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Abstract: Inferring the latent structure of complex nonlinear dynamical systems in a data driven
setting is a challenging mathematical problem with an ever increasing spectrum of applications in
sciences and engineering. Koopman operator-based linearization provides a powerful framework that
is suitable for identification of nonlinear systems in various scenarios. A recently proposed method
by Mauroy and Goncalves is based on lifting the data snapshots into a suitable finite dimensional
function space and identification of the infinitesimal generator of the Koopman semigroup. This
elegant and mathematically appealing approach has good analytical (convergence) properties, but
numerical experiments show that software implementation of the method has certain limitations.
More precisely, with the increased dimension that guarantees theoretically better approximation and
ultimate convergence, the numerical implementation may become unstable and it may even break
down. The main sources of numerical difficulties are the computations of the matrix representation
of the compressed Koopman operator and its logarithm. This paper addresses the subtle numerical
details and proposes a new implementation algorithm that alleviates these problems.

Keywords: infinitesimal generator; Koopman operator; matrix logarithm; nonlinear system identifi-
cation; preconditioning; Rayleigh quotient

1. Introduction

Suppose that we have an autonomous dynamical system

ẋ(t) = F(x(t)) ≡

 F1(x(t))
...

Fn(x(t))

, x(t) ∈ Rn, (1)

that is accessible only through snapshots from a sequence of trajectories with different
(possibly unknown) initial conditions. More precisely,

(xk, yk) ∈ Rn ×Rn, k = 1, . . . , K, where yk = ϕt(xk) (2)

is the flow associated with (1). In a real application, t is a fixed time step, and it is possible
that the time resolution precludes any approach based on estimating the derivatives; the
dataset could also be scarce, sparsely collected from several trajectories/short bursts of the
dynamics under study. The task is to identify F and express it analytically, using a suitably
chosen class of functions. This is the essence of data-driven system identification, which is a
powerful modeling technique in applied sciences and engineering—for a review see e.g., [1].
Approaches like that of SINDy [2] rely on numerical differentiation, which is a formidable
task in cases of scarce and/or noisy data, and it requires special techniques such as e.g.,
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total-variation regularization [3] or e.g., weak formulation [4]. With an appropriate ansatz
(e.g., physics-informed) on the structure of the right hand side in (1), the identification
process is computationally executed as sparse regression, see e.g., [2,5,6]. An alternative
approach is machine learning techniques such as physics-informed neural networks, which
proved a powerful tool for learning nonlinear partial differential equations [7].

Recently, Mauroy and Goncalves [8] proposed an elegant method for learning F from
the data, based on the semigroup Ut f = f ◦ ϕt of Koopman operators acting on a space
of suitably chosen scalar observables f ∈ F . In the case of the main method proposed
in [8], F is the space L2(X), where X ⊂ Rn is compact, forward invariant, and big enough
to contain all data snapshots. The method has two main steps. First, a compression of Ut

onto a suitable finite dimensional but rich enough subspace FN of F is computed. On a
convenient basis B = {℘1, . . . ,℘N} of FN , having only a limited number of snapshots (2),
this compression is executed in the algebraic (discrete) least squares framework, yielding
the matrix representation UN ∈ RN×N of Ut.

It can be shown that UN is an approximation of the matrix exponential UN ≈ eLN t,
or equivalently LN ≈ (1/t) log UN , where LN is a finite dimensional compression of the
infinitesimal generator L defined by

L f = lim
t→0+

Ut f − f
t

, f ∈ D(L). (3)

Note that the infinitesimal generator is well-defined (on its domain D(L) ⊂ L2(X)) since
the Koopman semigroup of operators is strongly continuous in L2(X) (i.e., limt→0+ ‖Ut f −
f ‖ = 0, where ‖ · ‖ denotes the L2 norm on X). We refer to [9] for more details on
semigroups of operators and their properties, and to [10] for the theory and applications of
the Koopman operator.

In the second step, the vector field is recovered by using the fact that L can also be
expressed as (see e.g., [11])

L f = F · ∇ f =
n

∑
i=1

Fi
∂ f
∂xi

, f ∈ D(L). (4)

If Fi = ∑k φki℘k, then the action of L to the basis’s vectors ℘k can be computed, us-
ing (4), by straightforward calculus, and its matrix representation will, by comparison with
(1/t) log UN , reveal the coefficients φki. Of course, in real applications, the quality of the
computed approximations will heavily depend on the information content in the supplied
data snapshots. Finer sampling (smaller time resolution) and more trajectories with differ-
ent initial data are certainly desirable. If N > K, then a modification, called a dual method,
is based on the logarithm of a K× K matrix UK. Mauroy and Goncalves [8] proved the con-
vergence (with probability one as t→ 0, N → ∞, K → ∞) and illustrated the performances
of the method (including the dual formulation) on a series of numerical examples.

In this paper, we consider numerical aspects of the method and study its potential
as a robust software tool. Our main thesis is that a seemingly simple implementation
based on the off-the-shelf software components has certain limitations. For instance, with
the increased dimension that guarantees theoretically better approximation and ultimate
convergence, the numerical implementation, due to severe ill-conditioning, may become
unstable and eventually it may break down. In other words, it can happen that with
more data the potentially better approximation does not materialize in the computation.
This is an undesirable chasm between analytical properties and numerical finite precision
realization of the method. Hence, more numerical analysis work is needed before the
method becomes mature enough to be implemented as a robust and reliable software tool.

Contributions and Organisation of the Paper

We identify, analyze and resolve the two main sources of numerical instability of the
original method [8]. First, for a given time lag t, numerical computation of the matrix rep-
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resentation UN of a compression of the Koopman operator Ut on a (finite) N-dimensional
subspace may not be computed accurately enough. Secondly, even if computed accurately,
the matrix UN may be so ill-conditioned as to preclude stable computation of the loga-
rithm. Both issues are analyzed in detail, and we propose a new numerical algorithm that
implements the method.

This material can be considered a numerical supplement to [8], and as an instructive
case study for numerical software development. Moreover, the techniques developed
here are used in the computational part of the recently developed framework [12]. The
infinitesimal generator approach has also been successfully used for learning stochastic
models from aggregated trajectory data [13,14], as well as for inverse modelling of Markov
jump processes [15]. The stochastic framework is not considered in this paper, but its
results apply to systems defined by stochastic differential equations as described in [8].
The stochastic setting contains many challenging problems and requires sophisticated
tools, based e.g., on the Kolmogorov backward equation [8], the forward and adjoint
Fokker–Planck equations [16–18], or the Koopman operator fitting [19].

The rest of paper is organized as follows. In Section 2 we set the stage and setup a
numerical linear algebra framework for the analysis of subtle details related to numerical
implementation of the method. This is standard, well known material and it is included
for the reader’s convenience and to introduce necessary notation. In particular, we give
detailed description of a finite dimensional compression (in a discrete least squares sense)
of the Koopman operator (Section 2.1), and we review the basic properties of the matrix
logarithm (Section 2.3). Then, in Section 3, we review the details of the Mauroy–Goncalves
method, including a particular choice of the monomial basis B and in Section 3.2 the details
on the corresponding matrix representation of the generator (4). A case study example that
illustrates the problem of numerical ill-conditioning is provided in Section 4. In Section 5,
we propose a preconditioning step that allows for a more accurate computation of the
logarithm log UN in the case K ≥ N. In Section 6 we consider the dual method for the case
N > K, and formulate it as a compression of U onto a particular K dimensional subspace of
FN . This formulation is then generalized in Section 7, where we introduce a new algorithm
that (out of a given N) selects a prescribed number of (at most K) basis functions that are
most linearly independent, as seen on the discrete set of data snapshots. The proposed
algorithm, designated as basis pruning, can be used in both the dual and the main method,
and it can be combined with the preconditioning introduced in Section 5.

2. Preliminaries: Finite Dimensional Compression of U and Its Logarithm

To set up the stage, in Section 2.1 we first describe matrix representation UN of the
Koopman operator compressed to a finite dimensional subspace FN ⊂ F . Some details of
the numerical computation of UN are discussed in Section 2.2. In Section 2.3, we briefly
review the matrix logarithm from the numerical linear algebra perspective.

2.1. Compression of Ut and the Anatomy of Its Matrix Representation

Given Ut : F −→ F and an N-dimensional subspace FN ⊂ F , we want to compress
Ut to FN and to work with a finite dimensional approximation ΦNUt

|FN
: FN −→ FN ,

where ΦN : F −→ FN is an appropriate projection. The subspace FN contains functions
that are simple for computation, but it is rich enough to provide good approximations for
the functions in F ; it will be materialized through an ordered basis B = {℘1, . . . ,℘N}. If
an f ∈ FN is expressed as f = ∑N

i=1 fi℘i, then the coordinates of f in the basis B are written
as [ f ]B =

(
f1, . . . , fN

)T . The ambient space F is equipped with the Hilbert space structure.



Mathematics 2021, 9, 2075 4 of 29

2.1.1. Discrete Least Squares Projection ΦN : F −→ FN

Since in a data-driven setting the function is known only at the points xk, an operator
compression will be defined using discrete least squares projection. For g ∈ F , the
projection ΦN g = ∑N

i=1 ĝi℘i ∈ FN of g is defined so that the ĝi’s solve the problem

1
K

K

∑
k=1

ω2
k‖(ΦN g)(xk)− g(xk)‖2

2 =
1
K

K

∑
k=1

ω2
k‖

N

∑
i=1

ĝi℘i(xk)− g(xk)‖2
2 −→ min

ĝi
, (5)

where ωk ≥ 0 is a weight attached to each sample xk, and ‖ · ‖2 is the Euclidean norm. This
is a L2 residual with respect to the empirical measure δK defined as the sum of the Dirac
measures concentrated at the xk’s, δK = (1/K)∑K

k=1 δxk . The weighting will be important
in the case of noisy data; it can also be used in connection with a quadrature formula so
that (5) mimics a continuous norm (defined by an integral) approximation in F . In the
unweighted case ωk = 1 for all k. The objective function (5) can be written as∥∥∥∥∥∥∥W

1
2


℘1(x1) . . . ℘N(x1)

... . . .
...

℘1(xK) . . . ℘N(xK)


 ĝ1

...
ĝN

−
g(x1)

...
g(xK)



∥∥∥∥∥∥∥

2

2

≡ ‖W
1
2 [OX(ĝi)

N
i=1 − (g(xk))

K
k=1]‖

2
2,

where W = diag(ω2
k)

K
k=1, (OX)ij = ℘j(xi). More generally, W can be a suitable positive def-

inite (e.g., inverse of the noise covariance) matrix. In a numerical computation the positive
definite square root W1/2 is replaced, equivalently, with the Cholesky factor: if W = LLT is
the Cholesky factorization with the unique lower triangular factor L, then Φ = H1/2L−T

must be orthogonal and when we replace W1/2 with ΦLT , we can omit Φ because the norm
in the above objective function is invariant under orthogonal transformations.

At this point we assume that the K × N matrix OX is of full column rank N; this
requires K ≥ N. (The rank deficient case will be discussed later.) This full column rank
assumption yields the unique least squares solution ĝ1

...
ĝN

 = (OT
XWOX)

−1OT
XW

g(x1)
...

g(xK)

 = [ΦN g]B , (6)

which defines the projection ΦN . If g ∈ FN , then [ΦN g]B = [g]B . In the unweighted case,
W = IK, we have [ΦN g]B = O†

X(g(xi))
K
i=1.

2.1.2. Matrix Representation of ΦNUt
|FN

: FN −→ FN

To describe the action of Ut in FN , we first consider how it changes the basis vectors:
Ut℘i can be split as a sum of a component belonging to FN , and a residual,

(Ut℘i)(x) = ℘i(ϕt(x)) =
N

∑
j=1

uji℘j(x) + ρi(x).

Given the limited information (only the snapshot pairs (xk, yk)), the coefficients uji are
determined so that the residual ρi is small over the data xk. Since ϕt(xk) = yk, we have

ρi(xk) = ℘i(yk)−
N

∑
j=1

uji℘j(xk), k = 1, . . . , K,

and we can select the uji’s to minimize
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K

∑
k=1

ω2
k‖

N

∑
j=1

uji℘j(xk)−℘i(yk)‖2
2=

∥∥∥∥∥∥∥W
1
2


℘1(x1) . . . ℘N(x1)

... . . .
...

℘1(xK) . . . ℘N(xK)


u1i

...
uNi

−
℘i(y1)

...
℘i(yK)



∥∥∥∥∥∥∥

2

2

. (7)

The solution is the projection (see e.g., ([20], §2.1.3, §2.7.4))u1i
...

uNi

=(OT
XWOX)

−1OT
XW

℘i(y1)
...

℘i(yK)

≡(OT
XWOX)

−1OT
XW

(Ut℘i)(x1)
...

(Ut℘i)(xK)

=[ΦNUt℘i]B .

Then, for any f = ∑N
i=1 fi℘i ∈ FN , we have

g(x) = Ut f (x) =
N

∑
i=1

fi

[
N

∑
j=1

uji℘j(x) + ρi(x)

]
=

N

∑
j=1

℘j(x)
N

∑
i=1

ujifi +
N

∑
i=1

fiρi(x)

=
N

∑
j=1

℘j(x)gj +
N

∑
i=1

fiρi(x), where gj =
N

∑
i=1

ujifi, i.e.,

( g1
...
gN

)
= UN

( f1
...
fN

)
.

Hence, ΦNUt
|FN

: FN −→ FN is on the basis B represented by the matrix

[ΦNUt
|FN

]B = O†
XOY ≡ UN , (8)

ΦNUt
|FN

(
℘1(x) . . . ℘N(x)

) f1
...
fN

 =
(
℘1(x) . . . ℘N(x)

)
(UN

 f1
...
fN

), (9)

where we use W = IK for the sake of technical simplicity, and O†
X is the Moore–Penrose

generalized inverse. If W 6= IK, then [ΦNUt
|FN

]B = (OT
XWOX)

−1OT
XWOY ≡ UN .

2.1.3. When Is UN Nonsingular?

If both OX and OY are of full column rank N, then the rank of UN depends on the
canonical angles between the ranges of OX and OY. Indeed, if OX = QXRX, OY = QYRY
are the thin QR factorizations, then UN = R−1

X QT
XQYRY, where the singular values of

QT
XQY can be written in terms of the canonical angles 0 ≤ θ1 ≤ · · · ≤ θN ≤ π/2 as

cos θ1 ≥ · · · ≥ cos θN . Hence, in the case of full column rank of OX and OY, nonsingularity
of UN is equivalent to cos θN > 0. To visualize this condition, UN will be nonsigular if none
of the ranges of OX and OY contain a direction that is orthogonal to the other one. If the
basis function and the flow map are well behaved and the sampling time is reasonable, it is
reasonable to expect θN < π/2.

2.1.4. Relations with the DMD

In the DMD framework, ℘1, . . . ,℘N are the scalar components of a N × 1 vector
valued observable evaluated at the sequence of snapshots x1, . . . , xK, and it is customary to
arrange them in a N × K matrix, i.e., OT

X . Similarly, the values of the observables at the yk’s
are in the matrix OT

Y . The Exact DMD matrix is then A = OT
Y(O

T
X)

† = UT
N . For more details

on this connection we refer to [21,22].

2.2. On the Numerical Solution of ‖OXUN −OY‖F → min

In general, the least squares projection OXUN = OXO†
XOY is uniquely determined, but,

unless OX is of full column rank N, the solution UN of the problem ‖OXUN −OY‖F → min
is not unique—each of its columns is from a linear manifold determined by the null-space
of OX and we can vary them independently by adding to them arbitrary vectors from
the null space of OX. Furthermore, even when OX is of rank N but ill-conditioned, a
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typical numerical least squares solver will detect the ill-conditioning by revealing that
the matrix is close to singular matrices and it will treat it as numerically rank deficient.
Then, the computed solution UN becomes non-unique, the concrete result depends on the
least squares solution algorithm, and it may be rank deficient. This calls for caution when
computing UN and log UN numerically.

We discuss this in Section 2.2.1, and illustrate the problems in practice using a case
study example in Section 4.

2.2.1. Least Squares Solution in Case of Numerical Rank Deficiency

If OX is not of full column rank N, then O†
XOY is one of infinitely many solutions to the

least squares problem for the matrix UN that is used to represent the operator compression.
Furthermore, since it is necessarily singular, its logarithm does not exist and identifying
a matrix approximation of the infinitesimal generator is not feasible. This is certainly the
case when K < N (recall that in this case a dual form of the method is used; see Section 6),
and in the case K ≥ N, considered here, the matrix OX can be numerically rank deficient
and the software solution will return a solution that depends on a particular algorithm for
solving the least squares problem.

Let OX = ΦΣΨT be the SVD of OX and let r be the rank of OX such that r < min(K, N).
Let Σr = diag(σi)

r
i=1, where σ1 ≥ · · · ≥ σr > 0 are the nonzero singular values. Partition

the singular vector matrices as Φ = (Φr, Φ0), Ψ = (Ψr, Ψ0), where Φr and Ψr have r
columns, so that OX = ΦrΣrΨT

r , O†
X = ΨrΣ−1

r ΦT
r . Recall that the columns of the N × (N −

r) matrix Ψ0 are an orthonormal basis for the null space of OX .
In the rank deficient case, the solution set for the least squares problem ‖OXUN −

OY‖F → minUN is a linear manifold—in this case of the form

N = {O†
XOY + Ψ0Ξ, Ξ ∈ R(N−r)×N}. (10)

Clearly OX(O†
XOY + Ψ0Ξ) = OXO†

XOY = ΦrΦT
r OY.

The particular choice UN = O†
XOY = ΨrΣ−1

r ΦT
r OY, as (8), is distinguished by being of

minimal Frobenius norm, because ‖O†
XOY + Ψ0Ξ‖2

F = ‖O†
XOY‖2

F + ‖Ξ‖2
F. The minimality

of the Euclidean norm is one criterion to pinpoint the unique solution and uniquely define
the pseudo-inverse. Such minimal norm solution, which is of rank at most r, may indeed
be desirable in some applications, but here it is useless if r < N, because we cannot proceed
with computing log UN .

It remains an interesting question whether in the rank deficient cases we can explore
the solution set (10) and with some additional constraints define a meaningful matrix
representation. In general, a matrix representation should as much as possible reproduce
the behaviour of the operator in that subspace. For example, if OX is of full column rank
N (i.e., we have sufficiently large K and well selected observables) and the first basis
function is constant, ℘1(x) ≡ 1, then the first columns of OX and OY are e = (1, . . . , 1)T

and simple argument implies that in (8) the first column of UN is the first canonical vector
e1 = (1, . . . , 0)T and

[ΦNUt
|FN

]B [℘1]B ≡ UNe1 = e1 = 1 · [℘1]B , (11)

which corresponds to Ut℘1 = 1 · ℘1. If r < N (so that OX has a nontrivial null space),
then we do not expect UNe1 = e1, but we can show that N contains a matrix ÛN such that
ÛNe1 = e1.

Proposition 1. If ℘1(x) ≡ 1, then we can choose an ÛN ∈ N such that ÛNe1 = e1.

Proof. To satisfy (O†
XOY + Ψ0Ξ)e1 = e1, Ξ must be such that Ψ0Ξe1 = e1 −UNe1. Note

that e1 −UNe1 is in the null-space of OX :

OX(e1 −O†
XOYe1) = OXe1 −OXO†

XOYe1 = e−OXO†
Xe = e− e = 0.
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Hence, Ξ(:, 1) = ΨT
0 (e1 −UNe1) = ΨT

0 e1, and Ξ(:, 2 : n) can be set e.g., to zero to obtain Ξ
of minimal Frobenius norm. Here also Ξ = ΨT

0 is an interesting choice, but we omit the
details because, in this paper, following [8], we treat the rank deficiency by a form of dual
method as described in Sections 6 and 7.

Remark 1. The global non-uniqueness in form of the additive term Ψ0Ξ is non-essential when
instead of UN we use its compression in a certain subspace. For instance, if r = K < N the
Rayleigh quotient of UN with respect to the range of OT

X remains unchanged, see Section 6.

In practice, the least squares solution using the SVD and the formula for the pseudo-
inverse are often replaced by a more efficient method based on the column pivoted (rank
revealing) QR factorization. For instance, the factorization [23] uses a greedy matrix volume
maximizing scheme to determine a permutation Π such that in the QR factorization

OXΠ = QR, Q ∈ RK×N , QTQ = IN , R ∈ RN×N upper triangular, (12)

the triangular factor R has a strong diagonal dominance of the form

|Rii| ≥

√√√√ j

∑
k=i
|Rkj|2, 1 ≤ i ≤ j ≤ N. (13)

If OX is of rank r < N, then R(1 : r, 1 : r) is nonsingular and R(r + 1 : N, r + 1 : N) = 0,
and the least squares solution of ‖OXz− b‖2 → minz is computed as

z = Π
(

R(1 : r, 1 : r)−1Q(1 : K, 1 : r)Tb
0N−r,1

)
.

In a nearly rank deficient (i.e., ill-conditioned) case, the index r is determined so that setting
R(r + 1 : N, r + 1 : N) to zero introduces error below a tolerance that is of order of machine
precision. This is the solution returned by the backslash operator in Matlab. Hence, in
the numerical rank deficient cases, the solution will have at least N − r zero components,
and it will be in general different from the solution obtained using the pseudo-inverse.
Here too, some additional constraints can be satisfied under some conditions, as shown in
the following:

Proposition 2. Let OXΠ = QR be the column pivoted QR factorization in the first step of
the backslash operator when solving the least squares problem ‖OXUN −OY‖F → min, where
r = rank(OX) < N and OX(:, 1) = OY(:, 1). If the first column of OX is selected among the
leading k pivotal columns in the permutation matrix Π, then UN(:, 1) = e1.

2.3. Computing the Logarithm log O†
XOY

The key element of the Mauroy–Goncalves method is that UN ≈ eLN t, where LN is a
matrix representation of a compression of the infinitesimal generator (3), that is computed
as LN = (1/t) log UN . Hence, to use the matrix LN as an ingredient of the identification
method, it is necessary that UN = O†

XOY is nonsingular; otherwise log UN does not exist.
Furthermore, to achieve the primary value of the logarithm (as a primary matrix function,
i.e., the same branch of the logarithm used in all Jordan blocks), the matrix must not have
any real negative eigenvalues. Only under those conditions we can obtain a real (assuming
real UN) logarithm as the primary function.

For the reader’s convenience, we summarize the key properties of the matrix logarithm
and refer to [24] for proofs and more details.

Theorem 1. Let A be real nonsingular matrix. Then A has real logarithm if and only if A has an
even number of Jordan blocks of each size for every negative eigenvalue.
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Theorem 2. Let A be real nonsingular matrix. Then A has a unique real logarithm if and only if
all eigenvalues of A are positive real and no eigenvalue has more than one Jordan block in the Jordan
normal form of A.

Theorem 3. Suppose that the n× n complex A has no eigenvalue on (−∞, 0]. Then a unique
logarithm of A can be defined with eigenvalues in the strip {z ∈ C : −π < =(z) < π}. It is
called the principal logarithm and denoted by log A. If A is real, then its principal logarithm is real
as well.

In an application, the matrix UN = O†
XOY may be difficult to compute accurately and it

may be so severely ill-conditioned that in the finite precision computations it could appear
numerically rank deficient (recall the discussion in Section 2.2). Thus, from the numerical
point of view, the most critical part of the method is computing UN and its logarithm. For
a detailed analysis of numerical methods for computing the matrix logarithm we refer the
reader to ([25], Chapter 11).

3. Identification Method

To introduce the new numerical implementation, we need more detailed description
of the method [8] and its concrete realization. In Section 3.1, we select the subspace FN
as the span of the monomials in n variables. The key idea of the method, to explore the
connection Ut = eLt in the framework of finite dimensional compressions of Ut and L,
is reviewed in detail in Section 3.2. This is a rather challenging step, both in terms of
theoretical justification of the approximation (including convergence when N, K → ∞,
t→ 0) and the numerical realization. As an interesting detail, we point out in Section 3.3.1
that a structure aware reconstruction/identification can be naturally formulated for e.g.,
the important class of quadratic systems. This generates an interesting structured least
squares problem.

3.1. The Choice of the Basis B—Monomials

For a concrete application, the choice of a suitable basis depends on the assumption
on the structure of F. The monomial basis is convenient if F is a polynomial field, or if it
can be well approximated by polynomials. We assume that

F(x) =


∑NF

k=1 φk1x
s(k)1
1 xs(k)2

2 · · · xs(k)n
n

...

∑NF
k=1 φknx

s(k)1
1 xs(k)2

2 · · · xs(k)n
n

 =

F1(x)
...

Fn(x)

, Fj(x) =
NF

∑
k=1

φkjx
s(k) , (14)

where xs(k) = x
s(k)1
1 xs(k)2

2 · · · xs(k)n
n are monomials written in multi-index notation and have a

total degree of at most mF. In that case, FN is chosen as the space of polynomials up to
some total degree m, m ≥ mF i.e., FN = span(B), where

B = {xs1
1 xs2

2 · · · x
sn
n : si ∈ N0, s1 + s2 + . . . + sn ≤ m}, N =

(
n + m

n

)
≥ NF. (15)

To facilitate automatic and relatively simple matrix representation of linear operators acting
on FN , we choose graded lexicographic ordering (grlex) of B, which is one of the standard
procedures in the multivariate polynomial framework. Grlex orders the basis so that it
first divides the monomials in groups with same total degree; the groups are listed with
increasing total degree and inside each group the monomials are ordered so that their
exponents s = (s1, . . . , sn) ∈ Nn

0 are lexicographically ordered. For example, if n = 3,
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m = 2, we have the order as follows (read the tables in (16) column-wise; each column
corresponds to the monomials of the same total degree, ordered lexicographically):

1(000) x3(001) x2
3(002)

x2(010) x2x3(011)
x1(100) x2

2(020)
x1x3(101)
x1x2(110)

x2
1(200)

 (s1, . . . , sn) � k



1 2 5
3 6
4 7

8
9

10

. (16)

If we want to emphasize that s = (s1, . . . , sn) is at the kth position in this ordering, we write

s(k) = (s(k)1 , . . . , s(k)n ), and the corresponding monomial is written as xs(k) ≡ x
s(k)1
1 xs(k)2

2 · · · xs(k)n
n .

An advantage of grlex in our setting is that it allows simple extraction of the operator
compression to a subspace spanned by monomials of lower total degree.

It should be noted that the dimension N grows extremely fast with increased n and m,
which is the source of many computational difficulties, in particular when combined with
the requirement K ≥ N which is a necessary condition for the non-singularity of UN . (This
difficulty is alleviated by the dual method.)

Even though polynomial basis is not always the best choice, it serves well for the pur-
poses of this paper because, with increased total degree, it generates highly ill-conditioned
numerical examples that are good stress test cases for development, testing and analysis of
numerical implementation.

3.2. Compression of L in the Monomial Basis

Consider now the action of L to the vectors of the monomial basis B. It is a straight-
forward and technically tedious task to identify the columns of the corresponding matrix
[LN ]B , whose approximation can also be computed as 1

t log UN . Since we are interested
only in the coefficients φkj in (14), it is enough to compute only some selected columns
of [LN ]B .

Let ` be the index of xj in the grlex ordering, i.e., ℘`(x) = xj; ` = n + 2− j (see the
scheme (16)). Then the application of (4) to ℘` reads

(L℘`)(x) = (F · ∇℘`)(x) =
n

∑
i=1

Fi(x)
∂

∂xi
℘`(x) = Fj(x) ≡ Fn+2−`(x), i.e., L℘` = Fn+2−`.

If LN = ΦNL|FN
, then also LN℘` = Fj (because of the assumption (14) Fj ∈ FN). Hence, in

the basis B we have

[LN ]B(:, `) = [ΦNL℘`]B = [Fj]B =


φ1j
φ2j

...
φNF j

0N−NF

, where j = n + 2− `, ` = 2, . . . , n + 1. (17)

In other words, the coordinates of Fj are encoded in [LN ]B(:, n + 2− j). Finally the entries
of [LN ]B can be obtained with the compression UN computed from data. Indeed, it is
shown in [8] that

lim
t→0+

‖ΦNL f − (1/t) log ΦNUt f ‖ = 0, f ∈ FN .

Hence, provided that B contains independent basis functions, we have

[LN ]B = lim
t→0+

1
t
[log ΦNUt

|FN
]B = lim

t→0+

1
t

log[ΦNUt
|FN

]B ,
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and it follows that, for t small enough,

[LN ]B ≈
1
t

log UN ≡
1
t

log O†
XOY. (18)

For each Fj, its coefficients in the expansion (14) are simply read off from the corresponding
column of [LN ]B . Alternatively, we can identify additional columns and determine the
coefficients by solving a least squares problem. For more details we refer to [8].

3.3. Imposing the Structure in the Reconstruction of F

Using (17), the values of Fj at the xk’s can be approximated using the values


F̃j(x1)

...

F̃j(xK)

=

 ℘1(x1) ... ℘N(x1)

... ...
...

℘1(xK) ... ℘N(xK)




φ1j
φ2j

...
φNF j

0N−NF

= OX · [LN ]B(:, n + 2− j), j = 1, . . . , n. (19)

These can be used for expressing Fj using another suitable dictionary of functions qij
(e.g., rational) by decoupled least squares fitting for the functions Fj: with an ansatz

Fj = ∑
NFj
i=1 ϕijqij, the coefficients ϕij are determined to minimize∥∥∥∥∥∥∥∥

 F̃j(x1)

...
F̃j(xK)

−


q1j(x1) q2j(x1) . . . qNFj
j(x1)

...
... . . .

...
q1j(xK) q2j(xK) . . . qNFj

j(xK)




ϕ1j
...

ϕNFj
j


∥∥∥∥∥∥∥∥, (20)

where ‖ · ‖ is an appropriate (possibly weighted) norm.

Remark 2. Note that (20) is slightly more general than in [8]—we can use separate dictionaries for
each coordinate function Fj, which allows fitting variables of different (physical, thus mathematical)
nature separately, with most appropriate classes of basis functions.

In [8], it is recommended to solve the regression problem (20) with a sparsity promot-
ing method, thus revealing the underlying structure. In many cases, the sparsity is known
to be specially structured, and we can exploit that information. We illustrate our proposed
approach using the quadratic systems.

3.3.1. Quadratic Systems

Suppose we know that the system under study is quadratic, i.e., F(x) = Ax +G(x⊗ x).
Quadratic systems are important class of dynamical systems, with many applications and
interesting theoretical properties, see e.g., [26].

With the approximate field values F̃(x1), . . . , F̃(xK), we can seek A ∈ Rn×n and G ∈
Rn×n2

to achieve(
F̃(x1) . . . F̃(xK)

)
≈ A

(
x1 . . . xK

)
+ G

(
x1 ⊗ x1 . . . xK ⊗ xK

)
. (21)

If we set F̃ =
(

F̃(x1) . . . F̃(xK)
)

, X =
(
x1 . . . xK

)
, then the identification of the

coefficient matrices A and G reduces to solve the matrix least squares problem∥∥∥∥(XT (X� X)T)(AT

GT

)
− F̃T

∥∥∥∥
F
−→ min

A,G
, (22)
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where X � X =
(
x1 ⊗ x1 . . . xK ⊗ xK

)
∈ Rn2×K is the Khatri–Rao product. Here too,

one can add a sparsity promoting regularization, with the implicitly defined underlying
quadratic structure.

4. Numerical Implementation—A Case Study Analysis

When it comes to turning a numerical algorithm into software, it is often straightfor-
ward to write a few lines in Matlab, Python, Octave or some other software package and
have a running implementation of a sophisticated procedure obtained by composition of
building blocks (subroutines). However, one should keep in mind that the final numerical
computation is in finite precision (machine) arithmetic, and that in some cases development
of robust numerical software requires a more careful approach. In this section, we use a
case study example that reveals difficulties from the numerical software point of view, and
that motivates modifications to alleviate them.

4.1. An Example: Lorenz System

A good way to test robustness of a numerical algorithm is to push it to its limits.
In this case, we choose a difficult test case and let the dimensions of the data matrices
grow by increasing the total degree m of the polynomial basis (and thus the dimension
N) and matching that with increased K so that K > N. The main goal is to provide a case
study example.

Example 1. Consider the Lorenz systemẋ1
ẋ2
ẋ3

 =

−10 10 0
28 −1 0
0 0 −8/3

x1
x2
x3

+

 0
−x1x3
x1x2

. (23)

The exact coefficients, ordered to match the grlex ordering of the monomial basis are

1 x3 x2 x1 x2
3 x2x3 x2

2 x1x3 x1x2 x2
1

F1 : 0 0 1.0000×101 −1.0000×101 0 0 0 0 0 0
F2 : 0 0 −1.0000×100 2.8000×101 0 0 0 −1.0000×100 0 0
F3 : 0 −2.6667×100 0 0 0 0 0 0 1.0000×100 0

.

To collect data, we ran simulations with 55 random initial conditions and from each trajectory
we randomly (independently) selected 55 points, giving a total of K = 3025 pairs (xk, yk). The
simulations were performed in Matlab, using the ode45() solver in the time interval [0, 0.2] with
the time step δt = 10−3. In the key Formula (18), we computed the logarithm in Matlab in two
ways, as logm(pinv(OX) ∗OY) and as logm(OX\OY) and obtained nearly the same matrix. Of
course, using the pseudoinverse explicitly is not recommended. We will use it in this section for
illustrative purposes; recall the discussion in Section 2.2. The computed approximations of the
coefficients of (23), with m = 3, N = 20 and mF = 2, are

1 x3 x2 x1 x2
3 x2x3 x2

2 x1x3 x1x2 x2
1

F1 : 3.2×10−5 −2.5×10−6 1.0000×101 −1.0000×101 −7.5×10−7 −5.2×10−6 1.5×10−7 7.4×10−6 −1.6×10−6 8.0×10−7

F2 : −3.4×10−5 −8.7×10−6 −1.0000×100 2.8000×101 4.7×10−6 1.3×10−5 8.7×10−9 −1.0001×100 −6.1×10−6 6.1×10−6

F3 : 2.8×10−4 −2.6667×100 −5.5×10−6 −6.9×10−6 −8.3×10−6 2.9×10−6 1.6×10−8 −1.0×10−5 1.0000×100 5.7×10−6

.

The nonzero coefficients are matched to five digits of accuracy, and the remaining coefficients are
below O(10−5). Nearly the same result is obtained if the samples from all trajectories have the same
time stamps. Given the difficulty of the Lorenz example and the fact that the results are obtained by
a low dimensional approximation of a nontrivial (numerically simulated) dynamics, the results are
good. Analytical properties of the method indicate that increasing dimensions provides increased
accuracy, ultimately yielding convergence.

Example 2. Next, we illustrate the reconstruction of the function F. We simulated the system in
the interval [0, 4] with δt = 0.01, and used the monomials with the total degree up to m = 3. In
the discrete time grid, we randomly selected 9 positions at which we took three consecutive values
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from each trajectory; in the second experiment 27 randomly selected values of xk are taken from each
trajectory. The total number of trajectories (with random initial conditions) was set to 150.

F is approximated using (19). For each xk, we compute the approximation error as

εk = max
i=1,2,3

|F̃i(xk)− Fi(xk)|
‖F(xk)‖∞

. (24)

The sampling points and the values of εk are shown in Figure 1.
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Figure 1. (Example 2, m = 3.) First row: samples of xk from the first three trajectories, using two
different sampling schemes. Second row: the corresponding values of log10 εk defined in (24) for
12,000 randomly selected points in the box [−20, 20]× [−20, 20]× [0, 50].

Example 3. Now we use the data snapshots from Example 1, and increase the total degree to
m = 9, thus increasing N from N = 20 to N = 220. Recall that K = 3025. Surprisingly, the
computed coefficients are all complex, and are completely off; their absolute values are (the euclidean
norms of the real and the imaginary parts of the vector of the computed coefficients are O(106).

1 x3 x2 x1 x2
3 x2x3 x2

2 x1x3 x1x2 x2
1

F1 : 4.6×103 1.6×106 3.6×105 3.0×104 1.5×104 1.2×104 4.3×103 1.0×104 9.1×103 1.0×104

F2 : 3.0×104 1.2×106 2.8×105 1.0×104 9.6×103 1.2×104 7.6×103 2.1×104 9.5×103 5.5×103

F3 : 6.8×103 2.4×105 5.5×104 2.2×103 1.9×103 2.6×103 1.6×103 4.5×103 2.0×103 1.1×103

.

The approximation of F is also bad, see Figure 2. Increasing the number of trajectories and samples
per trajectory to obtain K = 24,025 did not bring any improvement.
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Figure 2. (Example 3, m = 9.) The values of log10 εk defined in (24) for 12,000 randomly selected
points in the box [−20, 20]× [−20, 20]× [0, 50]. Left panel: with m = 3 as in Example 1. Right panel:
with m = 9.

Although increasing N, with correspondingly large K, should be the step toward better
approximation, the numerical implementation breaks down. In situation like this one, it is important
to find out and understand the sources of the problem.

4.2. What Went Wrong

It is clear that in this computation the most sensitive part is computation of the matrix
logarithm, and that this is the most likely source of problems. Indeed, in the last run in
Example 3 a warning was issued by the logm() function:

Warning: the principal matrix logarithm is not defined for A with nonpositive
real eigenvalues. A non-principal matrix logarithm is returned.

A closer inspection of the eigenvalues of UN , shown in Figure 3 confirms that UN
indeed has problematic (real negative) eigenvalues.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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3

4
10

-11 ... zoomed around the origin

Figure 3. (Example 3, m = 9.) Left panel: the (computed) eigenvalues of the matrix representation
of the computed compression UN of Ut. The red cross at the origin indicates a cluster of eigenvalues.
Right panel: zoomed neighborhood of the origin, showing many (in this case 44) absolutely small
eigenvalues, quite a few of which are negative real. The matrix UN is computed as (pinv(OX) ∗OY).
If it is computed as (OX\OY), instead of the cluster around zero, the eigenvalue zero appears with
multiplicity 45.

Although Figures 3 and 4 show numerically computed eigenvalues, by a backward
stability analysis argument one can argue that UN is certainly close to matrices with
eigenvalues that preclude computing the logarithm in finite precision arithmetic. Hence,
computation of the logarithm must be ill-conditioned as the ill-conditioning is essentially
measured as the inverse distance to singularity [27].
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Figure 4. (Example 3, m = 9.) The (computed) eigenvalues of the matrix LN . Note that some of
them are at the boundary of the strip {z ∈ C : −π/δt < =(z) < π/δt}, i.e., the eigenvalues of
log UN are at the boundary of {z ∈ C : −π < =(z) < π}, cf. Theorem 3. The right panel shows the
distribution of the eigenvalues closer to the origin. Compare with Figure 3.

Another look at UN reveals that its first column is not what it should be. In this
example we use monomials and the first basis vector is the constant. Since Ut℘1 = 1 ·℘1,
we expect [ΦNUt

|FN
]B [℘1]B ≡ UNe1 = e1 = 1 · [℘1]B , which clearly follows from the

solution of the least squares problem (7), if the coefficient matrix is of full column rank. On
the other hand, the first column of UN is computed as shown in Figure 5.

The first column of U
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Figure 5. (Example 3, m = 9.) Left panel: the first column of UN , computed in Matlab as
pinv(OX) ∗OY . Its norm is ‖UN(:, 1)‖2 ≈ 5.0350 × 10−4. Right panel: the first column of
UN = OX\OY , with norm ‖UN(:, 1)‖2 ≈ 5.9611 × 10−4. The true value of UN(:, 1) should be
e1 = (1, 0, . . . , 0)T .

Two conclusions are immediate. First, OX is considered (by the software) numerically
rank deficient. Secondly, two different software solutions of the same problem return
two different solutions. For the data shown in Figures 3 and 4, we computed UN as
pinv(OX) ∗OY. This is in general not a good idea for solving least squares problems;
nevertheless, it can be often seen in the literature and software implementations as a
textbook-style numerical method for least squares problems, albeit a wrong one. We in-
cluded it here for instructive purposes. If we repeat the experiment with the backslash
operator, OX\OY, the results are, unfortunately, not better. One conspicuous difference is
that, instead of the cluster of absolutely small eigenvalues of pinv(OX) ∗OY (see Figure 4),
OX\OY has a zero eigenvalue of multiplicity 45. This multiple zero eigenvalue is a conse-
quence of the sparsity structure of OX\OY, see Figure 6.

In the course of solving the least squares problem, in both methods (explicit use
of the pseudoinverse or the backslash operator), the coefficient matrix OX is truncated
(small singular values are set to zero if pinv(OX) is used; the upper triangular factor is
truncated in the case of backslash, which uses a rank revealing QR factorization) and the
computed UN , due to rounding errors, is small a perturbation of a rank-deficient matrix
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with a number of eigenvalues in the vicinity of zero. As a result, the matrix logarithm
function fails.
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Figure 6. (Example 3, m = 9.) The sparsity structure of pinv(OX) ∗OY (numerical rank 176) and
OX\OY (numerical rank 175). The backslash operator uses the rank revealing (column pivoted) QR
factorization and, by truncation, returns a sparse solution.

The data shown in Figure 7 are instructive. The condition number of OX and the
distribution of its singular values are nicely revealed by the column norms of OX . The LS
solver automatically truncates small singular values that originate from small columns
(small basis function values over the snapshots xk) and not necessarily from collinearity in
the sense of small angles between basis functions.

Look at the singular values σ1(UN) ≥ · · · ≥ σN(UN) in the right panel, in particular
the gap σ176(UN) ≈ 1.4058× 10−6 � σ177(UN) ≈ 3.9261× 10−10. The numerical rank of
UN is determined as 176 because σ176(UN) is the smallest singular value that is above the
threshold N · eps · σ1(UN) ≈ 4.6543× 10−8. The index 176 originates in the numerical rank
of OX which is determined in Matlab (rank(OX) returns 176) by the default tolerance. Note
that there is no such visible gap (cliff) in the ordered singular values of OX .
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Figure 7. The (computed) singular values of OX ∈ R3025×220 and UN ∈ R220×220, and the column
norms. The numerical rank of OX and UN is 176, which is considerably below the full rank 220. If
UN is computed as OX\OY , the numerical rank is 175. The results are similar (with the numerical
rank 163) if the number of snapshots is increased to 24,025 as explained in Example 3.

Remark 3. It should be also mentioned here that the cosines of the canonical angles between the
ranges of OX and OY are between 0.988 and one (cf. Section 2.1.3), and that we expect the spectrum
of UN not to be too far away from the unit circle. The intuition is that (in the process of computation
of O†

XOY) the truncated part of OX did not (could not) cancel the corresponding part in OY, which
resulted in the problematic cluster of eigenvalues near zero. (In Figure 3, the number of eigenvalues
in the cluster around zero is 44, which is the numerical rank deficiency, because the numerical rank
is determined (from the singular values) as 176.)
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Remark 4. In the computations pinv(OX) ∗OY and OX\OY, the truncation is conducted based
on the SVD and the rank revealing QR factorization, respectively, of OX, independent of OY. It
is more appropriate to solve each LS problem (7) separately (for the corresponding column of UN),
and use the truncation strategy following Rust [28]. Note that this is a more general issue because
the matrix O†

XOY is often used in the Koopman/DMD setting. (See [29] for a detailed numerical
analysis of the DMD and its variations.) Furthermore, the problem can become even more difficult
if we have weighting matrix W with scaling factors that spread over several orders of magnitude.
(In this paper, we work with W = IK for the sake of brevity.)

Remark 5. In the case of noisy data, it might be advantageous to replace the least squares fit with
the total least squares ([20], §2.7.6). This is an important issue and we leave it for our future work.

5. Computing [LN ]B with Preconditioning

Numerical examples in Section 4 show that implementation of the method in state
of the art packages such as Matlab which is straightforward and effortless: the key com-
putation is coded as logm(OX\OY) or as logm(pinv(OX) ∗OY). However, the results are
not always satisfactory, and the problems are both in the computation of UN (solving the
least squares problem) and in computing the matrix logarithm. In this section, we use
the structure of the least squares problem solver (reviewed in Section 2.2.1) to introduce a
simple modification and then to construct preconditioned computations of log UN . These
techniques can be combined with the dual method that is analyzed in detail in Sections 6
and 7.

5.1. A Simple Modification

The first attempt to avoid some of the problems illustrated in Section 4 is to prevent
truncation when computing O†

XOY. So we simply run the procedure used in the backslash
solver (see Section 2.2.1), but without truncation. More precisely, using the column pivoted
QR factorization OXΠ = QR, UN is computed as UN = ΠR−1QTOY.

With m = 9 and same setting as in Example 1, the computation of the logarithm of UN
was successful. (Matlab function logm() computed a real valued logarithm, without an
error/warning message) and the coefficients of (23) are recovered to four digits of accuracy,
which is satisfactory. The remaining coefficients are below O(10−4) and are discarded in
the Formula (19) for reconstructing F. The first column of UN was e1 up to an error of the
order of the roundoff.

The results shown in Figure 8 are encouraging, because they show that the data contain
information that can be turned into more accurate output, provided that the algorithm
successfully curbs the ill-conditioning. Furthermore, test with m = 10 (κ2(UN) ≈ 2.9× 1020)
showed nearly the same four digit accuracy; with m = 11 (κ2(UN) ≈ 2.2 × 1024) the
accuracy dropped to two digits (but the logarithm was successfully computed); with
m = 12 (κ2(UN) ≈ 7.7 × 1026) the logarithm is still computed as real matrix, but the
accuracy of the computed coefficients drops to O(10−1) and the reconstruction of F fails.
However, if we increase K to 24,025 (by sampling more points from more trajectories) the
accuracy rebounds to at least for digits both in the coefficients and the reconstruction of
F. At m = 16 (N = 969 and K = 24,025, or K = 3025) the accuracy is lost. The condition
number of UN is greater than 1037.

Our adversarial testing is used to expose potential weaknesses of the computational
steps in a software implementation of the algorithm. Of course, all these outcomes may
vary, depending on the number of trajectories, initial conditions, sampling resolution; in
some examples it is possible that the computation of the matrix logarithm breaks down
even for smaller values of m. ( Moreover, numerical accuracy, i.e., the conditioning of
the problem, heavily depends on the underlying dynamics). In any case, at this point we
have to conclude that using the log O†

XOY is a source of nontrivial numerical difficulties
that preclude efficient and robust deployment of the Mauroy–Goncalves method. The
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theoretical convergence (as N, K → ∞, t→ 0) is not matched by numerical convergence of
a straightforward implementation of the method in finite precision computation.
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Figure 8. Left panel: The (computed) eigenvalues of UN ∈ R220×220 (×), and the eigenvalues of
exp(δtLN) (◦). The maximal relative difference between the matching eigenvalues is computed as
8.1× 10−9. Here, UN is computed as UN = ΠR−1QTOY without any truncation of R. The diagonal
entries of R span, in absolute value, the range between 1.9× 1016 and 1.0× 101. This reveals the
condition number of UN which is computed as 7.4× 1016 by the Matlab function cond(). Right
panel: The values of log10 εk are defined in (24) for 12,000 randomly selected points in the box
[−20, 20]× [−20, 20]× [0, 50]. Compare with Figures 3, 4 and 7.

5.2. Preconditioning the Logarithm of O†
XOY

The discussion in Sections 4.2 and 5.1 is only one step toward more robust computation—
it merely identifies the problem and shows how small changes in an implementation sub-
stantially change the final result. Clearly, sufficiently accurate computation of UN is among
the necessary conditions for successful computation of the matrix algorithms. However,
this is not sufficient; even if we compute UN accurately, computation of the logarithm may
fail if the matrix is ill-conditioned.

We now introduce a new scheme that uses functional calculus-based preconditioning.
If S is any nonsingular matrix, then

log(O†
XOY) = S log(S−1(O†

XOY)S)S−1 ≡ S log((OXS)†OYS)S−1. (25)

Note that replacing O†
XOY with the similar matrix S−1(O†

XOY)S corresponds to changing
the basis for matrix representation of the compressed Koopman operator. With the expe-
rience from Section 4.2, it is clear that the key is to compute the preconditioned matrix
S−1(O†

XOY)S without first computing O†
XOY. (Once we compute O†

XOY explicitly in float-
ing point arithmetic and store it in the machine memory, it may be then too late even for
exact computation.)

The conditions on S are:

(i) Tt should facilitate more accurate computation of the argument S−1(O†
XOY)S =

(OXS)†OYS for the matrix logarithm;
(ii) It should have preconditioning effect for computing the logarithm of S−1(O†

XOY)S;
(iii) The application of S and S−1 should be efficient and numerically stable.

Example 4. To test the concept, we use the same data as in Example 1 with m = 9, and for
the matrix S we take S = diag(1/‖OX(:, i)‖2)

N
i=1 and compute

LN =
1
t

S log((OXS)†(OYS))S−1. (26)

Contrary to the failure of the formula LN = (1/t) log(O†
XOY), (26) computes the real

logarithm of the explicitly computed (OXS)†(OYS), and recovers the coefficients with an
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O(10−5) relative error. That is, we scale OX and OY by diag(1/‖OX(:, i)‖2)
N
i=1, and then

proceed by solving the least squares problem with the thus scaled matrices. To understand
the positive result, we first note that the condition number of OXS is κ2(OXS) ≈ 1.3× 109,
so the least squares solution is computed without truncation. The condition number of
(OXS)†(OYS) was κ2((OXS)†(OYS)) ≈ 6.4 × 105. (The condition number of O†

XOY is
O(1020) so that the matrix is considered numerically rank deficient.) With m = 12 we had
κ(UN) ≈ 6.9× 1061 and κ2((OXS)†(OYS)) ≈ 1.4× 1013; the coefficients are recovered to
three accurate digits and approximation of F is with error slightly larger than the one in
the right panel of Figure 8.

However, as m increases, the diagonal scaling cannot cope with the increased con-
dition number; already at m = 15, a complex non-principal value of the logarithm is
computed, with some eigenvalues whose imaginary parts are equal π/δt. The com-
puted UN has a cluster of eigenvalues around zero. For the record, κ2(UN) ≈ 2.2× 10220,
κ2((OXS)†(OYS)) ≈ 6.7× 1078. Surprisingly, the approximate coefficients, although com-
plex, have small imaginary parts (of the order of the roundoff) and their real parts still
provide reasonably good approximations of the true coefficients.

5.2.1. Scaled QR Factorization Based Preconditioner

To develop a stronger preconditioner, we start with the following observation: No
matter how ill-conditioned OX and OY may be (in the sense of badly scaled columns), the
distance between the ranges of OX and OY, as measured by the canonical angles between
the subspaces, should not be too big. (Intuitively, OY contains the observables evaluated at
the states yk downstream in time δt from the xk’s used in OX . Recall Remark 3.)

Hence, if we compute the QR factorization of OX , the inverse of its triangular factor
will have a preconditioning effect on OY by postmultiplication. This leads to Algorithm 1.

Algorithm 1 [LN ] = Inf_Generator_QRSC(OX , OY, T)

Input: OX ∈ CK×N , OY ∈ CK×N , T > 0
1: S = diag(1/‖OX(:, i)‖2)

N
i=1

2: [QX , R̂X ] = qr(OXS){QR factorization}
3: ÛN = QT

X(OYS)R̂−1
X {ÛN is similar to O†

XOY.}
4: L̂N = log(ÛN)

5: LN = (1/T)S(R̂−1
X L̂N R̂X)S−1

Output: LN . {LN = (1/T) log(O†
XOY)}

Example 5. To test this algorithm, we use the data from Example 1, take m = 15 and increase
the number of snapshots to K = 24,025. The matrix ÛN is well conditioned, κ2(ÛN) ≈ 1.2× 102,
and computing the matrix logarithm is successful. The coefficients are recovered to four digits of
accuracy, and the reconstruction of F is slightly better than the one shown in the right panel in
Figure 8.

This example, as a test of the proposed approach, is encouraging. Our next task is
to further develop the method along the lines of Algorithm 1, and to provide a robust
method with accompanying numerical analysis, and finally to implement it as a reliable
software toolbox.

5.2.2. Pivoted QR Factorization Based Preconditioner

Since in this approach the matrix logarithm is the most critical and numerically most
difficult computational task, the preprocessing/preconditioning aims to ensure successful
completion of that particular step in the method. The back application of the similarity
is also an important step. In Algorithm 1, the main preconditioning is performed by an
upper triangular factor from the QR factorization, and by its inverse. For a numerically
robust computation, it is important that the QR factorization is computed accurately even
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in the case of wildly scaled data, and, moreover, that the resulting triangular factor is
rank revealing and well structured. These goals can be accomplished by pivoting. In this
subsection we outline the main principles along which the idea of QR factorization-based
preconditioned computation of the matrix LN (matrix representation of a compression of
the infinitesimal generator) can be further pursued.

The column pivoting has the rank revealing property and the triangular factor is
diagonally dominant in a very strong sense, see e.g., [23,30] and (13).

In the case of Businger–Golub pivoting, we know that RX = ∆XTX, where ∆X =
diag(|(RX)ii|)N

i=1 and TX is well conditioned. Hence, R−1
X = T−1

X ∆−1
X , and after Line 3 in

Algorithm 2 one can insert another preconditioning with ∆X . We omit the details for the
sake of brevity. Instead, we conclude this theme with few remarks that should be useful
for further study and implementation.

Algorithm 2 [LN ] = Inf_Generator_QRCP(OX , OY, T)

Input: OX ∈ CK×N , OY ∈ CK×N , T > 0
1: Reorder the snapshots by simultaneous row permutation of OX and OY; see Remark 6.
2: [QX , RX , ΠX ] = qr(OX){Rank revealing QR factorization with column pivoting}
3: ÛN = QT

X(OYΠX)R−1
X {ÛN is similar to O†

XOY.}
4: L̂N = log(ÛN)

5: LN = (1/T)ΠX(R−1
X L̂N RX)ΠT

X
Output: LN . {LN = (1/T) log(O†

XOY)}

Remark 6. For the numerical accuracy of the QR factorization, an additional row pivoting may
be needed to obtain that the rows are ordered so that their `∞ norms are decreasing, see [31,32].
If Ψ is a permutation matrix that encodes the row pivoting, then (ΨOX)

† = O†
XΨT , so that

(ΨOX)
†(ΨOY) = O†

XOY. This means that using the additional row pivoting in the QR factoriza-
tion in Algorithm 2 is equivalent to a particular ordering of the data snapshots. The column pivoting
corresponds to reordering the basis’ functions. Both reorders of the data are allowed operations and
can thus be used to enhance numerical robustness of the computation.

Remark 7. If K � 2N then it pays off to change the coordinates by computing the QR factorization

(
QX QY

)
= Q

(
R
0

)
,

and use the corresponding columns of R instead of OX and OY. This follows the idea of the
QR-compressed DMD [29].

Remark 8. The key assumption in the above described method is that K � N, i.e., that both
OX and OY are tall matrices; their columns are in a high dimensional space and with suitable
transformation S in the column spaces (OX 7→ OXS, OY 7→ OYS) we can improve the condition
numbers. By the (variational) monotonicity principle, supplying more snapshots (increasing K)
moves the singular values of OX and OY to the right, thus improving the condition numbers of both
matrices. Since, by the underlying continuity, the canonical angles between the ranges of OX and
OY are expected to be away from π/2, and UN = O†

XOY is going to be nonsingular. Moreover, the
overall condition number of the computation can be controlled using our proposed modifications
that are designed to ensure stable computation of the matrix logarithm.

6. Dual Method

It is clear that the values of N linearly independent functions ℘1, . . . ,℘N over the
discrete set x1, . . . , xK of K < N snapshots (that is, with only the tabulated values in the
K × N matrices OX, OY) contain redundancy. On the other hand, increasing the space
dimension N is a way to lift the data to higher dimensional space; more observables
improve both the DMD and KMD analyses. Note that, in the case N > K, both the
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compression UN = [ΦNUt
|FN

]B = O†
XOY and the EDMD matrix (UT

N) are rank deficient;
unfortunately, the infinitesimal generator identification framework cannot work in that
setting because the matrix logarithm is not defined. It should be stressed here that, e.g.,
in the DMD setting, the action of the operator given by the data is restricted to an at
most K-dimensional subspace in the N dimensional space, and that the approximations
of the Koopman modes are obtained by a Rayleigh–Ritz extraction. Hence, any operator
(matrix) function of UN only makes sense and has a practical usability in the context of an
approximation from the subspace defined by the data.

In [8], a dual method is proposed, which instead of UN = O†
XOY works with the

logarithm of UK = OYO†
X . In this section we first provide, in Section 6.1, a detailed linear

algebra description of the dual method that will facilitate a more general formulation that
allows for modifications which may lead to better numerical algorithms. In fact, we show
in Section 7 that the dual method of [8] is but a special case of subspace projection methods,
and we show how to exploit this for design of numerically better schemes.

6.1. A Rayleigh Quotient Formulation

In the dual formulation, the transition from UN to UK can be formulated as another
compression of Ut onto a particular K-dimensional subspace of FN .

Proposition 3. If we define
(
ψ1(x) . . . ψK(x)

)
=
(
℘1(x) . . . ℘N(x)

)
O†

X , then (assum-
ing OX is of full row rank K), BK = {ψ1, . . . , ψK} is a basis of the K dimensional subspace
FK ⊂ FN , and UK = OYO†

X is the matrix representation of the Rayleigh quotient ΦKUt
|FK

in which ΦK : F → FK is the least squares projection as in Section 2.1.1. The matrix UK is
the matrix Rayleigh quotient of UN with respect to the range of O†

X, i.e., UK = OXUNO†
X and

UNO†
X = O†

XUK. Furthermore, the Rayleigh quotient with respect to O†
X is the same for all

matrices from the set N (see (10)):

OX(O†
XOY + Ψ0Ξ)O†

X = OYO†
X . (Note here that (O†

X)
† = OX .) (27)

Proof. First, note that the basis functions ψ1, . . . , ψK evaluated at x1, . . . , xK can be tabu-
lated as the matrix

OX,K =

ψ1(x1) ψ2(x1) . . . ψK(x1)
...

... . . .
...

ψ1(xK) ψ2(xK) . . . ψK(xK)

 = OXO†
X = IK,

and that for a g ∈ FK, its representation in the basis BK is [g]BK =
(

g(x1), . . . , g(xK)
)T ;

see (6), where we take W = I for the sake of simplicity. Similarly, (Utψ1, . . . ,UtψK)
evaluated at x1, . . . , xK yields the matrix OY,K = OYO†

X. Now, as in Section 2.1.2, UK =
O†

X,KOY,K = OYO†
X . Relation (27) is easily checked.

If UK is nonsingular then the identification scheme should be recast in terms of log UK.
In the basis BK we have then the following representations of the Rayleigh quotient ΦKUt

|FK
and its logarithm.

Corollary 1. The matrix representations of the compressed Ut and its logarithm (if defined) are as
follows: For any (g1, . . . , gK)

T ∈ CK,

ΦKUt
|FK

(
(
ψ1(x) . . . ψK(x)

)g1
...
gK

) =
(
ψ1(x) . . . ψK(x)

)
(UK

g1
...
gK

),

log(ΦKUt
|FK

)(
(
ψ1(x) . . . ψK(x)

)g1
...
gK

) =
(
ψ1(x) . . . ψK(x)

)
(log(UK)

g1
...
gK

).
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Next, we consider function evaluation at yk = ϕt(xk), k = 1, . . . , K.

Proposition 4. Let f = ∑N
i=1 fi℘i ∈ FN . ThenUt f (x1)

...
Ut f (xK)

 =

 f (y1)
...

f (yK)

 = OYO†
X

 f (x1)
...

f (xK)

+ OY(IN −O†
XOX)

 f1
...
fN

. (28)

If IN 6= O†
XOX , then the second term on the right hand side in (28) is zero if and only if the fi’s are

of the form
(
fi
)N

i=1 = O†
X
(
gk
)K

k=1 with arbitrary gk’s. Furthermore, if g = ∑K
i=1 giψi ∈ FK ⊂ FN ,

then gi = g(xi) andUtg(x1)
...

Utg(xK)

 = OYO†
X

g(x1)
...

g(xK)

,


log(ΦKUt

|FK
)g(x1)

...
log(ΦKUt

|FK
)g(xK)

 = log(OYO†
X)

g(x1)
...

g(xK)

. (29)

Proof. For (28), it suffices to write f (y1)
...

f (yK)

 = OY

 f1
...
fN

 = OY(O†
XOX + IN −O†

XOX)

 f1
...
fN

.

For the first relation in (29), note that g = ∑K
i=1 giψi evaluated at y1, . . . , yK readsg(y1)

...
g(yK)

 = OYO†
X

g1
...
gK

, where gi = g(xi) because OX,K = IK.

Hence, using the last relation and L = F · ∇ ≈ (1/t) log(ΦKUt
|FK

) in FK (evaluated at the
snapshots xi), we have F · ∇g(x1)

...
F · ∇g(xK)

 ≈ 1
t

log(OYO†
X)

g(x1)
...

g(xK)

. (30)

If we choose g(x) = xj, j = 1, . . . , n, respectively, (where x = (x1, . . . , xn)T) then F ·
∇g(x) = Fj(x) and we obtain approximate filed values F̃(xi) defined as

F̃(x1)
T

...

F̃(xK)
T

 =
1
t

log(OYO†
X)

xT
1
...

xT
K

. (31)

Note however that (30), (31) require that g ∈ FK. Furthermore, the approximations of F are
given only at the sequence x1, . . . , xK.
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Global Identification of F

After identifying the values F(xk), the idea is to use the ansatz

F(x) =

F1(x)
...

Fn(x)

, Fj(x) =
NF

∑
k=1

ϕkjhj(x), (32)

where h1, . . . , hNF are chosen from a dictionary of functions, possibly different from the
basis used to lift the data and identify the compression of the infinitesimal generator. Then
we obtain the sequence of least squares problems∥∥∥∥∥∥∥∥∥∥


h1(x1) . . . hNF (x1)
h1(x2) . . . hNF (x2)

... . . .
...

h1(xK) . . . hNF (xK)




ϕ1j
ϕ2j
...

ϕNF j

−


F̃j(x1)

F̃j(x2)
...

F̃j(xK)


∥∥∥∥∥∥∥∥∥∥

2

2

−→ min
ϕ1j ...ϕNF j

, j = 1, . . . , n, (33)

that can also be equipped with a regularization factor that promotes sparse solution.

6.2. A Numerical Example

As in Section 4, a simple but difficult example can be used to explore the numerical
feasibility of the derived scheme. It has been shown in [8] that the method works well
for the Lorenz system on small time intervals. In the following example, we increase
the time domain and test the accuracy of the reconstruction of F. An ill-conditioned
problem is obtained by taking the total degree of the polynomials to be 12. Although
this may seem artificial, it is useful because it provides numerically difficult cases that
expose the weaknesses of the computational scheme and excellent case studies for better
understanding and further development.

Example 6. In this example we run simulation of the Lorenz system with time resolution δt = 10−3

on the intervals [0, 0.1], [0, 0.18] and [0, 0.19]. The basis functions ℘i are the monomials with total
degree up to m = 12. We generate 12 trajectories with random initial conditions, and from each
trajectory we sample three consecutive snapshots at ten randomly selected positions; the matrices
OX , OY are thus 360× 455. In the reconstruction Formula (31), the matrix logarithm is computed
in Matlab as logm(OY/OX); in all three runs, logm() issued a warning that a non-principal
value of the algorithm was computed. The reconstruction error is measured component-wise and
snapshot-wise as

ε
(i)
k =

|F̃i(xk)− Fi(xk)|
‖F(xk)‖∞

, i = 1, . . . n; k = 1, . . . , K. (34)

In addition, we measure the total error of the tabulated values in the Frobenius norm as

τ = ‖(F̃i(xk))
K,n
k,i=1 − (Fi(xk))

K,N
k,i=1‖F/‖(Fi(xk))

K,N
k,i=1‖F. (35)

In Figure 9, we show the errors ε
(i)
k for the intervals [0, 0.1] and [0, 0.18]; in the case of the time

interval [0, 0.19], the method broke down and the reconstructed values were computed as NaN’s.
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Figure 9. The errors ε
(i)
k (34). Left panel: time interval [0, 0.1]. The total error is τ = 2.2259× 10−2.

Right panel: time interval [0, 0.18]. The total error is τ = 4.6174× 102. Similar results are obtained
using logm(Y*pinv(X)). On the other hand, while on the interval [0, 0.19] logm(Y/X) fails producing
NaN’s, logm(Y*pinv(X)) completed without NaN exceptions, alas with the error τ = 5.1718× 102 and

with ε
(i)
k similar to that in the right panel above.

The results depend on the initial conditions used to generate sample trajectories. In the above
experiments, each initial condition is taken as a normally distributed 3× 1 vector generated in
Matlab using randn. If we generate the initial conditions as uniformly distributed inside the sphere
of radius 0.1, centered at the origin, then for all three test intervals the error τ was O(10−3). With
such initialization, the same level of accuracy is then maintained for larger time intervals, up to
[0, 0.4]; for [0, 0.41] the error increased to τ ≈ 0.1 and for [0, 0.42] the result was NaN.

This example shows that numerical (software) implementation of the dual method requires
additional analysis and modifications, similar to the main method. In the next section we explore
numerical linear algebra techniques that could facilitate a more robust implementation.

7. Subspace Selection

The approximation (31) is based on a particular K-dimensional subspace of FN =
span(℘1, . . . ,℘N), where (in the case of monomial basis) the choice of the new basis functions
precludes direct coefficient comparisons with (17), (19). Instead, the identification procedure
follows the lines of (30)–(33).

We can set up a more general framework: independent of the ratio N/K (and indepen-
dent of the formulation—original or dual) we can seek other suitable subspaces of FN , and
not necessarily of dimension K. The selection criterion is numerical: both the subspace and
its dimension N̂ should be determined with respect to the numerical conditioning of the
matrix representations at the finite sequence x1, . . . , xK. A basis of such a N̂-dimensional
subspace FN̂ of FN is written as (ψ1, . . . , ψN̂) = (℘1, . . . ,℘N)S , where S is N × N̂ selec-
tion operator, i.e., matrix, of rank N̂. The tabulated values of (ψ1, . . . , ψN̂) at x1, . . . , xK are
easily computed as OX,S = OXS . Similarly, the tabulated values of (Utψ1, . . . ,UtψN̂) are
OY,S = OYS .

Certainly, N̂ ≤ min(K, N). If e.g., K < N, we aim at N̂ = K, but we will have option
that a numerical algorithm decides whether that choice is feasible, depending on the level
of ill-conditioning.

The subspace selection operator S should ensure that, if needed, the constructed
basis of FN̂ contains ` < N̂ a priori selected functions ℘i1 , . . . ,℘i` (recall the identification
procedure outlined in Section 3.2) and that OX,S is well conditioned. This implicitly restricts
` to be at most K, and in practice `� K. Furthermore, the remaining N̂ − ` basis functions
should be selected among the ℘j’s. In other words, we seek S as a selection of N̂ columns
of the identity IN . This is achieved by the following two step procedure:

1. (Optional) Define S0 as the N × N permutation matrix that moves the selected func-
tions to the leading positions, i.e., such that (℘1, . . . ,℘N)S0 = (℘i1 , . . . ,℘i` , . . .).



Mathematics 2021, 9, 2075 24 of 29

2. Add to these ` functions a selection of N̂ − ` functions that are most linearly inde-
pendent in the orthogonal complement of span(℘i1 , . . . ,℘i`) as seen on the discrete
points x1, . . . , xK.

The second step, which can be designated as basis pruning, is based on the numerical
rank revealing techniques.

7.1. Pruning the Basis (℘1, . . . ,℘N)

Removing the basis functions ℘j that carry numerically redundant information on
the set x1, . . . , xK can be automated using the rank revealing QR factorization [23] as
follows. First, compute the QR factorization of the selected functions, with an optional
column pivoting

(OXS0)(:, 1 : `)Π1 = Q1

(
R11
0

)
=

( . . . . .
. . . . .
. . . . .
. . . . .
. . . . .

)( ∗ ∗
0 ∗
0 0
0 0
0 0

)
, (36)

and then apply Q∗1 to the remaining N − ` columns to obtain

Q∗1OXS0(Π1 ⊕ IN−`) =

(
R11 R̃12

0 R̃22

)
=

 ∗ ∗ × × × × × ×0 ∗ × × × × × ×
0 0 + + + + + +
0 0 + + + + + +
0 0 + + + + + +

. (37)

(The structure of the computed matrices is illustrated in (36), (37) for K = 5, N = 8, ` = 2.)
Now, the columns of R̃22 are the coordinates of the projection of the trailing N− ` columns
of OXS0 onto the K− ` dimensional orthogonal complement of the span of the leading `
columns (of OXS0, at this moment assumed linearly independent). A well conditioned
selection of N̂ − ` columns can be computed by another column pivoted (rank revealing)
QR factorization

R̃22Π2 =
( + + + + + +
+ + + + + +
+ + + + + +

)
Π2 = Q2

(
R22 R23

)
= Q2

( ? ? ? x x x
0 ? ? x x x
0 0 ? x x x

)
. (38)

Altogether, we have the factorization

(
I` 0
0 Q∗2

)
Q∗1OXS0

(
Π1 0
0 IN−`

)(
I` 0
0 Π2

)
=

(
R11 R12 R13
0 R22 R23

)
=

( ∗ ∗ × × × × × ×
0 ∗ × × × × × ×
0 0 ? ? ? x x x
0 0 0 ? ? x x x
0 0 0 0 ? x x x

)
,

and the leading N̂ columns of OXS0(I⊕Π2) are the desired selection. Note that in this
formula we have not used the permutation (Π1⊕ IN−`) of the first ` columns (here assumed
independent so that R11 is nonsingular), to respect the requested ordering ℘i1 , . . . ,℘i`
encoded in S0

7.2. Well Conditioned Selection by Basis Pruning—General Case

In Section 7.1 we assumed that it was indeed possible to select N̂ linearly independent
columns from OX. This may not be the case; moreover, the mere linear independence in
finite precision numerical computation is not enough. We need well-conditioned selection
of the columns of OX, i.e., well conditioned matrix OX,S , but also well conditioned OY,S .
The rank revealing pivoting (materialized in the permutation matrices Π1, Π2) will provide
relevant information.

If the initially selected ` functions are nearly linearly dependent on the supplied
snapshots, but ̂̀ < ` of them can be considered well conditioned, then on the diagonal
of R11 we will see that |(R11)̂̀̂`| > tol|(R11)̂̀+1,̂`+1|. In that case, we set (R11)(̂̀+ 1 :

`, ̂̀+ 1 : `) = 0, and the submatrix R̃22 is now defined as the subarray at the positions
(̂̀+ 1 : K, ̂̀+ 1 : N). Since its first column is now zero, the pivoting Π2 will eliminate it
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from further selections (unless the entire R̃22 is zero). To illustrate, assume that in (37) the
(2, 2) position carries a value ε that is smaller than a prescribed threshold. Then, we have

Q∗1OXS0(Π1⊕ IN−`) =

(
R11 R̃12

0 R̃22

)
=

 ∗ ∗ × × × × × ×0 ε + + + + + +
0 0 + + + + + +
0 0 + + + + + +
0 0 + + + + + +

 ≈
 ∗ ∗ × × × × × ×0 0 + + + + + +

0 0 + + + + + +
0 0 + + + + + +
0 0 + + + + + +

. (39)

Altogether, this discussion can be summarized in Algorithm 3.

Algorithm 3 [S , ̂̀, r̂, Π1, Π2] = Subspace_Selection(OX ,S0, N̂, tol)

Input: OX ∈ CK×N , S0, N̂, tol
1: (Optional) Reorder the snapshots by simultaneous row permutation of OX and OY; see

Remark 6.
2: Bring the selected functions forward to the leading ` positions: QX = QXS0. Imple-

ment S0 as a sequence of swaps to avoid excess data movement (in the case of large
dimensions).

3: [Q1, R1, Π1] = qr(OX(:, 1 : `)) {Rank revealing QR factorization with column pivoting.
Overwrite R1 = (RT

11, 0)T over the leading ` columns of OX . See (36).}
4: Determine the numerical rank ̂̀ of R11 and in the case ̂̀ < ` set R11(̂̀+ 1 : `, ̂̀+ 1 :

`) = 0.
5: OX(:, `+ 1 : N) = Q∗1OX(:, `+ 1 : N).
6: [Q2, R2, Π2] = qr(OX(̂̀+ 1 : K, ̂̀+ 1 : N)). {Rank revealing QR factorization with column

pivoting. R2 = (R22, R23) overwrites OX(̂̀+ 1 : K, ̂̀+ 1 : N)}
7: Determine the numerical rank r̂ of R22. Set Ñ = ̂̀+ r̂.
8: S = (S0(Π1 ⊕ IN−`)(Î̀⊕Π2))(:, 1 : min(N̂, Ñ));

Output: S , ̂̀, r̂, Π1, Π2.

7.3. Implementation Details

Remark 9. Note that the case ̂̀< ` triggers an exception if the selected ` functions are essential in
the overall computation, as for example in (17), (19), (30), (31). In the examples used in this paper̂̀= `, so that no additional action is needed.

Remark 10. The columns of OX can be severely ill-conditioned and the rank revealing QR factor-
ization should be carefully implemented [33]. The thresholding strategy can vary from soft, mild, to
hard, depending on the the concrete example, see [34]. Algorithm 3 can be used to determine the
numerical rank but also to ensure that the condition number of the selected columns of OX is the
below specified value. This can be efficiently implemented using incremental condition estimators
tailored for triangular matrices.

Remark 11. If the column dimension min(N̂, Ñ) of ÔX = OXS and ÔY = OYS is at most K,
then we can also apply the original approach from Section 2. Furthermore, the pruning scheme can
be also directly applied to the original method.

Remark 12. Suppose that N � K and that K is moderate or also big. Then computational
complexity is an issue and the algorithm can be modified as follows:

In Line 3, ` is expected to be small or moderate compared to K, so that this step can be efficiently
implemented using LAPACK (the functions xGEQRF and xGEQP3) or ScaLAPACK using PxGEQPF
(but using the most recent implementation [35]). In the second part of the algorithm, we need a
well-conditioned submatrix of a (K− ̂̀)× (N − ̂̀) submatrix of Q∗1OX(:, `+ 1 : N). To do that,
we do not need to compute the whole matrix. We can apply the scheme from [36] and sample the
columns of Q∗1OX(:, `+ 1 : N) until we form a well-conditioned R22.
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7.4. Numerical Experiments with the Dictionary Pruning Algorithm

Example 7. (Continuation of Example 6) We use the same data as in Example 6, but instead of OX
and OY we use K-column submatrices OX,S , OY,S , selected by Algorithm 3 with the requirement
that ℘1, . . . ,℘n+1 must be kept in the subspace FK. More precisely, we set N̂ = K, and the
numerical rank is determined with tol = 0, so that Ñ = N̂ = K. The results shown in Figure 10
show a significant improvement.
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Figure 10. (Example 7.) The errors ε
(i)
k (34). Left panel: time interval [0, 0.1]. The total error is

τ = 1.1516× 10−2 (1.2406× 10−2 for logm(Y*pinv(X))). Right panel: time interval [0, 0.18]. The
total error is τ = 1.7873× 10−2 (9.4987× 102 for logm(Y*pinv(X))). Compare this with Figure 9.

Example 8. The purpose of this example is to illustrate the robustness of the proposed algorithm: we
take the sampling interval as big as [0, 30] or [0, 50] with the resolution of the numerical simulation
δt = 0.01 and δt = 0.1, and the samples are taken, as before, at randomly selected time instances.
For illustration, the time stamps of the snapshots are marked on the first generated trajectory (with
δt = 0.01) and shown in the first row in Figure 11.
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Figure 11. (Example 8.) First row: the time stamps of x1, . . . , x360, illustrated on the first out of
12 generated trajectories. Three consecutive snapshots, with time lag δt = 0.01, are taken at ten

randomly selected and fixed time instances. Second row: The first plot shows the relative errors ε
(i)
k

with δt = 0.01, and the second plot for δt = 0.1 (sampled on another randomly selected times). The
total errors are τ = 1.4893× 10−1 and τ = 8.6613× 10−1, respectively.
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The accuracy is satisfactory, given the length of the interval ([0, 30]), the discretization step of
the simulation (δt = 0.01, δt = 0.1) and the number of samples. Next, we increase the interval to
[0, 50]; the results are in Figure 12.
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Figure 12. (Example 8.) The first plot shows the relative errors ε
(i)
k with δt = 0.01, and the second

plot for δt = 0.1 (sampled on another randomly selected times in [0, 50]). The total errors are
τ = 1.8672× 10−1 and τ = 1.8278× 100, respectively. In the second plot, we used the real parts of the

computed approximations F̃i(xk), as a non-principal (non-real) value of the logarithm was computed.

Now, we reduce the number of samples—from each trajectory we sample at five positions
(instead of ten), giving the total of 180 instead of 360 snapshots xk. The results are summarized in
Figure 13.
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Figure 13. (Example 8.) The first plot shows the five positions at a sample trajectory where three
consecutive snapshots are taken. The matrix OX is 180× 455. The reduced dimension Ñ is 64. The

second plot shows the relative errors ε
(i)
k with δt = 0.01. The total error is τ = 4.4319× 10−1.

In all examples, the rank revealing was conducted with a hard threshold, with no
attempt in the direction of strong rank revealing, which could further improve the numer-
ical accuracy. The details are omitted for the sake of brevity and will be available in our
future work.

8. Concluding Remarks

In this work we provided the first steps towards a robust numerical software imple-
mentation of the method [8] for identification of dynamical systems using the infinitesimal
generator of the Koopman semigroup. An adversarial testing using polynomial bases
revealed critical numerical issues that we addressed in detail. We proposed two techniques:
preconditioning and basis pruning. These are a basis for a new software implementation
that will include other choices of basis functions, including data-driven/empirical con-
structions of the bases. This is subject of our ongoing and planned future work, including
stochastic models.
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33. Drmač, Z.; Bujanović, Z. On the failure of rank revealing QR factorization software—A case study. ACM Trans. Math. Softw. 2008,
35, 1–28. [CrossRef]
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