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Abstract: The paper considers two types of Volterra integral equations of the first kind, arising
in the study of inverse problems of the dynamics of controlled heat power systems. The main
focus of the work is aimed at studying the specifics of the classes of Volterra equations of the first
kind that arise when describing nonlinear dynamics using the apparatus of Volterra integro-power
series. The subject area of the research is represented by a simulation model of a heat exchange
unit element, which describes the change in enthalpy with arbitrary changes in fluid flow and heat
supply. The numerical results of solving the problem of identification of transient characteristics
are presented. They illustrate the fundamental importance of practical recommendations based on
sufficient conditions for the solvability of linear multidimensional Volterra equations of the first
kind. A new class of nonlinear systems of integro-algebraic equations of the first kind, related to the
problem of automatic control of technical objects with vector inputs and outputs, is distinguished.
For such systems, sufficient conditions are given for the existence of a unique, sufficiently smooth
solution. A review of the literature on these problem types is given.

Keywords: integral equations; integro-algebraic equations; Volterra series; mathematical modeling

1. Introduction

Present power plants belong to the category of complex technical systems, the study
of the functioning dynamics of which is based on the formalization of the physical nature
of the object (obtaining an analytical model), on carrying out natural experiments (using a
real model), as well as on the use of simulation models that describe processes in actual
time. In terms of content, the models for controlling the modes of power plants are of the
adaptive type. The classification of control objects for energy systems and energy units is
given in [1]. Depending on the formulation of the control criterion, the following areas of
research can be conditionally singled out:

(1) Problems with statistical or dynamic technological criteria (optimization of the basic
parameters of the boiler unit [2], temperature control [3], maximum efficiency of
combustion processes [4,5], changes in design parameters [6], etc.);

(2) Problems with statistical or dynamic technical and economic criteria (energy-saving
of thermal energy [7], minimization of operating costs [8], maximum profit [9], etc.);

(3) Forecasting problems for the technical state of heat and power equipment (short-
term and long-term forecasts of the mode parameters [10,11], planning of repair and
maintenance work, development of a strategy for equipment service [12], etc.);

(4) Multicriteria control problems, including emergency control from the point of view of
reliability [13], optimization of technical indicators of energy sources depending on
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their location [14], a hybrid approach for correcting a certain combination of various
characteristics [15], and so forth.

Traditionally, the methodology for controlling the modes of power systems has taken
into account the principles of hierarchical modeling. As a rule, the lower level of the
control system structural diagram contains automated control systems for the dynamics of
local devices. Analysis of scientific and technical literature shows that the development of
mathematical tools for the study of such devices remains an important production task.
As noted in [16], intelligent approaches based on the application of the theory of fuzzy
sets [17] and artificial neural networks [18] are quite promising for the optimization of
technological indicators.

In this paper, we consider a technique based on the Volterra functional series [19]
for constructing integral models, the transient characteristics (Volterra kernels) of which
change in the time domain. Note this mathematical apparatus is used in practice both
independently [20] and in combination with the theory of neural networks [21] to approxi-
mate the nonlinear dynamics of “input–output”-type objects. In addition, the difference
analog of Volterra polynomials (finite segments of the series) is the basis for the creation
of one of the types of neural networks [22,23]. Numerical methods and algorithms for
the computer implementation of such models, due to the versatility of the Volterra series
theory, have proven themselves well in problems with the identification and modeling of
the basic parameters of various technical objects of heat and power engineering.

In particular, based on the data of a physical experiment carried out on the high-
temperature circuit (HTC) of the Melentiev Energy Systems Institute, a simulation model
for describing the dynamics of an electrically heated pipeline section is constructed in
the form of a quadratic Volterra polynomial [24]. A similar research area is considered
in [25], wherein the monitoring of heat exchange processes in the M-1 EP-300 condenser
of the Angarsk Polymer Plant is realized using an integral model. Integral models are
successfully used to analyze the dynamics of electro-mechanical devices, for example, to
simulate the angular speed of the rotation of blades of a wind generator [26], as well as to
diagnose the current state of a reluctance motor [27]. The simulation model, formed using
the technique [28] from the diagonal values of the kernels of the cubic Volterra polynomial,
makes it possible to control the value of the air gap between the rotor and the stator of
the electric motor without object-taking out of service. The dynamics of a laminator with
a DC motor is studied in [29]. The approximating model, formed using the Volterra and
Laguerre polynomials of the first order, is used to analyze the relationship between the
parameters of the technological process: voltage, current, and clamping speed during
double-sided lamination.

Thus, the development of mathematical modeling methods based on the theory of
the Volterra series and their applications in power engineering is relevant not only from
a scientific, but also from a practical point of view. Obviously, these methods should be
focused on solving a whole spectrum of problems, including the study of new classes
of integral equations (IE) of the Volterra type, the study of the properties of numerical
methods for their solution, as well as the substantiation of practical recommendations
that ensure the effective implementation of computational algorithms. The focus is on the
specifics of the two classes of Volterra equations of the first kind arising in the solution of
inverse problems of nonlinear dynamics, in the description of which the theory of Volterra
integro-power series is used. The effectiveness of solving these problems is illustrated in
the paper on a simulation model of a radiation heat exchanger, which is considered below
as a “reference” model. The description of the subject area and the heuristic rationale for
the choice of the modeling quality indicator is given in Section 2.

The purpose of the paper is to present the solution to inverse problems that play an
important role in the theory of automatic control [30] and are associated with the creation
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of a unified approach to modeling dynamic systems of the “input–output” type using
Volterra polynomials:

y(t) = PN(x(t)) =
N

∑
m = 1

∑
1 ≤ i1 ≤ ... ≤ im ≤ p

Vi1 ... im(x(t)), (1)

Vi1 ... im(x(t)) =
t∫

0

. . .
t∫

0

Ki1 ... im(t, s1, . . . , sm)
m

∏
l = 1

xil (sl)dsl , t ∈ [0, T], (2)

where the input signal x(t) = (x1(t), . . . , xp(t))
T and the output y(t) are functions of time

t. In Equation (2), the functions Ki1 ...in(t, s1, . . . , sm) are called Volterra kernels, which, in
the terminology of [31], are invariant under the replacement of sj by sk under ij = ik.

Selected types of inverse problems are devoted to:

- Identification of the transient characteristics of the dynamic system (Section 3);
- Identification of the input signals of the dynamic system (Section 4).

Some facts from the theory of multidimensional linear integral equations with variable
limits of integration and their application to the problem of identifying transient character-
istics are described in Sections 3.1 and 3.2, respectively. Section 4 is devoted to the results
of the study of Volterra polynomial integral equations related to the problem of automatic
control of technical objects with vector inputs. Additionally, Section 4 addresses the further
development of the work.

2. Description of the Subject Area

The subject area of the paper is presented by nonlinear dynamic systems, for which
the following is true:

i. The system is not a developing one (according to the terminology of [32]), only
dynamic connections of the “input–output” type are taken into account;

ii. The connection between the input x(t) and output y(t) is unidirectional, that is, the
response of the system does not have an indirect effect on the input;

iii. The system is in a steady state at the initial time, that is, the output signal remains
unchanged at a constant input action, while we assume x(t0) = 0, y(t0) = 0,
t0 = 0);

iv. It is allowed to carry out an active experiment that assumes the possibility of
influencing the dynamic system with test input signals of the step type with the
constant height (amplitude). In addition, external control of the input actions
is allowed.

The change in enthalpy ∆i(t) with arbitrary changes in the flow rate of liquid ∆D(t)
and heat supply ∆Q(t) in the radiation element of the heat exchanger was chosen as
a simulation model obtained in [33] under the assumption of a linear variation of the
parameters to the spatial variable:

∆i(t) =
λ1λ2

λ2 − λ1

t∫
0

(
∆Q(η)− Q0

D0
∆D(η)

)e
−λ1

t∫
η

D(ξ)dξ

− e
−λ2

t∫
η

D(ξ)dξ

dη, (3)

where D(t) = ∆D(t) + D0, λ1, λ2 are the roots of the characteristic equation for a sys-
tem of two first-order differential equations. The initial values for the calculations were
D0 = 0.16 (kg/s), Q0 = 100 (kW), i0 = 1059 (kJ/kg), time t ∈ [0, T]. In the context of
Equation (3), x(t) = (x1(t), x2(t))

T and y(t) from Equations (1) and (2) under p = 2 are
defined as follows: x1(t) ≡ ∆D(t), x2(t) ≡ ∆Q(t), y(t) ≡ ∆i(t). Herewith, in accordance
with item iii, ∆D(0) = 0, ∆Q(0) = 0, ∆i(0) = 0. The value for the right boundary of
the time range T = 30 (s) was selected based on the results of calculations according to
Equation (3). It was found that under input actions ∆D(t), ∆Q(t) of a stepwise form, the
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response ∆i(t) of a dynamic system is stabilized (∆i(t) = const for t ≥ tk) with an accuracy
of δ = 10−1 for tk ≥ 30 (s). Model Equation (3) describes the dynamics ∆i(t) of an element
of a heat exchanger with a single-phase incompressible fluid in which a substance flow
moves during external heating. Note that when studying the dynamics of the enthalpy of
complex apparatuses, as a rule, a longer time range is considered, for example, T = 3000 s
in [34].

Nevertheless, the simulation model Equation (3) is important from a methodological
point of view for comparative analysis of the accuracy of numerical methods and verifica-
tion of computational algorithms. A normalized graph of the change in the enthalpy of
steams at the outlet of the direct-flow boiler TGMP-314P in the mode of 70% of the nominal
load with disturbance of the feed water flow rate for T = 3000 s was obtained in work [34]
(p. 35) (see Figure 1a). Using a distributed parameter model, the values ∆i(t) at the outlet
of the boiler unit economizer with a deep change in the coolant flow rate for T = 4000 s
were calculated in [35]. Figure 1b shows the normalized graph.
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Figure 1. Change in enthalpy under disturbance of water flow rate: (a) for a once-through boiler; (b) for the boiler
unit economizer.

Figure 2 compares the graphs of the dependences ∆i(t̃) at dimensionless time t̃ = t
T ,

obtained with single precision calculations using various models: the direct-flow boiler
(graph 1), the boiler unit economizer (graph 2), and the single heat exchanger (3) (at
∆Q(t) = 0, ∆D(t) = 0.25 · D0) (graph 3). Calculations have shown that at t̃ ∈ [0.9, 1],
normalized values of all three functions coincide within δ = 10−3. Thus, practical recom-
mendations for using the apparatus of the Volterra series, obtained to model Equation (3),
can be applied to study the dynamics of complex heat-and-power objects.
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Figure 2. Comparison of enthalpy graphs ∆i(t̃) at dimensionless time t̃ ∈ [0, 1] (blue line is graph 1,
green line is graph 2, black line is graph 3).

Thus, based on the analysis of the normalized graphs shown in Figure 2, as a criterion
for the accuracy of modeling, we select the modulus of deviation of the model y(t) response
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in the form of the Volterra polynomial Equations (1) and (2) from the values of ∆i(t)
according to Equation (3) at the end of the transient process at t = T. Note that at the stage
of computational experiments, the following assumptions were made in the work:

- At the input x(t) and output y(t) of the dynamic system, deviations from those
indicators that are observed in the steady state are considered;

1. The values of input x(t) and output y(t) can be measured at fixed times;
2. The responses of the dynamical system y(t) for t ∈ [0, T] have sufficient smoothness.

The simulation model Equation (3) was used to develop specific recommendations
for choosing an approximating Volterra polynomial. These recommendations include
conditions on the amplitudes α of test signals. It should be noted that the developed
recommendations were successfully tested both for the integral model of transient processes
of heat power objects [24] and for the test mathematical model [36].

3. The Problem of Identifying Transient Characteristics
3.1. Volterra Equations of the First Kind with Two Variable Integration Limits

To construct an integral model of the form Equation (1), it is required to solve the
problem of nonparametric identification of Volterra kernels (transient characteristics of
a dynamic system) in Equation (2). The practical application of such models in the time
domain is still limited [20]. As the analysis of the scientific and technical literature has
shown, when describing dynamic systems corresponding to the selected subject area, an
approach based on the use of test inputs in the form of Heaviside functions:

e(t) =
{

0, t ≤ 0,
1, t > 0,

is quite common. A shortlist of publications on the use of learning sample signals of this
type is shown in the review of [36]. It should be noted that as a rule (see, for example, [37]),
researchers turn to the consideration of discrete analogs of Equations (1) and (2), that is, to
the problem of solving some system of linear algebraic equations (SLAE), leaving beyond
the scope of theoretical research directly multidimensional integral equations. On the one
hand, this reduction allows one to obtain a difference approximation of the desired solution.
As shown in the thesis [38] (pp. 298–299), the mesh analogs of integral equations, due to the
nondegeneracy of the corresponding SLAEs, are uniquely solvable for any right-hand side.
On the other hand, a qualitative study of the corresponding classes of multidimensional
integral equations helps to remove the arbitrariness in the choice of specific parameters
of test signals and to obtain practical recommendations at the stage of preparation for
conducting experiments. Indeed, as shown in [36,39], the choice of the amplitude of the
test signals in the identification of Volterra kernels Ki1 ... in , N > 2, is associated with the
necessary conditions for the solvability of the corresponding multidimensional integral
equations in special classes of functions.

Thus, the specificity of the Volterra integral equations related to the problem of identify-
ing transient characteristics is fundamentally important for the effective implementation of
the developed numerical methods in practice. This section is devoted to multidimensional
linear Volterra equations of the first kind arising in the construction problem, Equation (1),

Vi1 ... im(x(t)) =
t∫

0

. . .
t∫

0

Ki1 ...im(s1, . . . , sm)
m

∏
l = 1

xil (t− sl)dsl , t ∈ [0, T], (4)

based on piecewise constant functions with deviating argument [40]

xα
ω1,..., ωm−1

(t) = α

[
e(t) + 2

m−2

∑
k=1

(−1)ke

(
t−

k

∑
i=1

ωi

)
+ (−1)m−1e

(
t−

m−1

∑
i=1

ωi

)]
, (5)
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0 ≤ t, ωi ≤ T, i = 1, m− 1, m ≥ 2. Note that signals xα
ω1, ... , ωm−1

of the form (5)
are included in the feasible set of input signals of the physical system (see item iv of
Section 2). The application of test signals Equation (5), where α is an amplitude, and
ω1, . . . , ωm−1 are durations of the input action, allows us to reduce the original problem of
identifying kernels in Equation (4) to the solution of a multidimensional Volterra integral

equation of the first kind with variable limits of integration under 0 ≤
m − 1

∑
k = 1

ωk ≤ t ≤ T,

ωk ≥ 0 that have the explicit inversion formulas [40]. Here, relation Equation (4) follows
from Equation (2) under the assumption that the dynamical system is stationary (i.e., the
Volterra kernels Ki1 ... im depend on the difference t− sj, j = 1, m). The situation when a
dynamical system is nonstationary was considered in [41].

The technique of using scalar input signals in Equation (5) is described in detail in the
review [42] (see the section “About one approach to identification of Volterra kernels”). For
the case of a signal represented as a vector function of time, the series of articles [36,39,42–44]
presents algorithms for choosing the amplitudes of test signals for identifying Volterra
kernels, which, in general, can be represented as follows:

1. Empirical stage. Analysis of a priori information about an object to select the type of
integral model and a method for setting responses y(t) to test signals of a step type.

2. Implementation of the decomposition algorithm, taking into account the necessary
conditions for the solvability of the corresponding integral equations in the required
class of functions [36,39]. The decomposition algorithm was considered in the case
when the analytical form of output signals is known for scalar test input signals [41].

3. Experimental debugging. Determination of the optimal values of the amplitudes
based on the solution of some extremal problems introduced in [42,43].

The results presented in [42] on the identifying Volterra kernels in integral models
Equations (1) and (3) for the scalar case x(t) ≡ xi(t), N = 2

y2(t) =
t∫

0

Ki(s)x(t− s)ds +
t∫

0

t∫
0

Kii(s1, s2)x(t− s1)x(t− s2)ds1ds2, (6)

and N = 3

y3(t) =
t∫

0
Ki(s)x(t− s)ds +

t∫
0

t∫
0

Kii(s1, s2)x(t− s1)x(t− s2)ds1ds2 +

+
t∫

0

t∫
0

t∫
0

Kiii(s1, s2, s3)x(t− s1)x(t− s2)x(t− s3)ds1ds2ds3

(7)

relied heavily on the symmetry property of Ki, Kii, Kiii concerning all arguments (it is
a consequence of the assumption that the input signal is a scalar function of time). To
identify the kernels Ki, Kii, the input disturbances xαl,i

ω1 (t) = αk,i(e(t)− e(t−ω1)), k = 1, 2,
0 ≤ ω1 ≤ t ≤ T were used, the amplitudes αl,i of which were selected based on condition

α1,i + α2,i = 0, (8)

which follows from the belonging of the kernels Kii to the class of symmetric functions
continuous on the square 0 ≤ s1, s2 ≤ T. A similar condition [42]

_
α 1,i +

_
α 2,i +

_
α 3,i = 0 (9)

for the amplitudes of test signals x
_
α l,i
ω1 (t) =

_
α l,i(e(t)− 2e(t−ω1) + e(t−ω1 −ω2)),

l = 1, 3, 0 ≤ ω1 + ω2 ≤ t ≤ T follows from the necessary and sufficient conditions
for the solvability of the three-dimensional Volterra integral equation of the first kind with
variable upper and lower integration limits arising in the problem of identifying Kiii from
Equation (7). Let us further, for simplicity, present α1,i = −α2,i ≡ αi. As shown in [36],
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when selecting the amplitudes used to identify Ki and Kii in (1), (4) for N = 3, αi requires
coordination with the values

_
α l,i, l = 1, 3, such as

α2
1 = −

(
_
α 1,i

_
α 2,i +

_
α 1,i

_
α 3,i +

_
α 2,i

_
α 3,i

)
. (10)

In the case of vector input signals, in particular, for x(t) = (x1(t), x2(t))
T , the right-

hand side of Equation (1), in contrast to Equations (6) and (7), includes integral terms
that take into account the contribution of nonsymmetric kernels K12, K112, and K122. From
the fulfillment of the conditions of the theorems on the existence of these kernels in the
required classes of functions [36], constraints of the form

β2
k,i = α2

k,i, γ2
k,i = α2

k,i (11)

follow (test signals of the selected type with amplitudes βk,1, βk,2 are used to identify K12,
with amplitudes γk,1, γk,2—to identify K112 and K122).

It is interesting to analyze how violation of conditions Equations (8)–(11) at the stage
of planning an experiment on a set of responses of a dynamic system, represented by a
simulation model Equation (3), to inputs of the form Equation (5) will influence on the
accuracy of constructing Equations (1) and (4) for p = 2, N = 2

y2(t) =
2
∑

i = 1

t∫
0

Ki(s)xi(t− s)ds +
t∫

0

t∫
0

K11(s1, s2)x1(t− s1)x1(t− s2)ds1ds2 +

+
t∫

0

t∫
0

K12(s1, s2)x1(t− s1)x2(t− s2)ds1ds2

(12)

and N = 3

y3(t) =
2
∑

i = 1

t∫
0

Ki(s)xi(t− s)ds +
t∫

0

t∫
0

K11(s1, s2)x1(t− s1)x1(t− s2)ds1ds2 +

+
t∫

0

t∫
0

K12(s1, s2)x1(t− s1)x2(t− s2)ds1ds2 +

+
t∫

0

t∫
0

t∫
0

K111(s1, s2, s3)x1(t− s1)x1(t− s2)x1(t− s3)ds1ds2ds3 +

+
t∫

0

t∫
0

t∫
0

K112(s1, s2, s3)x1(t− s1)x1(t− s2)x2(t− s3)ds1ds2ds3.

(13)

Note that in Equations (12) and (13), under the linearity of Equation (3) concerning ∆Q(t),
the kernels K22 ≡ K122 ≡ K222 ≡ 0. Further, we give the results of a computational experiment.

3.2. Computational Experiment Results

To obtain on a uniform mesh ti = ih, i = 1, n, h =T⁄n,, the difference analogs of the
responses of the simulation Equation (3) and integral models Equations (12) and (13), we
will use the author’s software and computer complex [43]. We use the trapezoidal method
to calculate the values yet(ti) ≡ ∆i(ti) and the middle rectangles method to calculate the
values y2(ti), y3(ti). As a criterion for the accuracy of modeling, we select the relative
residual between yet(t) and y2(t), y3(t) at t = T:

ε1 =
|y2(T)− yet(T)|
|yet(T)|

· 100%, ε2 =
|y3(T)− yet(T)|
|yet(T)|

· 100%. (14)

The identification of the mesh analogs of Volterra kernels tuned to test signals with
amplitudes of 25% of the initial values of D0 = 0.16 kg/s, Q0 = 100 kW was carried out
using the technique [42,44] for T = 40 s, h = 1 s. Figure 3 shows mesh analogs for K1, K2,
K11 characterizing the influence of ∆D(t) and ∆Q(t) on the change of ∆i(t). Kernels were
identified on the discrete mesh with the step h = 1 using responses ∆i(t) to test signals of
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the form Equation (5) with amplitudes equal to 25% of the initial values. For simplicity,
T = 20 s.
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Additionally, when drafting the initial data for the identification of kernels, we take
into account conditions of the form of Equations (8)–(11) following from the necessary
and sufficient conditions for the solvability of the corresponding integral equations in
the required functions’ classes. Note that in this case, we do not consider conditions
α1,2 + α2,2 = 0, γ1,2 + γ2,2 = 0 from Equation (8), used to identify K22 and K122, respectively,
as well as condition

_
α 1,2 +

_
α 2,2 +

_
α 3,2 = 0 from Equation (9), used to identify K222. Let

signals have the form:

xζ1
1 (t) = ζ1e(t), xζ2

2 (t) = ζ2e(t), t ∈ [0, T], (15)

where ζ1 = 25%D0 = 0.04 kg/s, ζ2 = 25%Q0 = 25 kW, on which we will carry out the
verification of mesh analogs of Equations (12) and (13). The responses of the constructed
mesh analogs of the quadratic Equation (12) and cubic Equation (13) Volterra polynomials
give a zero residual with the response of the simulation model Equation (3) to input signals
of the form Equation (15).

An analysis of the computational experiment’s results showed that violation of the
constraints of Equations (8)–(11) on the amplitudes used to identify Volterra kernels leads
to the appearance of a nonzero error. In this case, various situations are possible. We will
consider them in order of degradation in modeling accuracy.
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Let equalities Equations (8)–(10) hold for a fixed value of i = 1 (i.e., α1,1 + α2,1 = 0,
_
α 1,1 +

_
α 2,1 +

_
α 3,1 = 0, β2

k,1 = α2
k,1, γ2

k,1 = α2
k,1). Violation of equality β2

k,2 = α2
k,2 from

Equation (11) does not influence the accuracy of the quadratic and cubic models for
actions of the form Equation (15) (including arbitrary values of ζ2) due to the linearity of
Equation (3) concerning ∆Q(t).

Now, let equalities of the form Equations (8)–(10) as well as Equation (11) for i = 2
(i.e., β2

k,2 = α2
k,2 and γ2

k,2 = α2
k,2) hold, except for β2

k,1 = α2
k,1 or γ2

k,1 = α2
k,1. Then, on the

signals in Equation (15), the residual between responses y2(t), y3(t) of integral models and
yet(t) will be nonzero. Taking into account that the actions Equation (15) were used in
identifying the Volterra kernels, a nonzero residual of modeling on the same signals means
a defect in the identification of the integral models.

Table 1 gives the error values for signals Equation (15) in the case of violation of the
equality in Equation (8). The calculations were carried out with double precision using
a quadratic integral model, Equation (12). It can be seen from the table that the error ε1
decreases as β1 approaches the required value of 0.04, while ε1 = 0.000% for β1 = 0.04.
This tendency is not obvious in the case of an arbitrary input signal.

Table 1. Error values ε1 (%). Amplitudes β1, β2 were used to identify the nonsymmetric kernel, K12.

β1 0.0394 0.0396 0.0398 0.0400 0.0402 0.0404 0.0406
β2

24 15.929 10.487 5.013 0.000 6.034 11.605 17.209
25 14.896 9.798 4.667 0.000 5.687 10.911 16.166
26 13.942 9.161 4.348 0.000 5.367 10.270 15.204

We illustrate this situation for the input actions shown in Figure 4, where line 1 corre-
sponds to ∆D(t) and line 2 to ∆Q(t). Figure 5 shows graphics for residual
E(t) = |y2(t)− yet(t)|, t ∈ [0, 40], for fixed values β1, β2. Here, line 1 corresponds
to the values of β1 = 25%D0 = 0.04 kg/s and β2 = 25%Q0 = 25 kW, so condition
β2

k,1 = α2
k,1 holds.
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In this case, at t1 = 19, the maximum error max
t∈[0,T]

E(t) = 6.493 is reached, which is

2.845% of yet(t1). The rest of the graphs were obtained in violation of the limit on the value
of β1, where at β2 = 25, number 2 marks the graph for β1 = 0.0385, 3—for β1 = 0.039,
4—for β1 = 0.041, 5—for β1 = 0.0415. In this case, max

t∈[0,T]
E(t) = 7.226 is reached at point

t2 = 39 (see Figure 5, graph 2), and is 16.741% of yet(t2). Note that when ∆D(t) reaches a
constant (see Figure 4, t ≥ 23 s), then the nature of the change in errors (see Figure 5, graphs
2–5) of models, constructed with violation of the connectivity conditions for the test signals’
amplitudes, does not correspond to the dynamics of the residual (see Figure 5, graph 1)
obtained when the required conditions are met. Note that the worst of the considered
situations occurs when α1,1 + α2,1 = r 6= 0 from Equation (8) leads to a simultaneous
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violation of equalities (11). In particular, under the action of the form Equation (15), the
error Equation (14) of the response of the cubic model is ε2 = 3.943%, even for r = 10−5.
Thus, the fulfilment of constraints Equations (8)–(11) on the test signals’ amplitudes used
in the Volterra kernels’ identification significantly influences the simulation accuracy.
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4. Volterra Polynomial Equations of the First Kind in the Problem of Identifying the
Input Signals of a Dynamic System

Now we assume that the construction of an integral model in the Volterra poly-
nomial form was completed. We consider the problem of identifying input signals
x(t) = (x1(t), x2(t), . . . , xp(t))

T , which is reduced to solving Volterra polynomial equations
of the first kind for known Volterra kernels K and response y(t) = (y1(t), y2(t), . . . , yp(t))

T .
This statement is associated with the problem of automatic regulation of technical ob-
jects [45], (p. 242). The theory of such equations has been studied relatively recently [46],
while their unified terminology is still lacking in the scientific literature. In particular,
these equations are called “multilinear Volterra equations” [46], “bilinear integral equa-
tions” [47,48], and “multiple integral equations” [49,50]. In what follows, we will call the
equations under consideration “polynomial” [51], since the Nth term of polynomial PN is
an N-power integral operator [31].

The theory and numerical methods for solving the polynomial Equation (1) for N = 1
and N > 1 have significant differences. In a series of papers [42,46,47,51,52], the specificity
of Equation (1) for p = 1 is studied in detail, which for N > 1, consists of the locality of the
solution to the equation in C[0,T]. Here, the locality is the smallness of the right endpoint of
segment [0, T]. A method for obtaining estimates for solutions to some special nonlinear
integral inequalities that for N > 1 play for Equation (1) the same role as the Grönwall–
Bellman inequality for a linear Volterra equation of the first kind was presented for the
first time in [42]. Numerical methods for solving polynomial equations for N = 2 based
on cubature formulas for middle rectangles are constructed in [47]. Further research was
aimed at developing the theory and numerical methods for solving systems of polynomial
Equation (1) for p = 2, N = 2, 3 based on the Newton-Kantorovich method [53–55], as well
as the practical method of using the developed approaches as applied to Equation (3) in
the problem of stabilizing the enthalpy ∆i(t) by the formation of the control input action
∆D(t) [42,44,56].

Additionally, consider the problem Equations (1) and (2) with an arbitrary finite value
p and N = 2. In contrast to the results indicated in this section, we will assume that
the input signals x(t) = (x1(t), x2(t), . . . , xp(t))

T are unknown and, as before, the output
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signals y(t) = (y1(t), y2(t), . . . , yp(t))
Tand the Volterra kernels K are given. In this case,

we have a system of integral equations of the first kind of the form

y(t) = V[Z] =
t∫

0

K(t, s1)x(s1)ds1 + Z[x], (16)

where K(t, s1) is a (p× p)-matrix, x(t) and y(t) are the unknown and given p-dimensional
vector-functions, and the operator Z[x] is defined by the rule

Z[x] =
t∫

0

t∫
0
[

p
∑

j1=1
L1

j1
(t, s1, s2)x1(s1)xj1(s2)+

p
∑

j2=1
L2

j2
(t, s1, s2)x2(s1)xj2(s2)+

+
p
∑

j3=3
L3

j3
(t, s1, s2)x3(s1)xj3(s2) + . . . +

p
∑

jp−1=p−1
Lp−1

jp−1
(t, s1, s2)xp(s1)xjp−1(s2)+

+Lp
jp
(t, s1, s2)xp(s1)xjp(s2)]ds1ds2,

(17)

where jm = 1, m. In formula (17), Lm
jm(t, s1, s2) are p-dimensional vector-functions, that

is, Lm
jm(t, s1, s2) =

(
Zm

jm1(t, s1, s2), Zm
jm2(t, s1, s2), . . . , Zm

jm p(t, s1, s2)
)T

are smooth enough for
further reasoning.

If:
detK(t, t) 6= 0 ∀ t ∈ [0, T], (18)

in Equation (16), then the study of such systems for the existence of a unique solution in
various classes of functions is carried out by analogy with Volterra integral equations of
the first kind (see, for example, [57] and others). To do this, it is sufficient to differentiate
the system Equation (16) with respect to t and rewrite the obtained result in the form of a
system of the second kind, and this is possible due to condition Equation (18).

If condition Equation (18) is not satisfied for the problem Equation (16), then the
standard approaches do not give the desired result—a system of the second kind, since
we have a system of integral equations with an identically degenerate matrix in front of
the main part after differentiation. Such problems have the fundamental differences from
systems of the type of Equation (16), with the condition in Equation (18). They inherit
from the integral equation of the first kind with the condition K(j)

tj (t, s1)
∣∣∣
s1=t
6= 0, where

j is a non-negative integer, the instability to small perturbations y(t) in the metric Cj
[0,T]

and the absence of a solution in the class of continuous functions under y(m)(t)
∣∣∣
t=0
6= 0,

m = 0, 1, . . . , j.
We demonstrate the specifics and properties of Equation (16) with condition

Equation (18) using the simplest examples, namely, systems Equation (16), for which
the operator Z[x] is identically zero. In this case, we have the system of Volterra integral
equations of the first kind

y(t) =
t∫

0

K(t, s)x(s)ds, 0 ≤ s ≤ t ≤ T, (19)

where K(t, s) is a (p × p)-matrix, y(t), x(t) are the given and unknown p-dimensional
vector-functions, and detK(t, t) ≡ 0.

Example 1.

t∫
0

 t− s ϕ1(s) 0
0 t− s ϕ2(s)
0 0 t− s

 x1(s)
x2(s)
x3(s)

ds =

 0
0

y(t)

, (20)
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where y(t), ϕ1(t) and ϕ2(t) are the given functions that have the required smoothness.
From the third equation in Equation (20), we have

x3(t) = y′′ (t). (21)

Substituting this expression into the second equation in Equation (20), we obtain

t∫
0

(t− s)x2(s)ds = −
t∫

0

ϕ2(s)x3(s)ds (22)

or, taking into account Equation (21) and differentiating twice Equation (22), we have

x2(t) = −(ϕ2(t)y′′ (t))
′. (23)

By analogy, substituting Equation (23) into the first equation of system Equation (20),
we have

x1(t) =
(

ϕ1(t)(ϕ2(t)y′′ (t))
′
)′

. (24)

Thus, system Equation (20) has a unique solution, which is found by Formulas (21)–(24).
The rank of the matrix K(t, t) can be variable, but this fact does not mean the presence

of singular points.
Example 2. Consider the system

t∫
0

(
1 a(t− s)

b(t− s) c(t− s)2

)(
x1(s)
x2(s)

)
ds =

(
0
0

)
,

where a, b, c are scalar. This example has only the trivial solution, if 2c − ab 6= 0.
In the case of 2c − ab = 0 and a 6= 0, this example has the solution set of the form

x(t) =
(

v(t)− v′(t)
a

)T
, where v(t) is a continuously differentiable function.

Another feature of systems, Equation (19), is the instability to small perturbations of
the input data in an arbitrarily smooth metric.

Example 3. Consider a system

t∫
0

(
t− s 1

ε(t− s) t− s

)(
x1(s)
x2(s)

)
ds =

(
εt
0

)
, (25)

where ε is a small scalar parameter. If ε = 0, the system Equation (25) has only the trivial
solution. If ε 6= 0, then, twice differentiating the second Equation in (25), we have

x1(t) = −
x2(t)

ε
.

Differentiating the first equation in (25), we obtain:

t∫
0

x1(s)ds + x2(t) = ε,

hence, x2(0) = ε and x1(t) + x′2(t) = 0.
Given that x2(0) = ε and x1(t) = − x2(t)

ε , we have x2(t) = ε exp(t/ε). For ε > 0, it
follows that ‖x2(t)‖C[0,T]

→ ∞ , when ε→ 0 .
Here is another example that contains a singular point. The solution set passes through

this point.
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Example 4. Consider a problem

t∫
0

(
s− 2(t− s) 1 + t− 2s

t− s t− s

)(
x1(s)
x2(s)

)
ds =

(
0
0

)
. (26)

Differentiating the second equation in (26) twice with respect to t, we obtain x1(t) + x2(t) = 0, or

x1(t) = −x2(t). (27)

Substituting this expression into the first equation in (26), we have the integral equation
with respect to x1(t)

t∫
0

(−1 + 5s− 3t)x1(s)ds = 0.

Differentiating this equation, we obtain

(2t− 1)x1(t)− 3
t∫

0

x1(s)ds = 0. (28)

When T > 1
2 , Equation (28) is the Volterra integral equation of the third kind. The solution

set of the form
x1(t) = C

√
2t− 1, t ≥ 1

2
,

passes through the point t = 1
2 , where C is an arbitrary constant.

Thus, taking into account Equation (27), when T > 1
2 , the solution to problem

Equation (26) is

x1(t) =
{

0, t ∈ [0, 1/2],
C
√

2t− 1, t ∈ [1/2, T],
x2(t) =

{
0, t ∈ [0, 1/2],

−C
√

2t− 1, t ∈ [1/2, T].

These examples show the fundamental difference between the systems of
Equation (19) with the condition detK(t, t) 6= 0 ∀t ∈ [0, T] from the problems with the
condition detK(t, t) ≡ 0.

We give sufficient conditions for the existence of the continuously differentiable
solution of the system in Equation (16) with the condition in Equation (18).

Statement 1. Suppose that the following conditions hold for problem Equation (16):

(1) The elements of y(t), K(t, s1) Lm
jm(t, s1, s2) (see Equation (17)) are twice continuously differ-

entiable functions with respect to the set of arguments,
(2) y(0) = 0,
(3) rank K(0, 0) = rank{K(0, 0)|y′(t)|t=0},
(4) rank K(t, t) = r = const ∀t ∈ [0, T],
(5) det(λK(t, t) + K′t(t, s)|s=t) = a0(t)λr + a1(t)λr−1 + . . . + ar(t),

where λ are scalar, a0(t), a1(t), . . . , ar(t) are functions, and a0(t) 6= 0 ∀t ∈ [0, T].
Then the original problem has a unique continuous solution.

Proof of Statement 1 The proof of this fact is based on the results of the articles [58,59].

Let us comment on the conditions of Statement 1. The first condition is the standard
condition for the smoothness of the input data, since, in the proof, we need to differentiate
Equation (16) twice and then compose a linear combination. The second and third ones are
the conditions for the correct assignment of the initial data y(0). These conditions follow
directly from the Rouche–Capelli theorem, that is, substituting into Equation (16) t = 0,



Mathematics 2021, 9, 1905 14 of 18

we obtain SLAE y(0) = 0 (the second condition). Differentiating the original problem and
substituting t = 0, we have SLAE:

K(0, 0)x(0) = y′(t)
∣∣
t=0.

Finally, conditions (4) and (5) guarantee the absence of singular points through which
several solutions can pass, or in which the solution is discontinuous. �

To illustrate the fourth condition, it is sufficient to consider the integral Equation (19),
where K(t, s) and y(t) are functions, and K(tj, tj) = 0, tj ∈ [0, T]. In this case, after
differentiation, we have the integral equation of the third kind,

y′(t) = K(t, t)x(t) +
t∫

0

K′t(t, s)x(s)ds, 0 ≤ s ≤ t ≤ T. (29)

Assuming in (29) K(t, s) = at+ bs, where a and b are scalar, it is possible to choose such
values of a and b, that this equation have either a discontinuous solution or non-unique
solution. In this case, the fourth condition of Statement 1 is violated.

Let us verify in Equation (26) the conditions (4) and (5). The fourth condition:

rank K(t, t) = rank
(

t 1− t
0 0

)
= 1 = const

holds. The fifth condition is:

det(λK(t, t) + K′t(t, s)|s=t) = det
[(

λt λ(1− t)
0 0

)
+

(
−2 1
1 1

)]
=

= det
(

λt− 2 λ(1− t) + 1
1 1

)
= (2t− 1)λ− 3.

Here, a0(t) = 2t− 1. This function vanishes when t1 = 1
2 , that is, when t = t1, the

fifth condition is violated, and the solution set of this example passes through this point.
A more general case of Equation (29) is

ϕ(t) = A(t)x(t) +
t∫

0

K(t, s)x(s)ds, (30)

where A(t), K(t, s) are the given (p× p)-matrices, ϕ(t) and x(t) are the given and unknownp-
dimensional vector functions. It is assumed that

detA(t) ≡ 0. (31)

Equation (30) with condition (31) has been the focus of attention of specialists relatively
recently, since the late 1980s to the early 1990s. The first article on this topic was published
in 1987 [60]. Since then, no more than 50 papers have been published on the qualitative
theory and numerical solution of systems (30) with condition (31). Such systems were
called the “integral analogs of singular systems of ordinary differential equations” in [60],
“integral equations of the fourth kind” in [61] and [62], and “singular systems of integral
equations” in [63]. Now, these systems are referred to as “integral-algebraic equations”
(IAEs) [64]. The problems of constructing numerical methods for solving IAEs are noted
in articles [65–67] and monographs [68,69]. A fairly complete bibliography is presented
in [70,71].

5. Conclusions

When solving inverse problems in power engineering, nonclassical integral equations
of the Volterra type arise. At the present time, the theoretical apparatus for studying



Mathematics 2021, 9, 1905 15 of 18

such equations is not complete and requires further development. This paper presents
mathematical tools for solving problems, associated with the application of the Volterra
integro-power series. The effectiveness of using the previously obtained theoretical results
is illustrated by the practical example in modeling the nonlinear dynamics of an element of
a heat exchange unit.

The classes of nonlinear systems of integral equations of the first kind were identified
that have a unique sufficiently smooth solution (under the certain conditions for the vector
function y(t) and the input data). The sufficient conditions are formulated in terms of
matrix pencils. The presented new theoretical results are due to the problems arising in the
study of heat power engineering objects, and also have independent significance.

In the future, it is planned to construct and justify numerical methods for solving such
systems. These algorithms are supposed to be based on the extrapolation formulas [67],
which have performed well when solving IAEs Equation (30), on the special quadrature
formula of the midpoint type [58,59], and on the collocation-variational approach that was
proposed for the numerical solution to differential-algebraic equations [72–75].
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