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Abstract: We report, through different examples, the current development in GeoGebra, a widespread
Dynamic Geometry software, of geometric automated reasoning tools by means of computational
algebraic geometry algorithms. Then we introduce and analyze the case of the degeneracy conditions
that so often arise in the automated deduction in geometry context, proposing two different ways
for dealing with them. One is working with the saturation of the hypotheses ideal with respect
to the ring of geometrically independent variables, as a way to globally handle the statement
over all non-degenerate components. The second is considering the reformulation of the given
hypotheses ideal—considering the independent variables as invertible parameters—and developing
and exploiting the specific properties of this zero-dimensional case to analyze individually the truth
of the statement over the different non-degenerate components.

Keywords: automated theorem proving in geometry; automated deduction in geometry; automated
reasoning in geometry; Dynamic Geometry; GeoGebra; computational algebraic geometry

1. Introduction

This paper deals with some issues related to the successful approach to the automated
verification and derivation of theorems in elementary geometry through computational
algebraic geometry techniques, initiated more than forty years ago by Wu [1].

The relatively recent implementation of geometric automated reasoning tools (GART)
on Dynamic Geometry programs (See https://en.wikipedia.org/wiki/List_of_interactive_
geometry_software, accessed on 13 August 2021, for a table providing a list of the different
Dynamic Geometry programs with automated proving features.), allowing the algorithmic
verification and derivation of geometric theorems, has renewed the interest in analyzing—
and handling—some problems arising in the underlying interaction of the different pieces
involved in the GART protocols. In particular, we refer to the quite successful performance
of such tools in the Dynamic Geometry program GeoGebra (https://www.geogebra.org/
download, accessed on 13 August 2021), freely available and with over one hundred million
users all over the world, a fact that has reinforced and urged the need to address some
pending problems.

In this paper we begin by illustrating, through a collection of examples, the current
performance and ongoing development of GART in GeoGebra and its algebraic geometry
background (see Sections 2 and 3). Then we reflect (Section 4) on some (unexpected for
a standard user) problems that might arise, due to the interaction of the different steps
involved in the process, such as the user specific interpretation and introduction of the
geometric statement, the internal algebraic translation, and the algorithmic manipulation
of polynomial ideals towards the final output (and again, its interpretation by the user).
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Finally, we focus on a particular kind of such problems (Section 5), proposing a
double approach that might help to avoid featuring counterintuitive conclusions due to
unexpected degenerate instances of the given hypotheses (Section 6). One is to deal with
the saturation of the hypotheses ideal with respect to the ring of geometrically independent
variables, thus allowing for the global consideration of the given statement over all non-
degenerate components. The second is to reformulate the hypotheses ideal by treating the
independent variables as invertible parameters, showing the specific advantages of this
zero-dimensional case to analyze individually the truth of the statement over the different
non-degenerate components. The paper concludes with some reflections on the potential
application of these methods.

2. Automated Reasoning Tools in GeoGebra

As described in [2,3], the standard version of GeoGebra includes now several commands:

• For conjecturing some geometric property (e.g., “. . . these three lines visually “seem”
to meet at one point. Is this actually true?. . . ”);

• For rigorously confirming or denying a proposed conjecture (e.g., yielding an affir-
mative answer after internally verifying, using Computer Algebra tools, that the
equations describing the three selected lines have always a common solution);

• For suggesting some complementary hypotheses for the truth of a given (initially
false) statement (i.e., declaring some further restrictions in the geometric elements
involved in the statement, that are required for its verification).

2.1. The Altitude Theorem

Let us consider the classical “Geometric Mean” or “Altitude” Theorem attributed
to Euclid (see [4], pp. 31–32). The traditional formulation states that in a right triangle,
the length of the altitude on the hypotenuse is equal to the geometric mean of the two
line segments it creates on the hypotenuse. However, suppose we “forget” about the
condition to be a right triangle, yet we would like to remember the missing hypothesis,
in order to rediscover this classic theorem. Then, we could start by conjecturing the truth
of this theorem on a general triangle. Next, that of GART, the Prove command, declares
(see Figure 1) it is wrong.

Figure 1. Left, GeoGebra is asked about the validity of the Altitude Theorem over an arbitrary
triangle. Right, it declares it is false.

Now, we ask for the requirements to place vertex C so that the Altitude Theorem holds.
GeoGebra outputs two curves: a circle and a hyperbola (see Figure 2, left image). Clearly,
the first one corresponds to the right triangle case, that is, verifying that the sum of the two
angles of the triangle at vertices A, B is 90 degrees; the second places C at some hyperbola.
We have, thus, obtained two possible versions of the Altitude Theorem: the traditional one
and the one corresponding to triangles ABC with C in the given hyperbola. As the equation
of the hyperbola is given by GeoGebra, we can play a little with it (in a non-automatic way)
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concluding that such triangles are precisely those such that the difference of angles at A, B is
also 90 degrees.

Moreover, we can perform a specific construction of such triangles from a given pair
of vertices A, B, placing point C at the hyperbola as follows (Figure 2, right): first, choosing
an arbitrary point G, considering the line f1 = GA, a perpendicular line through B, and its
symmetrical h′ with respect to the AB line. Then C is the intersection of f1, h′. See [5] for
details about this construction and generalized Altitude Theorem statement.

Figure 2, right image, shows how GeoGebra checks the truth of this extended version
of the Altitude Theorem, yielding true as the Boolean Value corresponding to the question
Prove (g2 == h · i), where g is the segment described by the altitude from vertex C and h, i
are the segments DA, DB, respectively, going from the altitude feet D in the line AB, to the
vertices A, B.

Figure 2. Left, possible locus of C for the validity of the Altitude Theorem. Right, confirmation after
placing C on the hyperbola.

2.2. A problem from a Spanish ‘Oposiciones’ Exam

A different example of the performance of GeoGebra’s automated reasoning tools is
displayed in Figure 3. Given a quadrilateral ABCD, the midpoints E, F, G, H of the sides
are built. Then GeoGebra is asked to find (left image) a Relation holding between the
segments EF, GH. In the central image we can see that GeoGebra replies that the lengths of
the two segments seem to be equal, at least numerically and for this particular assignment
of the vertices of the quadrilateral. Thus, the user might conjecture that, perhaps, this fact
holds in all generality, as a geometric statement. To check this conjecture, the user has
to click on the More. . . button. Then GeoGebra launches internally the Prove command,
yielding that it is indeed true (except for degenerate instances of the given construction)
that the midpoints of the sides of the quadrilateral always form a parallelogram.

However, the ability of the Relation command to find conjectures goes well beyond
simple, school-like contexts. For example, in [6] it is shown how GeoGebra’s Relation
is able to automatically conjecture and, then, prove, the alignment of some three points
stated in Example 230 of the classical Chou’s benchmark [7]. Another, quite curious, case
is depicted in Figure 4, that shows two further examples of the powerful performance of
the Relation command. The context is a problem proposed at a Spanish national exam ([8],
p. 147) to become a certified mathematics teacher for secondary education. The candidates
were given (on the exam sheet) a complicated figure that we can translate to a GeoGebra
construction as follows (see Figure 4). First, consider an equilateral triangle ABC, and build
E, the midpoint of side AB, and D, the midpoint of AC. Then construct B′, the symmetrical
of B with respect to D, and B′1, the symmetrical of B with respect to A. Next, label the
altitude from C as a, b is side BC, e is segment AD and m is the segment AF, where F is
the intersection of B′1D and B′E. Finally, the candidates to become an official mathematics
teacher were asked to find out the existing relation between t = DC and m = AF. So as not
to spoil the intrigued reader about this question, we refer to [9] where it is fully answered
using only GeoGebra automated reasoning tools.
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Figure 3. The Relation tool and command.

Yet, we would like to show here, over the same construction from the Spanish exam,
the answer to two much more complicated queries, showing, in particular, that GeoGebra’s
Relation is suitable for finding relations involving algebraic numbers. Thus, Figure 4, left
image, displays the result of asking about the relation between a + b and e, that happens
to be a + b = (2 +

√
3)/2 · e; the right image corresponds to the relation between a and m,

yielding a = 1/2 ·
√

21 ·m. It must be remarked that these answers were obtained almost
immediately with a MacBookPro 2015, with 2.5 GHz Intel Core i7 processor.

Figure 4. The Relation command finding quite complex conjectures.

2.3. Ongoing Work

Besides the Relation, Prove, ProveDetails and LocusEquation commands that we have
summarily exemplified, let us briefly mention two other reasoning tools, already im-
plemented in (yet) non-standard versions of GeoGebra [10,11]. The first one, the Dis-
cover tool and command, can be used in the GeoGebra Discovery fork (Available at https:
//github.com/kovzol/geogebra-discovery, http://autgeo.online/geogebra-discovery/,

https://github.com/kovzol/geogebra-discovery
https://github.com/kovzol/geogebra-discovery
http://autgeo.online/geogebra-discovery/
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accessed on 13 August 2021), available in two different options: one, operating over Ge-
oGebra Classic 5, for Windows, Mac and Linux systems; and, the other, working over
GeoGebra Classic 6, that requires starting it in a browser, for tablets and smartphones.

For example, Figure 5 shows some of the new features in GeoGebra Discovery, the Dis-
cover command, that automatically finds—and illustrates by depicting some complemen-
tary geometric elements over the figure—all theorems (of a certain kind: parallelism, con-
gruence, perpendicularity, etc.) holding over a given element of a construction (e.g., point
E, in Figure 5). Roughly speaking, this command operates by considering some com-
binatorial heuristics to formulate different Relation tests involving always the selected
element (here point E), plus some other ones, and presenting as output the collection of
obtained properties.

The second ongoing improvement refers to the construction of AG=Automated Geometer
(Available at http://autgeo.online/ag/, https://github.com/kovzol/ag, accessed on 13
August 2021), a self-operating ’geometer’ (i.e., without requiring human intervention,
except that of launching the computation process over a figure) within GeoGebra. It is a
web-based module that allows GeoGebra to automatically formulate different geometric
conjectures over the given input geometric construction and to confirm or deny them using
internally tools similar to those in GeoGebra Discovery; however, here it is not limited to
exploring relations involving a single, specific element, see Figure 6.

Figure 5. The Discover command yielding different properties involving point E.

Figure 6. The Automated Geometer at work, finding in 5 s 28 theorems concerning the selected relations:
collinearity of three points, perpendicularity, parallelism of lines, or equality of segments, holding
over the given figure.

http://autgeo.online/ag/
https://github.com/kovzol/ag


Mathematics 2021, 9, 1964 6 of 17

3. A Simplified Introduction to the Algebro-Geometric Background

As already mentioned in the Introduction, there is an ’ad hoc’, computational (com-
plex) algebraic geometry approach behind the performance of the different tools we have
exemplified. Very roughly speaking (see [12] for the mathematical background, or [2] for
further details regarding the different methods implemented in GeoGebra), GeoGebra
proceeds by automatically translating the different steps of the construction involved in
a given statement into a series of polynomial equations. Now, looking for the Relation
between some elements of the corresponding figure is addressed by describing the re-
sult of eliminating, in this polynomial system, all variables except those associated to the
selected elements.

For instance, given a right triangle ABC, so that AC and BC are perpendicular, suppose
we would like to find the relation between the altitude g of C and the pair of segments
h = AD, i = DB, where D is the altitude foot on side AB, see Figure 1. Then GeoGebra can
assume, for simplicity, that A = (0, 0), B = (1, 0), C = (c1, c2), and it is likely to consider
the following equation c1 · (c1 − 1) + c2

2 = 0 describing the perpendicularity of the two
catheti AC, BC, and the equations (at least from an intuitive point of view) describing g, h, i:
{g = c2, h = c1, i = 1− c1}. Finally, the elimination of {c1, c2} in this system yields (among
others) the equation g2 = h · i, that is, the Relation described in the Altitude Theorem.

On the other hand, if we already know the thesis g2 = h · i of this theorem and we just
want to verify that it holds always true on right triangles, by means of the Prove command,
GeoGebra considers its refutation, which seems natural to be expressed through the system
of equations

{c1 · (c1 − 1) + c2
2 = 0, g− c2 = 0, h− c1 = 0, i− (1− c1) = 0, (g2 − h · i) · t− 1 = 0}

where the last one (g2− h · i) · t− 1 = 0 represents the negation of the thesis. Now it checks
that this system has no solutions at all, i.e., that 1 is a combination of the given equations
(by Hilbert’s Nullstellensatz). Thus, since it happens that the refutation of the introduced
statement is never true, GeoGebra concludes that the statement is always true!

Finally, to provide a more complete, albeit very naive, description about the imple-
mented algorithmic approach, let us assume, as in Figure 1, that we consider a general
triangle and we would like to learn the conditions for the Altitude Theorem to hold. Here
GeoGebra could proceed considering now the set of equations {g− c2 = 0, h− c1 = 0,
i− (1− c1) = 0, g2 − h · i = 0}, where we have dropped the perpendicularity requirement
of the catheti and we have added the verification of the thesis g2 − h · i = 0. Again, by
elimination of all variables except {c1, c2} we obtain the LocusEquation: c2

1 + c2
2 − c1 = 0,

i.e., that the truth of the thesis of the Altitude Theorem requires that C lies on the locus
given by the circle of center the midpoint of AB, or, equivalently, that ABC is a right triangle
at C.

4. Complications

The conclusion of the last section seems to contradict the output of Figure 2, which
included a hyperbola and a circle as the locus for the Altitude Theorem! Moreover, it
happens that if the Relation tool is applied to verify the truth of this statement for a right
triangle ABC, the output message is “true on parts, false on parts”. Even more confusing,
this declaration contradicts the result of the Prove command, that declares the truth of the
thesis g2 − h · i = 0 (see Figure 7). This issue is specifically addressed in [13], and it is
related to the fact that the—perhaps intuitively evident—equations that we have used here
describing g, h, i:, i.e., {g = c2, h = c1, i = 1− c1}, are actually to be replaced, to work in
all generality with lengths of segments, by {g2 = c2

2, h2 = c1
2, i2 = (1− c1)

2} and, then,
choosing the positive values of g, h, i.

It happens that, if we mimic the procedure described at the beginning of the previous sec-
tion, with this new set of equations plus the perpendicularity condition c1 · (c1 − 1) + c2

2 = 0,
the elimination of {c1, c2} in this complete system yields now {g4 − h2 · i2 = (g2 − h · i) ·
(g2 + h · i)}, and not g2 = h · i. Therefore, in this new context, the thesis of the Altitude
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Theorem would not be obtained as output of the Relation command! Of course, the equality
g2 + h · i = 0 cannot hold for positive values of g, h, i and, thus, (g2 − h · i) · (g2 + h · i) = 0
is equivalent to g2 = h · i for real positive values; however, working over the real num-
bers and involving inequalities requires replacing Gröbner-based elimination methods by
real quantifier elimination algorithms, with weaker performance (see [14] for some very
promising but preliminary results in this direction).

Figure 7. Two different outputs (Boolean Value d = true, or “true on parts, false on parts”) for
the thesis of the Altitude Theorem over a right triangle, when the Prove, respectively, the Relation
commands are used.

Thus, a different operating alternative has been developed in [15,16], observing that
g2 = h · i holds over some primary components of the variety described by the complex
solutions of

{g2 = c2
2, h2 = c1

2, i2 = (1− c1)
2, c1 · (c1 − 1) + c2

2 = 0}

and fails over some others (where g2 + h · i = 0 holds), i.e., the Altitude Theorem is “true
on parts, false on parts” (as shown in Figure 7). Again, the idea is to arrive to such a
conclusion without having to compute the (costly) primary decomposition.

This somehow confusing panorama: intuitive algebraic formulation, manipulation,
and derivation of geometric facts vs. (sometimes) contradictory GeoGebra’s output, is just
a warning sign of the need to revise the naive approach we have described in the previous
section. As already remarked, to begin with, given a certain geometric situation, we
should pay special attention to the way we introduce the algebraic input in the automated
reasoning algorithms. Indeed, the automated reasoning protocol starts by having the
human user translating the textual—or figural or imagined—context into a GeoGebra
construction. This translation is not irrelevant. For instance, in the context of Thales
theorem (https://en.wikipedia.org/wiki/Thales’s_theorem, accessed on 13 August 2021),
if we want to deal with a circle c, a diameter AB, a point C on the circle and lines CA, CB, a
possible approach could be to start fixing two points O, A, then building the circle centered
at O and passing through A, choosing one point C on the circle and, finally, intersecting
the circle with the line OA to get the other extreme B of the diameter. This yields, with
a straightforward translation (We exemplify the following computations using Maple
computer algebra software, https://www.maplesoft.com, accessed on 13 August 2021),
the following ideal of hypotheses:

Ideal1 := 〈(c1 − o1)
2 + (c2 − o2)

2 − (a1 − o1)
2 − (a2 − o2)

2,

(b1 − o1)
2 + (b2 − o2)

2 − (a1 − o1)
2 − (a2 − o2)

2,

(b1 − o1) · (a2 − o2)− (b2 − o2) · (a1 − o1)〉

https://en.wikipedia.org/wiki/Thales's_theorem
https://www.maplesoft.com
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with {o1, o2, a1, a2, c1} as free variables. Now, both adding the refutation of the thesis, the
perpendicularity of CA, CB, i.e., ((c1 − b1) · (c1 − a1) + (c2 − b2) · (c2 − a2)) · t− 1, or the
thesis itself (c1− b1) · (c1− a1) + (c2− b2) · (c2− a2), yields the zero ideal with eliminating
all except the free variables. Thus the statement is ’true on parts’ [15,16], that is, neither
true nor false, because point B—the intersection of a line and a circle—is not uniquely
defined and yields different primary components on the hypotheses ideal, some of them
holding true, some false, the given thesis.

On the other hand, if the construction starts with two free points A, B and considers
the circle centered at the midpoint O of segment AB, a point C on the circle, and lines
CA, CB, the corresponding ideal

Ideal2 := 〈(c1 − o1)
2 + (c2 − o2)

2 − (a1 − o1)
2 − (a2 − o2)

2,

o1 − (a1 + b1)/2, o2 − (a2 + b2)/2〉

has only one component and the perpendicularity of CA, CB is always true on it:

EliminationIdeal(<(c_1-o_1)^2+(c_2-o_2)^2-(a_1-o_1)^2-(a_2-o_2)^2,
o_1-(a_1+b_1)/2, o_2-(a_2+b_2)/2,
((c_1-b_1)*(c_1-a_1)+(c_2-b_2)*(c_2-a_2))*t-1>,
{a_1,a_2,b_1,b_2,c_1});

<1>

Next to the impact of the human translation—through the choice of the construc-
tion steps—of a given statement, are the different assumptions and tricks that GeoGebra
programmers have implemented in the involved algorithms, to speed up the automatic
reasoning features. For instance, internally, the initial free points are usually assumed to
be (0, 0), (1, 0) in order to diminish the number of involved variables; in addition, some
negative constraints, using Rabinowitsch’s trick, are often added to avoid foreseeable
degeneracies, such as the coincidence of two points, but with potentially conflictive conse-
quences [17]; likewise, to deal with magnitudes that are supposed to be positive, GeoGebra
considers automatically only some specific components of the hypotheses variety or in-
cludes the so-called Minimal Euclidean Polynomial (MEP) extension, that represents only
with even powers all variables related to distances [13], etc.

We refer, for precise details and examples to illustrate the difficulties and the adopted
technical solutions, to the basic document [12] and, for recent updates, to [13,15] or [17]. The
algorithms described in these papers are implemented in GeoGebra through the embedded
computer algebra system Giac [18,19].

5. Reflecting about Degeneracy Conditions

One of the more frequent, yet unexpected, outputs of the automated reasoning tools is
the inclusion of a list of degenerate cases (e.g., circles of radius zero, triangles collapsing to
a line, etc.) in the answer to the ProveDetails command. Cases have to be avoided because of
the generic truth of a certain statement that the user was ’a priori’ convinced was absolutely
true. This problem has been well known for a long time and happens even in quite simple
cases (see [12]). For example, it might happen that the user had constructed a circle or a
triangle, and GeoGebra had translated the construction into polynomial equations, but
both the graphic and the algebraic counterpart include the case of the circle being reduced
to a point. There is also the case of the three vertices of the triangle being aligned or
coincident, etc., even if the user did not consider, intuitively, such instances as verifying the
hypotheses of a certain geometric statement. Then, it can occur—somehow at random and
with little geometric interpretation, since it might refer to the diameter of a circle of radius
zero, or to the heights of a triangle reduced to a point, etc.—that some of these degenerate
instances do not verify a given thesis, yielding thus a negative answer to the correctness of
a proposition that the user reasonably considered as true.

To avoid as much as possible such situations, the algorithm in [12], quite successfully
implemented in GeoGebra (see [2,3]), considers as ’generally true’ those statements where
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the thesis vanishes over all the irreducible components of the hypotheses variety describing
all the non-degenerate instances; i.e., it disregards, as irrelevant that the thesis fails over
the components that include degenerate cases. Likewise, a statement is labeled as ‘gener-
ally false’ if the thesis does not vanish identically over every non-degenerate irreducible
component of the hypotheses variety—those describing the non-degenerate instances; it
does not matter that the thesis holds over the components that include degenerate cases.
Thus, it turns out that the key concept is that of ’degeneracy’.

The usual approach to deal with this issue is, first, to consider that the different steps of
a construction provide a collection of points that rule the construction, i.e., that, if dragged
along the window of the application, the whole construction should follow them. For
example, in Figure 1, the three vertices A, B, C are free. In Figure 2, right, once A, B are
fixed, vertex C is determined, so only A, B are free. In Figure 3 the four vertices of the
quadrilateral are free and nothing else, since they determine the midpoints of the sides. In
Figure 4, the basic element is an equilateral triangle A, B, C, as the other points are clearly
depending on this initial data. However, an equilateral triangle is also finitely determined
once two vertices are fixed. So, say, here there are only two vertices that actually rule
the whole construction, because having a finite number of possible positions for the third
vertex can be considered as being determined, anyway. Finally, Figure 7 exemplifies a new
situation: the right triangle can be considered as having at least two free vertices A, B; and
once A, B are fixed, then vertex C is semi-free, as there is an infinite number of possible
positions for one of its coordinates (along the circle with diameter AB).

Now, the algebraic translation of this concept of “freedom” has to do, first, with the
consideration of the coordinates of the points as variables in the polynomial ring describing
the geometric statement. The counterpart for the idea of free or semi-free point is, then,
the concept of a set of independent variables with respect to an ideal: a set of variables
such that there is no polynomial just on these variables in the given ideal. That is, a set
of variables such that the given ideal does not include any polynomial constraint among
them; namely, they are free. Algorithmically, we are talking about variables such that the
elimination of the remaining variables in the ideal yields the zero ideal. Finally, the fact
that such free variables “rule” the construction can be thought of as referring to a set of
variables so that the remaining ones are finitely determined by the free ones: a maximal set
of independent variables.

Unfortunately this condition does not necessarily imply that the cardinal of this maxi-
mal set is also maximum among the possible collections of sets of independent variables;
i.e., it can be less than the Krull dimension (also known as Hilbert dimension) of the given
ideal. For example, consider the ideal IK[u, v] = 〈u · v〉, where both {u} and {v} are max-
imal and maximum-size sets of independent variables; and, if IK[u, v, w] = 〈u · v, u · w〉,
then both {u} and {v, w} are maximal sets of independent variables, but only the second
has cardinality equal to the dimension of I.

This example might look artificial and, indeed, when dealing with geometric state-
ments, it is often assumed in most cases that the ’intuitively’ maximal set of independent
variables is maximum-size, but there are examples in which this is not the case. See Ex-
ample 2 in ([12], p. 72): the number of coordinates of free points in the chosen geometric
construction is 5, but the Hilbert dimension of H is 6; or Example 7 in the Reference [20],
about Euler’s formula concerning the distance between the centers and the radii of the inner
and outer circles of a triangle with vertices (−1, 0), (1, 0), (u[1], u[2]). Here the ’intuitive’
dimension of the hypotheses variety should be 2 (the coordinates of the only free vertex
of the triangle), but applying the algebraic definition it turns out to be three, unless it is
explicitly added to the hypotheses the (obvious) fact that (u[1], u[2]) should not lie in the
x-axis. This quite common problem—related to the a priori control and detail of all geomet-
ric degeneracies—is already considered in the basic Reference [7], mentioning, in particular
(cf. page 43), that in many occasions it is not trivial to intuitively prevent, by adding some
extra conditions to the hypotheses ideal, the appearance of unwanted situations.
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To deal with this complicated context, the current algorithm implemented in GeoGebra
automatically associates—following the construction steps—a maximal set of algebraically
independent variables to the hypotheses ideal H and considers as ’degenerate’ those irre-
ducible components of V(H) where these variables do not remain independent but constrained by
some relations. Then, as already defined above, it declares a statement to be generally true
(respectively, generally false) iff it is true (false) over all the non-degenerate components.

We will provide further details about this protocol in the next section, but let us
remark here that there is a potentially sharper concept of degeneracy, including, besides the
components where the chosen algebraically independent variables fail to be independent,
those components where these variables remain independent but the dimension of the
component is strictly greater than the cardinal of the set of selected variables. This is
something geometrically ’strange’, as it means that the chosen set of variables does not
control the construction and there are some ’unknown’ free points. Following [7], Remark 2,
page 47, we will not deal with this notion of degeneracy, considering it irrelevant in practice.

6. A Proposal to Avoid Working with Degeneracy Conditions

Let us fix notation as follows: let us consider K and L to be fields, with L an alge-
braically closed extension on K (for instance L = C and K = Q), and an algebraically
translated statement {H ⇒ T}. Let be H = 〈h1, . . . , hr〉 and T = 〈 f 〉 the hypotheses and
thesis ideals in the polynomial ring K[X], where the variables X = {x1, . . . , xn} refer to
the symbolic coordinates involved in the algebraic description of the hypotheses in Kn.
Furthermore, take the algebraic variety V(H) (respectively, V(T)) in the affine space Ln

defined over K. Next, fix—following a geometric intuition or through the steps of the geo-
metric construction in the Dynamic Geometry program—a maximal set Y = {x1, . . . , xd}
of independent variables for the hypotheses ideal H and denote by Z = {xd+1, . . . , xn} the
remaining variables.

Definition 1. We say that a primary component of H, or an irreducible component of V(H),
are non-degenerate iff Y remains independent over the primary component, that is, if there is no
polynomial in the Y variables that vanishes over all the corresponding irreducible component.

Remark 1. Notice that the current definition is similar to the one in [12], but now we are not
requiring the dimension of H to be equal to the cardinal of the set of variables, a quite small,
but useful in practice, advantage. Moreover, following the consideration in the last paragraph of
the previous section, we assume, for the rest of the paper, that non-degenerate components are of
dimension d, although d does not have to be the dimension of H.

Now, let us collect different algorithmic criteria for generally true or false statements.

Proposition 1. The statement {H ⇒ T} is generally true if and only if

〈h1, . . . , hr, f · t− 1〉K[X, t] ∩ K[Y] 6= 〈0〉.

This result follows from the proof of the first statement in Theorem 1 in [15], bearing
in mind that in the proof of that particular item it is not required that Y is of maximum size,
with d = dim(H). On the other hand, following carefully the proof of the second statement
in the same Theorem 1, we have the following proposition.

Proposition 2. The statement {H ⇒ T} is generally false if

〈h1, . . . , hr, f 〉K[X] ∩ K[Y] 6= 〈0〉.

Further, adding the condition dim(H) = d, this inequation holds if the statement is gener-
ally false.
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Definition 2. Statements that are neither generally true nor generally false are called “true on
parts, false on parts” or “true on components”, see [15,16].

These results point out the interest of addressing two further issues:

• How to fully verify the generally false case when dim(H) 6= d? See Example 2 in [15],
for a situation where the zero elimination requirement derived from Proposition 2 is
necessary but not sufficient for being not generally false.

• How to discriminate non-degenerate components where the thesis holds from those
where the thesis fails, in the “true on components” case? This is usually a source
of geometric insight, as it shows further restrictions that have to be added for a
certain statement to be always true, usually related to the lack of precision of the
algebraic translation (e.g., not declaring if the vertex C of an equilateral triangle
A(0, 0), B(1, 0), C(x, y) stands up or down the x-axis, see Example 1 in [15]).

Of course, an immediate solution could be to compute the primary decomposition of
H and, then, for each component, to verify if it is, or not, non-degenerate, by eliminating
all variables except Y; by definition, the output should be zero iff the component is non-
degenerate. Then, over each non-degenerate component, as they are of dimension d, by
our assumption—see Definition 1—we could fully apply the criterion expressed in the
above propositions.

However, obtaining a complete primary decomposition is usually quite challenging,
over a personal computer, through a standard computer algebra program. A much more
practical alternative could be the following proposal:

(1) Isolating the collection of non-degenerate components of H by means of saturation,
see Proposition 3 below, and then applying the criteria from the above Propositions.

(2) Working directly in a zero-dimensional context (as in [16] but without having to
compute zero-divisors), extending ideal H to the ring K(Y)[Z], i.e., including the
selected free variables as elements of the coefficient field.

Let us recall the notion of saturation:

Proposition 3 ([21], Prop. 4.9). If S is a multiplicatively closed subset of a ring A and I is a
decomposable ideal of A, with a minimal primary decomposition I = ∩Qi, i = 1 . . . n, then S−1 I
decomposes with a minimal primary decomposition as ∩S−1Qi, i = 1 . . . m, where Qi, i = 1 . . . m
denote those primary components such that the associated prime ideals do not meet S. Its contraction
(the contraction of the “extension of = S−1 I = S(I)”, also called saturation of I) has also as primary
minimal decomposition the intersection of Qi, i = 1 . . . m.

Thus, to address the first item of our proposal, we will consider S as the polynomial
ring in the Y variables and thus, computing the saturation we can directly obtain the full
collection of non-degenerate components without performing a primary decomposition,
thus facilitating the verification of the truth or falsity of the proposition just over the non-
degenerate cases (or checking the ’true on non-degenerate parts’ case). This can be done
as follows:

Proposition 4. Let H = 〈h1, . . . , hr〉 be an ideal in K[X]. Let {g1, . . . , gs} be a Gröbner basis of
〈h1, . . . , hr〉K(Y)[Z] with respect to any monomial ordering in the variables Z (and coefficients in
K(Y)). Where, without loss of generality, gi ∈ K[X], 1 ≤ i ≤ s. Let ai(Y)zmi be the leading term
of each gi with respect to the chosen monomial ordering. Furthermore, write b = a1 · · · as. Then:

Hec = 〈h1, . . . , hr〉K(Y)[Z] ∩ K[X] = 〈g1, . . . , gs〉 : (b)∞

= 〈g1, . . . , gs, b · t− 1〉K[X, t] ∩ K[X].

Proof. The last equality is a standard result on saturating an ideal with respect to a poly-
nomial. If h ∈ 〈g1, . . . , gs〉 : (b)∞. Then, for sufficiently large k, h · bk ∈ 〈g1, . . . , gs〉K[X].
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So, h · bk ∈ 〈g1, . . . , gs〉K(Y)[Z]. But, since b ∈ K(Y), h ∈ 〈g1, . . . , gs〉K(Y)[Z] = He and
h ∈ Hec.

Consider now h ∈ Hec. Then h ∈ 〈g1, . . . , gs〉K(Y)[Z]. Since g1, . . . , gs is a Gröbner
basis of He, we can perform the division algorithm of h and g1, . . . , gs (over K(Y)[Z]) with
respect to the monomial ordering. Since the leading coefficient of gi is a factor of b, we
can write:

h = g1 ·
q1

bk + · · ·+ gs ·
qs

bk

with q1, . . . , qs ∈ K[X] and a suitable k-th power of b. From this equation

h · bk ∈ 〈g1, . . . , gs〉K[X]

and
h ∈ 〈g1, . . . , gs〉 : (b)∞.

As a more detailed alternative, we can consider the proposal from item (2) above,
working directly with the zero-dimensional case. That is, we can extend ideal H to the
polynomial ring K(Y)[Z] and, as remarked in Proposition 3, we will get only the extension
of the components of H such that the Y-variables are free, that is, the non-degenerate. We
can perform a primary decomposition of the extended ideal much more simply than for
the initial ideal HK[Y][Z], since there are less variables and it is a dimension zero ideal.
Now we can decide quite simply about the truth or falsity of the statement over each
non-degenerate component as follows:

Proposition 5. Let S−1Q a component of HK(Y)[Z], the extension of a non-degenerate component
Q of HK[Y, Z] = HK[X]. Let 〈g1, . . . , gs〉 a base of S−1Q, where the elements {g1, . . . , gs} are
chosen, clearing denominators, from K[Y, Z]. Then the statement {Q⇒ T} is true iff

〈g1, . . . , gs, f · t− 1〉K(Y)[Z, t] = 〈1〉.

And the statement {Q⇒ T} is false iff

〈g1, . . . , gs, f 〉K(Y)[Z] = 〈1〉.

Remark that, over a single, irreducible, non-degenerate component, the idea of generally true
or generally false is actually the truth or falsity of the statement over the whole component.

Proof. Let us recall that {g1, . . . , gs} are also elements of Q, since S(Q) = Q, ([21],
Prop. 4.8). Now, suppose that 〈g1, . . . , gs, f · t− 1〉K(Y)[Z, t] = 〈1〉. Then, clearing de-
nominators, we will find a non-zero polynomial in Y in 〈g1, . . . , gs, f · t− 1〉K[Y][Z, t], that
is, over the ring K[X, t]. Now, substituting t = 1/ f and clearing again denominators, we
get that a power of f times a polynomial in Y belongs to Q. Since the polynomial in Y
cannot be in Q and Q is primary, it follows that a power of the thesis f must be in Q,
so f = 0 over all V(Q). Conversely, if f vanishes over of V(Q), a power of f must be
in Q, thus (Q + 〈 f · t− 1〉)K[Y][Z, t] must contain 1, and the same applies ‘a fortiori’ to
〈g1, . . . , gs, f · t− 1〉K(Y)[Z, t].

A similar argument proves the second statement. If 1 ∈ 〈g1, . . . , gs, f 〉K(Y)[Z], then
there is a non-zero polynomial in Y that is in 〈g1, . . . , gs, f 〉K[Y][Z], so the vanishing of the
thesis over V(Q) is restricted to the subset of this component where the polynomial in
Y vanishes too. As Q is non-degenerate and Y are free over Q, it follows that this subset
where the thesis holds is a proper, closed subset of V(Q). Conversely, if the thesis f = 0
does not hold over all V(Q), by the previous Proposition 2, since dim(Q) = cardinal(Y),
(Q + 〈 f 〉)K[Y][Z] ∩ K[Y] is not zero, thus it has some non-zero polynomial in K[Y]. It fol-
lows that this ideal (Q + 〈 f 〉)K(Y)[Z] = 〈1〉.
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Corollary 1. Notice that, as a consequence of this proposition, {H ⇒ T} is generally true if and
only if

〈h1, . . . , hr, f · t− 1〉K(Y)[Z, t] = 〈1〉.

Likewise, it is generally false iff

〈h1, . . . , hr, f 〉K(Y)[Z] = 〈1〉.

Proof. In fact, if the statement is generally true, then it is generally true over each compo-
nent Q of HK[Y, Z] = HK[X], thus 1 is a combination of elements in (S−1Q + 〈 f · t− 1〉)
K(Y)[Z, t]. Multiplying all these expressions, for all such Q’s, we get 1 in (H + 〈 f · t− 1〉)
K(Y)[Z, t]. Conversely, if 1 ∈ (H + 〈 f · t− 1〉)K(Y)[Z, t], then ’a fortiori’ 1 belongs to every
(S−1Q+ 〈 f · t− 1〉)K(Y)[Z, t], and thus the statement is generally true. A similar argument
applies to the generally false case.

In conclusion, our proposal to deal with degeneracy conditions (rather: to avoid them
in an automatic way) could be summarized as follows.

• Choose—from the geometric construction—a meaningful maximal set of independent
variables Y. Verify they are actually maximally independent from the algebraic point
of view, using elimination commands.

• Restrict the hypotheses variety to the union of non-degenerate components, by using
the saturation S(H) of the hypotheses ideal with respect to S, the polynomial ring in
the Y variables.

• Use the elimination commands, as in Proposition 1 and 2, to test the general truth or
falsity of the statement over S(H); or use the Corollary over S−1H.

• If the output is ’true on some, false on some’ non-degenerate components, perform
a primary decomposition of S−1HK(Y)[Z]. Use Proposition 5 to analyze individ-
ually each component, as this proposition shows that the result is valid over the
corresponding components in HK[Y, Z].

7. An Example

Let us exemplify the use and difficulties of these concepts on a simple, yet illustra-
tive, situation.

Example 1. We consider two free points A, B. We build circles c (centered at A and passing
through B) and d (centered at B and passing through A). The lines g, h, through A, B (respectively)
are built perpendicular to segment AB. Let D and F be the intersection of g with c and of h with d,
respectively. Thesis: DF is parallel to AB. See Figure 8.

A possible algebraic translation of these hypotheses and thesis could start assigning
coordinates A(a1, a2), B(b1, b2), D(x, y), F(u, v) and the corresponding equations

c := (x− a1)2 + (y− a2)2 − ((a1− b1)2 + (a2− b2)2),

d := (u− b1)2 + (v− b2)2 − ((a1− b1)2 + (a2− b2)2),

g := (x− a1) · (b1− a1) + (y− a2) · (b2− a2),

h := (u− b1) · (b1− a1) + (v− b2) · (b2− a2).

Then point D is defined by these two equations

(x− a1)2 + (y− a2)2 − ((a1− b1)2 + (a2− b2)2) = 0,

(x− a1) · (b1− a1) + (y− a2) · (b2− a2) = 0
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and F is defined by these other two

(u− b1)2 + (v− b2)2 − ((a1− b1)2 + (a2− b2)2) = 0,

(u− b1) · (b1− a1) + (v− b2) · (b2− a2) = 0,

while the thesis is formulated as (u− x) · (b2− a2)− (v− y) · (b1− a1) = 0.

Figure 8. Construction associated to Example 1.

It seems intuitively clear that the whole construction is ruled by the coordinates of
A, B, and so the hypotheses ideal H, including the equations describing c, d, g, h plus those
describing points D, F, should be of Dimension 4, but it turns out its Hilbert dimension is 5.
Indeed {a1, a2, b1, b2} are independent variables, but there are sets with five independent
variables modulo H, such as {a1, a2, b1, x, u}, that is, with the coordinates of one of the
given free point s (e.g., A), then one single variable from B, one from D, one from F. Let us
remark that no set with five independent variables can be found including {a1, a2, b1, b2},
as expected (see previous comment about [7], Remark 2, page 47). Although the direct com-
putation of the primary components of H is quite involved (for example, it did not succeed
within a reasonable amount of time and space, using Maple 2021 on our laptops), we can
analyze what happens with the five-dimensional components where, say, {a1, a2, b1, x, u}
are free, as follows.

First, we will consider S as the polynomial ring in the {a1, a2, b1, x, u} variables and thus,
if we extend ideal H to the polynomial ring K(a1, a2, b1, x, u)[b2, y, v], and perform there a
primary decomposition, we will get only the extension of the components of H such that
{a1, a2, b1, x, u} are free. It turns out that this much simpler computation yields that S−1H is
already prime, of dimension zero, and that it contains the polynomial (a1− b1)2 + (a2− b2)2.
It follows that some polynomials in {a1, a2, b1, x, u} times (a1− b1)2 + (a2− b2)2 will belong
to the contraction to K[a1, a2, b1, b2, x, y, u, v] of ’the’ component of H where {a1, a2, b1, x, u}
are free. Since by construction no polynomial in {a1, a2, b1, x, u} can vanish identically on
this component, it means that (a1− b1)2 + (a2− b2)2 must be zero over the component, that
is, interpreted geometrically over the reals, that A = B on this component, so it is degenerate
in a ’real’ sense and {a1, a2, b1, b2} are not free! A similar output happens with the other
different choices of five independent variables.

On the other hand, considering this set {x, y, u, v} of variables, we see that they are also
free over H, so we might be interested in investigating what happens with the components
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that do not meet S = K[x, y, u, v]. We repeat the above protocol, getting five components
such that, over four of them the variables {a1, a2, b1, b2} are also free; however, there is also
a component verifying a1− b1 = 0, so we might call it degenerate, although only ’slightly’
degenerate: a four dimensional component, where points D, F are free and the remaining
points are determined by them but are constrained by some relation.

Finally, assuming Y = {a1, a2, b1, b2} as the variables defining non-degeneracy in this
example and applying the test from Propositions 1 and 2 above, we get

EliminationIdeal(<(x-a1)^2+(y-a2)^2-((a1-b1)^2+(a2-b2)^2),
(u-b1)^2+(v-b2)^2-((a1-b1)^2+(a2-b2)^2),
(x-a1)*(b1-a1)+ (y-a2)*(b2-a2),
(u-b1)*(b1-a1)+(v-b2)*(b2-a2),
((u-x)*(b2-a2) -(v-y)*(b1-a1))*t-1>,{a1,a2,b1,b2});

<0>

EliminationIdeal(<(x-a1)^2+(y-a2)^2-((a1-b1)^2+(a2-b2)^2),
(u-b1)^2+(v-b2)^2-((a1-b1)^2+(a2-b2)^2),(
x-a1)*(b1-a1)+ (y-a2)*(b2-a2),
(u-b1)*(b1-a1)+(v-b2)*(b2-a2),
((u-x)*(b2-a2) -(v-y)*(b1-a1))>,{a1,a2,b1,b2});

<0>

which means that the statement is not generally true, but we do not know if it is generally
false (as here dim(H) 6= cardinal(Y)).

Now, we can extend the ideal of hypotheses H to the ring K(a1, a2, b1, b2)[x, y, u, v].
One possibility is to apply the above protocol but only to the contraction of this extended
ideal, by means of saturation, which is quite obvious in this case (saturation involves
only operating with a1− b1, after computing a simple Gröbner basis with tdeg(x, y, u, v)
that just involves this polynomial as leading coefficient). The output is that, over the
non-degenerate components, the statement is clearly true on parts and false on parts.

To be more precise, we can show that this extended ideal He has four components
(immediately computed on a laptop with Maple 2021). Over each component we can
perform the contraction of each component to the initial ring K[a1, a2, b1, b2, x, y, u, v];
saturation here is practically obvious, since in every case, the correspondent Gröbner basis
with tdeg(x, y, u, v) shows constant (in K) leading coefficients. Finally, we can perform the
above test over the contracted components, yielding that the statement is true on two of
them and false on other two (in this case, suggesting that (a1− b1)2 + (a2− b2)2 = 0 is a
required extra condition for the truth of the statement on the components where it fails).

Alternatively, we can work directly over on K(a1, a2, b1, b2)[x, y, u, v] and verify if 1 is
or not in the elimination of the component ideals plus 〈 f · t− 1〉 or 〈 f 〉, as in Proposition 5
above. The answer is true, false for the first and fourth components and false, true for the
other two, as expected.

We refer the interested reader to https://doi.org/10.5281/zenodo.5179979 (accessed
on 13 August 2021) for a MW and PDF files detailing the Maple computations we have
described in this section.

8. Conclusions

Dealing with degeneracy conditions is a quite relevant subject in the development
of geometric automated reasoning tools, even more relevant when such tools are at the
disposition of a great number of potential users, and in very different contexts, such as
educational, most of them are far from involving researchers and mathematical experts.
We have focused on proposing different ways to avoid the impact of degeneracy conditions
by extending the coefficient ring, including the free variables of the hypotheses set as
parameters, and exploiting, in different ways, the possibilities of this simplified situation.

Of course this protocol does not avoid the possible occurrence of some unexpected
outputs, due to other issues, due, for example, to the need to consider inequations (e.g., for

https://doi.org/10.5281/zenodo.5179979
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working with distances or with polynomials with only even powers, etc.) or to the the lack
of precision of some constraints, when dealing with different roots of a single algebraic
equation (and we are geometrically considering only one of them), etc. Yet, we think that
our protocol can help, at least, in ’cleaning’ the path to diminish the possible interpretations
and, in any case, to understand the reasons behind some unexpected results, as shown in
the example in the last section.
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