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Abstract: Tao et al. proposed the definition of the linear summation of fractional-order matrices
based on the theory of Yeh and Pei. This definition was further extended and applied to image
encryption. In this paper, we propose a reformulation of the definitions of Yeh et al. and Tao et al. and
analyze them theoretically. The results show that many weighted terms are invalid. Therefore, we use
the proposed reformulation to prove that the effective weighted terms depend on the period of the
matrix. This also shows that the image encryption methods based on the weighted fractional-order
transform will lead to the security risk of key invalidation. Finally, our hypothesis is verified by the
unified theoretical framework of multiple-parameter discrete fractional-order transforms.

Keywords: fractional-order matrix; fractional Fourier transform; eigenvalue; image encryption

1. Introduction

Fractional Fourier transform (FRFT) is widely used in quantum mechanics, optics,
pattern recognition, time-frequency representation, signal processing, information security
and other fields [1–12]. Therefore, discrete fractional Fourier transforms, mainly including
weighted-type FRFTs [13,14], eigendecomposition-type FRFTs [15,16] and sampling-type
FRFTs [17–19], have been proposed. In 2003, Yeh and Pei proposed a new computation
method of the discrete FRFT [20]. This method is similar to Shih’s weighted FRFT [13],
with the difference being that the fractional power of the discrete Fourier transform (DFT)
is used in the definition of Yeh and Pei. Then, Tao et al. presented the linear summation
of fractional-order matrices based on the method proposed by Yeh and Pei. Therefore,
the fractional power for any diagonalizable periodic matrix is defined, which provides a
new idea for information processing [21]. Recently, Kang et al. extended the definition
of Tao et al., proposed a computation method for the multiple-parameter discrete FRFT,
and further extended the method to multiple parameter discrete fractional cosine, sine,
Hartley, and Hadamard transforms. These definitions can be applied to signal processing
and image encryption [22]. In this paper, our analysis results show that there are only four
effective weighted terms in the definition of Yeh and Pei, which will lead to the security risk
of key invalidation when applied to image encryption. Furthermore, our results also show
that the effective weighting term in the definition of Tao et al. is related to the period of the
matrix. Such extension methods based on that definition are applied to image encryption,
which will lead to the security risk of key invalidation.

The remainder of this paper is organized as follows. Preliminary knowledge is
described in Section 2. Section 3 analyzes the definition of Yeh et al. Section 4 analyzes the
definition of Tao et al. Effective weighted terms and security are discussed in Section 5.
Finally, conclusions are presented in Section 6.

2. Preliminaries

Tao et al. proposed the idea of the linear summation of fractional-order matrices [21].
If a matrix L satisfies LP = I, then L is a periodic matrix with period P. Assume matrix L is
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a matrix satisfying LP = I and its eigendecomposition form is L = VDVH . Let b = P/M
and Lb = LP/M = VDP/MVH . Then, Lα can be computed as

Lα =
M−1

∑
n=0

Cn,α/bLnb. (1)

In fact, the computation method of the discrete fractional Fourier transform (DFRFT)
of Yeh and Pei [20] can be regarded as a special case of the definition of Tao et al. Consider
DFRFT matrices I, Fb, F2b, . . . , F(M−1)b, where b = 4/M. Denote the sum of these DFRFT
matrices as

Fα =
M−1

∑
n=0

Cn,αFnb, (2)

with coefficients

Cn,α =
1
M

1− e2πi(n−α)

1− e(2πi/M)(n−α)
, (3)

where n = 0, 1, 2, · · · , M− 1. Tao et al. discussed the correlation between the signal length
and the period of the matrix to present Cn,α and Cn,α/b. Because the fractional-order α is a
real number, there is no essential difference between the two. Moreover, Shih’s research
also shows that the signal length is independent of the period of the matrix [13].

However, our analysis shows that the effective weighting term of such a definition
depends on the period of the matrix. Next, we will reanalyze the definitions of Yeh et al.
and Tao et al.

3. Theoretical Analysis of the Definition of Yeh et al.

Equation (3) is the sum of geometric progression, and its common ratio is e2πi(n−α)/M.
Then, Equation (3) can also be expressed as

Cn,α = 1
M

M−1
∑

k=0
e2πi(n−α)k/M

= 1
M

M−1
∑

k=0
e(−2πiαk/M)e(2πink/M)

= IDFT
[
e(−2πiαk/M)

]
k=0,1,2,······ ,M−1

(4)

where n = 0, 1, · · · , M− 1; and Equation (4) can be further expressed as
C0,α
C1,α

...
CM−1,α

 =
1
M


w0×0 w0×1 · · · w0×(M−1)

w1×0 w1×1 · · · w1×(M−1)

...
...

. . .
...

w(M−1)×0 w(M−1)×1 · · · w(M−1)×(M−1)




e(−2πiα0/M)

e(−2πiα1/M)

...
e(−2πiα(M−1)/M)

, (5)

where w = exp(2πi/M). Then, the definition (Equation (2)) of Yeh and Pei can be expressed as

Fα =
M−1
∑

n=0
Cn,αF4n/M

=
(

F0, F4/M, · · · , F4(M−1)/M
)

C0,α
C1,α

...
CM−1,α



= 1
M

(
F0, F4/M, · · · , F4(M−1)/M

)


w0×0 w0×1 · · · w0×(M−1)

w1×0 w1×1 · · · w1×(M−1)

...
...

. . .
...

w(M−1)×0 w(M−1)×1 · · · w(M−1)×(M−1)




e(−2πiα0/M)

e(−2πiα1/M)

...
e(−2πiα(M−1)/M)

.

(6)
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Here, we let

W0 = w0×0F0 + w1×0F
4
M + · · ·+ w(M−1)×0F

4(M−1)
M

W1 = w0×1F0 + w1×1F
4
M + · · ·+ w(M−1)×1F

4(M−1)
M

W2 = w0×2F0 + w1×2F
4
M + · · ·+ w(M−1)×2F

4(M−1)
M

...

WM−1 = w0×(M−1)F0 + w1×(M−1)F
4
M + · · ·+ w(M−1)×(M−1)F

4(M−1)
M

(7)

Definition 1. A new reformulation of the definition of Yeh and Pei as

Fα = 1
M (W0, W1, · · · , WM−1)


e(−2πiα0/M)

e(−2πiα1/M)

...
e(−2πiα(M−1)/M)


= 1

M

M−1
∑

k=0
Wke(−2πiαk/M).

(8)

In ref. [20], I, Fb, F2b, . . . , F(M−1)b are the DFRFT; and the DFRFT has diversity. For
Equation (7), we use the eigendecomposition type and the weighted type FRFT for verification.

3.1. Eigendecomposition Type FRFT

Proposition 1. Eigendecomposition type FRFT is used as the basis function, there are only four
effective weighting terms for the definition of Yeh and Pei.

Proof. At present, the discrete definition [16] closest to the continuous FRFT is

Fα(m, n) =
N−1

∑
k=0

vk(m)e−i π
2 kαvk(n), (9)

where vk(n) is an arbitrary orthonormal eigenvector set of the N × N DFT. Equation (9)
can be written as

Fα = VDαVH , (10)

where V = (v0, v1, · · · , vN−1), vk is the kth-order DFT Hermite eigenvector, and Dα is a
diagonal matrix defined as

Dα = diag
(

1, e−i π
2 α, · · · , e−i π

2 (N−2)α, e−i π
2 (N−1)α

)
, f or N odd, (11)

and
Dα = diag

(
1, e−i π

2 α, · · · , e−i π
2 (N−2)α, e−i π

2 (N)α
)

, f or N even. (12)

We only prove that N is odd (when N is even, the proof process is the same). In [23,24],
the eigenvalues of the DFT can be expressed as λn = enπi/2. Then, the possible values of
the eigenvalue are λn = {1,−1, i,−i}. Therefore,

Dα = diag
(
(1)α, (−i)α, (−1)α, (i)α, (1)α, (−i)α, (−1)α, (i)α, · · · · · · , (1 or− 1)α). (13)

Thus, Equation (7) can be written as

Wk = w0×k × I + w1×k × F
4
M + · · ·+ w(M−1)×k × F

4(M−1)
M , (14)
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where w = exp(2πi/M) and k = 0, 1, · · · , M − 1. When the eigendecomposition type
FRFT is used, Equation (15) is obtained as

Wk = w0×k × F0 + w1×k × F
4
M + · · ·+ w(M−1)×k × F

4(M−1)
M

= w0×kVD0VH + w1×kVD
4
M VH + · · ·+ w(M−1)×kVD

4(M−1)
M VH

= w0×kV



1 0 · · · 0
0 (−i)0 · · · 0

.

.

.

.

.

.
. . .

.

.

.
0 0 · · · (1 or− 1)0

VH + w1×kV



1 0 · · · 0

0 (−i)
4
M · · · 0

.

.

.

.

.

.
. . .

.

.

.

0 0 · · · (1 or− 1)
4
M


VH + · · ·+ w(M−1)×kV



1 0 · · · 0

0 (−i)
4(M−1)

M · · · 0

.

.

.

.

.

.
. . .

.

.

.

0 0 · · · (1 or− 1)
4(M−1)

M


VH .

(15)

Therefore, we obtain Equation (16) as

Wk = V


S(1)(k) 0 · · · 0

0 S(−i)(k) · · · 0
...

...
. . .

...
0 0 · · · S(1 or−1)(k)

VH . (16)

From Equation (16), the diagonal matrix only contains S(1)(k), S(i)(k), S(−1)(k), and
S(−i)(k). The multiplicities of the DFT eigenvalues are shown in Table 1. Therefore,

λn = {1, i,−1,−i}
=
{

e4nπi/2, e(4n+1)πi/2, e(4n+2)πi/2, e(4n+3)πi/2
}

=
{

e2nπie0πi/2, e2nπieπi/2, e2nπie2πi/2, e2nπie3πi/2
}

=
{

e0πi/2, eπi/2, e2πi/2, e3πi/2
}

.

(17)

Table 1. Multiplicities of the DFT eigenvalues.

N 1 −1 −i i

4n n + 1 n n n − 1
4n + 1 n + 1 n n n
4n + 2 n + 1 n + 1 n n
4n + 3 n + 1 n + 1 n + 1 n

When the eigenvalue is 1, S(1)(k) can be expressed as

S(1)(k) = w0×k10 + w1×k14/M + · · ·+ w(M−1)×k14(M−1)/M

= 1 + e2πi1k/M + e2πi2k/M + · · ·+ e2πi(M−1)k/M

=
1−(e2πik/M)

M

1−e2πik/M .

(18)

Therefore, we obtain

S(1)(k) =
{

M, i f k = 0
0, otherwise

; k = 0, 1, · · · , M− 1 (19)

When the eigenvalue is i, S(i)(k) can be expressed as

S(i)(k) = w0×k(i)0 + w1×k(i)4/M + · · ·+ w(M−1)×k(i)4(M−1)/M

= 1 + e2πi1(k+1)/M + e2πi2(k+1)/M + · · ·+ e−2πi(M−1)(k+1)/M

=
1−(e2πi(k+1)/M)

M

1−e2πi(k+1)/M .

(20)

Therefore,

S(i)(k) =
{

M, i f k = M− 1
0, otherwise

; k = 0, 1, · · · , M− 1 (21)
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When the eigenvalue is −1, S(−1)(k) can be expressed as

S(−1)(k) = w0×k(−1)0 + w1×k(−1)4/M + · · ·+ w(M−1)×k(−1)4(M−1)/M

= 1 + e2πi1(k+2)/M + e2πi2(k+2)/M + · · ·+ e2πi(M−1)(k+2)/M

=
1−(e2πi(k+2)/M)

M

1−e2πi(k+2)/M .

(22)

Then, we can obtain

S(−1)(k) =
{

M, i f k = M− 2
0, otherwise

; k = 0, 1, · · · , M− 1 (23)

When the eigenvalue is −i, S(−i)(k) can be expressed as

S(−i)(k) = w0×k(−i)0 + w1×k(−i)4/M + · · ·+ w(M−1)×k(−i)4(M−1)/M

= 1 + e2πi1(k+3)/M + e2πi2(k+3)/M + · · ·+ e2πi(M−1)(k+3)/M

=
1−(e2πi(k+3)/M)

M

1−e2πi(k+3)/M .

(24)

Therefore,

S(−i)(k) =
{

M, i f k = M− 3
0, otherwise

; k = 0, 1, · · · , M− 1 (25)

From Equations (19), (21), (23) and (25), Equation (16) can be written as

Wk =

{
Wk, f or k = 0, M− 3, M− 2, M− 1
0, f or k = 1, 2, · · · , M− 4.

(26)

Thus, Equation (8) is expressed as

Fα = 1
M (W0, W1, · · · , WM−1)


e(−2πiα0/M)

e(−2πiα1/M)

...
e(−2πiα(M−1)/M)



= 1
M (W0, 0, · · · , 0, WM−3, WM−2, WM−1)


e(−2πiα0/M)

e(−2πiα1/M)

...
e(−2πiα(M−1)/M)


= 1

M

(
W0e(−2πiα0/M) + WM−3e(−2πiα(M−3)/M) + WM−2e(−2πiα(M−2)/M) + WM−1e(−2πiα(M−1)/M)

)
.

(27)

�

Remark 1. From Equation (27), it is not difficult to find that when I, Fb, F2b, . . . , F(M−1)b are
eigendecomposition-type FRFTs, there are only four effective weighting terms defined by
Yeh and Pei.

3.2. Weighted Type FRFT

Proposition 2. Weighted type FRFT is used as the basis function, there are only four effective
weighting terms for the definition of Yeh and Pei.

Proof. In ref. [20], I, Fb, F2b, . . . , F(M−1)b (b = 4/M) are the DFRFTs, which can be
explained as shown in Figure 1. Therefore, the definition of Yeh and Pei is more accurate
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as the generalized form of Shih’s FRFT [13]. For Equation (7), we introduce the weighted
fractional Fourier transform (WFRFT).
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Shih proposed the WFRFT [13]. Shih’s WFRFT with a period of 4 is also called the
4-weighted type fractional Fourier transform (4-WFRFT), which is defined as

Fα
4 [ f (t)] =

3

∑
l=0

Aα
l fl(t), (28)

with

Aα
l = cos

(
(α− l)π

4

)
cos
(

2(α− l)π
4

)
exp

(
3(α− l)iπ

4

)
, (29)

where fl(t) = Fl [ f (t)] and l = 0, 1, 2, 3 (F denotes the Fourier transform). Equation (29) can
also be expressed as

Fα
4 [ f (t)] =

(
Aα

0 · I + Aα
1 · F + Aα

2 · F2 + Aα
3 · F3) f (t)

=
(

I, F, F2, F3)


Aα
0

Aα
1

Aα
2

Aα
3

 f (t).
(30)

According to the definition of the weighting coefficient Aα
l [13], Equation (30) can be

expressed as

Fα
4 [ f (t)] =

1
4

(
I, F, F2, F3

)
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




Bα
0

Bα
1

Bα
2

Bα
3

 f (t), (31)

where Bα
k = exp

(
2πikα

4

)
and k = 0, 1, 2, 3. Here, we let


P0 = I + F + F2 + F3

P1 = I − F ∗ i− F2 + F3 ∗ i
P2 = I − F + F2 − F3

P3 = I + F ∗ i− F2 − F3 ∗ i.

(32)

Therefore, Shih’s WFRFT can be represented as

Fα
4 [ f (t)] =

1
4
(P0, P1, P2, P3)


Bα

0
Bα

1
Bα

2
Bα

3

 f (t). (33)

From Equations (7) and (33), we can obtain



Mathematics 2021, 9, 2073 7 of 20

Wk = w0×k × F0
4 + w1×k × F

4
M

4 + · · ·+ w(M−1)×k × F
4(M−1)

M
4

= 1
4 (P0, P1, P2, P3)

w0×k ×


B0

0
B0

1
B0

2
B0

3

+ w1×k ×


B

4
M
0

B
4
M
1

B
4
M
2

B
4
M
3

+ · · ·+ w(M−1)×k ×


B

4(M−1)
M

0

B
4(M−1)

M
1

B
4(M−1)

M
2

B
4(M−1)

M
3





= 1
4 (P0, P1, P2, P3)


w0×k × B0

0 + w1×k × B
4
M
0 + · · ·+ w(M−1)×k × B

4(M−1)
M

0

w0×k × B0
1 + w1×k × B

4
M
1 + · · ·+ w(M−1)×k × B

4(M−1)
M

1

w0×k × B0
2 + w1×k × B

4
M
2 + · · ·+ w(M−1)×k × B

4(M−1)
M

2

w0×k × B0
3 + w1×k × B

4
M
3 + · · ·+ w(M−1)×k × B

4(M−1)
M

3

,

(34)

where k = 0, 1, · · · , M− 1 and w = exp(2πi/M). Therefore, Equation (35) is obtained as

Wk = 1
4 (P0, P1, P2, P3)


1 + exp

(
2πi1k

M

)
+ exp

(
2πi2k

M

)
+ · · ·+ exp

(
2πi(M−1)k

M

)
1 + exp

(
2πi1(k+1)

M

)
+ exp

(
2πi2(k+1)

M

)
+ · · ·+ exp

(
2πi(M−1)(k+1)

M

)
1 + exp

(
2πi1(k+2)

M

)
+ exp

(
2πi2(k+2)

M

)
+ · · ·+ exp

(
2πi(M−1)(k+2)

M

)
1 + exp

(
2πi1(k+3)

M

)
+ exp

(
2πi2(k+3)

M

)
+ · · ·+ exp

(
2πi(M−1)(k+3)

M

)


= 1

4 (P0, P1, P2, P3)


J0(k)
J1(k)
J2(k)
J3(k)

.

(35)

According to Equations (18), (20), (22) and (24), for k = 0, 1, · · · , M − 1, we can
easily determine

J0(k) =
{

M, i f k = 0
0, otherwise

(36)

J1(k) =
{

M, i f k = M− 1
0, otherwise

(37)

J2(k) =
{

M, i f k = M− 2
0, otherwise

(38)

and

J3(k) =
{

M, i f k = M− 3
0, otherwise

(39)

Thus, Equation (35) is simplified as

Wk =

{ M
4 Pk, f or k = 0, M− 3, M− 2, M− 1

0, f or k = 1, 2, · · · , M− 4.
(40)

Therefore, Equation (8) can be expressed as
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Fα = 1
M (W0, W1, · · · , WM−1)


e(−2πiα0/M)

e(−2πiα1/M)

...
e(−2πiα(M−1)/M)



= 1
4 (P0, 0, · · · , 0, PM−3, PM−2, PM−1)


e(−2πiα0/M)

e(−2πiα1/M)

...
e(−2πiα(M−1)/M)


= 1

4

(
P0e(−2πiα0/M) + PM−3e(−2πiα(M−3)/M) + PM−2e(−2πiα(M−2)/M) + PM−1e(−2πiα(M−1)/M)

)
.

(41)

From Equation (41), the result shows once again that there are only four effective
weighted terms for the definition of Yeh and Pei.

�

Remark 2. From Equation (41), the result shows once again that there are only four effective
weighted terms for the definition of Yeh and Pei.

4. Theoretical Analysis of the Definition of Tao et al.

Tao et al. proposed the definition of the fractional power of the periodic matrix, which
can be expressed as

Lα =
M−1

∑
n=0

Cn,α/bLnb, (42)

where b = P/M (P is the period of the matrix). Then,

Cn,α/b = IDFT
[
e(−2πi(α/b)k/M)

]
k=0,1,2,······ ,M−1

(43)

Therefore, Equation (42) can be expressed as

Lα =
M−1
∑

n=0
Cn,α/bLnP/M

=
(

L0, LP/M, · · · , LP(M−1)/M
)

C0,α/b
C1,α/b

...
CM−1,α/b



= 1
M

(
L0, LP/M, · · · , LP(M−1)/M

)


w0×0 w0×1 · · · w0×(M−1)

w1×0 w1×1 · · · w1×(M−1)

...
...

. . .
...

w(M−1)×0 w(M−1)×1 · · · w(M−1)×(M−1)




e(−2πi(α/b)0/M)

e(−2πi(α/b)1/M)

...
e(−2πi(α/b)(M−1)/M)

.

(44)

Here, we let

G0 = w0×0L0 + w1×0L
P
M + · · ·+ w(M−1)×0L

P(M−1)
M

G1 = w0×1L0 + w1×1L
P
M + · · ·+ w(M−1)×1L

P(M−1)
M

G2 = w0×2L0 + w1×2L
P
M + · · ·+ w(M−1)×2L

P(M−1)
M

...

GM−1 = w0×(M−1)L0 + w1×(M−1)L
P
M + · · ·+ w(M−1)×(M−1)L

P(M−1)
M

(45)
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Definition 2. A new reformulation of the definition of Tao et al.

Lα = 1
M (G0, G1, · · · , GM−1)


e(−2πi(α/b)0/M)

e(−2πi(α/b)1/M)

...
e(−2πi(α/b)(M−1)/M)


= 1

M

M−1
∑

k=0
Gke−2πi(α/b)k/M.

(46)

We know that Tao et al. define the fractional power of the periodic matrix. Next, we
will analyze the DFT and the discrete Hartley transform as examples.

4.1. DFT as Periodic Matrix

Proposition 3. DFT is used as the periodic matrix, there are only four effective weighting terms
for the definition of Tao et al.

Proof. The calculation of the fractional power of the matrix is applied to the eigenvalues,
so eigenvalue decomposition of the matrix is required. Therefore, the eigendecomposition
of the matrix can be expressed as

F = VDVH , (47)

where F is the matrix of the DFT, V is the eigenvector, and D is the eigenvalue.
In refs. [23,24], the eigenvalues of the DFT can be expressed as λn = enπi/2. Then, the

possible values of the eigenvalue are λr = {1,−1, i,−i} and r = 1, 2, · · · , n. In this way,
the eigenvalue matrix D can be expressed as

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

. (48)

Then, the fractional power operation of matrix F can be expressed as

F4l/M = VD4l/MVH . (49)

For L = F, Equation (45) can be expressed as

Gk = w0×k I + w1×k × F
4
M + · · ·+ w(M−1)×k × F

4(M−1)
M

= w0×kVD0VH + w1×kVD4/MVH + · · ·+ w(M−1)×kVD4(M−1)/MVH .
(50)

Therefore, we can obtain

Gk = V
(

w0×k × D0 + w1×k × D4/M + · · ·+ w(M−1)×k × D4(M−1)/M
)

VH

= V



w0×k λ0
1 + w1×k λ4/M

1 + · · ·+ w(M−1)×k λ
4(M−1)/M
1 0 · · · 0

0 w0×k λ0
2 + w1×k λ4/M

2 + · · ·+ w(M−1)×k λ
4(M−1)/M
2 · · · 0

.

.

.

.

.

.
. . .

.

.

.

0 0 · · · w0×k λ0
n + w1×k λ4/M

n + · · ·+ w(M−1)×k λ
4(M−1)/M
n


VH .

(51)

Here, let
Q1(k) = w0×kλ0

1 + w1×kλ4/M
1 + · · ·+ w(M−1)×kλ

4(M−1)/M
1

Q2(k) = w0×kλ0
2 + w1×kλ4/M

2 + · · ·+ w(M−1)×kλ
4(M−1)/M
2

...
Qn(k) = w0×kλ0

n + w1×kλ4/M
n + · · ·+ w(M−1)×kλ

4(M−1)/M
n .

(52)
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Then, Equation (51) can be expressed as

Gk = V


Q1(k) 0 · · · 0

0 Q2(k) · · · 0
...

...
. . .

...
0 0 0 Qn(k)

VH . (53)

The multiplicities of the DFT eigenvalues are shown in Table 1. Therefore, from
Equation (17), we obtain

λr = {1, i,−1,−i}
=
{

e0πi/2, eπi/2, e2πi/2, e3πi/2
}

.
(54)

For the sake of simplicity, Equation (52) can be expressed as

Qr(k) = w0×kλ0
r + w1×kλ4/M

r + · · ·+ w(M−1)×kλ
4(M−1)/M
r ; (55)

r = 1, 2, · · · , n.

When the eigenvalues λr = e0πi/2 = 1 and w = e2πi/M, Q(1)
r (k) can be expressed

using Equation (55) as

Q(1)
r (k) = w0×kλ0

r + w1×kλ4/M
r + · · ·+ w(M−1)×kλ

4(M−1)/M
r

= 1 + e2πi1k/M + e2πi2k/M + · · ·+ e2πi(M−1)k/M

=
1−(e2πik/M)

M

1−e2πik/M .

(56)

Therefore, we obtain

Q(1)
r (k) =

{
M, i f k = 0
0, otherwise

; k = 0, 1, · · · , M− 1 (57)

When the eigenvalue λr = eπi/2 = i, Q(i)
r (k), can be expressed using Equation (55) as

Q(i)
r (k) = w0×kλ0

r + w1×kλ4/M
r + · · ·+ w(M−1)×kλ

4(M−1)/M
r

= 1 + e2πi1(k+1)/M + e2πi2(k+1)/M + · · ·+ e2πi(M−1)(k+1)/M

=
1−(e2πi(k+1)/M)

M

1−e2πi(k+1)/M .

(58)

Therefore,

Q(i)
r (k) =

{
M, i f k = M− 1
0, otherwise

; k = 0, 1, · · · , M− 1 (59)

When the eigenvalue λr = e2πi/2 = −1, Q(−1)
r (k) can be expressed using Equation (55) as

Q(−1)
r (k) = w0×kλ0

r + w1×kλ4/M
r + · · ·+ w(M−1)×kλ

4(M−1)/M
r

= 1 + e2πi1(k+2)/M + e2πi2(k+2)/M + · · ·+ e2πi(M−1)(k+2)/M

=
1−(e2πi(k+2)/M)

M

1−e2πi(k+2)/M .

(60)

Then, we can obtain

Q(−1)
r (k) =

{
M, i f k = M− 2
0, otherwise

; k = 0, 1, · · · , M− 1 (61)
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When the eigenvalue λr = e3πi/2 = −i, Q(−i)
r (k) can be expressed using Equation (55) as

Q(−i)
r (k) = w0×kλ0

r + w1×kλ4/M
r + · · ·+ w(M−1)×kλ

4(M−1)/M
r

= 1 + e2πi1(k+3)/M + e2πi2(k+3)/M + · · ·+ e2πi(M−1)(k+3)/M

=
1−(e2πi(k+3)/M)

M

1−e2πi(k+3)/M .

(62)

Therefore,

Q(−i)
r (k) =

{
M, i f k = M− 3
0, otherwise

; k = 0, 1, · · · , M− 1 (63)

Using Equations (57), (59), (61) and (63), we can formulate Equation (45) as

Gk =

{
Gk, f or k = 0, M− 3, M− 2, M− 1
0, f or k = 1, 2, · · · , M− 4.

(64)

In this way, the definition of Tao et al. can be expressed as

Lα = 1
M (G0, G1, · · · , GM−1)


e(−2πi(α/b)0/M)

e(−2πi(α/b)1/M)

...
e(−2πi(α/b)(M−1)/M)



= 1
M (G0, G1, · · · , GM−1)


e(−2πi(α/b)0/M)

e(−2πi(α/b)1/M)

...
e(−2πi(α/b)(M−1)/M)



= 1
M (G0, 0, · · · , 0, GM−3, GM−2, GM−1)


e(−2πi(α/b)0/M)

e(−2πi(α/b)1/M)

...
e(−2πi(α/b)(M−1)/M)


= 1

M

(
G0e(−2πi(α/b)0/M) + GM−3e(−2πi(α/b)(M−3)/M) + GM−2e(−2πi(α/b)(M−2)/M) + GM−1e(−2πi(α/b)(M−1)/M)

)
.

(65)

�

Remark 3. The DFT matrix has a period of 4, and the definition of Tao et al. has only four effective
weighting terms, as shown in Equation (65).

4.2. Discrete Hartley Transform as Periodic Matrix

Proposition 4. Discrete Hartley transform is used as the periodic matrix, there are only four
effective weighting terms for the definition of Tao et al.

Proof. We use the discrete Hartley transform as an example to verify the definition of Tao
et al. The discrete Hartley transform [25] can be expressed as

H =
1√
N

[
cos
(

2πmn
N

)
+ sin

(
2πmn

N

)]
. (66)

The Hartley matrix has a period of 2, L = H and Equation (45) can be expressed as

Gk = w0×kL0 + w1×kL
P
M + · · ·+ w(M−1)×kL

P(M−1)
M

= w0×k H0 + w1×k H
2
M + · · ·+ w(M−1)×k H

2(M−1)
M .

(67)
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where k = 0, 1, · · · , M − 1 and w = exp(2πi/M). The fractional power of the Hartley
matrix can be expressed as

H2l/M = VD2l/MVH , (68)

where l = 0, 1, · · · , M− 1; D is the eigenvalue matrix and V is the eigenvector. Therefore,
Equation (67) can be expressed as

Gk = V
(

w0×k × D0 + w1×k × D2/M + · · ·+ w(M−1)×k × D2(M−1)/M
)

VH

= V



w0×k λ0
1 + w1×k λ2/M

1 + · · ·+ w(M−1)×k λ
2(M−1)/M
1 0 · · · 0

0 w0×k λ0
2 + w1×k λ2/M

2 + · · ·+ w(M−1)×k λ
2(M−1)/M
2 · · · 0

.

.

.

.

.

.
. . .

.

.

.

0 0 · · · w0×k λ0
n + w1×k λ2/M

n + · · ·+ w(M−1)×k λ
2(M−1)/M
n


VH .

(69)

The eigenvalues of the Hartley matrix are {1, −1} [25], and the weighted sum of the
diagonal matrix of Equation (69) can be expressed as

E(1)(k) = w0×k(1)0 + w1×k(1)2/M + · · ·+ w(M−1)×k(1)2(M−1)/M, (70)

or
E(−1)(k) = w0×k(−1)0 + w1×k(−1)2/M + · · ·+ w(M−1)×k(−1)2(M−1)/M, (71)

where k = 0, 1, · · · , M− 1. From Equation (70), we can obtain

E(1)(k) =
{

M, i f k = 0
0, otherwise

(72)

and from Equation (71), we can obtain

E(−1)(k) =
{

M, i f k = M− 1
0, otherwise

(73)

Then, Equation (67) is determined as

Gk =

{
Gk, f or k = 0, M− 1
0, f or k = 1, 2, 3, · · · , M− 2.

(74)

From Equation (46), the definition of Tao et al. can be expressed as

Lα = 1
M (G0, G1, · · · , GM−1)


e(−2πi(α/b)0/M)

e(−2πi(α/b)1/M)

...
e(−2πi(α/b)(M−1)/M)



= 1
M (G0, 0, · · · , 0, GM−1)


e(−2πi(α/b)0/M)

e(−2πi(α/b)1/M)

...
e(−2πi(α/b)(M−1)/M)


= 1

M

(
G0e(−2πi(α/b)0/M) + GM−1e(−2πi(α/b)(M−1)/M)

)
.

(75)

�

Remark 4. The Hartley matrix has a period of 2, so there are only two effective weighted terms
for the definition of Tao et al. Therefore, from Equations (65) and (75), we judge that the effective
weighting term defined by Tao et al. is related to the period of the matrix. In Section 5, we will prove
and explain the security risk of key invalidation when this definition is applied to image encryption.
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5. Discussion
5.1. Effective Weighted Terms Analysis

The definition of Tao et al. is the general form of the definition of Yeh et al. Tao et al.
proposed that the fractional power of any periodic diagonalizable matrix can be expressed
as Equation (42). However, our analysis in Section 4 shows that some weighting terms
defined by Tao et al. are invalid, such as the weighted sum of the fractional powers of the
DFT, which has only four effective weighted terms from Equation (65). We use the fractional
power of the discrete Hartley transform to verify that the effective weighting terms are
only two terms from Equation (75). Therefore, we judge that the effective weighting terms
in the definition of Tao et al. are related to the period of the matrix.

Theorem 1. The effective weighting terms of the Weighted fractional-order transform depend on
the period of the matrix.

Assumption 1. The N × Nmatrix L is a periodic matrix satisfying LP = I and its eigendecompo-
sition form be L = VDVH .

Assumption 2. The eigenvalues of the periodic matrix L satisfy λP = 1, and these P eigenvalues
can be expressed as λ =

{
e2πi0/P, e2πi1/P, · · · , e2πi(P−1)/P

}
.

Proof. The eigenvalue can be expressed as

λh = e2πih/P, (76)

where h = 0, 1, · · · , P− 1. Therefore, Equation (45) can be expressed as

Gk = w0×kL0 + w1×k × L
P
M + · · ·+ w(M−1)×k × L

P(M−1)
M

= w0×kVD0VH + w1×kVDP/MVH + · · ·+ w(M−1)×kVDP(M−1)/MVH .
(77)

Equation (77) can be further expressed as

Gk = V
(

w0×k × D0 + w1×k × DP/M + · · ·+ w(M−1)×k × DP(M−1)/M
)

VH

= V



w0×k λ0
1 + w1×k λP/M

1 + · · ·+ w(M−1)×k λ
P(M−1)/M
1 0 · · · 0

0 w0×k λ0
2 + w1×k λP/M

2 + · · ·+ w(M−1)×k λ
P(M−1)/M
2 · · · 0

.

.

.

.

.

.
. . .

.

.

.

0 0 · · · w0×k λ0
n + w1×k λP/M

n + · · ·+ w(M−1)×k λ
P(M−1)/M
n


VH .

(78)

where the eigenvalues λn ∈
{

e2πi0/P, e2πi1/P, · · · , e2πi(P−1)/P
}

. Therefore, the weighted
sum of the diagonal matrix in Equation (77) can be expressed as

Dh(k) = w0×kλ0
h + w1×kλP/M

h + · · ·+ w(M−1)×kλ
P(M−1)/M
h , (79)

where λh = e2πih/P with h = 0, 1, · · · , P− 1. Then, we obtain

Dh(k) =
M−1
∑

l=0
wlkλPl/M

h

=
M−1
∑

l=0
e2πilk/Me2πilh/M

=
M−1
∑

l=0
e2πil(k+h)/M,

(80)

where k = 0, 1, · · · , M− 1. For P < M, Equation (80) can be written as

Dh(k) =
{

M, f or k ≡ (M− h)modM
0, f or k ≡ (M− h)modM

(81)
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Then, Equation (77) is expressed as

Gk =

{
Gk, i f k = 0, M− P + 1, M− P + 2, · · · , M− 1
0, otherwise

(82)

�

Remark 5. Equation (46) has only P effective weighting terms. Therefore, the effective weighting
terms depend on the period of the matrix. This explains our analysis in Sections 4.1 and 4.2. Since
the DFT has a period of 4, it explains that there are only four effective weighting terms in Section 3.

5.2. Security Analysis

Kang et al. extended the definitions of Yeh et al. and Tao et al., and proposed a unified
framework for multiple-parameter discrete fractional-order transforms (MPDFRT) [22].
This undoubtedly provides ideas for the further application of the weighted fractional-order
transform based on the periodic matrix, especially for the security of image encryption [26].
However, with the help of our research in Section 5.1, the results indicate that the theoretical
framework of Kang et al. cannot provide better security.

Therefore, we refer to the theoretical framework of II MPDFRT, and assume that L is a
periodic matrix satisfying LP = I and the type II MPDFRT operator is defined as

Lα
II =

M−1

∑
n=0

Cn,α/bLnb, (83)

where b = P/M. In Equation (83), the vector parameter α = {α0, α1, · · · , αN−1}; if α0 =
α1 = · · · = αN−1 = α, then Equation (42) is obtained. It is not difficult to find that the
definition of Kang et al. is an extended form of the definition of Tao et al., and its weighted
term Cn,α/b can be expressed as

Cn,α/b = 1
M

1−e2πi(n−α/b)

1−e(2πi/M)(n−α/b)

= IDFT
[
e(−2πi(αk/b)k/M)

]
k=0,1,2,······ ,M−1

(84)

where n = 0, 1, 2, · · · , M− 1. Equation (84) can be further expressed as
C0,α/b
C1,α/b

...
CM−1,α/b

 =
1
M


w0×0 w0×1 · · · w0×(M−1)

w1×0 w1×1 · · · w1×(M−1)

...
...

. . .
...

w(M−1)×0 w(M−1)×1 · · · w(M−1)×(M−1)




e(−2πi(α0/b)0/M)

e(−2πi(α1/b)1/M)

...
e(−2πi(αM−1/b)(M−1)/M)

. (85)

where w = exp(2πi/M). Thus, Equation (83) can be expressed as

Lα
II =

M−1
∑

n=0
Cn,α/bLnP/M

=
(

L0, LP/M, · · · , LP(M−1)/M
)

C0,α/b
C1,α/b

...
CM−1,α/b



= 1
M

(
L0, LP/M, · · · , LP(M−1)/M

)


w0×0 w0×1 · · · w0×(M−1)

w1×0 w1×1 · · · w1×(M−1)

...
...

. . .
...

w(M−1)×0 w(M−1)×1 · · · w(M−1)×(M−1)




e(−2πi(α0/b)0/M)

e(−2πi(α1/b)1/M)

...
e(−2πi(αM−1/b)(M−1)/M)

.

(86)
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From Equation (45), we can obtain

Gk = w0×kL0 + w1×kL
P
M + · · ·+ w(M−1)×kL

P(M−1)
M . (87)

where k = 0, 1, · · · , M− 1.

Definition 3. A new reformulation of the definition of Kang et al.

Lα
II = 1

M (G0, G1, · · · , GM−1)


e(−2πi(α0/b)0/M)

e(−2πi(α1/b)1/M)

...
e(−2πi(αM−1/b)(M−1)/M)


= 1

M

M−1
∑

k=0
Gke−2πi(αk/b)k/M.

(88)

where Gk is the same as Equation (82). Thus, Equation (88) has only P effective weighting terms.
Because b = P/M, Equation (88) can be further expressed as

Lα
II = 1

M

M−1
∑

k=0
Gke−2πiαkk/P

= 1
M

M−1
∑

k=0
GkXk.

(89)

where Xk = e−2πiαkk/P.

The theoretical framework of II MPDFRT is proposed in [22]; these transforms include
multiple-parameter discrete fractional-order Fourier transforms (MPDFRFT), multiple-
parameter discrete fractional-order cosine transforms (MPDFRCT), multiple-parameter dis-
crete fractional-order sine transforms (MPDFRST), multiple-parameter discrete fractional-
order Hartley transforms (MPDFRHT), and multiple-parameter discrete fractional-order
Hadamard transforms (MPDFRHaT). In our study, these definitions can be easily defined
by Equation (89).

(a) MPDFRFT

The MPDFRFT is proposed in Ref. [22]. According to our reformulation process, the
MPDFRFT can be redefined. Here, L = F (F denotes the Fourier matrix, and F4 = I), and
period P = 4, we let

Xk = exp[−j(π/2)αkk]. (90)

Therefore, the MPDFRFT is redefined as

Fα =
1
M

M−1

∑
k=0

GF
k Xk. (91)

For Equation (87), when L = F, GF
k is obtained.

(b) MPDFRCT

The MPDFRCT is proposed in ref. [22]. Ref. [27] presents four types of discrete cosine

transform (DCT) kernel matrices, where the DCT-I (CI
N =

√
2

N−1
[
kmkn cos

(mnπ
N−1

)]
) kernel

is a symmetric-structured periodic matrix with period 2. Here m, n = 0, 1, · · · , N − 1, and
km and kn are defined as

km =

{
1√
2
, m = 0 and m = N

1, other.
, (92)
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we let
Xk = exp(−jπαkk). (93)

Then, the MPDFRCT is redefined:

Cα =
1
M

M−1

∑
k=0

GC
k Xk. (94)

For Equation (87), when L = CI
N , GC

k is obtained.

(c) MPDFRST

Like the DCT, the discrete sine transform (DST) has four definitions [27]. The DST-I

(SI
N =

√
2

N+1
[
sin
(mnπ

N+1
)]

) kernel is a symmetric-structured periodic matrix with period

2. Therefore, L = SI
N with period 2. Xk is the same as Equation (93), so the MPDFRST is

redefined as

Sα =
1
M

M−1

∑
k=0

GS
k Xk. (95)

For Equation (87), when L = SI
N , GS

k is obtained.

(d) MPDFRHT

MPDFRHT is defined in ref. [22], where the discrete Hartley transform (DHT) [25] is

H =
1√
N

[
cos
(

2πmn
N

)
+ sin

(
2πmn

N

)]
. (96)

Here, L = H with period 2. Here, Xk is the same as Equation (93), and the MPDFRHT
is redefined as

Hα =
1
M

M−1

∑
k=0

GH
k Xk. (97)

For Equation (87), when L = H, GH
k is obtained.

(e) MPDFRHaT

A Hadamard matrix is a symmetric matrix whose elements are the real numbers 1
and −1. The rows (and columns) of a Hadamard matrix are mutually orthogonal [28]. The
normalized Hadamard matrices of order 2n, denoted by Han, can be defined recursively:

Ha1 =
1√
2

[
1 1
1 −1

]
, Han+1 =

1√
2

[
Han Han
Han Han

]
; n ≥ 1 (98)

We make L = Han with period 2, and Xk is the same as Equation (93), therefore the
MPDFRHaT is redefined:

Haα =
1
N

N−1

∑
k=0

GHa
k Xk. (99)

For Equation (87), when L = Ha, GHa
k is obtained.

Remark 6. The transforms a–e involved here are proposed in [22]. However, definitions a–e
are easy to present with the help of our reformulation. In our new reformulation, the effec-
tive weighting terms depend on the period of the matrix. For example, the base matrix L = F
of MPDFRFT with period 4, so there are only four effective weighting terms. The parameter
α = (α0, α1, · · · , αM−1) is the main key of the system. From Equation (91), it is not difficult to find
that the valid keys are only (α0, αM−3, αM−2, αM−1). Furthermore, when k = 0, α0 is also invalid,
and only (αM−3, αM−2, αM−1) are valid. MPDFRCT, MPDFRST, MPDFRHT and MPDFRHaT
have the base matrix with period 2, which has only two effective weighting terms. It is not difficult
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to find that the valid keys are only (α0, αM−1). Furthermore, when k = 0, α0 is also invalid, and
only αM−1 are valid.

Therefore, we take MPDFRHaT as an example for numerical verification analysis,
and the code is shown in the Appendix A. M is a positive integer greater than or equal
to 4. For example, if M = 6, there are 6 weighting terms and the vector parameters
α = (α0, α1, · · · , α5). The size of the image is selected as 256 × 256, so N = 256.

The image encryption/decryption based on MPDFRHaT is shown in Figure 2, and
Figure 2a is the original image (plaintext). We set the encryption keys as:

(M; α0, α1, α2, α3, α4, α5) =
(

6;
√

31,
√

5,
√

13,
√

33,
√

27,
√

2
)

the encrypted image (ciphertext) is shown in Figure 2b, and the plaintext is encrypted into
a noise image. Therefore, the decryption keys are

(M;−α0,−α1,−α2,−α3,−α4,−α5) =
(

6;−
√

31,−
√

5,−
√

13,−
√

33,−
√

27,−
√

2
)

the decrypted image is shown in Figure 2c. The image is restored losslessly, because
decryption process is equivalent to the inverse transformation of MPDFRHaT. To verify
the validity of the keys, the wrong decryption keys are selected,

(M;−α0,−α1,−α2,−α3,−α4,−α5) =
(

6;−
√

8,−
√

28,−
√

33,−
√

17,−
√

10,−
√

2
)

where the keys α0, α1, α2, α3 and α4 are wrong. The decrypted result is shown in Figure 2d,
and the original image is well restored. This verifies our above analysis results. Because the
weighted terms with the keys (α0, α1, α2, α3 and α4) are invalid, these keys are also invalid.
This shows that the keys (α0, α1, α2, α3 and α4) have no effect on the encryption/decryption
process, regardless of the value. The wrong decryption key is selected again,

(M;−α0,−α1,−α2,−α3,−α4,−α5) =
(

6;−
√

31,−
√

5,−
√

13,−
√

33,−
√

27,−
√

11
)

where the key α5 is wrong. The decryption result is shown in Figure 2e, and no information
about the original image is obtained. This indicates that the key α5 is valid.

A numerical simulation also verified that many keys are invalid for the image en-
cryption based on MPDFRHaT, which again supports our hypothesis. This security risk
comes from the periodicity of the basis matrix. Strictly speaking, the period of the matrix
determines the number of weighted terms of the weighted fractional-order transform. This
discovery provides an important reference for future research.



Mathematics 2021, 9, 2073 18 of 20

Mathematics 2021, 9, x FOR PEER REVIEW 19 of 22 
 

 

( ) ( )0 1 2 3 4 5; , , , , , = 6; , , , , , 28 28 33 17 10M α α α α α α− − − − − − − − − − − −  

where the keys 0α , 1α , 2α , 3α and 4α  are wrong. The decrypted result is shown in Figure 
2d, and the original image is well restored. This verifies our above analysis results. 
Because the weighted terms with the keys ( 0α , 1α , 2α , 3α and 4α ) are invalid, these keys 
are also invalid. This shows that the keys ( 0α , 1α , 2α , 3α and 4α ) have no effect on the 
encryption/decryption process, regardless of the value. The wrong decryption key is 
selected again, 

( ) ( )0 1 2 3 4 5; , , , , , = 16; 31, 5, 13, 33, 27 1,M α α α α α α− − − − − − − − − − − −  

where the key 5α is wrong. The decryption result is shown in Figure 2e, and no 
information about the original image is obtained. This indicates that the key 5α is valid. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 2. Encryption/decryption based on the MPDFRHaT: (a) plaintext, (b) ciphertext, (c) 
decrypted image with the correct keys, (d) decrypted image with the wrong keys ( 0α , 1α , 2α , 3α  

and 4α ), (e) decrypted image with the wrong key 5α . 

A numerical simulation also verified that many keys are invalid for the image 
encryption based on MPDFRHaT, which again supports our hypothesis. This security risk 
comes from the periodicity of the basis matrix. Strictly speaking, the period of the matrix 
determines the number of weighted terms of the weighted fractional-order transform. 
This discovery provides an important reference for future research. 

6. Conclusions 
In this paper, we propose a reformulation of the definition of Yeh et al., and the 

eigendecomposition type FRFT and the weighted type FRFT are verified. The results show 
that there are only four effective weighting terms. Furthermore, we determine that the 

Figure 2. Encryption/decryption based on the MPDFRHaT: (a) plaintext, (b) ciphertext, (c) decrypted
image with the correct keys, (d) decrypted image with the wrong keys (α0, α1, α2, α3 and α4),
(e) decrypted image with the wrong key α5.

6. Conclusions

In this paper, we propose a reformulation of the definition of Yeh et al., and the
eigendecomposition type FRFT and the weighted type FRFT are verified. The results
show that there are only four effective weighting terms. Furthermore, we determine that
the definition of Tao et al. is an extended definition for that of Yeh et al., and propose a
reformulation of the former. The fractional power of the DFT and the fractional power
of the discrete Hartley transform are verified, and the results show that the effective
weighting terms are defined as four terms and two terms, respectively. We perform a
further analysis, and the results show that the effective weighting terms depend on the
period of the matrix, which will lead to the security risk of key invalidation. Therefore, we
propose a reformulation of the unified framework for MPDFRT, and determine that many
keys are invalid for image encryption. Finally, we take MPDFRHaT as an example to verify
that there is only one valid key, with other keys being invalid. Our observations prove once
again that the effective weighting terms of the weighted fractional-order transform based
on the periodic matrix depend on the period of the matrix, which will lead to the security
risk of key invalidation for image encryption.
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Appendix A

MPDFRHaT_code

function F = FHa(alpha,M,N)
% This code is written by Tieyu Zhao, E-mail: zhaotieyu@neuq.edu.cn;
% alpha is the transform order;
% M is the resulting weighting term;
% N is the length of the signal;
Ha = hadamard(N)/(sqrt(N));
%This function handles only the cases where n,n/12,or n/20 is a power
% of 2.
for k = 0:M − 1
yy = Haˆ(2*k/M);

y{k + 1} = yy;
end
% celldisp(y);
u = zeros(M);
for k = 1:M

for h = 1:M
u(h,k) = exp(2*pi*i*(h − 1)*(k − 1)/M); % IDFT

end
end
for k = 1:M
YY = zeros(N);

for h = 1:M
YY = YY + u(h,k)*y{h};

end
G{k} = YY;

end
% celldisp(G)
X = zeros(1,M);
for k = 0:M − 1

X(k + 1) = X(k + 1) + exp(-pi*i*k*alpha(k + 1));
end
F = zeros(N);
for k = 0:M − 1

F = F + X(k + 1)*G{k + 1}/M; % MPDFRHaT
end

References
1. Almeida, L.B. The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 1994, 42, 3084–3091.

[CrossRef]
2. Namias, V. The fractional order Fourier transform and its application to quantum mechanics. IMA J. Appl. Math. 1980, 25, 241–265.

[CrossRef]
3. Ozaktas, H.M.; Kutay, M.A. The Fractional Fourier Transform; Wiley: Chichester, UK, 2001.
4. Mendlovic, D.; Ozaktas, H.M. Fractional Fourier transforms and their optical implementation: I. JOSA A 1993, 10, 1875–1881.

[CrossRef]
5. Ozaktas, H.M.; Mendlovic, D. Fractional Fourier transforms and their optical implementation: II. JOSA A 1993, 10, 2522–2531.

[CrossRef]
6. Bernardo, L.M.; Soares, O.D. Fractional Fourier transforms and optical systems. Opt. Commun. 1994, 110, 517–522. [CrossRef]
7. Ozaktas, H.M.; Kutay, M.A.; Mendlovic, D. Introduction to the fractional Fourier transform and its applications. Adv. Imaging

Electron. Phys. 1999, 106, 239–291.

http://doi.org/10.1109/78.330368
http://doi.org/10.1093/imamat/25.3.241
http://doi.org/10.1364/JOSAA.10.001875
http://doi.org/10.1364/JOSAA.10.002522
http://doi.org/10.1016/0030-4018(94)90242-9


Mathematics 2021, 9, 2073 20 of 20

8. Ozaktas, H.M.; Barshan, B.; Mendlovic, D.; Onural, L. Convolution, filtering, and multiplexing in fractional Fourier domains and
their relation to chirp and wavelet transforms. JOSA A 1994, 11, 547–559. [CrossRef]

9. Kutay, M.A.; Ozaktas, H.M.; Arikan, O.; Onural, L. Optimal filtering in fractional Fourier domains. IEEE Trans. Signal Process.
1997, 45, 1129–1143. [CrossRef]

10. Erden, M.F.; Kutay, M.A.; Ozaktas, H.M. Applications of the fractional Fourier transform to filtering, estimation and restora-
tion. In Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP’99), Antalya, Turkey,
20–23 June 1999; pp. 481–485.

11. Unnikrishnan, G.; Joseph, J.; Singh, K. Optical encryption by double-random phase encoding in the fractional Fourier domain.
Opt. Lett. 2000, 25, 887–889. [CrossRef]

12. Lohmann, A.W. Image rotation, Wigner rotation, and the fractional Fourier transform. JOSA A 1993, 10, 2181–2186. [CrossRef]
13. Shih, C.C. Fractionalization of Fourier-Transform. Opt. Commun. 1995, 118, 495–498. [CrossRef]
14. Santhanam, B.; McClellan, J.H. The discrete rotational Fourier transform. IEEE Trans. Signal Process. 1996, 44, 994–998. [CrossRef]
15. Pei, S.C.; Yeh, M.H.; Tseng, C.C. Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans. Signal Process.

1999, 47, 1335–1348.
16. Candan, C.; Kutay, M.A.; Ozaktas, H.M. The discrete fractional Fourier transform. IEEE Trans. Signal Process. 2000, 48, 1329–1337.

[CrossRef]
17. Ozaktas, H.M.; Ankan, O.; Kutay, M.A.; Bozdagi, G. Digital computation of the fractional Fourier transform. IEEE Trans. Signal

Process. 1996, 44, 2141–2150. [CrossRef]
18. Erseghe, T.; Kraniauskas, P.; Cariolaro, G. Unified fractional Fourier transform and sampling theorem. IEEE Trans. Signal Process.

1999, 47, 3419–3423. [CrossRef]
19. Kraniauskas, P.; Cariolaro, G.; Erseghe, T. Method for defining a class of fractional operations. IEEE Trans. Signal Process. 1998,

46, 2804–2807. [CrossRef]
20. Yeh, M.-H.; Pei, S.-C. A method for the discrete fractional Fourier transform computation. IEEE Trans. Signal Process. 2003,

51, 889–891.
21. Tao, R.; Zhang, F.; Wang, Y. Linear Summation of Fractional-Order Matrices. IEEE Trans. Signal Process. 2010, 58, 3912–3916.

[CrossRef]
22. Kang, X.J.; Tao, R.; Zhang, F. Multiple-Parameter Discrete Fractional Transform and its Applications. IEEE Trans. Signal Process.

2016, 64, 3402–3417. [CrossRef]
23. McClellan, J.; Parks, T. Eigenvalue and eigenvector decomposition of the discrete Fourier transform. IEEE Trans. Audio

Electroacoustics. 1972, 20, 66–74. [CrossRef]
24. Dickinson, B.; Steiglitz, K. Eigenvectors and functions of the discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process.

1982, 30, 25–31. [CrossRef]
25. Pei, S.C.; Tseng, C.C.; Yeh, M.H.; Shyu, J.J. Discrete fractional Hartley and Fourier transforms. IEEE Trans. Circuits Syst. II Analog.

Digit. Signal Process. 1998, 45, 665–675.
26. Zhao, T.; Yuan, L.; Chi, Y. Image encryption using linear weighted fractional-order transform. J. Vis. Commun. Image Represent.

2021, 77, 103098. [CrossRef]
27. Pei, S.C.; Yeh, M.H. The discrete fractional cosine and sine transforms. IEEE Trans. Signal Process. 2001, 49, 1198–1207.
28. Pei, S.C.; Yeh, M.H. Discrete fractional Hadamard transform. In Proceedings of the 1999 IEEE International Symposium on

Circuits and Systems (ISCAS’99), Orlando, FL, USA, 30 May–2 June 1999; Volume 3, pp. 179–182.

http://doi.org/10.1364/JOSAA.11.000547
http://doi.org/10.1109/78.575688
http://doi.org/10.1364/OL.25.000887
http://doi.org/10.1364/JOSAA.10.002181
http://doi.org/10.1016/0030-4018(95)00268-D
http://doi.org/10.1109/78.492554
http://doi.org/10.1109/78.839980
http://doi.org/10.1109/78.536672
http://doi.org/10.1109/78.806089
http://doi.org/10.1109/78.720382
http://doi.org/10.1109/TSP.2010.2044288
http://doi.org/10.1109/TSP.2016.2544740
http://doi.org/10.1109/TAU.1972.1162342
http://doi.org/10.1109/TASSP.1982.1163843
http://doi.org/10.1016/j.jvcir.2021.103098

	Introduction 
	Preliminaries 
	Theoretical Analysis of the Definition of Yeh et al. 
	Eigendecomposition Type FRFT 
	Weighted Type FRFT 

	Theoretical Analysis of the Definition of Tao et al. 
	DFT as Periodic Matrix 
	Discrete Hartley Transform as Periodic Matrix 

	Discussion 
	Effective Weighted Terms Analysis 
	Security Analysis 

	Conclusions 
	
	References

