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Abstract: In this paper, new oscillation conditions for the 2nd-order noncanonical neutral differential
equation (a0(t)((u(t) + a1(t)u(g0(t)))′)β)′ + a2(t)uβ(g1(t)) = 0, where t ≥ t0, are established.
Using Riccati substitution and comparison with an equation of the first-order, we obtain criteria
that ensure the oscillation of the studied equation. Furthermore, we complement and improve the
previous results in the literature.
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1. Introduction

Consider the 2nd-order delay differential equation (DDE) of the neutral type:(
a0(t)

(
v′(t)

)β
)′

+ a2(t)uβ(g1(t)) = 0, (1)

where t ∈ [t0, ∞) and v(t) := u(t) + a1(t)u(g0(t)). In this paper, we obtain new sufficient
criteria for the oscillation of solutions of (1) under the following hypotheses:

(A1) β ≥ 1 is a ratio of odd integers;
(A2) ai ∈ C([t0, ∞), [0, ∞)) for i = 0, 1, 2, a0(t) > 0, a1 ≤ c0 a constant (this constant plays

an important role in the results), and a2 does not vanish identically on any half-line
[t∗, ∞) with t∗ ∈ [t0, ∞);

(A3) gj ∈ C([t0, ∞),R), gj(t) ≤ t, g′0(t) ≥ g∗0 > 0, g0 ◦ g1 = g1 ◦ g0, and limt→∞ gj(t) = ∞,
for j = 0, 1.

By a proper solution of (1), we mean a u ∈ C1([t0, ∞)) with a0 · (v′)β ∈ C1([t0, ∞))
and sup{|u(t)| : t ≥ t∗} > 0, for t∗ ∈ [t0, ∞),and u satisfies (1) on [t0, ∞). A solution u of
(1) is called nonoscillatory if it is eventually positive or eventually negative; otherwise, it is
called oscillatory.

A DDE is a single-variable differential equation, usually called time, in which the
derivative of the solution at a certain time is given in terms of the values of the solution at
earlier times. Moreover, if the highest-order derivative of the solution appears both with
and without delay, then the DDE is called of the neutral type.

The neutral DDEs have many interesting applications in various branches of applied
science, as these equations appear in the modeling of many technological phenomena;
see [1–4]. The problem of studying the oscillatory and nonoscillatory properties of DDEs
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has been a very active area of research in the past few decades, and many well-known and
interesting results can be found in Agarwal et al. [5] and Saker [6].

In this work, we study the oscillatory properties of solutions of second-order neutral
DDE (1) in the noncanonical case, that is:

η(t0) < ∞, (2)

where
η(t) :=

∫ ∞

t
a−1/β

0 (µ)dµ.

Although there are many works that have dealt with the study of the oscillation of this
type of equation, in this work, we present a new approach that provides us with improved
sufficient conditions for testing the oscillation of the studied equation. Contrary to the
previous results, which studied the noncanonical case, our results test the oscillation of (1)
when c0 ≥ 1 along with c0 < 1.

The paper is organized as follows: Section 2 is concerned with presenting a review of
the relevant literature. In Section 3, Section 3.1, we infer some qualitative properties of the
positive solutions of (1). In Section 3.2, we use the new properties to obtain improved oscil-
lation conditions. Finally, in Section 4, we summarize the main conclusions extracted from
our present work and discuss potential applications and future extensions of this study.

2. Literature Review

It is easy to note the continuing and growing interest in the study of the oscillatory
behavior of DDEs, and improved results, methods, and approaches can be found in [7–12].
In more detail, contrary to most previous results, Baculíková [7,8] attained the oscillation
of the second-order DDE (not neutral) in the noncanonical case (2) via only one condition.
While using an improved approach, Chatzarakis et al. [9] studied the oscillatory behavior
of the second-order noncanonical DDE with an advanced argument. On the other hand,
Jadlovská et al. [10] and Moaaz et al. [11,12] studied the oscillatory behavior of higher-order
equations.

For the neutral DDEs, in the following theorem, Ye and Xu [13] investigated the
oscillation of (1) in the noncanonical case (2).

Theorem 1. [13] Assume that c0 < 1,

∫ ∞

t0

(
Q(µ)ηβ(g1(µ))−

(β/(β + 1))β+1g′1(µ)

η(g1(µ))a1/β
0 (g1(µ))

)
dµ = ∞

and: ∫ ∞

t0

(
Q(µ)ηβ(µ)− (β/(β + 1))β+1a0(ϑ(µ))

η(µ)
(

g′1(µ)
)βa(β+1)/β

0 (µ)

)
dµ = ∞,

where Q(t) := a2(t)(1− a1(g1(t))). Then, (1) is oscillatory.

Later, in 2010, Han et al. [14] corrected and complemented some results in [13].

Theorem 2. [14] Assume that c0 < 1 and g1(t) ≤ g0(t) = t− τ0, τ0 > 0. If there is a function
θ ∈ C1([t0, ∞), (0, ∞)) such that:

lim sup
t→∞

∫ t

t0

(
Q(µ)θ(µ)−

(θ′+(µ))
β+1a0(g1(µ))

(β + 1)β+1(θ(µ)g′1(µ)
)β

)
dµ = ∞

and:

lim sup
t→∞

∫ t

t0

(
1

(1 + a1(µ))
β

a2(µ)η
β(µ)− (β/(β + 1))β+1

η(µ)a1/β
0 (µ)

)
dµ = ∞
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then (1) is oscillatory, where (θ′+(t) := max{θ′(t), 0}.

By using a generalized Riccati substitution, Agarwal et al. [15] improved the result
in [14].

Theorem 3. [15] (Theorem 2.2) Assume that a1(t) < η(t)/η(g0(t)) and there are functions
ρ, σ ∈ C1([t0, ∞), (0, ∞)) satisfying:

lim sup
t→∞

∫ t

t0

(
ρ(µ)Q(µ)− (ρ′(µ))β+1r(g1(µ))

(β + 1)β+1ρβ(µ)
(

g′1(µ)
)β

)
dµ = ∞

and:

lim sup
t→∞

∫ t

t0

(
ψ(µ)− σ(µ)r(µ)(ϕ+(µ))

β+1

(β + 1)β+1

)
dµ = ∞,

where:

ψ(t) := σ(t)

(
a2(t)

(
1− a1(g1(t))

η(g0(g1(t)))
η(g1(t))

)β

+
1− β

a1/β
0 (t)ηβ+1(t)

)

and:

ϕ(t) :=
σ′(t)
σ(t)

+
1 + β

a1/β
0 (t)η(t)

,

and ϕ+(t) := max{0, ϕ(t)}. Then, (1) is oscillatory.

In 2017, Bohner et al. [16] improved and simplified the result in [14,15]. They estab-
lished the oscillation criteria of (1) via only one condition.

Theorem 4. [16] If a1(t) < η(t)/η(g0(t)) and:

lim sup
t→∞

ηβ(t)
∫ t

t1

G(µ)dµ > 1,

then (1) is oscillatory, where:

G(t) := a2(t)
(

1− a1(g1(t))
η(g0(g1(t)))

η(g1(t))

)β

.

Theorem 5. [16] If a1(t) < η(t)/η(g0(t)) and:

lim inf
t→∞

∫ t

g1(t)
G̃(µ)dµ >

1
e

,

then (1) is oscillatory, where:

G̃(t) :=
(

1
a0(t)

∫ t

t0

G(µ)dµ

)1/β

.

On the other hand, in the canonical case:∫ ∞

t0

a−1/β
0 (µ)dµ = ∞,

Baculikova and Dzurina [17] obtained the oscillation conditions of (1). Very recently,
by using Riccati substitution, Moaaz et al. [18,19] improved the results in [17].
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Even though the establishment of the oscillation criteria for (1) in [13,14] and the
insertion of the nonstandard Riccati substitution in [15,16] constitute significant progress
in the subject of noncanonical neutral DDEs of second-order, the relationship between the
corresponding function with delay and without delay is used in the traditional form and
has not been improved, and none of these works took into account the case c0 ≥ 1.

The main goal of our present work is create a better estimate of the ratio (v ◦ g1)/v,
which contributes to improving the oscillation criteria of (1). Moreover, our results take
into account the case c0 ≥ 1, along with c0 < 1.

3. Main Results

We begin with the following notations: U+ is the set of all eventually positive solutions
of (1), V(t) := a1/β

0 (t)v′(t),

ã2(t) = min{a2(t), a2(g0(t))}

γ0 :=
21−β

c̃0β
, c̃0 := 1 +

cβ
0

g∗0
and:

ĉ0 := 1 +
cβ

0(
g∗0
)2

3.1. Auxiliary Lemmas

Below, we obtain some asymptotic properties of the positive solutions of (1). First,
from the definition of η and the fundamental theorem of calculus, we obtain that η(t) > 0
for t ≥ t0, η(t) = −a−1/β

0 (t) and limt→∞ η(t) = 0. Then, η is a decreasing function.

Lemma 1. Assume that v ∈ U+ and there exists a δ0 ∈ (0, 1) such that:

ã2(t)a1/β
0 (t)ηβ+1(t) ≥ δ0. (3)

Then, v eventually satisfies:

(C1) v is decreasing and converges to zero;

(C2) v(t) ≥ −η(t)V(t) and
v
η

is increasing,

and:

(C3) V′(t) +
cβ

0
g∗0

(V(g0(t)))
′ +

21−β

β
ηβ−1(t)ã2(t)v(g1(t)) ≤ 0.

Proof. Let u ∈ U+. Then, we have that u(t), u(g0(t)), and u(g1(t)) are positive for t ≥ t1,
for some t1 ≥ t0. Therefore, it follows from (1) that:

v(t) > 0 and
(

Vβ(t)
)′
≤ 0.
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Using (1) and Lemma 1 in [17], we see that:

0 =
(

Vβ(t)
)′

+
cβ

0
g′0(t)

(
Vβ(g0(t))

)′
+ a2(t)uβ(g1(t))

+cβ
0 a2(g0(t))uβ(g1(g0(t)))

≥
(

Vβ(t)
)′

+
cβ

0
g∗0

(
Vβ(g0(t))

)′
+ ã2(t)

[
uβ(g1(t)) + cβ

0 uβ(g0(g1(t)))
]

≥
(

Vβ(t) +
cβ

0
g∗0

Vβ(g0(t))

)′
+ 21−β ã2(t)[u(g1(t)) + c0u(g0(g1(t)))]

β

and so: (
Vβ(t) +

cβ
0

g∗0
Vβ(g0(t))

)′
+ 21−β ã2(t)vβ(g1(t)) ≤ 0. (4)

Integrating this inequality from t1 to t and using the fact
(
Vβ(t)

)′ ≤ 0, we find:

c̃0Vβ(t) ≤ c̃0Vβ(g0(t1))− 21−β
∫ t

t1

ã2(µ)vβ(g1(µ))dµ. (5)

(C1) Assume the contrary, that v′(t) > 0 for t ≥ t1. Thus, from (5), we have:

Vβ(t) ≤ Vβ(g0(t1))−
21−β

c̃0
vβ(g1(t1))

∫ t

t1

ã2(µ)dµ.

This, from (3), implies:

Vβ(t) ≤ Vβ(g0(t1))−
21−β

c̃0
δ0vβ(g1(t1))

∫ t

t1

1

a1/β
0 (µ)ηβ+1(µ)

dµ

≤ Vβ(g0(t1))− γ0δ0vβ(g1(t1))

(
1

ηβ(t)
− 1

ηβ(t1)

)
.

Letting t → ∞ and taking the fact that η(t) → 0 as t → ∞, we obtain Vβ(t) → −∞,
which contradicts the positivity of V(t).

Next, since v is positive decreasing, we have that limt→∞ v(t) = v0 ≥ 0. Assume the
contrary, that v0 > 0. Then, v(t) ≥ v0 for all t ≥ t2, for some t2 ≥ t1. Thus, from (3) and (5),
we have:

Vβ(t) ≤ Vβ(g0(t1))−
21−β

c̃0
vβ

0

∫ t

t1

ã2(µ)dµ

≤ −21−ββδ0vβ
0

∫ t

t1

1

a1/β
0 (µ)ηβ+1(µ)

dµ

≤ −γ0δ0vβ
0

(
1

ηβ(t)
− 1

ηβ(t1)

)
,

or

v′(t) ≤ −γ
1/β
0 δ

1/β
0 v0

1

a1/β
0 (t)

(
1

ηβ(t)
− 1

ηβ(t1)

)1/β

,

and so,

v′(t) ≤ −γ
1/β
0 δ

1/β
0 v0

1

a1/β
0 (t)η(t)

(
1− ηβ(t)

ηβ(t1)

)1/β

. (6)
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Using the fact that η′(t) < 0, we obtain that η(t) < η′(t2) < η′(t1) for all t ≥ t2 ≥ t1.
Hence, by integrating (6) from t1 to t, we obtain:

v(t) ≤ v(t2)− γ
1/β
0 δ

1/β
0 v0

∫ t

t2

1

a1/β
0 (µ)η(µ)

(
1− ηβ(µ)

ηβ(t1)

)1/β

dµ

≤ v(t2)− γ
1/β
0 δ

1/β
0 v0

(
1− ηβ(t2)

ηβ(t1)

)1/β ∫ t

t2

1

a1/β
0 (µ)η(µ)

dµ

≤ v(t2)− γ
1/β
0 δ

1/β
0 v0

(
1− ηβ(t2)

ηβ(t1)

)1/β

ln
η(t2)

η(t)
.

Letting t → ∞ and taking the fact that η(t) → 0 as t → ∞, we obtain v(t) → −∞,
which contradicts the positivity of v(t). Therefore, v0 = 0.

(C2) Since V(t) is decreasing, we obtain:

−a−1/β
0 (t)v(t) ≤ a−1/β

0 (t)
∫ ∞

t
a−1/β

0 (µ)V(µ)dµ

≤ a−1/β
0 (t)V(t)

∫ ∞

t
a−1/β

0 (µ)dµ

and:
− a−1/β

0 (t)v(t) ≤ v′(t)η(t). (7)

Then, (v/η)′ ≥ 0.
(C3) From (7), we obtain:

−v(g(t))
η(t)

≤ − v(t)
η(t)

≤ V(t).

Thus, from (4) and the fact V′(t) ≤ 0, we obtain:

βVβ−1(t)V′(t) +
cβ

0
g∗0

βVβ−1(g0(t))(V(g0(t)))
′ + 21−β ã2(t)vβ(g1(t)) ≤ 0,

and then:

V′(t) +
cβ

0
g∗0

(V(g0(t)))
′ +

21−β

β
ηβ−1(t)ã2(t)v(g1(t)) ≤ 0.

The proof is complete.

Lemma 2. Assume that u ∈ U+ and there exists a δ0 ∈ (0, 1) such that (3) holds. Then:

(C4) η(t)V(t) ≤ −γ0δ0v(t) and v/ηγ0δ0 is decreasing.

Proof. Let u ∈ U+. From Lemma 1, we have that (C1)–(C3) hold for t ≥ t1.
Integrating (C3) from t1 to t, we arrive at:

V(t) ≤ V(g0(t1))− γ0

∫ t

t1

ηβ−1(µ)ã2(µ)v(g1(µ))dµ.

From (3), we obtain:

V(t) ≤ V(g0(t1))− γ0δ0v(t)
∫ t

t1

1

a1/β
0 (µ)η2(µ)

dµ,
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and:

V(t) ≤ V(g0(t1)) + γ0δ0v(t)
(

1
η(t1)

− 1
η(t)

)
. (8)

Using (C1), we eventually have:

V(g0(t1)) + γ0δ0
v(t)
η(t1)

≤ 0,

Hence, (8) becomes:

a1/β
0 (t)v′(t) ≤ −γ0δ0

v(t)
η(t)

.

This implies that v/ηγ0δ0 is a decreasing function.
The proof is complete.

3.2. Oscillation Theorems

In the next theorem, by using the principle of comparison with an equation of the
first-order, we obtain a new criterion for the oscillation of (1).

Theorem 6. Assume that g1(t) ≤ g0(t) and there exists a δ0 ∈ (0, 1) such that (3) holds. If the
delay differential equation:

W ′(t) +
γ0

(1− γ0δ0)
ηβ(t)ã2(t)W

(
g−1

0 (g1(t))
)
= 0 (9)

is oscillatory, then every solution of (1) is oscillatory.

Proof. Assume the contrary, that (1) has a solution u ∈ U+. Then, we have that u(t),
u(g0(t)), and u(g1(t)) are positive for t ≥ t1, for some t1 ≥ t0. From Lemmas 1 and 2, we
have that (C1)–(C4) hold for t ≥ t1.

Next, we define:
w(t) := η(t)V(t) + v(t).

From (C1), w(t) > 0 for t ≥ t1. Thus,

w′(t) = η(t)V′(t) ≤ 0.

Thus, it follows from (C3) that:

w′(t) +
cβ

0
g∗0

(w(g0(t)))
′ +

21−β

β
ηβ(t)ã2(t)v(g1(t)) ≤ 0. (10)

Using (C4), we obtain that:

w(t) = η(t)V(t) + v(t)
≤ −γ0δ0v(t) + v(t)
= (1− γ0δ0)v(t),

which with (10) gives:

w′(t) +
cβ

0
g∗0

(w(g0(t)))
′ +

21−β

β(1− γ0δ0)
ηβ(t)ã2(t)w(g1(t)) ≤ 0. (11)

Now, we set:

W(t) := w(t) +
cβ

0
g∗0

w(g0(t)) > 0.
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Then, W(t) ≤ c̃0w(g0(t)), and so, (11) becomes:

W ′(t) +
γ0

(1− γ0δ0)
ηβ(t)ã2(t)W

(
g−1

0 (g1(t))
)
≤ 0,

which has a positive solution. In view of [20] (Theorem 1), (9) also has a positive solution,
which is a contradiction.

The proof is complete.

Corollary 1. Assume that g1(t) ≤ g0(t) and there exists a δ0 ∈ (0, 1) such that (3) holds. If:

lim inf
t→∞

∫ t

g−1
0 (g1(t))

ηβ(µ)ã2(µ)dµ >
1− γ0δ0

γ0e
(12)

then every solution of (1) is oscillatory.

Proof. It follows from Theorem 2 in [21] that the condition (12) implies the oscillation of (9).

Next, by introducing two Riccati substitution, we obtain a new oscillation criterion
for (1).

Theorem 7. Assume that g1(t) ≤ g0(t) and there exists a δ0 ∈ (0, 1) such that (3) holds. If:

lim sup
t→∞

∫ t

t1

(
21−β

β
ηβ(µ)ã2(µ)

ηγ0δ0(g1(µ))

ηγ0δ0(g0(µ))
− ĉ0

4
1

a1/β
0 (g0(µ))η(µ)

)
dµ = ∞, (13)

then every solution of (1) is oscillatory.

Proof. Assume the contrary, that (1) has a solution u ∈ U+. Then, we have that u(t),
u(g0(t)), and u(g1(t)) are positive for t ≥ t1, for some t1 ≥ t0. From Lemmas 1 and 2, we
have that (C1)–(C4) hold for t ≥ t1.

Now, we define the functions:

Θ1 :=
V
v

,

and:
Θ2 :=

V ◦ g0

v ◦ g0
.

Then, Θ1 and Θ2 are negative for t ≥ t1. From (C4), we obtain:

v ◦ g1

ηγ0δ0 ◦ g1
≥ v ◦ g0

ηγ0δ0 ◦ g0
≥ v

ηγ0δ0
.

Hence,

Θ′1 =
V′

v
− V

v2 v′ =
V′

v ◦ g1

v ◦ g1

v
− 1

a1/β

(
V
v

)2

≤ ηγ0δ0 ◦ g1

ηγ0δ0

V′

v ◦ g1
− 1

a1/β
Θ2

1,

≤ ηγ0δ0 ◦ g1

ηγ0δ0 ◦ g0

V′

v ◦ g1
− 1

a1/β
Θ2

1,
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and:

Θ′2 =
(V ◦ g0)

′

v ◦ g0
− V ◦ g0

(v ◦ g0)
2

(
v′ ◦ g0

)
g′0

=
(V ◦ g0)

′

v ◦ g1

v ◦ g1

v ◦ g0
−

g′0
a1/β ◦ g0

(
V ◦ g0

v ◦ g0

)2

≤ ηγ0δ0 ◦ g1

ηγ0δ0 ◦ g0

(V ◦ g0)
′

v ◦ g1
−

g∗0(
a1/β ◦ g0

)Θ2
2.

Then:

η(t)Θ′1(t)− η(t)
ηγ0δ0(g1(t))
ηγ0δ0(g0(t))

V′(t)
v(g1(t))

+
η(t)

a1/β(t)
Θ2

1(t) ≤ 0, (14)

and:

0 ≥ η(g0(t))Θ′2(t)− η(g0(t))
ηγ0δ0(g1(t))
ηγ0δ0(g0(t))

(V(g0(t)))
′

v(g1(t))
+

g∗0η(g0(t))
a1/β(g0(t))

Θ2
2(t)

≥ η(g0(t))Θ′2(t)− η(t)
ηγ0δ0(g1(t))
ηγ0δ0(g0(t))

(V(g0(t)))
′

v(g1(t))
+

g∗0η(g0(t))
a1/β(g0(t))

Θ2
2(t). (15)

Combining (14) and (15), we obtain:

0 ≥ η(t)Θ′1(t)− η(t)
ηγ0δ0(g1(t))
ηγ0δ0(g0(t))

(
V′(t)

v(g1(t))
+

cβ
0

g∗0

(V(g0(t)))
′

v(g1(t))

)

+
η(t)

a1/β(t)
Θ2

1(t) +
cβ

0
g∗0

η(g0(t))Θ′2(t) + cβ
0

η(g0(t))
a1/β(g0(t))

Θ2
2(t)

≥ η(t)Θ′1(t) +
21−β

β
ηβ(t)ã2(t)

ηγ0δ0(g1(t))
ηγ0δ0(g0(t))

+
η(t)

a1/β(t)
Θ2

1(t) +
cβ

0
g∗0

η(g0(t))Θ′2(t) + cβ
0

η(g0(t))
a1/β(g0(t))

Θ2
2(t).

Integrating this inequality from t1 to t, we have:

0 ≥ η(t)Θ1(t)− η(t1)Θ1(t1) +
∫ t

t1

(
a−1/β

0 (µ)Θ1(µ) +
η(µ)

a1/β(µ)
Θ2

1(t)
)

dµ

+
cβ

0
g∗0

(η(g0(t))Θ2(t)− η(g0(t1))Θ2(t1))

+
cβ

0
g∗0

(∫ t

t1

a−1/β
0 (g0(t))Θ2(µ) +

g∗0η(g0(µ))

a1/β(g0(µ))
Θ2

2(µ)

)
dµ

+
21−β

β

∫ t

t1

ηβ(µ)ã2(µ)
ηγ0δ0(g1(µ))

ηγ0δ0(g0(µ))
dµ.

From (C2), we obtain η(t)Θ1(t) ≥ −1. Therefore,

0 ≥ −K− 1
4

∫ t

t1

(
1

a1/β
0 (µ)η(µ)

+
cβ

0(
g∗0
)2

1

a1/β
0 (g0(µ))η(g0(µ))

)
dµ

+
21−β

β

∫ t

t1

ηβ(µ)ã2(µ)
ηγ0δ0(g1(µ))

ηγ0δ0(g0(µ))
dµ,
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where:

K := η(t1)Θ1(t1) +
cβ

0
g∗0

η(g0(t1))Θ2(t1) +

(
1 +

cβ
0

g∗0

)
.

Since η′(t) < 0 and a′(t) ≥ 0, we find:

∫ t

t1

(
21−β

β
ηβ(µ)ã2(µ)

ηγ0δ0(g1(µ))

ηγ0δ0(g0(µ))
− ĉ0

4
1

a1/β
0 (g0(µ))η(µ)

)
dµ ≤ K.

Taking lim supt→∞ and using (13), we arrive at a contradiction.
The proof is complete.

3.3. Applications and Discussion

Remark 1. It is easy to see that the previous works that dealt with the noncanonical case required
either a1(t) < 1 or a1(t) < η(t)/η(g0(t)). Since η is decreasing and g0(t) ≤ t, we have that
η(g0(t)) ≥ η(t). Then, the results of these works only apply when a1(t) ∈ (0, 1).

Example 1. Consider the DDE:(
t2(u(t) + a∗1u(λt))

)′
+ a∗2u(κt) = 0, (16)

where t ≥ 1, a∗1 > 0, a∗2 ∈ (0, 1), and κ < λ ∈ (0, 1). By choosing δ0 = a∗2 , the condition (12)
becomes:

a∗2 ln
λ

κ
>

λ + a∗1 − λa∗2
eλ

. (17)

Using Corollary 1, Equation (16) is oscillatory if (17) holds.

Remark 2. To apply Theorems 3 and 4 on (16), we must stipulate that a∗1 < 1. Let a special case of
(16), namely, (

t2
(

u(t) + a∗1u
(

t
2

)))′
+ a∗2u(κt) = 0,

A simple computation shows that (16) is oscillatory if:

a∗2(1− 2a∗1) >
1
4
(using Theorem 3) (18)

or:
a∗2(1− 2a∗1) > 1 (using Theorem 4) (19)

or:
a∗2(1− 2a∗1) ln

1
κ
>

1
e
(using Theorem 5). (20)

Consider the following most specific special case:(
t2
(

u(t) +
2
5

u
(

t
2

)))′
+

4
5

u
(

t
4

)
= 0. (21)

Note that (18)–(20) fail to apply. However, (17) reduces to:

4
5

ln 2 >
1
e

.

which ensures the oscillation of (21).
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4. Conclusions

In this work, the oscillatory properties of the solutions of a class of second-order
neutral DDEs were studied. Using the Riccati technique and comparison principles, we
obtained new criteria that guarantee the oscillation of all solutions of the studied equation.

The new approach, taken in this work, relies on creating a better estimate of the ratio
(v ◦ g1)/v by establishing the new decreasing function v/ηγ0δ0 . This new estimate enables
us to obtain new oscillation conditions that directly improve the previous related results.
Moreover, our results considered the case where c0 ≥ 1, which was not taken into account
in the previous results.

An interesting issue is obtaining results that take into account all c0 and do not adhere
to the condition g0 ◦ g1 = g1 ◦ g0. It is also interesting to extend our results to higher-order
equations. It is also interesting to extend the results of this paper to study the oscillatory
behavior of some concrete examples that may appear in physics, astronomy, medicine,
hydrodynamics, etc.; as an example, see [22].
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