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Abstract: State space model representation is widely used for the estimation of nonobservable
(hidden) random variables when noisy observations of the associated stochastic process are available.
In case the state vector is subject to constraints, the standard Kalman filtering algorithm can no longer
be used in the estimation procedure, since it assumes the linearity of the model. This kind of issue
is considered in what follows for the case of hidden variables that have to be non-negative. This
restriction, which is common in many real applications, can be faced by describing the dynamic
system of the hidden variables through non-negative definite quadratic forms. Such a model could
describe any process where a positive component represents “gain”, while the negative one represents
“loss”; the observation is derived from the difference between the two components, which stands
for the “surplus”. Here, a thorough analysis of the conditions that have to be satisfied regarding
the existence of non-negative estimations of the hidden variables is presented via the use of the
Karush–Kuhn–Tucker conditions.

Keywords: state space model; Kalman filter; constrained optimization; two-sided components

1. Introduction

State space modeling is used for estimating—revealing the dynamic evolution of
hidden variables’ processes. In some cases, the state vector, which includes the hidden
components, is subject to constraints, which are derived either due to the physical meaning
of the states or because of the mathematical properties that have to be satisfied. For example,
state space models with constraints are used in camera surveillance [1,2], navigation
issues [3], and biological systems [4]. Especially, in finance, the hidden variables are often
subject to non-negative constraints or in general have to be bounded. For example, in
the Vasicek model [5] and its extension [6], the interest rates are considered to be hidden
random variables subject to non-negative constraints, while in [7,8], the eigenvalues of
the VAR process were restricted within the unit circle. Considering the use of state space
models in the domain of finance, a discrete state space model could be implemented
for the estimation of the hidden jump components of asset returns [9,10]. The use of
jumps has been proposed for the description of the dynamics of asset prices since they can
explain some of the empirical characteristics of the asset prices, e.g., the lack of a normal
distribution or the existence of leptokurticity (see for example [11]).

When dealing with state space models that are subject to constraints, the Kalman
filtering algorithm [12] can no longer be used, since it assumes linearity in the model. In
the domain of nonlinear filters, the particle filtering approach (see for example [13–16])
has wide applicability, and it adopts resampling techniques for the estimation of the state
vector at every time t. However, the use of resampling techniques adds considerable
computational cost in the estimation procedure.

In this work, the observation is defined as the difference between the two-sided
components under noise inclusion. The components are considered to be hidden random
variables, and therefore, a state space model is established, where the state equation
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describes the dynamic evolution of the two hidden components. This equation represents
a first-order Markov process, i.e., all the information needed for the estimation of the
components at time t is derived by the components at time t− 1, and no other information
from past times is needed. Moreover, the state vector is subject to non-negative constraints
that have to be taken into account for its estimation in time. Such a model could describe,
for example, the evolution of a system where the positive component represents “gain”,
while the negative one represents “loss”; the observation is derives from the difference
between the two components, which stands for the “surplus”, under noise inclusion. In
asset pricing, an asset return can be defined as the difference between the two-sided non-
negative return jump components under noise inclusion, and the jump components are
considered to be hidden variables. Another example could be the one-dimensional random
walk, where a positive jump could represent (the measure of) a move to the right and
a negative jump (the measure of) a move to the left, while the observation could be a
function of the two jump components given at discrete times. To handle such kinds of
problems, non-negative definite quadratic forms are adopted in the state equation for the
dynamic evolution of the two-sided components. In this case, the recursive equations
of the Kalman filter cannot be used for the estimation of the state vector, since this filter
assumes linearity in the measurement and state equation. To this end, this work first
derives the recursive equations for the estimation of the state vector based on the state
space model representation with non-negative definite quadratic forms in the state equation
and their Taylor expansions. Then, a thorough analysis of the necessary conditions that
have to be satisfied in order to obtain the non-negative estimations at every time t is
provided. In Proposition 1, the stationary points of the optimization problem with the
non-negative constraints are given by using the Karush–Kuhn–Tucker conditions, while
in Proposition 2, the necessary conditions for the existence of feasible solutions in the
constrained optimization problem are provided.

Overall, this work proposes a method in state space modeling representation, which
can be used when dealing with hidden components that are subject to non-negativity
constraints. The method results in the formulation of a constrained optimization problem
for which the stationary points are derived via Proposition 1, and the necessary condi-
tions for the existence of feasible solutions in this optimization problem are provided via
Proposition 2; to that end, the iterative formulas for the minimum variance a posteriori
estimators for the (hidden) state vector are illustrated. Moreover, the proposed method
has a low computational burden compared to other nonlinear filtering methods that can
be used in state space modeling with inequality constraints and are based on resampling
techniques (e.g., particle filtering).

The paper is organized as follows. In Section 2, the state space model proposed for the
estimation of the two jump components is established. Two non-negative quadratic forms
are adopted to describe the dynamic evolution of the two-sided components subject to their
non-negative restrictions. In Section 3, the recursive equations of the second-order Kalman
filter are presented, while in Section 4, a thorough analysis of the conditions that have to be
fulfilled so as to have non-negative estimations is presented. The results of this analysis are
summarized in Propositions 1 and 2. In Section 5, an illustrative example concerning the
evolution of positive and negative jumps of asset returns is presented to demonstrate the
theoretical results. Finally, Section 6 concludes on the findings and provides suggestions
for future work.

2. State Space Model

In this section, a state space model representation is illustrated considering the case
where there are two hidden processes subject to non-negativity constraints. The state
equation that describes the dynamic evolution of the hidden components adopts the use of
non-negative definite quadratic forms, while the measurement equation is linear.
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The state equation is given by:

Xt = (zt−1 + wt−1)
>G(1)(zt−1 + wt−1) = f1(zt−1, wt−1)

Yt = (zt−1 + wt−1)
>G(2)(zt−1 + wt−1) = f2(zt−1, wt−1)

}
(1)

or equivalently:

zt =
2

∑
k=1

φk(zt−1 + wt−1)
>G(k)(zt−1 + wt−1) (2)

where:

• zt = (Xt, Yt)> = (zt,1, zt,2)
> stands for the state vector;

• wt stands for the noise, and it is assumed that wt ∼ N(0, Q), where Q =

[
σ2

x 0
0 σ2

y

]
;

• G(k), k = 1, 2, is a (symmetric, 2× 2) non-negative definite matrix, i.e.,

g(k)11 > 0 and g(k)11 g(k)22 − (g(k)12 )2 > 0 , k = 1, 2.

The vector φk is a (2× 1) column vector, where the k-th element equals 1, and the
other element equals 0. The measurement equation is given by the relation:

Rt = Hzt + et , (3)

where H =
[
1 −1

]
and et ∼ N(0, V). Moreover, it is assumed that E(ekwT

j ) = 0.
Apparently, state Equation (2) describes a (nonobservable) first-order non-negative

valued Markovian process, the evolution of which and its characteristics (e.g., periodicity,
convergence etc.) depend on the structure (values) of the associated noisy observation
sequence. The aim of our study here was to estimate (reveal) the Markovian process (2) (i.e.,
the matrices G(k), k = 1, 2, and Q), through the observation Equation (3), if the components
of the state vector have to be non-negative. For this purpose, Model (2) and (3) adopts
the use of non-negative definite quadratic forms to describe the dynamic evolution of the
hidden two-sided components; that is, to ensure that the estimations of the components
will be non-negative. To that end, the extended Kalman filter of second order is proposed
in order to estimate at every time t the state vector zt that incorporates the hidden jump
components. It is noticed here that the noise component in Relation (2) is multiplicative
and not additive.

Next, the extended Kalman filter of second order is described and its iterative equa-
tions for the estimation of the state vector are presented.

3. Extended Kalman Filter of Second Order

Model (2) and (3) presented in Section 2 is nonlinear, and subsequently, the recursive
standard algorithm of the Kalman filter cannot be used for the estimation of the state vector.
Aiming to derive the recursive equations for the estimation of the hidden states taking into
consideration that the state Equation (2) is a quadratic form, the following notation is used:

• ẑ−t : the a priori estimation of the state vector zt, i.e., without taking into consideration
the measurement at time t;

• ẑ+t : the a posteriori estimation of the state vector zt, i.e., by considering the measure-
ment at time t;

• P−t , P+
t : the variance–covariance matrices of the a priori and a posteriori error estima-

tions of zt, respectively, i.e.,

P−t = E[(zt − ẑ−t )(zt − ẑ−t )
>] and P+

t = E[(zt − ẑ+t )(zt − ẑ+t )
>] .
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According to (2), zt,k, k = 1, 2 is a function of the random variables zt−1, and wt−1, i.e.,
zt,k = zt,k(zt−1, wt−1). Then, using the Taylor expansion of second order of zt,k at (ẑ+t−1, 0),
it is derived that:

zt,k = fk(ẑ
+
t−1, 0)

+ (
∂ fk(ẑ

+
t−1, 0)

∂zt−1
)>(zt−1 − ẑ+t−1) + (

∂ fk(ẑ
+
t−1, 0)

∂wt−1
)>wt−1

+
1
2
(zt−1 − ẑ+t−1)

> ∂2 fk(ẑ
+
t−1, 0)

∂z2
t−1

(zt−1 − ẑt−1) (4)

+
1
2

w>t−1
∂2 fk(ẑ

+
t−1, 0)

∂w2
t−1

wt−1

+ (zt−1 − ẑ+t−1)
> ∂2 fk(ẑ

+
t−1, 0)

∂zt−1∂wt−1
wt−1, k = 1, 2

where functions fk = fk(zt−1, wt−1), k = 1, 2, are given in (1). By equating the mean values
in Relation (4), the a priori estimation of zt (prediction stage) is derived, that is:

ẑ−t,k = fk(ẑ
+
t−1, 0) +

1
2

tr(
∂2 fk(ẑ

+
t−1, 0)

∂z2
t−1

P+
t−1) (5)

+
1
2

tr(
∂2 fk(ẑ

+
t−1, 0)

∂w2
t−1

Q), k = 1, 2

and the entries of the respective variance–covariance matrix P−t are given by the relation,

(P−t )k,m =(
∂ fk(ẑ

+
t−1, 0)

∂zt−1
)>P+

t−1
∂ fm(ẑ+t−1, 0)

∂zt−1

+ (
∂ fk(ẑ

+
t−1, 0)

∂wt−1
)>Q

∂ fm(ẑ+t−1, 0)
∂wt−1

(6)

+
1
2

tr(
∂2 fk(ẑ

+
t−1, 0)

∂z2
t−1

P+
t−1

∂2 fm(ẑ+t−1, 0)

∂z2
t−1

P+
t−1)

+
1
2

tr(
∂2 fk(ẑ

+
t−1, 0)

∂w2
t−1

Q
∂2 fm(ẑ+t−1, 0)

∂w2
t−1

Q), k, m = 1, 2

where (P−t )k,m denotes the (k, m)-element of matrix P−t and tr(.) denotes the trace of the
respective matrix. Taking into consideration the properties of the trace of a matrix, it is
derived after some algebraic manipulations on Relations (5) and (6) that:

ẑ−t,k = ẑ+t−1
TG(k)ẑ+t−1 + tr(G(k)P+

t−1) + tr(G(k)Q), k = 1, 2 (7)

(P−t )k,m =4ẑ+t−1
TG(k)P+

t−1G(m)ẑ+t−1 + 4ẑ+t−1
TG(k)QG(m)ẑ+t−1

+ 2 tr(G(k)P+
t−1G(m)P+

t−1) + 2 tr(G(k)QG(m)Q), k, m = 1, 2 . (8)

Regarding the a posteriori estimations of zt, it is taken into account that the joint
distribution of zt and Rt is normal, based on the relation:[

zt
Rt

]
∼ N(

[
ẑ−t

Hẑ−t

]
,

[
P−t P−t HT

HP−t
T HP−t HT + V

]
) .

Then, we make use of the following Lemma (see for example [17]):
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Lemma 1. Let x, y be two random variables that are jointly normally distributed with:

E(
[

x
y

]
) =

[
µx
µy

]
and Σ =

[
Σ11 Σ12
Σ21 Σ22

]
.

Then, (x/y) ∼ N(µ′, Σ′), where:

µ′ = µx + Σ11Σ−1
22 (y− µx) and Σ′ = Σ11 − Σ12Σ−1

22 Σ21 .

Based on Lemma 1, the a posteriori estimation of zt (update stage) and the related
variance–covariance matrix Pt(+) are given by,

ẑ+t = ẑ−t + Kt(Rt −Hẑ−t ) , (9)

P+
t = (I−KtH)P−t , (10)

where Kt = P−t HT(HP−t HT + V)−1. By using the recursive Relations (7)–(10), we can
estimate the hidden components at every time t.

Next, a detailed investigation regarding the existence of non-negative solutions (i.e.,
non-negative a posteriori estimations of zt) derived from (9) is presented.

4. Investigation of the State Space Model

In what follows, we present an investigation concerning the conditions that have
to be satisfied so as to derive non-negative a posteriori estimations of the state vector zt.
Obviously, Relation (7) ensures the existence of non-negative a priori estimations of zt at
every time t. However, the a posteriori estimations of zt given by (9) may not fulfil the
non-negativity condition. We note that the solutions depend on the term Kt(Rt −Hẑ−t ),
the sign of which is not time invariant. To this end, in order to ensure that the a posteriori
unbiased estimator ẑ+t will be a minimum variance estimator under the non-negativity
restrictions that its components must satisfy, the following optimization problem arises,

minẑ+t
{tr(P+

t ) = E[(zt − ẑ+t )(zt − ẑ+t )
T ]} (11)

where ẑ+t � 0.

Symbol � (or �) is used for the elementwise inequality, while zt = (Xt, Yt)T is given
by Equation (1) (or (2)). The following Proposition 1 provides the set of stationary points
related to the optimization problem (11), subject to the non-negativity restrictions. This set
includes the optimal solution, i.e., the unbiased minimum variance estimator ẑ+t . In what
follows, we use the following notations:

at = Rt −Hẑ−t , bt = HP−t HT and Kt = (Kt,1, Kt,2)
>.

Remark 1. Notice that, if at = 0, then Relation (9) leads to ẑ+t = ẑ−t � 0, and consequently, the
solution is acceptable.

Taking into consideration Remark 1, it is assumed in the sequel that at 6= 0 for every t.

Proposition 1. The weight matrix Kt and the stationary points related to the optimization prob-
lem (11) are given by the relations:

(i) Kt = (bt + Rt)−1P−t HT , which leads to the solution:

ẑ+t = ẑ−t + at(bt + Rt)
−1P−t HT ;

(ii) Kt =

(
(bt + Rt)−1(P−t HT)1

−a−1
t ẑ−t,2

)
which leads to the solution:
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ẑ+t,1 = ẑ−t,1 + at(bt + Rt)
−1(P−t HT)1,

and:
ẑ+t,2 = 0 ;

(iii) Kt =

(
−a−1

t ẑ−t,1
(bt + Rt)−1(P−t HT)2

)
, which leads to the solution:

ẑ+t,1 = 0

and:

ẑ+t,2 = ẑ−t,2 + at(bt + Rt)
−1(P−t HT)2;

(iv) Kt = −a−1
t ẑ−t , which leads to the solution:

ẑ+t = 0,

where (P−t HT)i denotes the ith-row of matrix P−t HT , i = 1, 2.

Proof. The Lagrangian function related to the optimization problem (11) is defined as:

Λ = tr(P+
t ) + λ1(−ẑ+t,1) + λ2(−ẑ+t,2)

= tr(E[(zt − ẑ+t )(zt − ẑ+t )
T ]) + λ1(−ẑ+t,1) + λ(−ẑ+t,2) , λ1, λ2 ≥ 0.

(12)

Based on (10), it is derived that:

tr(P+
t ) = tr[(I−KtH)P−t (I−KtH)T + KtVKT

t ]

while (by assuming the dependence of ẑ+t,i on Rt and ẑ−t,i, i = 1, 2, as provided in Kalman filtering):

ẑ+t,1 = ẑ−t,1 + Kt,1(Rt −Hẑ−t ) = ẑ−t,1 + atKt,1 ,

ẑ+t,2 = ẑ−t,2 + Kt,1(Rt −Hẑ−t ) = ẑ−t,2 + atKt,2 .

By calculating the first derivative of the Lagrangian function and equating it to 0, it is
derived that:

dΛ
dKt

=
d

dKt
[tr[(I−KtH)P−t (I−KtH)T + KtVKT

t ]− λ1(ẑ−t,1 + atKt,1)

− λ2(ẑ−t,2 + atKt,2)] (13)

= −2P−t
THT + 2KtHP−t HT + 2KtV − atλ

= 0

where λ = (λ1, λ2)
T . Thus, matrix Kt has to satisfy the following condition (by noticing

that P−t is symmetric):

− 2P−t HT + 2KtHP−t HT + 2KtV = atλ (14)

based on the constraints [18]:

λ1(ẑ−t,1 + atKt,1) = 0,
λ2(ẑ−t,2 + atKt,2) = 0

λ1, λ2 ≥ 0.

The following cases have to be considered:
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(i) The two constraint conditions are inactive. Then, λ1 = λ2 = 0, and the optimiza-
tion problem, leading to (14), is transformed into the unconstrained one considered
in the case of the Kalman filter. It is derived that:

Kt = P−t HT(HP−t HT + V)−1, (15)

which is the well-known Kalman gain matrix. The related solution in terms of the a
posteriori estimator ẑ+t is:

ẑ+t = ẑ−t + at(bt + Rt)
−1P−t HT . (16)

Relation (16) constitutes a possible solution of the optimization problem (11), and
it has to satisfy the constraint ẑ+t � 0;

(ii) The first constraint condition is inactive (i.e., λ1 = 0), while the second one is
active. Then, the following two cases are considered:

(a) If λ2 = 0, then we are led to the unconstrained optimization problem
presented in Case (i), and the solution must satisfy the non-negative restric-
tions, i.e., ẑ+t � 0;

(b) If ẑ−t,2 + atKt,2 = 0, it is derived via the active constraint condition that:

Kt,2 = −a−1
t ẑ−t,2 . (17)

By using (17), Relation (14) is transformed into:(
(P−t HT)1
(P−t HT)2

)
+

(
Kt,1

−a−1
t ẑ−t,2

)
HP−t HT +

(
Kt,1

−a−1
t ẑ−t,2

)
V = atλ .

Consequently,
Kt,1 = (bt + Rt)

−1(P−t HT)1, (18)

where bt = HP−t HT ≥ 0. By using (17) and (18), it is derived that:

Kt =

(
(bt + Rt)−1(P−t HT)1

−a−1
t ẑ−t,2

)
.

Thus,

ẑ+t,1 = ẑ−t,1 + at(bt + Rt)
−1(P−t HT)1

and:
ẑ+t,2 = 0 ;

(iii) The first constraint condition is active, while the second one is inactive (i.e.,
λ2 = 0). The following two cases are considered:

(a) If λ1 = 0, then we obtain the unconstrained optimization problem pre-
sented in Case (i), and the solution must fulfil the nonnegative restrictions,
i.e., ẑ+t � 0;

(b) If ẑ−t,1 + atKt,1 = 0 and λ1 = 0, then it is derived that:

Kt,1 = −a−1
t ẑ−t,1 , (19)

and Relation (14) is transformed into:(
(P−t HT)1
(P−t HT)2

)
+

(
Kt,1

−a−1
t ẑ−t,2

)
HP−t HT +

(
Kt,1

−a−1
t ẑ−t,2

)
V = atλ .
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Then,
Kt,2 = (bt + Rt)

−1(P−t HT)2 (20)

where bt = HP−t HT ≥ 0. By using (19) and (20), it is derived that:

Kt =

(
−a−1

t ẑ−t,1
(bt + Rt)−1(P−t HT)2

)
,

and consequently:
ẑ+t,1 = 0

and:
ẑ+t,2 = ẑ−t,2 + at(bt + Rt)

−1(P−t HT)2 ;

(iv) The two constraint conditions are active, i.e., ẑ−t,1 + atKt,1 = 0 and ẑ−t,2 + atKt,2 = 0.
In this case, we have to seek solutions such that λ1, λ2 ≥ 0.

Based on the active constraint conditions, it is derived that:

Kt,1 = −a−1
t ẑ−t,1 and Kt,2 = −a−1

t ẑ−t,2

i.e., Kt = −a−1
t ẑ−t , resulting in the relation,

ẑ+t = ẑ−t + atKt

= ẑ−t − ata−1
t ẑ−t

= 0.

The state vector ẑ+t = 0 constitutes a feasible solution, and it has to be checked whether
Relation (14) is satisfied with λ1, λ2 ≥ 0.

In what follows, Proposition 2 provides the necessary conditions for the existence of
feasible solutions regarding the constrained filter.

Proposition 2. The solutions given in Proposition 1 regarding the optimization problem (11) are
feasible upon the following conditions (necessary conditions):

(i)
ẑ+t = ẑ−t + at(bt + Rt)

−1P−t H>

constitutes a feasible solution, if:

atP−t HT � −(bt + Rt)ẑ−t ;

(ii)

ẑ+t =

(
ẑ−t,1 + at(bt + Rt)−1(P−t HT)1

0

)
constitutes a feasible solution, if:

at(P−t H>)1 ≥ −(bt + Rt)ẑ−t,1

and:

at(P−t H>)2 < −(bt + Rt)ẑ−t,2 ;

(iii)

ẑ+t =

(
0

ẑ−t,2 + at(bt + Rt)−1(P−t HT)2

)
constitutes a feasible solution, if:
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at(P−t HT)1 < −(bt + Rt)ẑ−t,1

and:
at(P−t HT)2 ≥ −(bt + Rt)ẑ−t,2 ;

(iv) ẑ+t = 0 constitutes a feasible solution, if:

at(P−t HT)1 < −(bt + Rt)ẑ−t,1

and:
at(P−t HT)2 < −(bt + Rt)ẑ−t,2.

Proof. Similar to the proof of Proposition 1, four cases are considered:

(i) The two constraint conditions are inactive. Then, λ1 = λ2 = 0, and the opti-
mization problem is transformed into the unconstrained one that is met in the
case of the Kalman filter. In this case, based on Proposition 1, we obtain that
Kt = (bt + Rt)−1P−t HT , resulting in the estimation:

ẑ+t = ẑ−t + at(bt + Rt)
−1P−t HT ,

where ẑ+t is a feasible solution of the optimization problem with the nonnegative
constraints, if:

ẑ−t + at(bt + Rt)
−1P−t HT � 0.

Consequently, the necessary condition is formulated as follows:

atP−t HT � −at(bt + Rt)ẑ−t ;

(ii) The first constraint condition is inactive, while the second one is active, i.e,
λ1 = 0 and ẑ−t,2 + atKt,2 = 0, respectively. The following two cases are considered:

(a) If λ2 = 0, then based on (14), the solution is given by (15), which is related
to the Kalman filter and the unconstrained optimization problem. This
solution is acceptable if it is aligned with the active constraint condition.
Otherwise, it is rejected;

(b) If λ2 > 0, matrix Kt has to be in such a form so that ẑ+t,1 ≥ 0.
It is derived via the active constraint condition that Kt,2 = −a−1

t ẑ−t,2 where
at 6= 0 based on Remark 1. Then, (14) results in:

atλ =

(
(P−t HT)1
(P−t HT)2

)
+

(
Kt,1

−a−1
t ẑ−t,2

)
HP−t HT +

(
Kt,1

−a−1
t ẑ−t,2

)
V(

λ1
λ2

)
=

(
−a−1

t (P−t HT)1
−a−1

t (P−t HT)2

)
+

(
a−1

t Kt,1
−a−2

t ẑ−t,2

)
HP−t HT +

(
a−1

t Kt,1
−a−2

t ẑ−t,2

)
V (21)

=

(
−a−1

t (Pt(−)HT)1 + a−1
t btKt,1 + a−1

t Kt,1V
−a−1

t (P−t HT)2 + a−2
t bt ẑ−t,2 + a−2

t ẑ−t,2V

)
.

Since λ1 = 0 and for at 6= 0, Relation (21) implies:(
0

λ2

)
=

(
−(P−t HT)1 + btKt,1 + Kt,1V

−a−1
t (P−t HT)2 − a−2

t bt ẑ−t,2 − a−2
t ẑ−t,2V

)
(22)

It is derived via (22) that if λ2 > 0, then:

λ2 = −at(P−t HT)2 − bt ẑ−t,2 − ẑ−t,2V > 0 .
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Consequently,

at(P−t HT)2 < −(bt + V)ẑ−t,2 , (23)

resulting in at(P−t HT)2 < 0. Moreover, taking into consideration that:

ẑ+t,1 = ẑ−t + atKt,1 = ẑ−t,1 − at(bt + V)(P−t HT)1

and ẑ+t,1 ≥ 0, it is derived that:

at(P−t HT)1 < −(bt + V)ẑ−t,1 ; (24)

(iii) The first constraint condition is active, while the second one is inactive, i.e.,
ẑ−t,1 + atKt,1 = 0 and λ2 = 0, respectively. The following two cases are considered:

(a) λ1 = 0 and λ2 = 0;

(b) λ1 > 0 and λ2 = 0.

Similar to Case (ii), the third part of Proposition 2 can be derived;

(iv) The two constraint conditions are active, i.e., ẑ−t,1 + atKt,1 = 0 and ẑ−t,2 + atKt,2 = 0.
In this case, we have to search for solutions where λ1, λ2 ≥ 0.
It is derived via Proposition 1 that:

Kt = a−1
t ẑ−t , (25)

which leads to the solution ẑ+t = 0.
The following subcases are considered:

(a) If λ1 = λ2 = 0, Solution (15) is derived via Relation (14), and it is accepted
if it coincides with Relation (25). Otherwise, it is rejected;

(b) If λ1 = 0 and λ2 > 0, then by taking into consideration Case (iib), it is
concluded that the solution zt(+) = 0 is accepted, if:

at(P−t HT)2 < −(bt + V)ẑ−t,2 .

Otherwise, it is rejected since it is not aligned with the conditions of the
considered case (i.e., λ1 = 0 λ2 > 0);

(c) If λ1 > 0 and λ2 = 0, similar to Case (iv)-c, the solution z+t = 0 is
accepted, if:

at(P−t HT)1 < −(bt + V)ẑ−t,1 ;

(d) If λ1 > 0 and λ2 > 0, then by taking into consideration Relations (23)
and (25), it turns out that the necessary condition in order for z+t = 0 to
be accepted as a feasible solution (which satisfies the conditions of the
considered case, i.e., λ1 > 0 λ2 > 0) is:

at(P−t HT)1 < −(bt + V)ẑ−t,1 and at(P−t HT)2 < −(bt + V)ẑ−t,2.

In conclusion, in Case (iv), the vector z+t = 0 is a possible optimal solution, if at least
one of the following conditions holds:

at(Pt(−)HT)1 < −(bt + V)ẑ−t,1 or at(P−t HT)2 < −(bt + V)ẑ−t,2.
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Remark 2. Based on the low computational cost, the four possible solutions of the constrained
optimization problem (11) can be examined one-to-one, aiming to find the optimal solution. In any
case, the necessary conditions presented in Proposition 2 can be examined simultaneously to have a
more comprehensive view in the process of searching for the optimal solution.

Next, an illustrative application of the described methodology is presented regarding
the estimation (revelation) of the two-sided jump components of asset returns.

5. Application; Estimation of the Two-Sided Jump Components of the NASDAQ Index

In this section, an application example of the proposed methodology analyzed in
Section 4 is illustrated concerning the estimation of the hidden two-sided jump compo-
nents of the NASDAQ index for the 3 y period 2006–2008. To estimate the parameters
of the model, i.e., the parameter set φ = (G(1), G(2), σ2

x , σ2
y , V), the maximum likelihood

estimation method is used taking into consideration that the distribution of Rt conditioned
on zt is normal, i.e.,

Rt|zt ∼ N(Hẑ−t , HP−t HT + V) .

Therefore, the log-likelihood function, LogL, is of the form:

LogL(R1, . . . , Rn) = −n/2 log(2π)− 0.5
n

∑
t=1

(log(|ωt|) + uT
t ω−1

t ut) (26)

where,
ut = Rt −Hẑ−t and ωt = HP−t HT + V .

The estimations derived by maximizing LogL, given in (26), are as follows:

G(1) =

[
5.4741 −2.8498
−2.8498 7.3474

]
, G(2) =

[
7.4368 1.4909
1.4909 2.8304

]
and:

σ2
x = 0.9897× 10−3, σ2

y = 0.86281× 10−3, V = 4.961× 10−11,

with LogL = 995.9854. Based on the estimated parameters, the estimated two-sided jump
components of the NASDAQ index are showcased in Figure 1.

Figure 1. (a) Estimated positive return jumps of the NASDAQ index during 2006–2008. (b) Estimated negative return jumps
of the NASDAQ index during 2006–2008.
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6. Conclusions

In this work, the topic of state space modeling with non-negative constraints was
considered. For that purpose, a state space model was constructed where the state equa-
tion that describes the dynamic evolution of the components of the hidden state vector
was expressed via non-negative definite quadratic forms and represents a non-negative
valued Markovian stochastic process of order one. Due to the inequality conditions, a con-
strained optimization problem arises to derive estimators for the states, which are unbiased
and of minimum variance. Towards this direction, a thorough analysis was illustrated
via Propositions 1 and 2, concerning the stationary points of the optimization problem
along with the special conditions that have to be satisfied in order to derive non-negative
estimations for the state vectors at every time. Thus, in Proposition 2, necessary condi-
tions were derived for a stationary point to constitute a feasible solution. The proposed
method constitutes an alternative for handling state space models with non-negativity
constraints, and it has a low computational burden compared to resampling methods for
the estimation procedure.

Regarding future work, the generalization of the proposed method for the case of an
n-dimensional non-negative state vector, n > 2, could be examined. This is a challenging
problem in many applications. For example, in navigation problems, for n = 3, state space
models with non-negativity constraints are suitable to describe the distance covered during
the motion of a vehicle, if we let the three non-negative components of the state vector
represent the measures of the velocities (speeds) along the axes in R3.
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