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Abstract: A plethora of sufficient convergence criteria has been provided for single-step iterative
methods to solve Banach space valued operator equations. However, an interesting question re-
mains unanswered: is it possible to provide unified convergence criteria for single-step iterative
methods, which are weaker than earlier ones without additional hypotheses? The answer is yes.
In particular, we provide only one sufficient convergence criterion suitable for single-step methods.
Moreover, we also give a finer convergence analysis. Numerical experiments involving boundary
value problems and Hammerstein-like integral equations complete this paper.
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1. Introduction

Numerous applications from mathematics, economics, engineering, physics, chemistry,
biology, and medicine, to mention a few, can be modeled as follows:

F(x) = 0, (1)

with operator F : Ω ⊆ T1 → T2 acting between T1 and T2, which are Banach spaces,
whereas Ω is nonempty. That is why determining a solution denoted by x∗ of Equation (1)
is of extreme importance. However, this task is difficult in general. Ideally, one desires x∗

to be in closed form, but this task is only accomplished in some instances. Practitioners
and researchers resort to mostly iterative methods, generating a sequence approximating
x∗ under certain conditions on the initial data. The most popular single step methods are
as follows:

Newton’s [1,2]
xm+1 = xm − F′(xm)

−1F(xm). (2)

Secant [3]
xm+1 = xm − [xm, xm−1; F]−1F(xm), (3)

where [., .; F] : Ω×Ω −→ L(T1, T2).
Steffensen’s-like [4]

xm+1 = xm − [xm + λ1F(xm), xm + λ2F(xm); F]−1F(xm), (4)

for T1 = T2 and λ1, λ2 being parameters.
Newton’s-type [5–8]

xm+1 = xm − A−1
m F(xm), (5)

where Am = A(xm), A : Ω −→ L(T1, T2).
Stirling’s [9]

xm+1 = xm − G′(xm)
−1G(xm), (6)

where T1 = T2 and G(y) = y− F(y) are used to find fixed points of equation x = G(x).
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Picard’s [10,11]
xm+1 = G(xm). (7)

Numerous other single step methods can be found in [12–14] and the references therein.
Clearly, all the preceding methods can be written in a unified way as follows:

xm+2 = ϕ(xm+1, xm, xm−1), for each m = 0, 1, 2, . . . , (8)

where ϕ : Ω×Ω×Ω −→ T1 and x−1, x0, x1 ∈ Ω.
We usually study two types of convergence for iterative methods. The local conver-

gence uses information about x∗ to find the radii of convergence balls. The semilocal uses
information about x0 that guarantees convergence to x∗. Sufficient convergence criteria for
these methods have been provided by many authors [2,12,13].

The following common questions (Q) arise in the semilocal study of these methods:

Q1 Can the convergence region be extended since it is small in general?
Q2 Can the estimates on ‖xm − x∗‖, ‖xm+1 − xm‖ become tighter? Otherwise, we com-

pute more iterates than we should to reach a predecided error tolerance.
Q3 Can the convergence criteria be weakened?
Q4 Can the location of solution be more precise?
Q5 Is there a uniform way of studying single-step methods?
Q6 Are there uniform convergence criteria for single-step methods?

The novelty of our paper is that we answer positively to all these questions (Q),
without additional conditions.

In order to deal with single-step methods, we first consider the following iteration:

tm+2 = ψ(tm+1, tm, tm−1) for each m = 0, 1, 2, . . . , (9)

where ψ : [0, ∞) × [0, ∞) × [0, ∞) is a function related to the initial data. The task of
choosing ψ so that sequence {tn} is majorizing for all methods listed previously is very
difficult in general.

We define a special case of sequences given by (9) as follows:

t−1 = α, t0 = β, t1 = γ = β + η,
t2 = t1 +

(ā1(t1−t0)+ā2(t0−t−1)+ā3t1+ā4t0+ā5t−1+ā6)
1−(b̄1(t1−t0)+b̄2(t0−t−1)+b̄3t1+b̄4t0+b̄5t−1+b̄6)

(t1 − t0)

tm+2 = tm+1

+ (a1(tm+1−tm)+a2(tm−tm−1)+a3tm+1+a4tm+a5tm−1+a6)
1−(b1(tm+1−tm)+b2(tn−tm−1)+b3tm+1+b4tm+b5tm−1+b6)

×(tm+1 − tm),

(10)

for each m = 1, 2, . . . , where α, β, γ, āi, b̄i, ai, bi, i = 1, 2, . . . , 6 are nonnegative parameters.
We shall show that all majorizing sequences used to study the preceding methods are
specializations of {tm} given by (10).

Similarly, in the case of local convergence we show all preceding methods can be
studied using the estimate as follows:

em+1 ≤ λmem, (11)

where c1, c2, c3, d1, d2, d3 are nonnegative parameters, em = ‖xm − x∗‖ and
λm = c1em+c2em−1+c3

1−(d1em+d2em−1+d3)
.

We suppose from now on that {tm} is a majorizing sequence for {xn}. Recall that an
increasing real sequence {tm} is majorizing for a sequence {xm} in a Banach space T1 if
‖xm+1 − xm‖ ≤ tm+1 − tm, for each m = 0, 1, 2, . . . [11]. Additional conditions are needed
to show that F(ρ) = 0, where ρ := limm−→∞ xm.

The paper contains also the semi-local as well as the local convergence of method (10)
in Section 2. The numerical experiments can be found in Section 3. Conclusions appear in
Section 4.
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2. Majorizing Sequences and Convergence Analysis

In this section, we use majorizing sequence (10) to deal first with the semi-local
convergence analysis for sequence {xn}.

We provide very general sufficient criteria for the convergence of sequence (10).

Theorem 1. Suppose that for each m = 0, 1, 2, . . . and b̄6, b6 ∈ [0, 1),

b̄1(t1 − t0) + b̄2(t0 − t−1) + b̄3t1 + b̄4t0 + b̄5t−1 + b̄6 < 1,

and
b1(tm+1 − tm) + b2(tm − tm−1) + b3tm+1 + b4tm + b5tm−1 + b6 < 1. (12)

Then, sequence {tm} developed by (10) exists, is nondecreasing, bounded from above by
t∗∗ = 1−b6

b1+b2+b3+b4+b5
and converges to its unique least upper bounds denoted by t∗, which satisfies

t1 ≤ t∗ ≤ t∗∗.

Proof. Using the definition of sequence {tk} we see that 0 ≤ tk ≤ tk+1 holds for each
k = 0, 1, 2, . . . . Moreover, by condition (12), tk+1 < t∗∗. So, sequence {tk} converges
to t∗.

Remark 1. Condition (12) can be satisfied only in some special cases. Next, we provide stronger
conditions, which can easily be verified.

It is convenient for the following convergence analysis to develop real functions,
parameters and sequences. Define functions on the interval [0, 1) for µ = t2 − t1 by
the following:

fk(t) = a1µtk−1 + a2µtk−2 + a3t1
+a3µ(1 + t + . . . + tk−1) + a4t1 + a4(1 + t + . . . + tk−2)
a5t1 + a5µ(1 + t + . . . + tk−3) + a6 + b1µtk

+b2µtk−1 + b3µt1 + b3µ(1 + t + . . . + tk)
+b4t1t + b4µ(t + t4 + . . . + tk−1) + b5t1t
+b5µ(t + t2 + . . . + tk−2) + b6t− t,

(13)

h(t) = (b1 + b3)t3 + (a1 + a3 − b1 + b2 + b4)t2

+(a2 − a1 + a4 − b2 + b5)t + a5 − a2, (14)

g(t) = a3t1 +
a3µ
1−t + a4t1 +

a4t1
1−t

+a5t1 +
a5t1
1−t + a6 + b3t1t + b3µt

1−t + b4t1t
+ b4µt

1−t + b5µt + b5µt1
1−t + b6t− t

(15)

and sequence

δk =
a1(tk+1 − tk) + a2(tk − tk−1) + a3tk−1 + a4tk + a5tk−1 + a6

1− (b1(tk+1 − tk) + b2(tk − tk−1) + b3tk−1 + b4tk + b5tk−1 + b6)
. (16)

Suppose that equations
h(t) = 0 (17)

and
g(t) = 0 (18)

have minimal solutions δ and λ, respectively in the interval (0, 1) satisfying the following:

0 ≤ δ1 ≤ δ < λ. (19)
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Notice that
fi+1(t) = fi(t) + µh(t)ti−2 (20)

and
fi+1(δ) = fi(δ). (21)

Indeed, by the definition of sequence { fi} and function h, we obtain in turn by adding
and subtracting fi(t) (in the definition of fi+1(t)) the following:

fi+1(t) = fi(t) + a1µti − a1µti−1 + a2µti−1 − a2µti−2 + a3µti

+a4µti−1 + a5µti−2 + b1µti+1 − b1µti

+b2µti − b2µti−1 + b3µti+1 + b4µti + b5µti−1

= fi(t) + h(t)µti−2.

In particular, by the definition of δ and (20) we obtain (21) since h(δ) = 0.

Remark 2. Functions h and g appear in the proof of Theorem 1. The former is related to two
consecutive functions fi and fi+1 (see (20).) Then, (21) is true if (17) holds for t = δ. The latter
relates to the limit of these recurrent functions fi and is independent of i. This function g then
should satisfy (27) and that happens if (18) holds. Condition 0 ≤ δ1 ≤ δ (see (19)) is needed to
show that (22) holds for i = 1, which will imply the following:

t3 − t2 ≤ δ(t2 − t1)

and the induction for 0 ≤ δi ≤ δ can begin. The condition δ < λ is needed to show (29).

Next, we show the convergence of sequence {tn} under conditions (17)–(19).

Theorem 2. Under conditions (17)–(19), the conclusions of Theorem 1 hold for sequence {tk} but
t∗∗ is replaced by s = t1 +

µ
1−δ .

Proof. We shall show by induction

0 ≤ δi ≤ δ. (22)

Item (22) holds for i = 1 by (19). Then, the definition of sequence {ti} and (22) give

0 < t3 − t2 ≤ δ(t2 − t1) ⇒ t3 ≤ t2 + δ(t2 − t1)

= t2 + (1 + δ)(t2 − t1)− (t2 − t1)

≤ t1 +
1− δ2

1− δ
(t2 − t1) < s.

Suppose (22) holds. Then, we have the following:

0 < ti+2 − ti+1 ≤ δi(t2 − t1) (23)

and

ti+2 ≤ t1 +
(1− δi+1)(t2 − t1)

1− δ
< s. (24)

Item (22) holds, if
δi+1 ≤ δ (25)
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(since δi+1 ≥ 0). Evidently, item (25) holds, by (23) and (24), if we have the following:

a1µδi−1 + a2µδi−2 + a3(t1 +
(1−δi)µ

1−δ ) + a4(t1 +
(1−δi−1)µ

1−δ )

+a5(1 +
(1−δi−2)µ

1−δ ) + a6 + b1µδi + b2µδi−1

+b3(t1 +
(1−δi)µ

1−δ ) + b4δ(t1 +
(1−δi−1)µ

1−δ )

+b5δ(t1 +
(1−δi−2)µ

1−δ ) + b6δ− δ ≤ 0

(26)

or
fi+1(δ) ≤ 0

or
fi(δ) ≤ 0 (27)

by the definition of fi, (20) and (21). In view of (21), one obtains the following:

g(t) = f∞(t) := lim
i−→∞

fi(t). (28)

So, we can show instead of (27) that the following holds:

h(δ) ≤ 0, (29)

which is true by the definition of λ and (19). Hence, the induction for (22) is completed.
Then, items (23) and (24) hold. Consequently, sequence {tk} converges to t∗.

Remark 3. The conditions of Theorem 2 imply condition (12) of Theorem 1 but not necessarily
vice versa.

Next, we specialize āi, b̄i, ai, bi in some interesting cases, justifying the already stated ad-
vantages.
Case 1: Newton’s method. Let us abbreviate what is known. Suppose the following
conditions (C) hold:

‖F′(x0)
−1F(x0)‖ ≤ η,

‖F′(x0)
−1(F′(v2)− F′(v1))‖ ≤ `1‖v2 − v1‖ for each v1, v2 ∈ Ω,

H1 = `1η ≤ 1
2

(30)

and
U[x0, u∗] ⊂ Ω,

where u∗ = 1−
√

1−2`1η

`1
.

Next, we present the celebrated Newton–Kantorovich theorem (NKT) [10].

Theorem 3. Suppose the conditions (C) hold. Then, Newton’s method converges to a unique
solution x∗ of equation F(x) = 0 in U(x0, u∗) ∩Ω, and

‖xk+1 − xk‖ ≤
`1‖xk − xk−1‖2

2(1− `1‖xk − x0‖)
≤ `1(uk − uk−1)

2

2(1− `1uk)
= uk+1 − uk

and
‖xk − x∗‖ ≤ u∗ − uk,

where u0 = η and

uk+1 = uk +
`1(uk − uk−1)

2

2(1− `1uk)
for each k = 0, 1, 2, . . . .
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Let us see what we obtain under our conditions. Suppose the following conditions
(A) hold:

‖F′(x0)
−1F(x0)‖ ≤ η,

‖F′(x0)
−1(F′(v)− F′(x0))‖ ≤ `0‖v− x0‖ for each v ∈ Ω.

Set U = Ω ∩U(x0, 1
`0
).

‖F′(x0)
−1(F′(v2)− F′(v1))‖ ≤ `‖v2 − v1‖ for each v1, v2 ∈ U,

H = ¯̀η ≤ 1
2

(31)

and
U[x0, t∗] ⊂ Ω,

where ¯̀ = 1
8 (4`0 +

√
`0`+ 8`2

0 +
√
`0`).

Remark 4. Notice that ` = `(Ω, `0) but `1 = `1(Ω). Hence, U is used to define `. It is important
to see that in practice the computation of Lipschitz constant `1 requires that of center Lipschitz
constant `0 and that of restricted Lipschitz constant ` as special cases. Hence, the conditions
involving `0 and ` are not additional to the one involving `1. Moreover, they are also weaker. This
is also verified in the numerical section. In other words, the condition involving `1 implies the other
two but not necessarily vice versa.

Next, we present our extended version of the Newton–Kantorovich Theorem 3.

Theorem 4. Suppose the conditions (A) hold. Then, Newton’s method converges to a unique
solution x∗ of equation F(x) = 0 in U(x0, 1

`0
) ∩Ω, and the following:

‖x1 − x0‖ ≤ t1 − t0,

‖x2 − x1‖ ≤
`0‖x1 − x0‖2

2(1− `0‖x1 − x0‖)
≤ `0(t1 − t0)

2

2(1− `0t1)
= t2 − t1,

‖xk+2 − xk+1‖ ≤
`‖xk+1 − xk‖2

2(1− `0‖xk+1 − x0‖)
≤ `(tk+1 − tk)

2

2(1− `0tk+1)

for each k = 1, 2, . . . .

Proof. Simply choose t−1 = 0, t0 = 0, ā1 = `0
2 , ā2 = . . . = ā6 = 0, b̄1 = `0,

b̄2 = . . . = b̄6 = 0, a1 = `
2 , a2 = 0 . . . = a6 = 0, b0 = `0 and b2 = . . . = b6 = 0.

Then, (19) reduces to (31). In particular, we use the following estimates:

‖F′(x0)
−1(F′(xi+1)− F′(x0))‖ ≤ `0‖xi+1 − x0‖

≤ `0(ti+1 − t0) ≤ `0ti+1 < 1,

so F′(xi+1)
−1 ∈ L(T2, T1) by the Banach perturbation lemma on invertible linear opera-

tors [10] and the following:

‖F′(xi+1)
−1F′(x0)‖ ≤

1
1− `0‖xi+1 − x0‖

.

Then, since

F(xi+1) = F(xi+1)− F(xi)− F′(xi)(xi+1 − xi)

=
∫ 1

0
(F′(xi + τ(xi+1 − xi))− F′(xi))dτ(xi+1 − xi),
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we obtain the following:

‖xi+2 − xi+1‖ ≤
¯̀‖xi+1 − xi‖2

2(1− `0‖xi+1 − xi‖)
≤ ti+2 − ti+1,

where we also used the following:

‖xi+1 − x0‖ ≤
m

∑
m=1
‖xm − xm−1‖ ≤

i+1

∑
m=1

(tm − tm−1) ≤ tm+1 − t0 = tm+1 ≤ t∗,

and
‖xi + τ(xi+1 − xi)− x0‖ ≤ ti + τ(ti+1 − ti) ≤ t∗

for each τ ∈ [0, 1]. So, the sequence {tk} is majorizing for {xk}. Then, sequence {xk} is
fundamental in T1, which is a Banach space, so limk−→∞ xk = x∗ ∈ U[x0, t∗], which solves
Equation (1), since

‖F′(x0)
−1F(xi+1)‖ ≤

˜̀

2
‖xi+1 − xi‖2 ≤

˜̀

2
(ti+1 − ti)

2 −→ 0

as i −→ ∞. Then, we conclude that F(x∗) = 0 since F is a continuous operator, where

˜̀ =

{
`0, i = 0
`, i = 1, 2, . . . .

Let x∗ ∈ U(x0, 1
`0
) ∩ Ω with F(x∗) = 0. Set M =

∫ 1
0 F′(x∗ +

τ(x∗ − zx∗))dτ. Using the center Lipschitz condition, we have the following:

‖F′(x0)
−1(M− F′(x0))‖ ≤ `0

∫ 1

0
[(1− τ)‖x∗ − x0‖+ τ‖x∗ − x0‖]dτ < `0

1
`0

= 1,

so x∗ = x∗ follows since M−1 exists and M(x∗ − x∗) = F(x∗)− F(x∗) = 0.

Remark 5. (a) We have by the definition of U

U ⊂ Ω, (32)

so
` ≤ `1, `0 ≤ `1 (33)

and
¯̀ ≤ `1. (34)

Hence, we have

H1 ≤
1
2
⇒ H ≤ 1

2
(35)

tk+1 − tk ≤ uk+1 − uk (36)

and
t∗ ≤ u∗. (37)

Estimates (35)–(37) justify the benefits as stated previously. In the numerical section, we pro-
vide examples where (32)–(34) are strict, and (31) holds but not (30).

(b) The proof in Theorem 3 used the less precise estimate as follows:

‖F′(xi+1)
−1F′(x0)‖ ≤

1
1− `1‖xi+1 − x0‖

.

Our modification leads to (31) instead of (30). Moreover, in [15] we showed Theorem 4
but using the following:

H2 = `2η ≤ 1
2

,
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where
`2 =

1
8
(4`0 +

√
`0`1 + 8`2

0 +
√
`0`1) ≥ ¯̀ ,

so
H2 ≤

1
2
⇒ H ≤ 1

2
.

Hence, our results extend the ones in [15] too.
(c) Let us see how parameters δ1, δ, λ and functions h, g look like in the case of Newton’s method.

We obtain by (17)–(19) the following:

δ1 =
`η

2(1− `0η)
, δ =

2`

`+
√
`2 + 8`0`

, λ = 1− 1
2

(
`0η

1− `0η

)2
,

h(t) = 2`0t2 + `t− `,

and

g(t) =
(

`0

1− t
µ + `0η − 1

)
t.

Notice that δ, λ solve Equations (17) and (18), respectively. Then, if we solve inequality (19),
we obtain (31).

Comments similar to the ones given in the previous five remarks can be made for the
methods that follow in this Section.
Case 2: Secant method [14] Choose t−1 = 0, t0 = β, t1 = β + η, ā1 = ā2, b̄1 = b̄2, ā3 = ā4 =
ā5 = ā6 = b3 = b4 = b5 = b6 = 0, a1 = a2 and b1 = b2.

The nonzero parameters are again connected to the following:

‖x0 − x−1‖ ≤ β, ‖[x0, x−1; F]−1F(x0)‖ ≤ η

‖[x0, x−1; F]−1([v1, v2; F]− [x0, x−1; F])‖ ≤ `0

2
(‖v1 − x0‖+ ‖v2 − x−1‖)

for each v1, v2 ∈ Ω,

‖[x0, x−1; F]−1([v1, v2; F]− [z, w; F])‖ ≤ `

2
(‖v1 − z‖+ ‖v2 − w‖)

for each v1, v2, z, w ∈ V, provided that

[v1, v2; F] =
∫ 1

0
F′(v2 + τ(v1 − v2))dτ.

The standard condition used in connection to the secant method [14] is the following:

‖[x0, x−1; F]−1([v1, v2; F]− [z, w; F])‖ ≤ `1

2
(‖v1 − z‖+ ‖v2 − w‖)

for each v1, v2, z, w ∈ Ω. Then, we have again the following:

` ≤ `1

and
`0 ≤ `1.

The old majorizing sequence {un} [14] is defined by the following:

u−1 = 0, u0 = β, u1 = β + η

uk+2 = uk+1 +
`1(uk+1 − uk−1)(uk+1 − uk)

2(1− `1
2 (uk+1 + uk + β))
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with the following estimates:

‖xk+2 − xk+1‖ ≤
`1‖xk+1 − xk−1‖‖xk+1 − xk‖

2(1− `1
2 (‖xk+1 − x0‖+ ‖xk − x0‖+ β))

≤ uk+2 − uk+1.

However, ours is as follows:

t−1 = 0, t0 = β, t1 = β + η

tk+2 = tk+1 +
˜̀(tk+1 − tk−1)(tk+1 − tk)

2(1− `0
2 (tk+1 + tk + β))

with corresponding estimates

‖xk+2 − xk+1‖ ≤
¯̀‖xk+1 − xk−1‖‖xk+1 − xk‖

2(1− `0
2 (‖xk+1 − x0‖+ ‖xk − x0‖+ β))

≤ tk+2 − tk+1

which are tighter, where

˜̀ =
{

`0, k = 0
`, k = 1, 2, . . .

The old sufficient convergence criterion [14] is β +
√

2`1η ≤ 1 but the new one is (for
`0 = `) β +

√
2`η ≤ 1, which is weaker. Hence, we obtain the semi-local convergence of

the secant method.

Theorem 5. Under the preceding conditions secant method {xn} ⊂ U[x0, t∗] and lim k −→ ∞xk =
x∗ ∈ U[x0, t∗] with F(x∗) = 0.

Proof. As in Theorem 4, we obtain the following:

‖[xi+1, xi; F]−1[x0, x−1; F]‖ ≤ 1

1− `0
2 (‖xi+1 − x0‖+ ‖xi − x−1‖)

and

‖xi+2 − xi+1‖ ≤ ‖[xi+1, xi; F]−1[x0, x−1; F]‖
×‖[x0, x−1; F]−1(]xi+1, xi; F]− [xi, xi−1; F])‖

≤
˜̀‖xi+1 − xi−1‖‖xi+1 − xi‖

2(1− `0
2 (‖xi+1 − x0‖+ ‖xi − x0‖+ β)

≤ ti+2 − ti+1

(see also [14]).

Case 3: Newton-type method [8,16] Choose: t−1 = 0, t0 = 0, t1 = η, ā1 = `0
2 , ā2 = 0,

ā3 = `5, ā4 = ā5 = 0, ā6 = `6, a1 = `4
2 , a2 = 0, a3 = `5, a4 = a5 = 0, a6 = `6, b̄1 = `2,

b̄2 = 0, b̄3 = `2, b̄4 = b̄5 = 0, b̄6 = `3, b1 = `2, b2 = 0, b3 = `2, b4 = b5 = 0 and b6 = `3.
The parameters are connected to the following:

‖A(x0)
−1F(x0)‖ ≤ η,

‖A(x0)
−1(F′(v)− F′(x0))‖ ≤ `0‖v− x0‖ for each v ∈ Ω

and
‖A(x0)

−1(A(v)− A(x0))‖ ≤ `2‖v− x0‖+ `3.
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Set V1 = Ω ∩U[x0, 1−`3
`2

], `2 6= 0, `3 ∈ [0, 1).

‖A(x0)
−1(F′(v2)− F′(v1))‖ ≤ `4‖v2 − v1‖ for each v1, v2 ∈ V1

and
‖A(x0)

−1(F′(v)− A(v))‖ ≤ `5‖v− x0‖+ `6 for each v ∈ V1

The conditions in [8,16] use the following:

‖A(x0)
−1(F′(v2)− F′(v1))‖ ≤ `7‖v2 − v1‖ for each v1, v2 ∈ Ω

and
‖A(x0)

−1(F′(v)− A(v))‖ ≤ `8‖v− x0‖+ `9 for each v ∈ Ω.

We have the following:
V1 ⊆ Ω,

so
`4 ≤ `7,

`5 ≤ `8

and
`6 ≤ `9.

The old majorizing sequence {un} [8,16] is defined for u−1 = 0, u0 = 0, u1 = η,
σ1 = max{`7, `8 + `2} by

ui+1 = ui +
σ1
2 (ui − ui−1) + `8ui−1 + `9)(ui − ui−1)

1− (`2ui + `3)

with the following estimates:

‖xi+1 − xi‖ ≤ ‖Ai(xi)
−1 A(x0)‖(

∫ 1

0
A(x0)

−1(F′(xi + τ(xi−1 − xi))− F′(xi−1))‖dτ

+‖A(x0)
−1(F′(xi−1)− A(xi−1))‖)‖xi − xi−1‖

≤
( `7

2 ‖xi − xi−1‖+ `8‖xi−1 − x0‖+ `9)‖xi − xi−1‖
1− (`2‖xi − x0‖+ `3)

≤
( σ1

2 (ui − ui−1) + `8ui−1 + `9)(ui − ui−1)

1− (`2ui + `3)
= ui+1 − ui.

However, ours is for t−1 = 0, t0 = 0, t1 = η, σ = max{`4, `5 + `2}

ti+1 = ti +
( σ

2 (ti − ti−1) + `5ti−1 + `6)(ti − ti−1)

1− (`2ti + `3)

with the following estimates:

‖xi+1 − xi‖ ≤
( `4

2 ‖xi − xi−1‖+ `5‖xi−1 − x0‖+ `6)‖xi − xi−1‖
1− (`2‖xi − x0‖+ `3)

≤
( σ

2 (ti − ti−1) + `5ti−1 + `6)(ti − ti−1)

1− (`2ti + `3)

= ti+1 − ti.
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The old sufficient convergence criterion [8,16] is the following:

C1 = σ1η ≤ 1
2
(1− (`3 + `9))

2, `3 + `9 < 1.

The new one is the following:

C = ση ≤ 1
2
(1− (`3 + `6))

2, `3 + `6 < 1.

However, σ ≤ σ1, so again condition C is weaker than C1.
Hence, we obtain the semilocal convergence of the Newton-type method.

Theorem 6. Under the preceding conditions Newton-type method {xn} ⊂ U[x0, t∗] and
limk−→∞ xk = x∗ ∈ U[x0, t∗] with F(x∗) = 0.

Proof. It follows from the aforementioned estimates (see also [8,16]). Hence, again the
results are extended.

Similar benefits are derived in the local convergence case.
Suppose the conditions (B) hold:
x∗ ∈ Ω is a simple solution of equation F(x) = 0,

‖F′(x∗)−1(F′(v2)− F′(v1))‖ ≤ L1‖v2 − v1‖ for each v1, v2 ∈ Ω,

and
U[x∗, r] ⊂ Ω,

where r = 2
3L1

. Then, we have the following local convergence result arrived at indepen-
dently by Rheinboldt [17] and Traub [18].

Theorem 7. Suppose that the conditions (B) hold. Then, Newton’s method converges to x∗ so that
the following holds:

‖xk+1 − x∗‖ ≤ L1‖xk − x∗‖2

2(1− L1‖xk − x∗‖)
for each k = 0, 1, 2, . . . , provided that x0 ∈ U(x∗, r).

In our case, we consider the conditions (D):
x∗ ∈ Ω is a simple solution of equation F(x) = 0.

‖F′(x∗)−1(F′(v)− F′(x∗))‖ ≤ L0‖v− x∗‖ for each v ∈ Ω.

Set V = Ω ∩U(x∗, 1
L0
).

‖F′(x∗)−1(F′(v2)− F′(v1))‖ ≤ L‖v2 − v1‖ for each v1, v2 ∈ V.

U(x∗, R) ⊂ Ω, where R = 2
2L0+L .

Theorem 8. Suppose that the conditions (D) hold. Then, Newton’s method converges to x∗ so the
following holds:

‖xk+1 − x∗‖ ≤ L̃‖xk − x∗‖2

2(1− L0‖xk − x∗‖)

for each k = 0, 1, 2, . . . , provided that x0 ∈ U(x∗, R), where L̃ =

{
L0, k = 0
L, k = 1, 2, . . .

Proof. Choose c1 = L
2 , d1 = L0, c2 = c3 = d2 = d3 = 0 in (11). Then, we obtain

the following:
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‖xi+1 − x∗‖ = ‖xi − x∗ − F′(x∗)−1F(xi)‖

≤ ‖F′(xi)
−1F′(x∗)‖‖

∫ 1

0
‖F′(x∗)−1(F′(x∗ + τ(xi − x∗))− F′(xi))dτ(xi − x∗)‖

≤ L̃‖xi − x∗‖2

2(1− L0‖xi − x∗‖) .

Remark 6. We have again the following:

V ⊂ Ω,

so
L0 ≤ L1,

L ≤ L1,

L̃ ≤ L1,

r ≤ R,

λn ≤ λ1
n,

where λk =
L‖xk−x∗‖

2(1−L0‖xk−x∗‖) and λ1
k = L1‖xk−x∗‖

2(1−L1‖xk−x∗‖) (see also the numerical section).

The same benefits can be obtained for the other single-step methods. Moreover,
our idea can similarly be extended to multi-step and multi-point methods [4,5,13,19–37].

3. Numerical Experiments

We contact some experiments showing that the old convergence criteria are not
verified, but ours are. Hence, there is no assurance that the methods converge under the
old conditions. However, under our approach, convergence can be established.

Example 1. Define function as the following:

f (x) = θ0x + θ1 + θ2 sin θ3x, x0 = 0,

where θj, j = 0, 1, 2, 3 are parameters. Then, clearly for θ3 large and θ2 small, `0
`1

can be small

(arbitrarily). Notice that as `0
`1
−→ 0, H

H1
−→ 0 too. So, the utilization of Newton’s method is

extended numerous (infinitely many) times under the data (Ω, F, x0, `0, `, η).

Example 2. Let T1 = T2 = R, x0 = 1 and Ω = U[1, 1− q] for q ∈ (0, 1
2 ). Let function f

on Ω as the following:
f (s) = s3 − q.

We consider case 1 of Newton’s method. Then, we obtain `0 = 3− q, ` = `1 = 2(2− q) and
η = 1

3 (1− q). However, then, H1 > 1
2 for all q ∈ (0, 1

2 ). So, the Newton–Kantorovich theorem
cannot assure convergence. However, we have H ≤ 1

2 for all q ∈ I = [0.4271907643, 1
2 ). Hence,

our result guarantees convergence to x∗ = 3
√

q as long as q ∈ I.

Example 3. Let T1 = T2 = S([0, 1]) the domain of functions given on [0, 1] which are continuous.
We consider the norm-max. Choose Ω = U(0, d), d > 1. Define F on Ω by the following:

F(x)(s) = x(s)− w(s)− ξ
∫ 1

0
K(s, t)x3(t)dt, (38)
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x ∈ T1, s ∈ [0, 1], w ∈ T1, ξ is a number and K is the Green’s kernel given by the following:

K(s2, s1) =

{
(1− s2)s1, s1 ≤ s2
s2(1− s1), s2 ≤ s1.

By (38), we have the following:

(F′(x)(z))(s) = z(s)− 3ξ
∫ 1

0
K(s, t)x2(t)z(t)dt,

t ∈ T1, s ∈ [0, 1]. Consider x0(s) = w(s) = 1 and |ξ| < 8
3 . We obtain the following:

‖I − F′(x0)‖ <
3
8
|ξ|, F′(x0)

−1 ∈ L(T2, T1),

‖F′(x0)
−1‖ ≤ 8

8− 3|ξ| , η =
|ξ|

8− 3|ξ| , `0 =
12|ξ|

8− 3|ξ| ,

`1 = ` = 6d|ξ|
8−3|ξ| and H1 = 6d|ξ|2

(8−3|ξ|)2 . Let ξ∗ stand for the positive solution of equation

3(4d− 3)t2 + 48t− 64 = 0. Then, if ξ > ξ∗, we have H1 > 1
2 . Hence, the Newton–Kantorovich

criterion (30) is not satisfied. In particular, Table 1 shows that our criterion (31) is satisfied but
not (30).

Table 1. Comparison table of criteria (30) and (31).

d ξ∗ 2H1 2H

2.09899 0.9976613778 1.007515200 0.9639223786
2.19897 0.9831766058 1.055505600 0.9678118280
2.29597 0.9698185659 1.102065600 0.9715205068
3.095467 0.87963113211 1.485824160 1.000082409

Example 4. Let T1, T2 and Ω be as in the Example 3. It is well known that the boundary value
problem [2]

ϕ(0) = 0, ϕ(1) = 1,

ϕ′′ = −ϕ− λϕ2

can be given as a Hammerstein-like nonlinear integral equation as follows:

ϕ(s) = s +
∫ 1

0
K(s, t)(ϕ3(t) + λϕ2(t))dt

where λ is a parameter. Then, define F : Ω −→ T2 by the following:

[F(x)](s) = x(s)− s−
∫ 1

0
K(s, t)(x3(t) + λx2(t))dt.

Choose ϕ0(s) = s and Ω = U(ϕ0, r0). Then, clearly U(ϕ0, r0) ⊂ U(0, r0 + 1), since
‖ϕ0‖ = 1. Suppose 2λ < 5. Then, by conditions (C) they are satisfied for the following:

`0 =
2λ + 3r0 + 6

8
, `1 = ` =

λ + 6r0 + 3
4

and η = 1+λ
5−2λ . Notice that `0 < `1.

The rest of the examples are given for the local convergence study of Newton’s method.
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Example 5. Let T1 = T2 = R3, Ω = U[0, 1] and x∗ = (0, 0, 0)tr. Define mapping E on Ω for
λ = (λ1, λ2, λ3)

tr as

E(λ) = (eλ1 − 1,
e− 1

2
λ2

2 + λ1, λ3)
tr.

Then, conditions (B) and (D) hold, provided that L0 = e− 1, L = e
1

L0 and L1 = e, since
F′(x∗)−1 = F′(x∗) = diag{1, 1, 1}. Notice that

L0 < L < L1

and
r = 0.24 < R = 0.38.

Hence, our radius of convergence is larger.

Example 6. Let T1, T2 and Ω be as in Example 3. Define F on Ω as

F(ϕ1)(x) = ϕ1(x)−
∫ 1

0
xϕ1(j)3dj.

By this definition, we obtain the following:

F′(ϕ1(ψ1))(x) = ψ1(x)− 3
∫ 1

0
xjϕ1(j)2ψ1(j)dj

for all ψ1 ∈ Ω. So, we can choose `0 = 1.5, ` = `1 = 3. However, then, we again obtain
the following:

r =
2
9
< R =

1
3

.

4. Conclusions

We have provided a single sufficient criterion for the semi-local convergence of single
step methods. Upon specializing the parameters involved, we showed that although our
majorizing sequence is more general than earlier ones, the convergence criteria are weaker
(i.e., the utility of the methods is extended), the upper error estimates are more accurate
(i.e., at least as few iterates are required to achieve a predecided error tolerance), and we
have, at most, an as-small ball containing the solution. These benefits are obtained without
additional hypotheses. According to our new technique, we locate a more accurate domain
than the earlier ones containing the iterates, leading to a more accurate Lipschitz condition
(at least as small).

Our theoretical results are further justified using numerical experiments. In the future,
we plan to extend these results by replacing the Lipschitz constants by generalized functions
along the same lines [2,12,13].
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