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published earlier as well.
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1. Introduction

About 100 years ago, A. J. Lotka [1] and V. Volterra [2] independently developed a
mathematical model, which nowadays serves as the mathematical background for pop-
ulation dynamics, ecology, chemical reactions, etc. Their model is based on a system
of ordinary differential equations (ODEs) with quadratic nonlinearities (typically two
equations). The natural generalization of this model in 1D space reads as follows:

ut = d1uxx + u(a1 + b1u + c1v),
vt = d2vxx + v(a2 + b2u + c2v),

(1)

where the lower subscripts t and x mean differentiation with respect to (w.r.t.) these
variables, u = u(t, x) and v = v(t, x) are two unknown functions, which usually represent
densities, ai, bi and ci are arbitrary constants (some of them can vanish and different
types of interactions arise depending on signs of nonvanish constants ), and d1 and d2 are
diffusion coefficients. System (1) is called the diffusive Lotka–Volterra (DLV) system and is
the main object of this work. If the diffusivities are such that d1 = d2 = 0, then (1) reduces
to the classical Lotka–Volterra system.

In contrast to the classical Lotka–Volterra system, the DLV system attracted the at-
tention of scholars much later. Its rigorous study started in the 1970s (see the pioneering
works [3–6]). At the present time, there are many recent works devoted to qualitative anal-
ysis of the DLV system (1) and its multi-component analogs (see [7,8] and the works cited
therein). However, the number of the papers devoted to construction of exact solutions of
the nonlinear system (1) is relatively small. Exact solutions in the form of traveling waves
were constructed in [9–12]. In the case of the three-component DLV system, some traveling
waves were found in [13,14]. The existence of traveling wave solutions were examined
in [7,8,15,16]. To the best of our knowledge, exact solutions with more complicated struc-
ture were derived only in papers [17,18] for the two- and three-component DLV systems,
respectively. In [19], nontrivial exact solutions were derived for a natural generalization
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of system (1) involving additional linear and/or quadratic terms. We also point out that
systems of nonlinear ODEs for finding exact solutions of (1) in the very special case when
a1 = a2, b1 = b2, c1 = c2, d1 = d2 are presented in the handbook [20]. However, those
systems are not solved therein.

Thus, the problem of the construction of exact solutions of the DLV system (1) and
its multi-dimensional analogs, especially those with a biological, physical or chemical
interpretation, is a hot topic.

From the very beginning, we point out that the DLV system (1) is nonlinear; hence, it
cannot be integrated in a straightforward way. Here, we examine this system assuming
that both equations involve diffusion, are nonlinear and are not autonomous, i.e.,

d1d2 6= 0, b2
1 + c2

1 6= 0, b2
2 + c2

2 6= 0, c2
1 + b2

2 6= 0. (2)

The most powerful methods for the construction of exact solutions for non-integrable
nonlinear partial differential equations (PDEs) are symmetry-based methods. These meth-
ods originate from the Lie method, which was created by the prominent Norwegian
mathematician Sophus Lie in the 1880s. The Lie method (the terminology ‘the Lie symme-
try analysis’ and ‘the group-theoretical analysis’ are also used) still attracts the attention
of many researchers, and new results are published on a regular basis (see the recent
monographs [21,22] and the papers cited therein). However, it is well known that some
nonlinear PDEs and systems of PDEs arising in applications have poor Lie symmetry. The
Lie method is not efficient for such equations since it enables only those exact solutions
to be constructed, which can be easily obtained without using this method. The DLV
system (1) belongs to such systems because one possesses a nontrivial Lie symmetry only
under unrealistic restrictions on parameters (see more details in [10]). As a result, Lie
symmetries allow us to construct only traveling wave solutions for (1).

During recent decades, other symmetry-based methods were developed in order
to solve nonlinear PDEs with poor Lie symmetry. The best known among them is the
method of nonclassical symmetries proposed by G. Bluman and J. Cole in 1969 [23]. Notably,
following Fushchych’s proposal dating back to the 1980s [24,25], we use the terminology ‘Q-
conditional symmetry’ instead of ‘nonclassical symmetry’ (see also a discussion concerning
terminology in Chapter 3 of [22]). Although this method was suggested 50 years ago,
its successful applications for solving nonlinear systems of PDEs were accomplished only
in the 2000s, and the majority of such papers were published during the last 10 years
(see [17,18,26–30]). This occurred because application of the nonclassical method (such a
terminology was used in [23] instead of nonclassical symmetries) leads to very complicated
nonlinear equations to-be-solved. As a result, one needs to solve a much more complicated
PDE system (the so-called system of determining equations (DEs)), comparing with the
system in question. In paper [27], a simpler algorithm was proposed in order to make
essential progress in solving systems of DEs and to construct Q-conditional symmetry. The
algorithm is based on the notion of Q-conditional symmetry of the first type. In paper [17],
we successfully applied the new algorithm for finding new exact solutions of the DLV
system (1).

In this work, using a modification of the algorithm for finding Q-conditional symmetry
of the first type, we make further progress in the construction of new symmetries and exact
solutions of the DLV system (1). Moreover, we demonstrate that some solutions can be
useful in population dynamics.

The paper is organized as follows. In Section 2, we present some definitions and
provide a complete description of Q-conditional symmetries of the first type of the DLV
system (1) in the so-called no-go case. In Section 3, the symmetries obtained are applied
to reduce the DLV system to the systems of ODEs and to construct exact solutions. In
Section 4, the properties of particular exact solutions are examined with the aim to provide
their biological interpretation. Finally, we present some conclusions in the last section.
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2. Q-Conditional Symmetries of the DLV System

Let us consider the general form of the Q-conditional symmetry operator of system (1),
namely the first-order operator :

Q = ξ0(t, x, u, v)∂t + ξ1(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v,
(
ξ0)2

+
(
ξ1)2 6= 0, (3)

where ξ i(t, x, u, v) and ηk(t, x, u, v) are smooth functions that can be found, using the well
known criterion. Given (3), one can calculate the second prolongation of the operator Q :

Q
2
= Q + ρ1

t ∂ut + ρ1
x∂ux + ρ2

t ∂vt + ρ2
x∂vx + σ1

tt∂utt + σ1
tx∂utx + σ1

xx∂uxx + σ2
tt∂vtt + σ2

tx∂vtx + σ2
xx∂vxx ,

where the coefficients ρ and σ with relevant subscripts are expressed via the functions ξ i

and ηk by the well-known formulae (see [21,31]).

Definition 1. Operator (3) is called the Q-conditional symmetry for the DLV system (1) if the
following invariance conditions are satisfied:

Q
2
(d1uxx − ut + u(a1 + b1u + c1v))

∣∣∣
M

= 0,

Q
2
(d2vxx − vt + v(a2 + b2u + c2v))

∣∣∣
M

= 0,
(4)

where the manifold

M = {S1 = 0, S2 = 0, Q(u) = 0, Q(v) = 0, ∂
∂t Q(u) = 0, ∂

∂x Q(u) = 0, ∂
∂t Q(v) = 0, ∂

∂x Q(v) = 0},

while

S1 ≡ d1uxx − ut + u(a1 + b1u + c1v), S2 ≡ d2vxx − vt + v(a2 + b2u + c2v),
Q(u) ≡ ξ0ut + ξ1ux − η1, Q(v) ≡ ξ0vt + ξ1vx − η2.

Since the expressions S1 and S2 contain only the derivatives ut, vt, uxx and vxx, one
needs to consider the following coefficients :

ρ1
t = η1

t − ξ1
t ux +

(
η1

u − ξ0
t − ξ1

uux
)
ut +

(
η1

v − ξ1
vux
)
vt − ξ0

vutvt − ξ0
uu2

t ,
ρ2

t = η2
t − ξ1

t vx +
(
η2

u − ξ1
uvx
)
ut +

(
η2

v − ξ0
t − ξ1

vvx
)
vt − ξ0

uutvt − ξ0
vv2

t ,
σ1

xx = η1
xx +

(
2η1

xu − ξ1
xx
)
ux + 2η1

xvvx +
(
η1

uu − 2ξ1
xu − ξ1

uuux − 2ξ1
uvvx

)
u2

x
+
(
η1

vv − ξ1
vvux

)
v2

x + 2
(
η1

uv − ξ1
xv
)
uxvx +

(
η1

u − 2ξ1
x − 3ξ1

uux − 2ξ1
vvx
)
uxx

+
(
η1

v − ξ1
vux
)
vxx −

(
ξ0

xx + 2ξ0
xuux + 2ξ0

xvvx + ξ0
uuu2

x + ξ0
vvv2

x + 2ξ0
uvuxvx

)
ut

−2
(
ξ0

x + ξ0
uux + ξ0

vvx
)
utx − ξ0

uutuxx − ξ0
vutvxx,

σ2
xx = η2

xx + 2η2
xuux +

(
2η2

xv − ξ1
xx
)
vx +

(
η2

uu − ξ1
uuvx

)
u2

x
+
(
η2

vv − 2ξ1
xv − 2ξ1

uvux − ξ1
vvvx

)
v2

x + 2
(
η2

uv − ξ1
xu
)
uxvx +

(
η2

u − ξ1
uvx
)
uxx

+
(
η2

v − 2ξ1
x − 2ξ1

uux − 3ξ1
vvx
)
vxx −

(
ξ0

xx + 2ξ0
xuux + 2ξ0

xvvx + ξ0
uuu2

x
+ξ0

vvv2
x + 2ξ0

uvuxvx
)
vt − 2

(
ξ0

x + ξ0
uux + ξ0

vvx
)
vtx − ξ0

uvtuxx − ξ0
vvtvxx.

(5)

System (1) is the system of evolution equations. Therefore, the problem of constructing
its Q-conditional symmetries of the form (3) essentially depends on the value of the function
ξ0. Thus, one should consider two different cases :

1. ξ0 6= 0.
2. ξ0 = 0, ξ1 6= 0.

In Case 1, one can set ξ0 = 1 without loss of generality using the well known property
stating that the Q-conditional symmetry operator can be multiplied by an arbitrary smooth
function (see the proof in [31]). Moreover, in this case, the differential consequences of
equations Q(u) = 0 and Q(v) = 0 (see the manifoldM) w.r.t. the variables t and x lead to
the second-order PDEs, namely, the following :
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∂
∂t Q(u) ≡ η1

t + η1
uut + η1

vvt − ξ1
t ux − ξ1

uutux − ξ1
vvtux − ξ1utx − utt = 0,

∂
∂x Q(u) ≡ η1

x + η1
uux + η1

vvx − ξ1
xux − ξ1

uuxux − ξ1
vvxux − ξ1uxx − utx = 0,

∂
∂t Q(v) ≡ η2

t + η2
uut + η2

vvt − ξ1
t vx − ξ1

uutvx − ξ1
vvtvx − ξ1vtx − vtt = 0,

∂
∂x Q(v) ≡ η2

x + η2
uux + η2

vvx − ξ1
xvx − ξ1

uuxvx − ξ1
vvxvx − ξ1vxx − vtx = 0.

We notethat the above equations involve the time derivatives utt, vtt and the mixed
derivatives utx, vtx, which do not occur in the invariance conditions (4). As a result, the
manifoldM can be rewritten as {S1 = 0, S2 = 0, Q(u) = 0, Q(v) = 0}, i.e., the first-order
differential consequences can be omitted. Case 1 for the DLV system (1) was investigated
in the work [17] (see also Chapter 3 in [31]).

Here, we examine Case 2, for which the terminology ‘no-go case’ is often used. Thus,
we are looking for operators of the following form:

Q = ξ(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v, ξ 6= 0. (6)

In this case, formulae (5) are essentially simplified and take the following forms :

ρ1
t = η1

t − ξtux +
(
η1

u − ξuux
)
ut +

(
η1

v − ξvux
)
vt,

ρ2
t = η2

t − ξtvx +
(
η2

u − ξuvx
)
ut +

(
η2

v − ξvvx
)
vt,

σ1
xx = η1

xx +
(
2η1

xu − ξxx
)
ux + 2η1

xvvx + 2
(
η1

uv − ξxv
)
uxvx +

(
η1

vv − ξvvux
)
v2

x
+
(
η1

uu − 2ξxu − ξuuux − 2ξuvvx
)
u2

x +
(
η1

u − 2ξx − 3ξuux − 2ξvvx
)
uxx +

(
η1

v − ξvux
)
vxx,

σ2
xx = η2

xx + 2η2
xuux +

(
2η2

xv − ξxx
)
vx + 2

(
η2

uv − ξxu
)
uxvx +

(
η2

uu − ξuuvx
)
u2

x
+
(
η2

vv − 2ξxv − 2ξuvux − ξvvvx
)
v2

x +
(
η2

u − ξuvx
)
uxx +

(
η2

v − 2ξx − 2ξuux − 3ξvvx
)
vxx.

(7)

First of all, we note that the task of constructing the Q-conditional symmetries with
ξ0 = 0 for scalar evolution equations is equivalent to solving the equation in question [32].
For this reason, one can obtain only some particular results finding the Q-conditional
symmetry operators of the form (6) for system (1).

Our aim is to construct Q-conditional symmetries of the first type for the DLV system
(1) in Case 2. The notion of Q-conditional symmetry of the first type was introduced
in the paper [27] as a special case of Q-conditional symmetry for systems of PDEs. Each
Q-conditional symmetry of the first type is automatically a Q-conditional symmetry (non-
classical symmetry) but not vice versa.

Definition 2. Operator (6) is called the Q-conditional symmetry of the first type for the DLV
system (1) if the following invariance conditions are satisfied :

Q
2
(S1)

∣∣∣
M1

= 0, Q
2
(S2)

∣∣∣
M1

= 0, (8)

where the manifold M1 is either given by Mu
1 = {S1 = 0, S2 = 0, Q(u) = 0, ∂

∂t Q(u) =

0, ∂
∂x Q(u) = 0} orMv

1 = {S1 = 0, S2 = 0, Q(v) = 0, ∂
∂t Q(v) = 0, ∂

∂x Q(v) = 0}.

We point out that the definition was given in [27] for an arbitrary multi-component sys-
tem of evolution PDEs, and differential consequences (see above ∂

∂t Q(u) = 0, ..., ∂
∂x Q(v) =

0 ) were not used therein. In fact, such equations do not play any role if one looks for
operators of the form (3) with ξ0 6= 0. It was only indicated (see conclusions in [27]) that
differential consequences should be taken into account in the case of arbitrary systems
(e.g., involving hyperbolic equations). However, it was not noted in [27] that one may use
differential consequences for searching operators (3) with ξ0 = 0 occurring in Case 2. Here,
we show that such an approach leads to new results.

The problem of finding Q-conditional symmetries of the first type for some reaction–
diffusion systems (in particular, two- and three-component DLV systems) are considered in
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monograph [31] (see Chapters 3 and 4). In paper [29], such symmetries were constructed in
the no-go case for a wide class of reaction–diffusion systems with nonconstant diffusivities.

Let us apply Definition 2 to construct the system of DEs for finding the Q-conditional
symmetry operators of the form (6). Firstly, we note that the DLV system (1) has a symmetric
structure and admits the discrete transformation u → v, v → u. Thus, to obtain all Q-
conditional symmetries of the first type for the DLV system (1), it is enough to examine
only one manifold from Definition 2, sayMu

1 . Solving the corresponding system of DEs,
the list of inequivalent (up to same specified local transformations) DLV systems and
corresponding operators will be derived. In order to obtain a complete classification,
the DLV systems from the list derived will be checked to confirm whether they admit
additional conditional symmetries satisfying Definition 2 with the manifoldMv

1.
Thus, the invariance conditions (8) corresponding to the manifoldMu

1 take the forms:

(
d1σ1

xx − ρ1
t + (a1 + 2b1u + c1v) η1 + c1u η2)∣∣∣

Mu
1

= 0,(
d2σ2

xx − ρ2
t + b2v η1 + (a2 + b2u + 2c2v) η2)∣∣∣

Mu
1

= 0,
(9)

where ρ and σ with indices are calculated by the Formula (7).
Using the equations generating the manifoldMu

1 , one can exclude the derivatives
ux, ut, vt and uxx :

ux = η1

ξ , uxx = η1
v−ξvux

ξ vx +
1
ξ

(
η1

x + η1
uux − ξxux − ξuu2

x
)
,

ut = d1uxx + u(a1 + b1u + c1v), vt = d2vxx + v(a2 + b2u + c2v).
(10)

Note that the derivative utx (which can be defined from the equation ∂
∂t Q(u) = 0) is not

presented in conditions (9). Thus, to construct the system of DEs, one needs to substitute
(10) into (9) and to split the equations obtained w.r.t. vxx, vxvxx, v2

x and vx. Omitting
straightforward calculations, we present only the following result:

ξv = 0, η1
vv = 0, η2

vv = 0, (d1 − d2)η
1
v = 0, (11)

ξη1
xv + η1η1

uv = 0, η1ξu + ξξx = 0, (12)

2d2η2
xv + u(a1 + b1u + c1v)ξu + ξt

+
1
ξ

(
d1ξuη1

x + 2d2η1η2
uv + (d2 − d1)η

1
vη2

u

)
+ d1

η1

ξ2 ξuη1
u = 0, (13)

d1η1
xx − η1

t − u(a1 + b1u + c1v)η1
u − v(a2 + b2u + c2v)η1

v + c1uη2 + (a1 + 2b1u + c1v)η1

+
η1

ξ

(
2d1η1

xu + u(a1 + b1u + c1v)ξu + ξt

)
+ d1

η1

ξ2

(
η1η1

uu + ξuη1
x

)
+ d1

(η1)2

ξ3 ξuη1
u = 0, (14)

d2η2
xx − η2

t − u(a1 + b1u + c1v)η2
u − v(a2 + b2u + c2v)η2

v + b2vη1 + (a2 + b2u + 2c2v)η2

+
1
ξ

(
2d2η1η2

xu + (d2 − d1)η
1
xη2

u

)
+

η1

ξ2

(
d2η1η2

uu + (d2 − d1)η
1
uη2

u

)
= 0. (15)

Note that Equations (13)–(15) were simplified (using equation η1ξu + ξξx = 0 and its
differential consequences w.r.t. x and u) by excluding the derivatives ξx, ξxx and ξxu.

The result of integrating the system of DEs (11)–(15) can be formulated as follows.

Theorem 1. The DLV system (1) is invariant under the Q-conditional symmetry operator(s) of
the first type (6) if and only if the system and the corresponding operator(s) have the forms listed in
Table 1. Any other DLV system (1) admitting a nontrivial Q-conditional symmetry of the first type
and the relevant operator(s) are reduced to those listed in Table 1 by local transformations from the
following set:

t∗ = t + t0, x∗ = eγ0(x + x0), u∗ = β11 eγ1tu + β12 v, v∗ = β22 eγ2tv + β21 u, (16)
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where t0, x0, βij and γj are some correctly-specified constants.

Table 1. Q-conditional symmetries of the first type of the DLV system (1).

DVL Systems Restrictions and Operators

1. ut = d1uxx + u(a1 + u + v) d1 6= d2, Qu
1 = ∂x +

g1
x

g1 u (∂u − ∂v),

vt = d2vxx + v(a2 + u + v) Qv
1 = ∂x +

g2
x

g2 v (∂v − ∂u)

2. ut = uxx + u(a + u + 2v) Qv
2 = G(x, v)(∂x + F(x, v)(∂u − ∂v))

vt = dvxx + v(ad + dv)

3. ut = uxx + uv a2c2 6= 0, Qu
3 = ∂x + r(t, x) u ∂u,

vt = dvxx + v(a2 + c2v) Qv
3 =

(
h1(ω)− 2th2(ω)

)
∂x +

(
(h2(ω)x + h3(ω))u + p(t, x, v)

)
∂u

4. ut = uxx + uv c2 6= 0, Qu
3 , Qv

4 =
(
h1(θ)− 2th2(θ)

)
∂x

vt = dvxx + c2v2 +
(
(h2(θ)x + h3(θ))u + p(t, x, v)

)
∂u

5. ut = uxx + uv a2 6= 0 , Qu
3 , Qv

3 with c2 = 1/2,
vt = vxx + v

(
a2 +

v
2
)

Qv
5 = ∂x + ea2tu∂v +

(
α u− e−a2t

2 v2 − a2e−a2tv
)

∂u

6. ut = uxx + uv Qu
3 , Qv

4 with c2 = 1/2,
vt = vxx +

1
2 v2 Qv

6 = (α1t + α0)∂x + (α1t + α0)u∂v +
((

α2 − α1
2 x
)
u− α1t+α0

2 v2 − α1v
)

∂u

7. ut = uxx + uv a2 6= 0, α2
1 + α2

2 6= 0, Qu
3 , Qv

3 with c2 = 1,
vt = vxx + v(a2 + v) Qu

7 = ∂x +
(
− x

2t u + α1
t +

(
α2e−a2t

t + α1
a2t

)
v
)

∂u

8. ut = uxx + uv α2
1 + α2

2 6= 0, Qu
3 , Qv

4 with c2 = 1,
vt = vxx + v2 Qu

8 = ∂x +
(
− x

2t u + α1
t +

( α2
t + α1

)
v
)
∂u

The proof of the theorem is presented in Appendix A.

Remark 1. In Table 1, the upper indexes u and v mean that the relevant Q-conditional symmetry
operators satisfy Definition 2 for the manifoldsMu

1 andMv
1, respectively.

Remark 2. In Table 1, ω = a2+c2v
v ea2t, θ = t + 1

c2v ; h1, h2 and h3 are arbitrary smooth functions
of the corresponding variables, the function p(t, x, v) is the general solution of the linear ODE

pt = pxx − (a2v + c2v2)pv + vp,

the functions F and G are the general solution of the system

FFv − Fx + av + v2 = 0, Gx = FGv, (17)

and the function r(t, x) is the general solution of the Burgers equation rt = rxx + 2rrx, while

gi(t, x) =


α0 exp(diκ

2t) + α1 sin(κ x) + α2 cos(κ x), if a1−a2
d1−d2

> 0,
α0 exp(−diκ

2t) + α1eκx + α2e−κx, if a1−a2
d1−d2

< 0,
α0 + α1x + α2x2 + 2diα2t, if a1 = a2,

(18)

where i = 1, 2, κ =

√∣∣∣ a1−a2
d1−d2

∣∣∣, α0, α1 and α2 are arbitrary constants.
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Remark 3. The general solution of the quasilinear first-order system (17) can be constructed in an
implicit form using of computation program, say Maple. In order to avoid cumbersome formulae,
here we present its solution in the case Fx = 0 :

F = ±
√

α− av2 − 2
3

v3, G = G0(ω), ω = x±
∫ 1√

α− av2 − 2
3 v3

dv,

where α is an arbitrary constant, while G0 is an arbitrary smooth function. The above integral is
expressed in the terms of elliptic functions, which degenerate to elementary functions in particular

cases. For example, ω =
√
−a x± 2arctanh

√
1 + 2v

3a if α = 0, a < 0.

Remark 4. All the systems arising in Table 1, excepting that in Case 1, are semi-coupled because
the second equation is autonomous. Interestingly, the equation in Cases 2, 3, 5 and 7 is nothing else
but the Fisher equation [33].

The most interesting system from applicability point of view occurs in Case 1. Using
the transformations (see (16))

u→ β11u, v→ β22v,

the system can be generalized to the following form:

ut = d1uxx + u(a1 + β11u + β22v),
vt = d2vxx + v(a2 + β11u + β22v).

(19)

Thus, we conclude that the DLV system (1) admits exactly two Q-conditional symmetries
of the first type provided, b1 = b2 = β11 6= 0 and c1 = c2 = β22 6= 0, i.e., has the form (19).
Depending on signs of the parameters, the DLV system (19) can describe competition or
mutualism of two populations of species (cells). However, this system cannot describe
the prey–predator interaction because the quadratic terms have the same signs in both
equations (see [34] for the classification of interaction types).

Finally, the following observation should be highlighted. Because each Q-conditional
symmetry of the first type is automatically a usual Q-conditional (nonclassical) symmetry,
all operators listed in Table 1 are nonclassical symmetries. On the other hand, it can be
noted that Cases 7 and 8 of Table 1 do not present new nonclassical symmetries because the
operators Qu

7 and Qu
8 are particular cases of those Qv

3 and Qv
4 arising in Cases 3 and 4. In fact,

setting h1 = h3 = 0, h2 = c2 = 1 and p = −2α1 − 2(α2 + α1t)v in Qv
4, one obtains exactly

the operator −2tQu
8 . Similarly, −2tQu

7 is a particular case of Qv
3. We remind the reader that

any Q-conditional symmetry can be multiplied by an arbitrary smooth function in contrast
to the Lie symmetry and Q-conditional symmetry of the first type. Thus, Cases 7 and 8 of
Table 1 can be skipped if one considers the Q-conditional (nonclassical) symmetries.

3. Reduction and Exact Solutions

In this section, we present examples of reductions of the DLV system to ODE systems,
using the Q-conditional symmetry from Theorem 1, and solve the ODE systems obtained in
order to construct exact solutions of the DLV system. Our aim is to find such exact solutions
of the DLV system (1) that are bounded, nonnegative and satisfy the zero Neumann
boundary conditions in some correctly-specified domain (interval).

Consider the DLV system from Case 1 of Table 1, namely the following :

ut = d1uxx + u(a1 + u + v),
vt = d2vxx + v(a2 + u + v), d1 6= d2,

(20)

which is the most interesting from the applicability point of view. Since the Q-conditional
symmetry operators Qu

1 and Qv
1 of system (20) lead to the equivalent solutions (up to
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discrete transformation u→ v, v→ u), we use only one of them, namely Qu
1 . According to

the standard procedure, in order to construct the ansatz corresponding to the operator Qu
1 ,

one needs to solve the first-order PDE system (see Q(u) = 0 and Q(v) = 0 in Definition 1):

ux =
g1

x
g1 u, vx = − g1

x
g1 u. (21)

Integrating system (21) for each form of the function g1 from (18), one constructs the
ansatz as follows:

u = ϕ(t)
(
α0 + α1 exp(−d1κ2t) sin(κx) + α2 exp(−d1κ2t) cos(κx)

)
,

v = ψ(t)− ϕ(t)
(
α0 + α1 exp(−d1κ2t) sin(κx) + α2 exp(−d1κ2t) cos(κx)

)
,

(22)

if a1−a2
d1−d2

> 0; the ansatz

u = ϕ(t)
(
α0 + α1 exp(d1κ2t + κx) + α2 exp(d1κ2t− κx)

)
,

v = ψ(t)− ϕ(t)
(
α0 + α1 exp(d1κ2t + κx) + α2 exp(d1κ2t− κx)

)
,

(23)

if a1−a2
d1−d2

< 0; and the ansatz is as follows:

u = ϕ(t)
(
α0 + α1x + α2x2 + 2d1α2t

)
,

v = ψ(t)− ϕ(t)
(
α0 + α1x + α2x2 + 2d1α2t

)
,

(24)

if a1 = a2 ≡ a. It can be noted that each ansatz derived above satisfies the simple functional
relation u + v = ψ(t).

Now three reductions of the PDE system in question to the ODE systems can be
provided. Substituting the above ansatz into the DLV system (20), we arrive at the ODE
system as follows:

dϕ

dt
= ϕ(a1 + ψ),

dψ

dt
= ψ(a2 + ψ) + α0(a1 − a2) ϕ, (25)

in the case of (22) and (23), while the system

dϕ

dt
= ϕ(a + ψ),

dψ

dt
= ψ(a + ψ) + 2α2(d1 − d2) ϕ, (26)

is obtained in the case of (24). Here, ϕ(t) and ψ(t) are new unknown functions.
It turns out that each of the ODE systems (25) and (26) can be integrated by reducing

to a single second-order ODE. As a result, the general solution of system (25) is derived in
the following form:

ϕ =


a1ea1t

C1−α0ea1t+C2ea2t , if a1a2 6= 0,
1

C1−α0 t+C2ea2t , if a1 = 0,
a1ea1t

C1+C2 t−α0ea1t , if a2 = 0,

ψ =


α0a1ea1t−C2a2ea2t

C1−α0ea1t+C2ea2t , if a1a2 6= 0,
α0−C2a2ea2t

C1−α0 t+C2ea2t , if a1 = 0,
α0a1ea1t−C2

C1+C2 t−α0ea1t , if a2 = 0,

(27)

where C1 and C2 are arbitrary constants. Substituting the functions ϕ and ψ from (27)
into formulae (22) and (23), one obtains the exact solutions of the DLV system (20) with
a1a2 6= 0:

u(t, x) = a1ea1t

C1−α0ea1t+C2ea2t

(
α0 + α1 exp(−d1κ2t) sin(κx) + α2 exp(−d1κ2t) cos(κx)

)
,

v(t, x) = α0a1ea1t−C2a2ea2t

C1−α0ea1t+C2ea2t − u(t, x),
(28)
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if a1−a2
d1−d2

> 0, and

u(t, x) = a1ea1t

C1−α0ea1t+C2ea2t

(
α0 + α1 exp(d1κ2t + κx) + α2 exp(d1κ2t− κx)

)
,

v(t, x) = α0a1ea1t−C2a2ea2t

C1−α0ea1t+C2ea2t − u(t, x),
(29)

if a1−a2
d1−d2

< 0, where κ =

√∣∣∣ a1−a2
d1−d2

∣∣∣.
Similarly, solving the ODE system (26), we arrive at the exact solutions

u(t, x) = a2

2(d1−d2)
α0+α1x+α2x2+2d1α2t

C1−α2at+C2e−at ,

v(t, x) = a(α2−C1+α2at)
C1−α2at+C2e−at − u(t, x)

and
u(t, x) = α0+α1x+α2x2+2d1α2t

C1+C2t−(d1−d2)α2t2 ,

v(t, x) = 2(d1−d2)α2t−C2
C1+C2t−(d1−d2)α2t2 − u(t, x)

of system (20) with a1 = a2 ≡ a for a 6= 0 and a = 0, respectively.
To the best of our knowledge, all the exact solutions obtained above are new, although

several papers are devoted to finding exact solutions of the two-component DLV system. In
fact, a majority of these papers [9–11] present the plane wave solutions (traveling waves),
which have the following structure:

u = U(x− ct), v = V(x− ct), (30)

where c is the speed of the wave. The solutions derived herein possess a more complicated
structure than traveling waves and cannot be presented in the form (30). So, we compare
our results only with paper [17] (see also Chapter 3 in [31]), where also nontrivial solutions
were constructed for the DLV system as follows:

λ1ut = uxx + u(a1 + u + v),
λ2vt = vxx + v(a2 + u + v), λ1 6= λ2.

It can be easily noted that this system is reduced to the form

ut = d1uxx + u(a∗1 + d1u + d1v),
vt = d2vxx + v(a∗2 + d2u + d2v), d1 6= d2,

(31)

by the introduction diffusivities d1 = λ−1
1 and d2 = λ−1

2 (here a∗1 = λ−1
1 a1 and a∗2 = λ−1

2 a2).
Now, one realizes that two nonlinear systems (20) and (31) are inequivalent, provided
d1 6= d2. It means that any solution derived in [17] cannot be transformed into a solution
of the DLV system (20). We only point out that the exact solutions (28) and (29) with
C1 = C2 = 0 have the same structure as those of (117)–(118) [17]. It means that these
solutions could be used for description of similar processes. A possible application is
presented in the next section.

4. Interpretation of the Solution Obtained

In this section, we present an example that demonstrates remarkable properties of
some solutions constructed in the previous section. Obviously, using the transformation
u → −bu, v → −cv (see Formula (16)) and introducing the notation α0 → −b α0, α1 →
−b α1, one reduces the DLV system (20) to the following form:

ut = d1uxx + u(a1 − b u− c v),
vt = d2vxx + v(a2 − b u− c v).

(32)
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The nonlinear system (32) with positive parameters a1, a2, b and c is widely used for describ-
ing the competition of two population of species (or cells) (see, e.g., [34,35]). Solution (28)
(we set α2 = 0 just for simplicity) after the above transformation takes the following form:

u(t, x) = a1ea1t

C1+α0b ea1t+C2ea2t

[
α0 + α1 exp

(
d1(a2−a1)

d1−d2
t
)

sin
(√

a1−a2
d1−d2

x
)]

,

v(t, x) = 1
c

α0a1b ea1t+C2a2ea2t

C1+α0b ea1t+C2ea2t − b
c u(t, x).

(33)

In order to provide a biological interpretation, the components u and v must be
bounded and nonnegative in some domain because they describe densities of species. If
we consider the domain Ω = {(t, x) ∈ [0,+∞)× (−∞,+∞)}, then it can be easily shown
that both components are bounded and nonnegative, provided the coefficient restrictions

α0 > |α1|, C2 > max
{
−α0b− C1,

ba1|α1|
a2

}
hold. Moreover, solution (33) possesses the asymptotical behavior as follows:

(u, v)→
( a1

b , 0
)
, if a1 > a2,

(u, v)→
(
0, a2

c
)
, if a1 < a2,

as t→ +∞. (34)

Now, one realizes that
( a1

b , 0
)

and
( a2

c 0
)

are steady state points of the competition
model (32) and the asymptotical behavior (34) is in agreement with the qualitative theory
of this model (see [8] and the papers cited therein).

In real-world applications, the competition takes place in some bounded domain, say,
Ω∗ = {(t, x) ∈ [0,+∞)× (A, B)}, −∞ < A < B < +∞. Typically, the zero flux conditions
are assumed at the boundary of Ω∗:

x = A : ux = 0, vx = 0,
x = B : ux = 0, vx = 0.

(35)

Such boundary conditions reflect a natural assumption that the competing species
cannot cross the boundaries (for example, the wide river is a natural obstacle). It can be
easily checked that the exact solution (33) satisfies the boundary conditions only under the
following requirement:

A =
π

κ

(
1
2
+ m1

)
, B =

π

κ

(
1
2
+ m2

)
, m1 < m2,

where m1 and m2 are arbitrary integer parameters and κ =

√∣∣∣ a1−a2
d1−d2

∣∣∣. Thus, we conclude

that our solution with correctly-specified parameters describe the competition of two
population of species in the bounded domain. An example is presented in Figure 1.

It should be pointed out that traveling wave solutions, which are widely studied for
any nonlinear model and play an important role in qualitative analysis, usually cannot
be used for solving the relevant models involving the zero flux boundary conditions in
the bounded domains. Let us consider the traveling wave of the DLV system (32) with
d1 = d2 = 1, which was firstly constructed in [10] (see also Section 3.2.3 in [31]) and much
later rediscovered in [12] (see formulae (18) and (24) therein)

u(t, x) = a1
4b

(
1− tanh

(√
a1−a2

24 x− 5(a1−a2)
12 t

))2
,

v(t, x) = a2
c −

a2
4c

(
1− tanh

(√
a1−a2

24 x− 5(a1−a2)
12 t

))2
.

(36)

Clearly, the components u and v are bounded and nonnegative, provided that a1 > a2 and
the asymptotical behavior is the same as in (34). However, solution (36) does not satisfy the
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boundary condition (35) for any finite values of A and B. It can be done only for A→ −∞
and B→ +∞. An example of solution (36) is presented in Figure 2.

Figure 1. Surfaces representing the components u and v of solution (33) with α0 = 1, α1 = 1/2, C1 =

−4, C2 = 4 (left surfaces) and α0 = 1, α1 = 1/2, C1 = 2, C2 = 7 (right surfaces) of the DLV
system (32) with the parameters d1 = 3/2, d2 = 1, a1 = 2, a2 = 1, b = 3, c = 5. The functions u and
v are defined in the domain Ω∗ with m1 = −2 and m2 = 2.

Figure 2. Surfaces representing the components u and v of the traveling wave solution (36) of the
DLV system (32) with the parameters d1 = 1, d2 = 1, a1 = 2, a2 = 1, b = 3, c = 5.



Mathematics 2021, 9, 1984 12 of 17

5. Conclusions

In this paper, the two-component DLV system (1) was examined in order to find Q-
conditional symmetries in the so-called no-go case (see (6)) and to construct exact solutions
and provide their biological meaning.

From the very beginning, we modified the definition of Q-conditional symmetries of
the first type [27] in the no-go case (see Definition 2). In contrast to the standard definition
(see Definition 1), Definition 2 allows us to obtain the integrable system of DEs (11)–(15).
Solving the system of DEs, the main theoretical result in the form of Theorem 1 was derived.
The theorem presents an exhaustive list of Q-conditional symmetries of the first type, which
the DLV system (1) admits depending on the parameters di, ai, bi and ci (i = 1, 2). All
other cases, which are not listed in Table 1, are reducible to those in Table 1 by appropriate
point transformations of the form (16).

We used the coefficient restrictions (2), which are motivated from the mathematical
and applied point of view. For example, we excluded from the examination the systems of
the form (1) involving a linear equation, i.e., the following:

ut = d1uxx + a1u, vt = d2vxx + v(a2 + b2u + c2v). (37)

It is not plausible that such a system can model any interaction between species (cells,
chemicals) because the first equation is linear and autonomous. Interestingly, system (37)
is reduced to the following:

u∗t = d1u∗xx, v∗t = d2v∗xx + c2ea2t(v∗)2 + b2ea1tu∗v∗, (38)

by the local transformation
u∗ = e−a1tu, v∗ = e−a2tv.

In the case c2 = 0, all solutions of system (38) can be easily derived by substitution
of the relevant solutions of the linear diffusion equation into the second equation, which
becomes the form of a standard diffusion equation with a linear source (sink), i.e., it is
again solvable via classical methods for linear PDEs. In the case c2 6= 0, the situation is
more complicated because the second equation is nonlinear w.r.t. v∗.

The conditional symmetries from Table 1 allow us to construct exact solutions of
the relevant systems. As a result, a variety of new exact solutions of the nonlinear DLV
system (20), which is the most interesting from applicability point of view, were derived.
Moreover, it was shown that all the solutions obtained are new.

Finally, we examined a model describing the competition of two populations of
species. It was shown that the exact solution (33) with correctly-specified parameters are
bounded, nonnegative and satisfies the zero Neumann boundary conditions at bounded
space domains. Moreover, the solution possesses a realistic asymptotic behavior. Thus, we
conclude that our solution with correctly-specified parameters describes the competition
of two species. Interestingly, the solution is periodical in space (see Figure 1) in contrast to
the known traveling wave (see Figure 2).

In conclusion, we want to highlight an unsolved problem. The nonlinear system (32)
with positive parameters a1, a2 and negative b and c is the model describing mutualism or
cooperation (see [34,36]). Obviously, the solutions constructed in this work can be used
for these types of interaction in a quite similar way as that in Section 4. However, these
solutions are not applicable for the third most common type of interactions between species
(cells), prey–predator models. In the prey–predator model, the parameters should satisfy
the conditions a1a2 < 0, c1b2 < 0, b1 ≤ 0 and c2 ≤ 0 (see the DLV system (1)). It can be
seen that Table 1 does not contain such a type of systems; therefore, the relevant exact
solutions cannot be found. Moreover, we noted that all the exact solutions derived in other
papers [9–14,17,18] are not applicable for description of the prey–predator interaction as
well. Thus, the problem of constructing exact solutions for the DLV system (1) modeling
the interaction between the prey and predator is a hot topic.
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Appendix A. Proof of Theorem 1

In order to prove the theorem, one needs to solve the system of DEs (11)–(15) and to
identify all inequivalent solutions depending on the parameters ai, bi, ci and di (i = 1, 2).

First of all, we note that two essentially different cases occur (see (11)), namely: (i)
η1

v = 0 and diffusion coefficients d1 and d2 are arbitrary constants; (ii) η1
v 6= 0 ⇒ d1 =

d2 ≡ d.
Examination of Case (i). In this case, the functions ξ, η1 and η2 have the following

form:
ξ = ξ(t, x, u), η1 = r1(t, x, u), η2 = r2(t, x, u) + q2(t, x, u) v, (A1)

where ξ, r1, r2 and q2 are to-be-determined functions. Substituting the functions ξ, η1

and η2 from (A1) into Equations (12)–(15) and splitting the equations obtained w.r.t. the
variable v, we arrive at the equation c1ξu = 0 (see Equation (13)). So, two different subcases
should be examined : (i1) c1 6= 0 ⇒ ξ = ξ(t) (see the second equation in (12)); (i2) c1 = 0.

Subcase (i1). Since c1 6= 0, we can set c1 = 1 (using the transformation v∗ = c1v). Thus,
the system of DEs (11)–(15) is transformed to the following form:

uq2
u − c2q2 = 0, ur1

u − r1 − uq2 = 0, (A2)

2d2

(
r1q2

u + ξq2
x

)
+ ξ

dξ

dt
= 0, (A3)

d1r1
xx − r1

t +
d1
(
r1)2

ξ2 r1
uu +

r1

ξ

(
2d1r1

xu +
dξ

dt

)
− u(a1 + b1u)r1

u + (a1 + 2b1u)r1 + ur2 = 0, (A4)

d2r2
xx − r2

t +
r1

ξ2

(
d2r1r2

uu + (d2 − d1)r1
ur2

u

)
− u(a1 + b1u)r2

u

+
1
ξ

(
2d2r1r2

xu + (d2 − d1)r1
xr2

u

)
+ (a2 + b2u)r2 = 0, (A5)

d2q2
xx − q2

t +
r1

ξ2

(
d2r1q2

uu + (d2 − d1)r1
uq2

u

)
− u(a1 + b1u)q2

u

+
1
ξ

(
2d2r1q2

xu + (d2 − d1)r1
xq2

u

)
− ur2

u + b2r1 + 2c2r2 = 0. (A6)

Integrating Equation (A2), we have the following :

r1 =

{
f 1(t, x)u + f 2(t,x)

c2
uc2+1, if c2 6= 0,

f 1(t, x)u + f 2(t, x) u ln u, if c2 = 0,
q2 = f 2(t, x)uc2 , (A7)

where f 1 and f 2 are to-be-determined functions. Substituting (A7) into Equation (A3), we
arrive at the conditions f 2 = 0 and ξ = const. Therefore, one can set ξ = 1 without loss
of generality.

Now we can find the function r2 from Equation (A4) :

r2 = −b1u f 1 − 2d1 f 1 f 1
x + f 1

t − d1 f 1
xx, f 1 6= 0. (A8)
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Substituting the functions r1 and r2 into Equations (A5) and (A6) and splitting the
equations obtained w.r.t. the exponents of u, we arrive at the following system:{

b1(b1 − b2) = 0,
2b1c2 − b1 − b2 = 0,

⇒
{

b1 = b2 ≡ b,
b(c2 − 1) = 0,

(A9)

c2

(
d1 f 1

xx − f 1
t + 2d1 f 1 f 1

x

)
= 0, (A10)

b
(
(d1 + d2) f 1

xx + 2 f 1
t − (d1 + 3d2) f 1 f 1

x + (d1 − d2)( f 1)3 + (a1 − a2) f 1
)
= 0. (A11)

Note that the case c2 = 0 leads to the restrictions b1 = b2 = 0 (see (A9)). Thus, one
obtains the following system:

ut = d1uxx + u(a1 + v), vt = d2vxx + a2v,

that is excluded from consideration (the second equation is linear).
In the case b = 0, we immediately obtain the DLV system from Case 3 of Table 1

and the operator Qu
3 . To complete the examination of subcase (i1) one needs to solve

the overdetermined nonlinear system of PDEs (A10) and (A11) with b 6= 0 (one can set
b = 1 using the transformation u∗ = bu) and c2 = 1. Taking into account the Burgers
Equation (A10), Equation (A11) can be rewritten as follows:

(d1 − d2)
(

f 1
xx + 3 f 1 f 1

x + ( f 1)3)+ (a1 − a2) f 1 = 0. (A12)

If d1 = d2 ≡ d, then a1 = a2 ≡ a, and the DLV system

ut = duxx + u(a + u + v), vt = dvxx + v(a + u + v) (A13)

is obtained. Applying the transformation

x∗ =
1√
d

x, u∗ = e−atu, v∗ = u + v, (A14)

system (A13) is reduced to the DLV system from Case 3 of Table 1 (with d = 1, a2 = a, c2 = 1)
admitting the operator Qu

3 .
It is well known (see [37]) that Equation (A12) with d1 6= d2 is reducible to the

following linear equation:

g1
xxx +

a1 − a2

d1 − d2
g1

x = 0, (A15)

by the nonlocal substitution

f 1 =
g1

x
g1 (A16)

(here g1(t, x) is a new smooth function). Integrating Equation (A15) and taking into account
(A8), (A10) and (A16), we arrive at the operator Qu

1 from Case 1 of Table 1. Since the DLV
system from Case 1 of Table 1 has a symmetric structure, it admits additional operator Qv

1,
which satisfy Definition 2 on the manifoldMv

1. Thus, subcase (i1) is completely examined.
Subcase (i2) is investigated in a quite similar way so that operators Qv

2, Qv
3 and Qv

4 are
derived (up to discreet transformation u→ v, v→ u).

Thus, Case (i) is completely examined and Cases 1–4 of Table 1 are obtained.
Examination of Case (ii). In this case, one can set d = 1 using the transformation

x∗ = 1√
d

x. Since η1
v 6= 0, Equations (12) and (13) lead to η1

uv = η1
xv = 0, ξu = ξx = 0 and

η2
uv = 0, respectively. Integrating (11) and (13), one finds the functions ξ, η1 and η2 in the

following form :

ξ = ξ(t), η1 = r1(t, x, u) + q1(t) v, η2 = r2(t, x, u) +
(

q2(t)− x
2

dξ

dt

)
v, (A17)
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where ξ, r1, r2, q1 6= 0 and q2 are smooth functions, which should be determined from
Equations (14) and (15).

Substituting (A17) into (14) and (15) and splitting the equations obtained w.r.t. the
exponents of v, we arrive at the overdetermined system as follows:

q1r1
uu = (c2 − c1)ξ

2,
(

q1
)2

r2
uu =

(
c2x
2

dξ

dt
− b2q1 − c2q2

)
ξ2, (A18)

2q1r1r1
uu

ξ2 +
q1

ξ

(
dξ

dt
+ 2r1

xu

)
+ c1u

(
q2 − x

2
dξ

dt
− r1

u

)
+c1r1 + (a1 − a2 + 2b1u− b2u)q1 − dq1

dt
= 0, (A19)

2q1r1r2
uu

ξ2 +
2q1r2

xu
ξ
− c1ur2

u + b2r1 + 2c2r2 +
x
2

d2ξ

dt2 −
dq2

dt
= 0, (A20)

r1
xx − r1

t +

(
r1)2

ξ2 r1
uu +

r1

ξ

(
2r1

xu +
dξ

dt

)
− u(a1 + b1u)r1

u + (a1 + 2b1u)r1 + c1ur2 = 0, (A21)

r2
xx − r2

t +

(
r1)2

ξ2 r2
uu +

2r1

ξ
r2

xu − u(a1 + b1u)r2
u + (a2 + b2u)r2 = 0. (A22)

Integrating Equation (A18) as two ODEs for r1 and r2, we find the following:

r1 = µ0 + µ1u + µ2u2, r2 = ν0 + ν1u + ν2u2, (A23)

where µ0, µ1, ν0 and ν1 are arbitrary smooth functions of variables t and x, while

µ2 =
c2 − c1

2q1 ξ2, ν2 =
ξ2

2(q1)
2

(
c2x
2

dξ

dt
− b2q1 − c2q2

)
. (A24)

Formula (A23) allows us to reduce Equations (A19)–(A22) to those without variable
u. First of all, substituting the function r1 from (A23) into Equation (A21), one imme-
diately obtains µ2 = 0 ⇒ c1 = c2 ≡ c. Thus, taking into account (A23) and splitting
Equations (A19)–(A22) w.r.t. the exponents of u, we arrive at the system as follows:

c
dξ

dt
= 0, cν2 = 0, (2b1 − b2)ν

2 = 0, (2b1 − b2)q1 + cq2 = 0, b1µ1 + cν1 = 0, (A25)

and
4q1

ξ2

(
ξν2

x + µ1ν2)+ b2µ1 + cν1 = 0,
dq1

dt = q1

ξ

(
2µ1

x +
dξ
dt

)
+ (a1 − a2)q1 + cµ0,

dq2

dt = 4q1µ0ν2

ξ2 + 2q1ν1
x

ξ + x
2

d2ξ
dt2 + b2µ0 + 2cν0,

µ0
xx − µ0

t +
µ0

ξ

(
2µ1

x +
dξ
dt

)
+ a1µ0 = 0,

ν0
xx − ν0

t +
2(µ0)

2
ν2

ξ2 + 2µ0ν1
x

ξ + a2ν0 = 0,

µ1
xx − µ1

t +
µ1

ξ

(
2µ1

x +
dξ
dt

)
+ 2b1µ0 + c1ν0 = 0,

ν1
xx − ν1

t +
4µ0µ1ν2

ξ2 +
2(2µ0ν2

x+µ1ν1
x)

ξ + b2ν0 + (a2 − a1)ν
1 = 0,

−ν2
t +

2(µ1)
2
ν2

ξ2 + 4µ1ν2
x

ξ + (b2 − b1)ν
1 + (a2 − 2a1)ν

2 = 0.

(A26)

Taking into account (A25), two different subcases should be examined : (ii1) c 6= 0⇒
c = 1; (ii2) c = 0.

Subcase (ii1). Formulas (A24) and (A25) lead to the conditions

ξ = const, ν2 = 0, b1 = b2 ≡ b, bq1 + q2 = 0, bµ1 + ν1 = 0. (A27)
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It turns out that the assumption µ1
x = ν1

x = 0 leads only to Lie symmetries, which is
completely described in [10]. So, we assume

(
µ1

x
)2

+
(
ν1

x
)2 6= 0 in what follows.

The detailed analysis of system (A26) with conditions (A27) leads to the restriction
a1 = b = 0. In fact, assuming b 6= 0 ⇒ b = 1, we additionally obtain a1 = a2 ≡ a. As a
result, system (A13) with d = 1 is obtained, which is reduced to the DLV system (up to
the notations)

ut = uxx + uv, vt = vxx + v(a2 + v) (A28)

by the transformation (A14). In the case b = 0, a1 6= 0, using the transformation u∗ =
e−a1tu, we again arrive at the DLV system (A28).

Thus, to complete the examination of subcase (ii1) one needs to identify only Q-
conditional symmetries of the form

Q = ∂x +
(

µ0 + µ1u + q1v
)

∂u, q1 6= 0, µ1
x 6= 0

of the DLV system (A28), where the functions µ0, µ1 and q1 satisfy the PDE system
as follows:

2q1µ1
x −

dq1

dt − a2q1 + µ0 = 0,
µ1

xx − µ1
t + 2µ1µ1

x = 0, µ0
xx − µ0

t + 2µ0µ1
x = 0.

(A29)

System (A29) consists of three nonlinear PDEs; however, the function q1 depends only
on t and it allows us to treat the first equation as a linear first-order ODE. As a result, a
relation between µ0 and µ1 is established; therefore, the 2nd and 3rd equations are solved.
Finally, operators Qu

7 and Qu
8 arising in Cases 7 and 8 of Table 1 are identified.

Note that the DLV system from Case 7 is the subsystem of one from Case 3, i.e., one
additionally admits the operators Qu

3 and Qv
3 provided c2 = 1. A similar situation occurs

for the DLV system from Case 8 of Table 1.
Thus, subcase (i1) is completely examined.
Subcase (ii2) is investigated in a quite similar way. In this case, the DLV system has the

following form (see the fourth equation in (A25)):

ut = uxx + u(a1 + b1u), vt = vxx + v(a2 + 2b1u), b1 6= 0. (A30)

Using the transformation

u∗ = b1u, v∗ = e−a2tv, (A31)

one can set a2 = 0 and b1 = 1 in system (A30). Solving system of DEs (A26) with

b1 = 1, b2 = 1
2 , a2 = c = 0, µ0 = µ1 = 0, ν2 = − ξ2

q1 and using the transformation
u∗ = v, v∗ = 2u, the operators Qv

5 and Qv
6 arising in Cases 6 and 7 of Table 1 were

identified.
Thus, Case (ii) is completely examined and Cases 5–8 of Table 1 are obtained.
Finally, it should be noted that several point transformations ((A14), (A31) and

u∗ = v, v∗ = 2u are examples) are used to simplify structures of the relevant DLV sys-
tems. These transformations can be united and presented in the form (16).

The proof is now complete.
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