ fn −Y‖0 > ε) ≤ P
(∥∥∥G̃

∥∥∥
0
>

ε(1− L)
eγT Ln

)
. (32)

Proof. First of all, observe that P(A ∩ A f0) = 1 and that A fn = A f0 for any n ≥ 0. Fix
ω ∈ A ∩ A f0 . We have shown in Theorem 4 (precisely Equation (27)) that, with our choice

of p and γ, A(T)
ω is a contraction on (C0(J), ‖·‖γ) with Lipschitz constant L < 1 defined in

Equation (30). Then, by the contraction theorem (see [48] [Theorem 3.1]), we know that

‖ fn(ω, ·)−Y(ω, ·)‖γ ≤
Ln

1− L
‖ f1(ω, ·)− f0(ω, ·)‖γ.

By using the equivalence relation given in Equation (23) and recognizing G̃ = f1 − f0,
we get

‖ fn(ω, ·)−Y(ω, ·)‖0 ≤
eγT Ln

1− L

∥∥∥G̃(ω, ·)
∥∥∥

0
,

concluding the proof.

The right-hand side of Equation (32) could be difficult to evaluate explicitly. However,
in a particular case, we can provide a less sharp but explicit bound.

Corollary 2. With the notation of Proposition 6, suppose f0 ∈ C0(J), Y0 ∈ R is deterministic and
G is a martingale with E[|G(t)|2] = σ2(t). Set

M :=
∥∥∥Y0 + IΦ(a f0 + b)− f0

∥∥∥
0
. (33)

Then, for any ε > 0 and n >
log((1−L)ε)−log(MeγT)

log(L) , it holds

P(‖ fn −Y‖0 > ε) ≤
(

eγT Ln

(1− L)ε−MeγT Ln

)2∥∥∥σ2
∥∥∥

0
.

Proof. Fix ω ∈ A (recall that A f0 = Ω) and observe that, by the triangular inequality,∥∥∥G̃(ω, ·)
∥∥∥

0
≤
∥∥∥Y0 + IΦ(a f0 + b)− f0

∥∥∥
0
+ ‖G(ω, ·)‖0.

Thus, by (31) and recalling the definition of M in Equation (33), we have that

‖ fn −Y‖0 ≤
eγT Ln

1− L
(M + ‖G‖0)
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almost surely. Hence, for any ε > 0, it holds

P(‖ fn −Y‖0 > ε) ≤ P
(
‖G‖0 >

(1− L)ε
eγT Ln −M

)
.

Consider n >
log((1−L)ε)−log(MeγT)

log(L) , so that (1−L)ε
eγT Ln −M > 0. Since G is a martingale,

|G| is a non-negative integrable submartingale. Thus, by Doob’s L2 inequality (see [49]
[Chapter II, Theorem 1.7]),

P
(
‖G‖0 >

(1− L)ε−MeγT Ln

eγT Ln

)
≤
(

eγT Ln

(1− L)ε−MeγT Ln

)2∥∥∥σ2
∥∥∥

0
,

concluding the proof.

Remark 18. If f0 ≡ 0, Y0 > 0 and G(t) is a Brownian motion, then M = Y0 + bUΦ(T) and
supt∈[0,T] σ2(t) = T.

4.4. Estimates on the Moments of Y

Now we want to give some estimates concerning the integrability of the absolute
moments of the solution of (21).

Let Y ∈ G(R+
0 ) be the unique solution of (21), as provided in Theorem 4. It being

a Gaussian process, we already know that E[|Y(t)|p] is finite for any p ≥ 1 and any
fixed t ∈ R+

0 . First, we want to determine some sufficient conditions under which the
function M1(t) = E[|Y(t)|] is locally integrable or bounded. Indeed, under some regularity
assumptions on the Gaussian noise process G, we have the following result.

Proposition 7. Consider Φ ∈ CBF ? satisfying Assumption 1 and G ∈ G(R+
0 ) such that

E[|G(·)|] ∈ L1
loc(R

+
0 ). Then, for any T > 0, there exists a constant C > 0 such that

M1(t) ≤ E[|Y0|] + |b|UΦ(t) +E[|G(t)|] + CΓ(β + 1)|a|

×
∫ t

0
E′β(CΓ(β)|a|(t− τ)β)(t− τ)β−1(E[|Y0|] + |b|UΦ(τ) +E[|G(τ)|])dτ,

for t ∈ [0, T], where Eβ is the Mittag-Leffler function defined in Equation (20). In particular, if
E[|G(·)|] ∈ L∞

loc(R
+
0 ), then M1 ∈ L∞

loc(R
+
0 ).

Proof. Let us recall that (21) holds almost surely. In particular, applying the absolute value
and the expectation operator on both sides of (21), we have

M1(t) ≤ E[|Y0|] + |a|
∫ t

0
uΦ(t− τ)M1(τ)dτ + |b|UΦ(t) +E[|G(t)|],

where we also used the triangular inequality.
Setting f1(t) = E[|Y0|] + |b|UΦ(t) +E[|G(t)|], we achieve

M1(t) ≤ f1(t) + |a| IΦ M1(t), t ≥ 0.

Fix any T > 0 and observe that f1 ∈ L1(0, T). Then, by the generalized Grönwall
inequality in [38] [Theorem 5.1], we get

M1(t) ≤ E[|Y0|] + |b|UΦ(t) +E[|G(t)|] + CΓ(β + 1)|a|

×
∫ t

0
E′β(CΓ(β)|a|(t− τ)β)(t− τ)β−1(E[|Y0|] + |b|UΦ(τ) +E[|G(τ)|])dτ,

for some constant C > 0, concluding the first part of the proof.
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If E[|G(·)|] ∈ L∞
loc(R

+
0 ), fix T > 0 and consider ‖E[|G(·)|]‖L∞(0,T) = C1. Moreover,

we have
f1(t) ≤ E[|Y0|] + |b|UΦ(t) + C1 =: f2(t), t ∈ [0, T],

where the right-hand side is an increasing function. Thus, by [38] [Theorem 5.1] we get

M1(t) ≤ f2(t) eΦ(t, |a|) ≤ f2(T) eΦ(T, |a|), t ∈ [0, T].

As T > 0 is arbitrary, we conclude that M1 ∈ L∞
loc(R

+
0 ).

As a direct consequence of the previous result we have the following Corollary.

Corollary 3. Consider Φ ∈ CBF ? satisfying Assumption 1, G ∈ G(R+
0 ) and define

m(t) := E[Y(t)] for t ∈ R+
0 . Suppose E[G(t)] ≡ 0 and E[G2(t)] ∈ C0(J). Then m(t) is

the unique solution of 
dΦ

dtΦ m(t) = am(t) + b

m(0) = E[Y0],
(34)

that is to say

m(t) =
(
E[Y0] +

b
a

)
eΦ(t; a)− b

a
. (35)

Proof. Let us first stress out that |G(t)| is a folded Gaussian variable for each t ≥ 0, thus

E[|G(t)|] =
√

2
π
E[G2(t)] ∈ C0(J)

and, in particular, E[|G(·)|] ∈ L∞
loc(R

+
0 ). By Proposition 7 we have that M1 ∈ L∞

loc(R
+
0 )

and then ∫ t

0
uΦ(t− τ)M1(τ)dτ ≤ ‖M1‖L∞(0,T)UΦ(t) < +∞. (36)

Taking the expectation on both sides of (21) and using Fubini’s theorem, justified by
inequality (36), we get

m(t) = E[Y0] + IΦ(am + b)(t).

Observing that m(0) = E[Y0] and taking the Caputo-type derivative on both sides
we see that the function m(t) must be a solution of the Cauchy problem (34). Now let us
observe that the function

t ∈ R+
0 7→

(
E[Y0] +

b
a

)
eΦ(t; a)− b

a

is also solution of the Cauchy problem (34), thus, by uniqueness of global solutions (see [38]
[Corollary 3.7]) we conclude the proof.

The previous Corollary will play a major role in defining generalized fractional stochas-
tic Gompertz curves.

The arguments we adopted to show that M1 is locally bounded can be generalized to
any absolute p-moment. Indeed, let us consider p ≥ 1 and Mp(t) := E[|Y(t)|p]. We have
the following result.

Proposition 8. Consider Φ ∈ CBF ? satisfying Assumption 1 and G ∈ G(R+
0 ). The following

properties hold:

1. Let 1 < p < 1
1−β . If E[|G(·)|p] ∈ L∞

loc(J) then, for any q ∈ [1, p], it holds E[|Y(·)|q] ∈
L∞

loc(J);
2. If β > 1

2 and E[G2(·)] ∈ L∞
loc(J) then, for any p ≥ 1, it holds E[|Y(·)|p] ∈ L∞

loc(J).
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Proof. Let us show statement (1). First, observe that, if we prove E[|Y(·)|p] ∈ L∞
loc(J), then

the statement holds true for any q ∈ [1, p) by a simple application of Hölder’s inequality.
Hence, we only prove the statement for p = q. Apply the function x 7→ |x|p to both sides
Equation (21), use the convexity inequality and Jensen’s inequality and then apply again
the expectation operator to get

Mp(t) ≤ 4p−1
(
E[|Y0|p] + tp−1|a|p

∫ t

0
up

Φ(t− τ)Mp(τ)dτ + |b|pUp
Φ(t) +E[|G(t)|p]

)
.

Fix T > 0 and set C1 := ‖E[|G(·)|p]‖L∞(0,T) to get

Mp(t) ≤ 4p−1
(
E[|Y0|p] + |b|pUp

Φ(t) + C1

)
+ C4p−1Tp−1|a|p

∫ t

0
(t− τ)p(β−1)Mp(τ)dτ, ∀t ∈ [0, T],

(37)

where we also used Assumption 1. Defining α = p(β− 1) + 1 ∈ (0, 1) and

f (t) = 4p−1(E[|Y0|p] + |b|pUp
Φ(t) + C1),

that is an increasing function, we can rewrite Equation (37) as

Mp(t) ≤ C4p−1Tp−1|a|p
∫ t

0
(t− τ)α−1Mp(τ)dτ + f (t).

By the generalized Grönwall inequality for the fractional integral (see [39] [Corollary 3])
we get

Mp(t) ≤ f (t)Eα(C4p−1Tp−1|a|pΓ(α)tα) ≤ f (T)Eα(C4p−1Tp−1+α|a|pΓ(α)).

T > 0 being arbitrary, we conclude the proof of the first statement of the Proposition.
Concerning claim (2), let us just observe that if β > 1

2 , then 2 < 1
1−β , thus, by claim (1),

we already know that Mq ∈ L∞
loc(R

+
0 ) for any p ∈ [1, 2]. Now let us consider p > 2. Then

let us recall that, Y(t) being a Gaussian random variable, it holds

Mp(t) = 2
p
2 M

p
2
2 (t)

Γ
(

p+1
2

)
√

π
1F1

(
− p

2
,

1
2

,−1
2

(
m2(t)
M2(t)

))
,

where 1F1(a, b, z) is Kummer’s function defined as

1F1(a, b, z) =
+∞

∑
n=0

a(n)zn

b(n)n!
, z ∈ C

and a(n), b(n) are rising factorials defined as

a(n) = a(a + 1)(a + 2) · · · (a + n− 1).

Let us consider the case in which p = 2n for some positive integer n ∈ N. Then
we have

M2n(t) = 2n Mn
2 (t)

Γ
(

2n+1
2

)
√

π
1F1

(
−n,

1
2

,−1
2

(
m2(t)
M2(t)

))
.
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In this particular case, xn
1F1

(
−n, 1

2 ,− 1
2

(
y2

x

))
is a polynomial in the real variables

x, y. Precisely, we have (see [50] [Formula 8.953])

xn
1F1

(
−n,

1
2

,−1
2

(
y2

x

))
= (−1)n n!

(2n)!
xnH2n

(
y√
x

)
,

where H2n is the Hermite polynomial of degree 2n. Let us recall that the Hermite polyno-
mials are defined as

Hn(x) = (−1)nex2 dn

dxn e−x2
, n ∈ N .

Thus, being M2n(t) a polynomial function of M2(t) and m(t), that are both in L∞
loc(J),

we conclude that M2n(·) ∈ L∞
loc(J). Finally, if p 6= 2n, then there exists n ∈ N such that

p < 2n and we conclude the proof by Hölder’s inequality.

5. Generalized Fractional Stochastic Gompertz Curves
5.1. Generalized Fractional Gompertz Curves

Let us first introduce the deterministic generalized fractional Gompertz curves. To
do this, let us recall that, in the classical setting, a Gompertz curve x(t) is defined as the
unique solution of the non-linear ordinary differential equation,

dx
dt

(t) = x(t)
(

a− b log
(

x(t)
x0

))
t > 0,

x(0) = x0,
(38)

where a, b, x0 > 0, that is to say

x(t) = x0 exp
( a

b
(1− e−bt)

)
, t ≥ 0.

Its rate function is defined as

y(t) = log
(

x(t)
x0

)
=

a
b
(1− e−bt)

and it is the unique solution of
dy
dt

(t) = a− by(t) t > 0,

y(0) = 0.

With this auxiliary function, we can recast Gompertz Equation (38) as the following
system of bilinear ordinary differential equations

dx
dt

(t) = x(t)(a− by(t)) t > 0,

dy
dt

(t) = a− by(t) t > 0,

x(0) = x0,
y(0) = 0.

(39)
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Let us highlight that y′(t) = ae−bt > 0 for any t > 0, thus we can recast again (39)
to achieve 

1
y′(t)

dx
dt

(t) = x(t) t > 0,

dy
dt

(t) = a− by(t) t > 0,

x(0) = x0,
y(0) = 0,

(40)

that is, we have distinguished the two main components of a Gompertz curve by two linear equa-
tions:

• The rate function y(t) satisfies a non-homogeneous linear differential equation with
initial condition y(0) = 0;

• The Gompertz curve itself x(t) satisfies a linear equation with respect to the operator
1

y′(t)
d
dt ; precisely, it is an eigenfunction with eigenvalue 1 of such operator.

Now that we have two linear equations in system (40), one can apply a fractional-
ization procedure on each of these equations. In [24] the authors use a Caputo fractional
derivative in place of the standard one in the equation of the rate function, obtaining
the system, 

1
y′(t)

dx
dt

(t) = x(t) t > 0,

dαy
dtα

(t) = a− by(t) t > 0,

x(0) = x0,
y(0) = 0,

(41)

where α ∈ (0, 1). In this case, the rate function and the curve are given by

y(t) =
a
b
(1− Eα(−btα)) x(t) = x0 exp

( a
b
(1− Eα(−btα))

)
.

On the other hand, in [25] the authors propose a Gompertz model in which the
fractionalization procedure is applied to the curve equation, obtaining

(
1

y′(t)
d
dt

)α

x(t) = x(t) t > 0,

dy
dt

(t) = a− by(t) t > 0,

x(0) = x0,
y(0) = 0,

(42)

where α ∈ (0, 1). In this case the rate function and the curve are given by

y(t) =
a
b
(1− e−bt) x(t) = x0Eα

(
aα

bα
(1− e−bt)α

)
.

Let us recall that the function

e±α (t; 1) =

{
Eα(tα) t ≥ 0
Eα(−(−t)α) t < 0,
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is strictly increasing by Corollary 1 (since it coincides with e±Φ(t; 1) as Φ(λ) = λα, see [40])
and then we can define the function logα as the inverse of e±α . Thus, the relation that links
the rate function with the curve is given by

y(t) = logα

(
x(t)
x0

)
,

coherently with the chain rule formula given in Proposition 1.
In [29], both approaches are used, obtaining the system

(
1

y′(t)
d
dt

)α1

x(t) = x(t) t > 0,

dα2 y
dtα2

(t) = a− by(t) t > 0,

x(0) = x0,
y(0) = 0,

(43)

where (α1, α2) ∈ (0, 1]2, and then the rate function and the curve are given by

y(t) =
a
b
(1− Eα2(−btα2)) x(t) = x0Eα1

(
aα1

bα1
(1− Eα2(−btα2))α1

)
.

Let us emphasize that if α1 = 1 we obtain (41) and if α2 = 1 we obtain (42). Here we
want to extend this approach to the case of any complete Bernstein function.

Definition 12. For a function Φ ∈ CBF ? we define logΦ as the inverse function of e±Φ(·; 1), that
exists by Corollary 1, if Φ 6= ι and logΦ = log if Φ = ι.

Let us consider (Φ1, Φ2) ∈ CBF 2
? := CBF ?×CBF ?. We define the generalized

fractional Gompertz system of generalized fractional orders (Φ1, Φ2) as the following
system of equations 

(
1

y′(t)
d
dt

)Φ1

x(t) = x(t) t > 0,

dΦ2 y
dtΦ2

(t) = a− by(t) t > 0,

x(0) = x0,
y(0) = 0.

(44)

We obtain an explicit expression of both the rate function and the curve by using
Propositions 2 and 4 respectively,

y(t) =
a
b
(1− eΦ2(t;−b)) x(t) = x0 eΦ1

( a
b
(1− eΦ2(t;−b)); 1

)
and we also have the relation

y(t) = logΦ1

(
x(t)
x0

)
.

In particular, if we choose Φi(λ) = λαi , with αi ∈ (0, 1], i = 1, 2, we obtain again
Equation (43).

5.2. Generalized Fractional Stochastic Gompertz Curves

Now that we have defined a generalization of the (deterministic) fractional Gompertz
curves introduced in [24,25,29], we want to construct the respective stochastic versions.
Here, we will follow a slightly different route compared to [29].
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Indeed, let us first give a generalization of the class of lognormal processes, by using
the functions logΦ defined before.

Definition 13. Let {X(t), t ≥ 0} be a stochastic process with X(t) > 0 almost surely for any
t ≥ 0 and let Φ ∈ CBF ?. We say that X is a logΦ-normal process if the process Y(t) = logΦ

(
X(t)
X(0)

)
is a Gaussian process.

Remark 19. If Φ = ι, the definition coincides with that of the lognormal process.

Now we are ready to define the stochastic version of the generalized fractional Gom-
pertz curve.

Definition 14. Let (Φ1, Φ2) ∈ CBF 2
? and G ∈ G(R+

0 ), with G(0) = 0 a.s., E[G(t)] ≡ 0 and
E[G2(t)] ∈ C0(J). Consider Y(t) the unique solution of

Y(t) = IΦ2(a− bY)(t) + G(t), t ≥ 0 (45)

and fix x0 > 0. We call generalized fractional stochastic Gompertz curve, with generalized fractional
orders (Φ1, Φ2) and noise process G, the process

X(t) = x0 e
±
Φ1
(Y(t); 1) (46)

and we call Y(t) its rate process.

Remark 20. It is easy to see that, by definition, X(t) is a logΦ1
-normal process.

Let us first show how such process generalizes the stochastic Gompertz process.
Usually, a stochastic Gompertz process is defined via the non-linear stochastic differen-
tial equation {

dX(t) =
(

a− b log
(

X(t)
k

))
X(t)dt +

√
2aX(t)dW(t) t > 0,

X(0) = x0,

where W(t) is a standard Brownian motion and k = x0ea/b is called carrying capac-
ity. It can be shown by a direct application of Itô’s formula (see [11]) that the process
Y(t) = log

(
X(t)

x0

)
is an Ornstein-Uhlenbeck process, solution of the stochastic differen-

tial equation {
dY(t) = (a− bY(t))dt +

√
2adW(t) t > 0,

Y(0) = 0.
(47)

Thus we can equivalently define a stochastic Gompertz process as the process
X(t) = x0eY(t), where Y(t) is the unique solution of

Y(t) =
∫ t

0
(a− bY(s))ds +

√
2aW(t),

that is the integral formulation of (47). With this equivalent definition, we can recog-
nize the (classical) stochastic Gompertz curve as a particular case of Definition 14, with
Φ1 = Φ2 = ι and G =

√
2aW. Moreover, by choosing Φ1 = ι and Φ2(λ) = λα2 , for some

α2 ∈ (0, 1], in Definition 14, we obtain the fractional stochastic Gompertz curve defined
in [29] [Section 5.2]. On the other hand, the curves defined in [29] [Sections 5.3 and 5.4] are
Gaussian processes and then they cannot be constructed by means of Definition 14.

A first simple but crucial property of the generalized fractional stochastic Gompertz
curve is shown in the following Proposition.
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Proposition 9. Let X(t) be a generalized fractional stochastic Gompertz curve. Then X(t) ≥ 0
for any t > 0 almost surely.

Proof. It easily follows from the definition of logΦ1
-normal process and the fact that

e±Φ(x; 1) ≥ 0 for any x ∈ R.

With this idea in mind, we think that the newly proposed stochastic Gompertz curves
are better suitable for describing population dynamics than the one proposed in [29]
[Sections 5.3 and 5.4].

As in the classical case, to highlight the link between the generalized fractional stochas-
tic Gompertz curves and the deterministic ones, we have to determine the median of such
stochastic growth curves. Here, the medianM of an absolutely continuous real-valued
random variable Z is defined as

M = min
x∈R

{
P(Z ≤ x) ≥ 1

2

}
,

which is well defined since x ∈ R 7→ P(Z ≤ x) is continuous. In particular, if the equation

P(Z ≤M) =
1
2

admits a unique solution, then such solutionM is the median. In the case Z ∼ N (µ, σ2),
the medianM coincides with µ. We can use these properties to exploit the median function
of a logΦ-normal process.

Lemma 3. Let Φ ∈ CBF ? and X(t) be a logΦ-normal process with X(0) = x0 > 0 almost surely
and Y(t) = logΦ

(
X(t)

x0

)
. LetM(t) be the median of X(t) for t > 0, withM(0) = x0, and let

m(t) = E[Y(t)]. Then
M(t) = x0 eΦ(m(t); 1), t ≥ 0. (48)

Proof. First of all, let us observe that, by definition, logΦ(1) = 0. Hence, since X(t) = x0
a.s., we have that Y(0) = 0 a.s. and m(0) = 0. Thus

x0 e
±
Φ(m(0); 1) = x0 e

±
Φ(0; 1) = x0 =M(0).

Now let us consider t > 0. Since Y(t) is a Gaussian random variable, its median
coincides with m(t) and then

P(Y(t) ≤ m(t)) =
1
2

.

By definition, it holds X(t) = x0 e
±
Φ(Y(t); 1) where e±Φ(·; 1) is strictly increasing by

Corollary 1. In particular, Y(t) ≤ m(t) if and only if x0 e
±
Φ(Y(t); 1) ≤ x0 e

±
Φ(m(t); 1)

and then

P(X(t) ≤ x0 e
±
Φ(m(t); 1)) = P(x0 e

±
Φ(Y(t); 1) ≤ x0 e

±
Φ(m(t); 1))

= P(Y(t) ≤ m(t)) =
1
2

.

Now let us consider any other positive value x 6= x0 e
±
Φ(m(t); 1) and let y = logΦ

(
x
x0

)
.

Then, by definition of logΦ, we have that X(t) ≤ x if and only if Y(t) ≤ y. Moreover, being
logΦ the inverse of e±Φ(·; 1), we have that y 6= m(t), otherwise x = x0 e

±
Φ(m(t); 1). If we

suppose that P(X(t) ≤ x) = 1/2, then we have

1
2
= P(X(t) ≤ x) = P(Y(t) ≤ y),



Mathematics 2021, 9, 2140 29 of 32

implying y = m(t), that is a contradiction. Hence (48) holds.

Now we can show the link between the stochastic growth curves given in Definition 14
and the deterministic ones defined in the previous Subsection.

Theorem 5. Let X(t) be a generalized fractional stochastic Gompertz curve with generalized
fractional orders (Φ1, Φ2) ∈ CBF 2

?, noise process G ∈ G(R+
0 ) and starting point x0 > 0 and

denote by Y(t) its rate process. LetM(t) be the median of X(t) withM(0) = x0 and m(t) =
E[Y(t)]. ThenM(t) is a generalized fractional Gompertz curve of generalized fractional orders
(Φ1, Φ2) with rate function m(t), that is, (M(t), m(t)) is the unique solution of Equation (44).

Proof. Let us first recall that E[G(t)] ≡ 0 and E[G2(t)] ∈ C0(J) by Definition 14. Hence,
by Corollary 3, we know that m(t) is the unique solution of

dΦ2

dtΦ2
m(t) = a− bm(t) t > 0,

m(0) = 0,

that is to say

m(t) =
a
b
(1− eΦ2(t;−b)) ≥ 0.

Now let us stress out that, being Φ2 ∈ CBF ?, the function t 7→ eΦ2(t;−b) is completely
monotone (as shown in [36] [Theorem 2.1]) thus, in particular, m(t) is strictly increasing
and differentiable for all t > 0, with m′(t) > 0.

By Proposition 3 it holds

M(t) = x0 eΦ1(m(t); 1), t ≥ 0

and then, by Proposition 4, we know thatM(t) is the unique solution of
(

1
m′(t)

d
dt

)Φ2

M(t) =M(t) t > 0,

M(0) = x0,

concluding the proof.

6. Conclusions

In this paper, we used the theory of complete Bernstein functions and the tools
from generalized fractional calculus to extend the fractional Gompertz curves introduced
in [24,25,29]. Precisely, the classical Gompertz equation is decomposed in the rate equation
and the curve equation and then a fractionalization (or, in this case, nonlocalization)
procedure is applied to both, obtaining the generalized fractional Gompertz curves. For
their stochastic counterparts, we first studied in Section 4 a linear integral equation that
plays the role of the equation of the rate process and then, in Section 5, we introduced a
generalization of lognormal processes to obtain the desired generalized fractional stochastic
Gompertz curves.

A further extension to other growth curves with different rate functions could rely
on nonlinear generalized fractional differential equations. While, on one hand, a theory of
nonlinear generalized fractional differential equations is currently being developed (see,
for instance [38]), to obtain stochastic growth curves of such type one could need some
sort of nonlinear generalized fractional stochastic differential equations. In future works
we will focus on generalizations of the Lévy–Liouville fractional Brownian motion (which
is different from the well-known Mandelbrot-Van Ness fractional Brownian motion) to
consider stochastic differential equations of the aforementioned type (see, for instance [23]
for the fractional case). Let us also underline that the approach adopted in Section 4 can
be easily extended not only to the multivariate setting, but also to stochastic processes
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defined on Banach spaces, the latter by using cylindrical noise processes, such as the
cylindrical (possibly fractional) Brownian motion (see, for instance [51]). One can also
define multivariate logΦ-normal distributions by a simple vectorization argument. However,
once one moves from the one-dimensional to the n-dimensional setting, the discussion
on the median cannot be reproduced as it is, but, instead, one should consider quantile
contours (see, for instance [52]).

The models presented in this paper represent a natural step forward from [24,25].
Indeed, while in [24,25] the authors consider only Riesz kernels, here we propose a wide
family of memory kernels (of which Riesz kernels are particular cases) that can be used.
Moreover, analogously as done in [29] for the deterministic models, here one can consider
two different memory kernels acting on the rate function and/or on the curve itself.
Concerning the introduction of the noise, let us observe that stochastic models are shown
to be useful, for instance, to study random fluctuations in mathematical oncology models
(see, e.g., [8–10]). In [24] a fractional-order model has been used to describe tumour growth.
Both the models presented in [29] and this paper provides some methods to introduce the
noise in such fractional-order growth curves. There are three main differences between the
present paper and [29]:

• In [29] we considered only couples of Riesz kernels, while here we can consider any
couple of suitable memory kernels;

• Independently of the fact that memory effects are introduced in the rate function
and/or in the curve, the generalized fractional stochastic Gompertz curve presented
here is non-negative (as shown in Proposition 9), while this is not true in [29] in the
case in which the curve function is defined itself via a fractional differential equation;

• In [29], when the curve is defined via a fractional differential equation, the determinis-
tic model is re-obtained by considering the mean of the stochastic curve. Here, in any
case, the deterministic model is provided by the median of the stochastic curve, as in
the classic case.

For these reasons, we think that the generalized fractional stochastic Gompertz curves
defined in this paper are more realistic and more general models to describe Gompertz-
type growth phenomena with memory and noise, thus they represent a step forward
with respect to [29]. However, restricting the view to a specific (parametrized) family of
Bernstein functions permits a better calibration of the used model. Hence, before using the
models we discussed here, it is advisable to consider an ansatz on the couple of Bernstein
functions to consider.

In both deterministic and stochastic models, the tools to obtain such generalizations
are provided by fractional and generalized fractional calculus, with particular attention to
inversion formulae given in [36] and Grönwall-type inequalities (see [38,39]).

Finally, let us remark that the aim of the paper is to present a family of models that
can be used for population growth phenomena with memory and/or noise. As evidenced
by the cited literature, these kinds of phenomena naturally arise in physics, engineering,
biology and social sciences and then more general models are useful tools for improving
the knowledge about them.
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