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Abstract: The nature of the kernel density estimator (KDE) is to find the underlying probability
density function (p.d.f ) for a given dataset. The key to training the KDE is to determine the optimal
bandwidth or Parzen window. All the data points share a fixed bandwidth (scalar for univariate KDE
and vector for multivariate KDE) in the fixed KDE (FKDE). In this paper, we propose an improved
variable KDE (IVKDE) which determines the optimal bandwidth for each data point in the given
dataset based on the integrated squared error (ISE) criterion with the L2 regularization term. An
effective optimization algorithm is developed to solve the improved objective function. We compare
the estimation performance of IVKDE with FKDE and VKDE based on ISE criterion without L2

regularization on four univariate and four multivariate probability distributions. The experimental
results show that IVKDE obtains lower estimation errors and thus demonstrate the effectiveness
of IVKDE.

Keywords: probability density function; kernel density estimation; Parzen window; bandwidth;
kernel function

1. Introduction

It is very important for many machine learning algorithms to estimate the unknown
probability density functions (p.d.f.s) of given datasets, e.g., Bayesian classifiers [1,2],
density-based clustering algorithms [3,4], and mutual information-based feature selec-
tion algorithms [5,6]. In order to obtain the unknown p.d.f., an effective kernel density
estimator (KDE) should be thoroughly constructed in advance. The classical KDE training
method is the Parzen window method [7], which uses the superposition of multiple kernel
functions with a fixed Parzen window (i.e., bandwidth) to fit the unknown p.d.f. The most
used kernels [8] include uniform, triangular, Epanechnikov, biwieght, triweight, cosine,
and Gaussian kernels. Compared with the kernels, the bandwidth plays a more important
role in p.d.f. estimation: a large bandwidth will result in an over-smoothed estimation,
while a small bandwidth will lead to an under-smoothed estimation.

How to determine an optimal bandwidth is a key point for training a KDE. In order to
select an appropriate bandwidth, the effective error criterion should firstly be designed [9].
Commonly used error criteria include the integrated squared error (ISE) and the mean
integrated squared error (MISE). Currently, there are two main ways to design KDE, i.e,
the classical Parzen window method with the fixed bandwidth parameter named the
fixed kernel density estimator (FKDE) and the modified Parzen window method with
the variable bandwidth parameter named the variable kernel density estimator (VKDE).
The representative studies corresponding to FKDE and VKDE are summarized as follows.
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• Fixed kernel density estimator. The rule-of-thumb-based KDE (RoT-KDE) [10] was
designed based on the asymptotic MISE (AMISE) criterion by assuming the un-
known p.d.f. as normal p.d.f. Due to the inappropriate assumption of the true p.d.f.,
RoT-KDE is a naive KDE and inclined to select the over-smoothed bandwidth [8].
Apart from the sample and direct RoT-KDE, there are three other sophisticated KDEs,
i.e., bootstrap-based KDE (BS-KDE) [11] , biased cross-validation-based KDE (BCV-
KDE) [12], and unbiased cross-validation-based KDE (UCV-KDE) [13]. BS-KDE de-
termined the optimal bandwidth based on the MISE criterion by using the bootstrap
technology to estimate the true p.d.f. BCV-KDE was also designed based on the MISE
criterion, which calulated the optimal bandwidth by establishing the relationship
between the true p.d.f. and the derivative of the estimated p.d.f. UCV-KDE used
the ISE criterion to optimize the bandwidth by representing the true p.d.f. with the
estimated leave-one-out p.d.f. In RoT-KDE, BS-KDE, BCV-KDE, and UCV-KDE, all
samples in the given dataset enjoy a fixed bandwidth and do not use the bandwidth
to adjust the roles of data points for p.d.f. estimation.

• Variable kernel density estimator. The model of VKDE was firstly proposed by
Breiman et al. [14], who introduced the variable bandwidths for each data point
in the given dataset and represented the bandwidth with distance from the data
point to its k-th nearest neighbor. Jones [15] clarified the difference between VKDE
employing a different bandwidth for each data point and VKDE with bandwidth
as a function of estimation location. Terrell and Scott [16] derived the optimization
rule for variable bandwidths based on the asymptotic mean squared error (AMSE)
criterion. Hall et al. [17] improved the VKDE proposed in [16] by further analyzing
the rates of VKDE convergence. Wu et al. [18] proposed a strategy to express the
variable bandwidth in VKDE as the product of a local bandwidth factor and a global
smoothing parameter. Suaray [19] proposed a VKDE for the p.d.f. estimation of
censored data. Klebanov [20] proposed an axiomatic approach to construct a VKDE
which guaranteed the density estimation invariance under linear transformations of
original density as well as under splitting of density into several well-separated parts.

Compared with FKDEs, the main merit of VKDEs is that the variable bandwidths can
flexibly adjust the importance of data points during the p.d.f estimation. This paper focuses
on the improvement of VKDE. Jones [21] discussed the roles of ISE and MISE criteria in
p.d.f. estimation. We consider using the ISE criterion to calculate the optimal bandwidths
for the VKDE. The mathematical analysis indicates that the ISE criterion usually leads to
an over-smoothed p.d.f. estimation. Inspired by the integration of empirical and structural
risks, we propose an improved variable KDE (IVKDE) which determines the optimal
bandwidth for each data point based on the ISE criterion with an L2 regularization term
in this paper. The ISE and L2 regularization represent the empirical and structural risks
for constructing VKDE, respectively. In order to obtain the optimally variable bandwidths,
an effective optimization scheme is developed to solve the improved objective function. We
conduct the exhaustive experiments to validate the rationality, feasibility, and effectiveness
of IVKDE. The experimental results show that IVKDE is convergent and able to obtain the
desirable p.d.f. estimation. In comparison with FKDE and VKDE based on the ISE criterion
without L2 regularization on four univariate and four multivariate probability distributions,
IVKDE obtains lower estimation errors and thus demonstrate the effectiveness of IVKDE.

The remainder of this paper is organized as follows. In Section 2, we describe the
basic principles of the variable kernel density estimator. In Section 3, we introduce the
improved variable kernel density estimator. In Section 4, we provide experimental results
and analysis. Finally, in Section 5, we conclude this paper and discuss future works.

2. Basic Principle of VKDE

For the given dataset X = {x̃n|x̃n = (xn1, xn2, · · · , xnD), xnd ∈ <, n = 1, 2, · · · ,
N , d = 1, 2, · · · ,D}, the classical fixed KDE (FKDE), i.e., Parzen window method [7],

is constructed as
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f̂FKDE(x̃) = f̂FKDE(x1, x2, · · · , xD)

=
1

N
D
∏

d=1
hd

N
∑
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κ

(
x1 − xn1

h1
,

x2 − xn2

h2
, · · · ,

xD − xnD
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)
, (1)

where
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1(√
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)D exp
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ũTũ
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1(√

2π
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(
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(2)

ũ = (u1, u2, · · · , uD) ∈ <D is the D-variate Gaussian kernel, and h̃ = (h1, h2, · · · , hD),
hd > 0, d = 1, 2, · · · ,D is the bandwidth. Substituting Equation (2) into Equation (1) yields
the estimated p.d.f. of dataset X as

f̂FKDE(x̃) =
1
N

N
∑
n=1

N(x̃n, Σ), (3)

where

N(x̃n, Σ) =
1(√

2π
)D
|Σ|

1
2

exp
[
−1

2
(x̃− x̃n)Σ−1(x̃− x̃n)

T
]

(4)

is the D-dimensional Gaussian distribution with mean vector x̃n = (xn1, xn2, · · · , xnD) and

covariance matrix Σ =


h2

1 0 · · · 0
0 h2

2 · · · 0
...

...
. . .

...
0 0 · · · h2

D

. Equation (3) reflects that the estimated p.d.f.

is the superposition of N Gaussian p.d.f.s.
The p.d.f. of dataset X estimated by VKDE is

f̂VKDE(x̃) =
1
N

N
∑
n=1

N(x̃n, Σn), (5)

where the covariance matrix of N(x̃n, Σn) is Σn =


h2

n1 0 · · · 0
0 h2

n2 · · · 0
...

...
. . .

...
0 0 · · · h2

nD

, hnd > 0,

n = 1, 2, · · · ,N , d = 1, 2, · · · ,D. Equation (5) can be further transformed into the following
Equation (6):

f̂VKDE(x̃) =
1
N

N
∑
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1(√
2π
)D
|Σn|

1
2

exp
[
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2
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T
]

=
1
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∑
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d=1

1√
2πhnd

exp

[
−1

2

(
xd − xnd

hnd

)2
]

,

(6)

where h̃n = (hn1, hn2, · · · , hnD), n = 1, 2, · · · ,D is the variable bandwidth vector corre-
sponding to the n-th data point. There are ND bandwidth parameters which need to be
determined in VKDE.



Mathematics 2021, 9, 2004 4 of 12

3. Proposed IVKDE

In this section, we firstly provide an improved VKDE which uses an L2 regularization
term-based objective function to evaluate the efficiency of variable bandwidths. Then,
a bandwidth optimization algorithm is developed to solve the optimal variable bandwidths
based on the above-mentioned objective function.

The purpose of VKDE training is to make the estimated p.d.f. f̂VKDE(x̃) as close to the
true p.d.f. f (x̃) as possible. In Equation (6), we can find that the performance of VKDE is
only related to the selection of bandwidth vectors. We want to select the bandwidth vectors
which can minimize the error between p.d.f. f̂VKDE(x̃) and f (x̃). In order to measure the
estimated error, an effective error criterion should firstly be designed. The integrated
squared error (ISE)

ISE
(
h̃1, h̃2, · · · , h̃N

)
=
∫ +∞

−∞

[
f̂VKDE(x̃)− f (x̃)

]2
dx̃

=
∫ +∞

−∞

[
f̂VKDE(x̃)

]2
dx̃− 2

∫ +∞

−∞

[
f̂VKDE(x̃) f (x̃)

]
dx̃

+
∫ +∞

−∞
[ f (x̃)]2dx̃

(7)

is used in our proposed IVKDE to measure the estimated error.
In Equation (7), we can see that the third term

∫ +∞
−∞ [ f (x̃)]2dx̃ is unrelated to the un-

known bandwidth vectors. Thus, the optimal variable bandwidth vectors can be obtained
by minimizing the simplified ISE criterion:

ISE∗
(
h̃1, h̃2, · · · , h̃N

)
=
∫ +∞

−∞

[
f̂VKDE(x̃)

]2
dx̃− 2

∫ +∞

−∞

[
f̂VKDE(x̃) f (x̃)

]2
dx̃. (8)

Equation (8) is a data-driven error measurement which easily leads to a data-adaptive
KDE and further makes the estimated p.d.f. more inclined to fit the given dataset X. In order
to guarantee the good generalization capability of KDE, we give the following objective
function to select the bandwidth vectors for our proposed IVKDE:

L
(
h̃1, h̃2, · · · , h̃N

)
= ISE∗

(
h̃1, h̃2, · · · , h̃N

)
+

ξ

N
N
∑
n=1

∥∥h̃n
∥∥2

2, (9)

where the second term is the L2 regulation term,
∥∥h̃n

∥∥
2 is the L2 norm of bandwidth vector

h̃n, n = 1, 2, · · · ,N , and ξ > 0 is the regulation factor.

Substituting Equation (6) into
∫ +∞
−∞

[
f̂VKDE(x̃)

]2
dx̃ and

∫ +∞
−∞

[
f̂VKDE(x̃) f (x̃)
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and

∫ +∞
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,

(11)

respectively, where f̂VKDE−n(x̃n), n = 1, 2, · · · ,N is a leave-one-out estimator trained
through an unbiased cross-validation (UCV) method.

IVKDE needs to use the optimal bandwidth vectors that can minimize the objective
function with the L2 regulation term. In order to solve the optimal bandwidths, we
should firstly calculate the partial derivative of L

(
h̃1, h̃2, · · · , h̃N

)
with respect to hnd,

n = 1, 2, · · · ,N , d = 1, 2, · · · ,D. Let

∆hnd =
∂L
(
h̃1, h̃2, · · · , h̃N

)
∂hnd

= − 1(
2
√

π
)DN 2hnd
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,
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where
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and

∆2 =
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∑
m=1
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(xnd − xmd)
2

h2
nd

]
exp

[
−1

2
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. (14)

We can find that it is very difficult to calculate the analytic solution of hnd,
n = 1, 2, · · · ,N , d = 1, 2, · · · ,D from ∆hnd = 0. Here, we design the following Algorithm 1
which uses the gradient descent method to solve the optimal bandwidths for IVKDE based
on the objective function as shown in Equation (9). Algorithm 1 iteratively determines the
optimal bandwidths based on the decaying learning rate adjustment. Because the mini-
mization of L

(
h̃1, h̃2, · · · , h̃N

)
is required, the negative gradient is used in Algorithm 1.
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Algorithm 1 Solving the optimal bandwidths for IVKDE.

Input: The given dataset X, the regulation factor ξ > 0, the maximum value of learning
rate αMax, the minimum value of learning rate αMin, the maximum number of iterations
TMax, the stopping threshold δ > 0, and the initial bandwidth h(0)nd , n = 1, 2, · · · ,N ,
d = 1, 2, · · · ,D.

Output: The optimal bandwidth hnd, n = 1, 2, · · · ,N , d = 1, 2, · · · ,D.
1: t = 1; // t is the number of iterations.
2: repeat
3: for n = 1; n <= N ; n ++ do
4: for d = 1; d <= D; d ++ do
5: h(t)nd = h(t−1)

nd −
(

αMax − αMax−αMin
TMax

t
)

∆h(t−1)
nd ;

6: end for
7: end for
8: t = t + 1;
9: until

∣∣∣L(h̃(t)
1 , h̃(t)

2 , · · · , h̃(t)
N

)
− L

(
h̃(t−1)

1 , h̃(t−1)
2 , · · · , h̃(t−1)

N

)∣∣∣ < δ or t > TMax

10: hnd = h(t)nd , n = 1, 2, · · · ,N , d = 1, 2, · · · ,D.

4. Experimental Results and Analysis

We conduct three experiments based on eight different probability distributions as
shown in Table 1 to validate the rationality, feasibility, and effectiveness of the proposed
IVKDE. The graphics of these eight p.d.f.s for the given parameters are presented in Figure 1.

Table 1. Four univariate and four multivariate probability distributions ( f (i)(x̃) in bimodal, trimodal, and quadrimodal
normal distributions is the two-dimensional normal distribution with mean vector ~µ(i) and covariance matrix Σ(i)).

Probability Distribution Probability Density Function

U
ni

va
ri

at
e

F f (x) = n
n1
2

1 n
n2
2

2 x
n1
2 −1[∫ 1

0 x
n1
2 −1(1−x)

n2
2 −1dx

]
(n1x+n2)

n1+n2
2

, n1, n2 = 1, 2, 3, · · · ; x ∈ [0,+∞)

Normal f (x) = 1√
2πσ

e−
1
2 (

x−µ
σ )

2

, µ ∈ (−∞,+∞), σ > 0; x ∈ (−∞,+∞)

Rayleigh f (x) = x
σ2 e−

1
2 (

x
σ )

2

, σ > 0; x ∈ [0,+∞)

Student’s T f (x) =
∫ +∞

0 x
v+1

2 −1e−xdx
√

πv
∫ +∞

0 x
v
2 −1e−xdx

(
1 + x2

v

)− v+1
2 , v > 0; x ∈ (−∞,+∞)

M
ul

ti
va

ri
at

e

Two-dimensional normal f (x̃) = (2π)−
M
2 |Σ|−

1
2 exp

[
− 1

2 (x−~µ)TΣ−1(x−~µ)
]
, x̃ = (x1, x2), ~µ is the mean vector and

Σ is the covariance matrix.

Bimodal normal f (x̃) =
2
∑

i=1
εi f (i)(x̃), x̃ = (x1, x2),

2
∑

i=1
εi = 1, εi ≥ 0, i = 1, 2

Trimodal normal f (x̃) =
3
∑

i=1
εi f (i)(x̃), x̃ = (x1, x2),

3
∑

i=1
εi = 1, εi ≥ 0, i = 1, 2, 3

Quadrimodal normal f (x̃) =
4
∑

i=1
εi f (i)(x̃), x̃ = (x1, x2),

4
∑

i=1
εi = 1, εi ≥ 0, i = 1, 2, 3, 4
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(a) F distribution (n1 = n2 = 20)
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(b) Normal distribution (µ = 0, σ = 1)
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(c) Rayleigh distribution (σ = 1)
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(d) Student’s T distribution (v = 10)

(e) Two-dimensional normal distribution
(µ̄ = (0, 3), Σ11 = 1, Σ12 = 0, Σ21 = 0,
Σ22 = 1)

(f) Bimodal normal distribution (µ̄(1) =

(0, 0), µ̄(2) = (3, 3), Σ(1) and Σ(2) are iden-
tify matrices, ε1 = ε2 = 1

2 )

(g) Trimodal normal distribution (µ̄(1) =

(0, 0), µ̄(2) = (3, 3), µ̄(3) = (6, 6), Σ(1), Σ(2),
and Σ(2) are identify matrices, ε1 = ε2 =

ε3 = 1
3 )

(h) Quadrimodal normal distribution (µ̄(1) =

(0, 0), µ̄(2) = (3, 3), µ̄(3) = (0, 3), µ̄(3) =

(3, 0), Σ(1), Σ(2), Σ(2), and Σ(4) are identify
matrices, ε1 = ε2 = ε3 = ε4 = 1

4 )

Figure 1. Graphics of eight p.d.f.s.
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4.1. Experiential Setup

The rationality is to check the convergence of Algorithm 1, the feasibility is to show the
estimation capability of IVKDE to the given p.d.f.s, and the effectiveness is demonstrated
by comparing the estimation performances of IVKDE with FKDE and VKDE. For FKDE
and VKDE, the optimal bandwidths are also determined with the gradient descent method.
The synthetic datasets obeying the above-mentioned distributions can be accessible in
any country accessed via our BaiduPan (https://pan.baidu.com/s/1YhkkrckQA_e2GNd8
haLE1g, accessed on 25 June 2021) with extraction code vn6j. All the estimators are
implemented with the Python programming language and run on a PC with an Intel(R)
Quad-core 3.00 GHz i5-7400 CPU and 16 GB memory.

4.2. Rationality of IVKDE

We test the convergence of Algorithm 1 based on the random data points obeying F,
normal, two-dimensional normal, and bimodal normal distributions with the following pa-
rameters:

• F: N = 1000 and n1 = n2 = 20;
• Normal: N = 1000, µ = 0, and σ = 1;

• Two-dimensional normal: N = 1000, µ̄ = (0, 3), and Σ =

[
1 0
0 1

]
;

• Bimodal normal: N = 1000, µ̄(1) = (0, 0), µ̄(2) = (3, 3), Σ(1) = Σ(2) =

[
1 0
0 1

]
,

and ε1 = ε2 = 1
2 .

For each distribution, we repeat the running of Algorithm 1 10 times with the following
parameters: TMax = 2500, αMax = 1, αMin = 0.001, δ = 0, and h(0)nd = 0.5. We check the
variation of the bandwidth sum with an increase in iteration numbers, where the bandwidth
sum is calculated as

sum(t)(h̃1, h̃2, · · · , h̃N
)
=

1
ND

N
∑
n=1

D
∑
d=1

h(t)nd , t = 1, 2, · · · , TMax. (15)

In Figure 2, we can see that Algorithm 1 is convergent for the different regulation
factor ξs on the given p.d.f. The curves of bandwidth sums firstly decrease and then keep
stable with the increase in iteration numbers. This indicates that Algorithm 1 is convergent
and can find the optimal bandwidths for IVKDE.

4.3. Feasibility of IVKDE

We check the p.d.f. estimation capability of IVKDE based on F and two-dimensional
normal distributions with the following parameters:

• F: N = 1000 and n1 = n2 = 20;

• Two-dimensional normal: N = 1000, µ̄ = (0, 3), and Σ =

[
1 0
0 1

]
.

We use Algorithm 1 to determine the optimal bandwidths for each distribution based
on the random data points, where the parameters of Algorithm 1 are set as TMax = 1500,
αMax = 0.4, αMin = 0.01, δ = 10−8, h(0)nd = 0.3, ξ = 0.3 for F distribution and TMax = 500,

αMax = 0.2, αMin = 0.1, δ = 10−8, h(0)nd = 0.36, and ξ = 0.3 for two-dimensional normal
distribution. The estimated p.d.f.s are presented in Figures 3 and 4. In these two figures, we
can intuitively find that IVKDE can estimate the underlying p.d.f.s based on the given data
points. The estimated p.d.f.s are very close to the true p.d.f.s. The experimental results show
that IVKDE is feasible to estimate the unknown p.d.f.

https://pan.baidu.com/s/1YhkkrckQA_e2GNd8haLE1g
https://pan.baidu.com/s/1YhkkrckQA_e2GNd8haLE1g
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Figure 2. Convergences of Algorithm 1 on 4 given p.d.f.s.
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Figure 3. Estimation capability of IVKDE on F distribution.
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Figure 4. Estimation capability of IVKDE on two-dimensional normal distribution.

4.4. Effectiveness of IVKDE

On eight probability distributions, as shown in Table 1, we compare the p.d.f. es-
timation performance of IVKDE with FKDE and VKDE. The parameters of these three
kernel density estimators are summarized in Table 2. The comparative results among
FKDE, VKDE, and IVKDE are listed in Table 3. We use the mean absolute error (MAE) to
evaluate the training and testing performances of these three kernel density estimators.
Assume the true and estimated p.d.f. values for the given dataset X are y1, y2, · · · , yN and
ŷ1, ŷ2, · · · , ŷN , respectively. Then, the MAE on dataset X is calculated as

MAE(X) = 1
N

N
∑
n=1
|yn − ŷn|. (16)

Table 2. Parameter settings of FKDE, VKDE, and IVKDE.

No. Probability Distribution
FKDE VKDE IVKDE

TMax αMax αMin δ h(0)
nd TMax αMax αMin δ h(0)

nd TMax αMax αMin δ h(0)
nd ξ

1 F

1000 1 10−5 10−8 1

1500 0.4 0.01 10−8 0.3 1500 0.4 0.01 10−8 0.3 0.3

2 Normal 1200 0.5 0.1 10−8 0.34 1200 0.5 0.1 10−8 0.34 0.13

3 Rayleigh 1000 1 0.1 10−8 0.5 1000 1 0.1 10−8 0.5 0.45

4 Student’s T 1500 1 0.5 10−8 0.5 1500 1 0.5 10−8 0.5 0.15

5 Two-dimensional normal 500 0.2 0.1 10−8 0.36 500 0.2 0.1 10−8 0.36 0.3

6 Bimodal normal 500 0.2 0.1 10−8 0.36 500 0.2 0.1 10−8 0.36 0.3

7 Trimodal normal 500 0.2 0.01 10−8 0.38 500 0.2 0.01 10−8 0.38 0.01

8 Quadrimodal normal 500 0.5 0.1 10−8 0.5 500 0.5 0.1 10−8 0.5 0.3

ξ is the regulation factor; TMax is the maximum number of iterations; αMax is the maximum value of learning rate; αMin is the maximum

value of learning rate; δ is the stopping threshold; h(0)nd , n = 1, 2, · · · ,N , d = 1, 2, · · · ,D are the initial bandwidths.

In Table 3, we can find that IVKDE obtains the significantly better p.d.f. estimation
performances on training and testing datasets than FKDE and VKDE. We carry out the
statistical test on the comparative results based on the sign test method [22]. For the
pairwise comparison between methods A and B, A is significantly better than B under
the given significance level if the number of A’s wins reaches the critical number. There
are eight different probability distributions which are used to compare the estimation
performances of FKDE, VKDE, and IVKDE. The critical win number is 8

2 + 1.96×
√

8
2 ≈ 7

in our comparison for the given significance level 0.05. The win numbers of IVKDE vs.
FKDE and VKDE on training datasets are 7 and 8, respectively. This indicates that IVKDE
obtains significantly better p.d.f. estimation performances than FKDE and VKDE on training
datasets. The win numbers of IVKDE vs. FKDE and VKDE on testing datasets are 6 and
8, respectively. This indicates that IVKDE obtains significantly better p.d.f. estimation
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performances than VKDE on testing datasets. The experimental and statistical results show
that IVKDE can improve the p.d.f. estimation performance of VKDE and thus demonstrate
the effectiveness of IVKDE.

Table 3. Competitive results among FKDE, VKDE, and IVKDE on 8 different probability distributions.

No. Probability Distribution
MAE on Training Set MAE on Testing Set

FKDE VKDE IVKDE FKDE VKDE IVKDE

1 F 0.02921 0.03965 0.02891 0.02964 0.04111 0.03171

2 Normal 0.01416 0.01511 0.01389 0.01376 0.01489 0.0137

3 Rayleigh 0.02259 0.05127 0.02797 0.02222 0.05137 0.02859

4 Student’s T 0.00999 0.01607 0.00959 0.00980 0.01583 0.00970

5 Two-dimensional normal 0.00486 0.00502 0.00485 0.00500 0.00509 0.00498

6 Bimodal normal 0.00518 0.00463 0.00456 0.00530 0.00465 0.00455

7 Trimodal normal 0.00364 0.00363 0.00363 0.00359 0.00359 0.00359

8 Quadrimodal normal 0.00232 0.00235 0.00228 0.00247 0.00248 0.00241

5. Conclusions and Future Works

This paper presented an improved variable kernel density estimator (IVKDE) by using
both integrated squared error (ISE) and L2 regularization to determine the optimal band-
widths. The L2 regularization can effectively avoid the over-smoothed bandwidth selection.
The experimental results demonstrated the rationality, feasibility, and effectiveness of the
proposed IVKDE. Future works will be carried out according to the following research
directions: (1) using IVKDE to estimate the unknown p.d.f. for a large-scale dataset [23] and
(2) finding the practical applications for IVKDE in data mining and machine learning fields.
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ISE Integrated Squared Error
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VKDE Variable Kernel Density Estimator
RoT Rule-of-Thumb
BS Bootstrap
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BCV Biased Cross-Validation
UCV Unbiased Cross-Validation
IVKDE Improved Variable Kernel Density Estimator
MAE Mean Absolute Error
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