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Abstract: The term credit scoring refers to the application of formal statistical tools to support or
automate loan-issuing decision-making processes. One of the most extended methodologies for
credit scoring include fitting logistic regression models by using WOE explanatory variables, which
are obtained through the discretization of the original inputs by means of classification trees. How-
ever, this Weight of Evidence (WOE)-based methodology encounters some difficulties in order to
model interactions between explanatory variables. In this paper, an extension of the WOE-based
methodology for credit scoring is proposed that allows constructing a new kind of WOE variable
devised to capture interaction effects. Particularly, these new WOE variables are obtained through
the simultaneous discretization of pairs of explanatory variables in a single classification tree. More-
over, the proposed extension of the WOE-based methodology can be complemented as usual by
balance scorecards, which enable explaining why individual loans are granted or not granted from the
fitted logistic models. Such explainability of loan decisions is essential for credit scoring and even
more so by taking into account the recent law developments, e.g., the European Union’s GDPR. An
extensive computational study shows the feasibility of the proposed approach that also enables the
improvement of the predicitve capability of the standard WOE-based methodology.

Keywords: regression; discretization; explainability; scorecards

1. Introduction

Until the end of the 1960s, most decision making regarding loan granting was still
based on traditional human subjective assessments. However, because of the growth of
the credit card business at that time period, banks began to increasingly rely on automatic
decision processes, giving rise to the notion and practice of credit scoring. As discussed
in [1], this notion was fully recognized in the USA by the 1975 Equal Opportunity Act,
which stated that any discrimination can be based only on statistical assessments.

Technically, credit scoringis the term used to describe formal statistical methods used
for classifying applicants for credit into ’good’ and ’bad’ risk classes [2]. As described
in this last work, the standard statistical methods used in the industry for developing
scorecards are discriminant analysis, logistic regression and decision trees, mainly because
of their ease of interpretation. Among these, the first two have been the most widely
used techniques. The work in [3] provides one of the first published accounts of logistic
regression applied to credit scoring in a comparison with discriminant analysis. It concludes
that the logistic approach obtained superior classification results.

More recent works such as, e.g., [4,5], make reference to the application of sophisti-
cated machine learning (ML) techniques in the credit scoring context, such as (again) neural
networks, support vector machines (SVM), or widely extended model-ensemble techniques
such as random forest and extreme gradient boosting or stacking, among others. Nev-
ertheless, despite these recent applications, an actual consensus does not currently exist
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regarding the convenience of applying sophisticated ML methods in the credit scoring field.
As discussed in [6], some studies have found that statistical techniques perform better than
some ML techniques, such as neural networks or genetic algorithms, while other works
concluded just the opposite. However, even if ML techniques outperform the predictive
capability of statistical methods in this field, it is the interpretability of results that seems to
mark the most important difference in favour of statistical methods. For instance, a direct
consequence of the implementation since May 2018 of the European Union’s General Data
Protection Regulation (GDPR, see [7]) is that banks need to be able to explain why a loan
was not granted if the decision process was automatic, i.e., customers have the right to
receive an explanation in the case of a negative credit decision (and see [8] for a wider
discussion of the general implications of GDPR laws in algorithmic decision making).

With respect to this, one may argue that recent research in model interpretability
techniques such as LIME (Local Interpretable Model-Interpretable Explanations, see [9,10])
may instead tip the scale in favour of ML-based solutions for credit scoring. Indeed, some
recent works point at this direction (see, e.g., [11]). However, there is, again, no consensus
regarding the general feasibility and convenience of such kinds of model interpretability
techniques since an increasing amount of authors and works points that it may be more
appropriate to further develop interpretable methods rather than to develop interpretability
techniques to be applied upon black-box models [12].

Regarding the interpretability of the standard models of credit scoring, in the 1990s
Kaplan and Norton developed balance scorecards [13]. In order to justify why loans are
granted or not, the scorecards permitted an interpretation of a credit scoring model by
detailing the amount of ‘points’ to be assigned to a client based on the values of each
of the explanatory variables considered in such a decision model. The methodology
underlying balance scorecards relies on fitting logistic regression models by using WOE
(Weight Of Evidence, see [14]) variables as explanatory variables. These WOE variables,
the definition and advantages of which will be reviewed in Section 2.3, are obtained by
means of a transformation applied on the categories resulting from the discretization
(typically by means of classification trees) of the original inputs. As discussed in [15], WOE
transformations usually work well in logistic models not containing interaction terms and
this lack of adaptation with respect to interacting variables is one of the main criticisms
that may be made regarding the mentioned methodology.

A natural possibility to reflect interaction behaviours would consist in using products
of WOE variables, since these present a continuous nature. However, as shall be dis-
cussed later in this work, such a standard procedure to model interactions presents some
drawbacks in the case of WOE variables. This motivates our proposal of an alternative
methodology to consider interaction effects in the context of credit scoring.

Specifically, the proposed methodology proceeds by fitting a classification tree to each
pair of original input variables and applying a variant of the usual WOE transformation in
order to generate a new typology of variables that shall be referred to as two-dimensional or,
for simplicity, bivariate WOE variables. Let us stress that in this context the term bivariate just
refers to the presence of two explanatory variables rather than to a bivariate target variable.
These new variables can reflect interaction effects without resorting to products of usual
WOE variables. In order to distinguish WOE variables using a single explanatory variable
from the proposed bivariate WOE variables, the former shall be referred as univariate WOE
variables. Furthermore, the standard scorecard methodology can be easily adapted to
be apply on the proposed bivariate WOE variables, and thus these safeguard the typical
interpretability tools of credit scoring.

Finally, in order to illustrate the feasibility of the proposed approach, a wide com-
putational study has been carried out on a set of well-known reference datasets in the
context of credit scoring. The results obtained by models using the proposed bivariate WOE
methodology significantly improve on those of models based on the traditional univariate
WOE approach.
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This paper is organized as follows: Section 2 reviews the preliminary notions needed
for the development of the proposed methodology, which is presented in Section 3.
The configuration and results of the computational study carried out are described in
Section 4. Some conclusions are then shed in Section 5. The paper also contains three
appendices. Appendix A details the content of the dataset employed in the example ex-
posed in Section 3.3, devoted to illustrating the application of the proposed methodology.
Appendix B provides some considerations regarding some other reference datasets and
the variables being used in the computational study. Appendix C illustrates the stepwise
variable selection process involved in one of the model adjustments.

2. Preliminaries

This section is devoted to reviewing the main notions needed to present the proposed
methodology for the generation of bivariate WOE variables.

With this aim in mind, Section 2.1 recalls some of the basics of logistic regression
models, discussing pros and cons of discretizing the explanatory variables being considered.
Next, Section 2.2 reviews the notion of interaction between variables in such models.
Finally, Section 2.3 recalls the definition of (univariate) WOE variables.

2.1. Logistic Regression

Logistic regression is a widely used tool to model binary events, such as credit de-
faulting, in an interpretable manner. Denoting by Y the binary target variable (Y = 1 if
the loan is defaulted and Y = 0 otherwise) and assuming a single explanatory variable
X, the logistic model relies upon using the logistic function (Equation (1)) as the linkage
function of a generalized linear model.

π(x) =
1

1 + e−(β0+β1·x)
(1)

Function π(x) represents the probability that event Y = 1 occurs given a particular
value x of the explanatory variable X: π(x) = P(Y = 1|X = x) = E[Y|X = x]. The
odds of a positive event Y = 1 for any value X = x are then captured by the quotient

ODDS(x) =
π(x)

1− π(x)
. Notice that, since π(x) ∈ [0, 1], the logarithm of the odds ranges in

the set of real numbers, thus, constituting an unrestricted continuous quantity to which it
is possible to fit a linear regression model, as reflected in Equation (2).

logit(π(x)) = log(
π(x)

1− π(x)
) = β0 + β1x (2)

Thus, Equation (2) poses the simplest version of a logistic regression model by using
a logit linkage function. It allows the employment of the so-called odds ratios OR(X) =
ODDS(x + 1)/ODDS(x) = eβ1 to assess the variation in the predicted probability of the
positive event Y = 1 for a unity variation of the input X. Odds ratios, therefore, provide a
meaningful interpretation of the effect of an explanatory variable on the probability that a
positive event occurs.

As is usual in statistical modelling, it is also important to take into account that
fitting a regression model requires a non-trivial data preprocessing step in order to realize
the following:

• Avoid the potential effect of outliers;
• Allow an appropriate treatment of missing values. These appear naturally in the credit

scoring context and are used to possess a proper meaning, and hence should neither
be discarded nor imputed. Typical examples of this appear in relation with variables
such as pro f ession (a not informed profession might be related to unemployment),
months without a job (missing if never had a job), solvency ratio (missing if debt or
liabilities are 0), and so on;
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• Consider the transformations of the input variables to reflect non-monotonous rela-
tionships of those with the target.

Such a preprocessing step usually proceeds by discretizing each explanatory variable
X in several categories, preferably by using a separate classification tree for each X. This al-
lows the determination of the cut-off values for each input variable that best discriminates
the occurrence of the positive event Y = 1 and, thus, enhancing the predictive capability of
the obtained categories.

Formally, let us denote by CX the categorical variable resulting from discretizing an
original input X through a classification tree, and let x1, x2, . . . , xLX denote the LX categories
(as many as tree leaves) that CX can take. Obviously, as these categories xi (i = 1, . . . , LX)
lack a quantitative meaning (although they can be given an ordinal one), it makes no sense
to include CX as a continuous variable in the regression model. Rather, for each category xi
a dummy variable Ixi (such that Ixi (x) = 1 if x ∈ xi or else Ixi (x) = 0) would be generated,
and all these dummy variables except for one would be included in the model instead. A
parameter would then need to be estimated in order to reflect the specific effects of each of
them, as shown in Equation (3).

logit(π(x)) = β0 + β1 · Ix1(x) + β2 · Ix2(x) + ... + βLX−1 · IxLX−1(x) (3)

Due to their binary nature, variables Ixi neither present outliers nor missing values.
Moreover, the parameters βi do not have to posses a monotonous behaviour with re-
spect to categories xi and, thus, may reflect non-monotonous dependencies regarding the
target variable.

In principle, a criticism that may be made regarding the substitution of the original
input X by a set of dummy variables is that the amount of possible values of the former
may be noticeably reduced and, thus, also the amount of different predictions the model
can generate. This may seem to play against its predictive capability.

In order to assess the loss of predictive capacity, it would be necessary to compare the
goodness of the regression model with respect to the pre-established goodness of the fit
metric considering and without considering this discretization.

However, according to our experience, it usually does not constitute a problem when
the number of variables considered in the model is high enough, since the number of
possible combinations of the different categories can then provide enough variability for
the predictions.

Nevertheless, as the number of explanatory variables increases, so does also the
number of dummy variables, rendering more probable that non-significant effects appear.
When this happens, the analyst must consider whether to remove the not significant
dummy variables from the model. On the one hand, the model would just reflect significant
effects by excluding them. On the other hand, removing just some of the categories
generated from a original variable may result in the misrepresentation of the information
contained. As it will be described in Section 2.3, WOE variables provide an efficient solution
to this dilemma.

2.2. Interaction

In a regression context, the notion of interaction between variables refers to how the
effect of an explanatory variable on the target variable may depend on the values being
taken by other explanatory variables. Indeed, applied economists often estimate interaction
terms to assess how the effect of certain explanatory variable on the response variable
depends on the magnitude of another independent variable [16]. Interactions between
pairs of variables are reflected in a regression model in different manners depending on
the nature of the interacting variables:

• If both interacting variables are quantitative (either discrete or continuous), a quan-
titative variable is generated through their product. This new variable has a single
associated parameter.
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• If one of the interacting variables is quantitative and the other is categorical, new quan-
titative variables are generated as the product of the former by each of the dummy
variables associated to the categories of the latter. Thus, a different parameter has to
be estimated for each category of the categorical variable.

• If both interacting variables are categorical, new dummy variables are generated by
crossing the dummy variables associated to each categorical variable. A different
parameter, thus, needs to be estimated for each combination of categories.

Therefore, incorporating interaction terms to a regression model is related, in all the
previous cases, to the introduction of the corresponding products of variables in the model.

The interpretation of interaction effects in non-linear models, such as logistic regres-
sion, can be complex. The interaction effect (IE) is understood as the variation in the
marginal effect on the response Y of an explanatory variable, say X1, due to changes in
the value of another explanatory variable X2. As such, that effect is evaluated by the cross
derivative (or differentiating if either or both of X1 and X2 are discrete variables instead of
continuous) of the expected value of Y, as shown in Equation (4):

IE(X1, X2) =
∂2E[Y|X1, X2, Z]

∂X1∂X2
(4)

where Z denotes other explanatory variables (including the constant term) that are possibly
present in the model. In a linear regression model where the linkage function between the
regression function E[Y|X1, X2, Z] and the linear predictor β1X1 + β2X2 + β12X1X2 + βZ
is given by the identity, the interaction effect between X1 and X2 is just IE(X1, X2) = β12.
This no longer holds in non-linear models, such as logistic regression, in which the interac-
tion effect may be IE(X1, X2) 6= 0 even when β12 = 0, i.e., even when no interaction term
X1X2 is included in the linear predictor. To illustrate this, consider a probit model where
the dependent variable Y is a dummy variable. The conditional mean of the dependent
variable is the following:

E[Y|X1, X2, Z] = Φ(β1X1 + β2X2 + β12X1X2 + Zβ) = Φ(.) (5)

where Φ is the standard normal cumulative distribution. If X1 and X2 are continuous, the
interaction effect is the cross derivative of the expected value of Y.

∂2Φ(.)
∂X1∂X2

= β12Φ′(.) + (β1 + β12X2)(β2 + β12X1)Φ′′(.) (6)

In this manner, although the parameter β12 was equal to 0, the interaction effect would
be β1β2Φ′′(.) (see, e.g., [16,17]).

In this respect, as it shall be discussed later, the consideration of interactions using
the proposed bivariate WOE variables may admit a simple interpretation, at least to some
extent. Particularly, the comparison between the cut-off points obtained for a explanatory
variable, say X1, when a classification tree is fitted with just X1 with respect to when it is
fitted when including another explanatory variable X2 may bring some insight on the inter-
action behaviour between both variables. Moreover, the balance scorecard points assigned
to a bivariate WOE variable may provide further interpretability of such a behaviour.

On a different matter and linking with the discretization process exposed in Section 2.1,
it is important to note that, again, a large number of parameters may need to be estimated
when interactions between discretized variables are considered.

To observe it, let us suppose that a pair of continuous variables X1 and X2 are
discretized as described above, giving rise to LX1 − 1 and LX2 − 1 dummy variables
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IXa ,1, IXa ,2, . . . , IXa ,LXa−1, a = 1, 2, respectively. Then, a model considering the interaction
between these variables can be expressed by following Equation (7).

logit(π(X1, X2)) = β0 +

LX1−1

∑
i=1

βX1,i · IX1,i +
LX2−1

∑
j=1

βX2,j · IX2,j +

LX1−1

∑
i=1

LX2−1

∑
j=1

βX12,i,j · IX1,i · IX2,j (7)

In this model, interaction terms between categories i and j associated to the original
variables X1 and X2, respectively, are reflected by new dummy variables IX1,i · IX2,j. Each
of these new variables will then have an associated estimated parameter or coefficient
βX12,i,j (as well as an associated odds ratio to interpret its effect). Notice that, In addition
to the mentioned interaction terms, Equation (7) also includes the corresponding main
effects. This responds to the so-called hierarchical principle (see, e.g., [18]), which states
the following.

If an interaction term is included in a regression model, also the main effects should
be hierarchically included, even if the p-values associated with their coefficients are
not significant.

Thus, assuming p original explanatory variables, each of which is discretized in L
categories, the resulting model should require estimating p · (L− 1) coefficients associated
with the variables themselves, as well as (L− 1) · (L− 1) coefficients associated with the
products of the dummy variables for each pair of interacting variables. For p variables, the
number of possible pairs of interacting variables is (p

2) =
p!

(p−2)! 2! . Therefore, in a problem
with p = 5 explanatory variables where each was discretized in L = 4 categories (which
constitute quite reasonable assumptions), there may be up to 5 · 3+ 5!

(5−2)!2! · (4−1) · (4− 1) =
15 + 10 · 9 = 105 estimated coefficients with their corresponding p-values. Many of these p-
values may habitually be greater than the signification level, which again leads the analyst
into the dilemma of whether to remove all interaction terms for which at least one of the
associated interaction crossed is not significant or to just remove the not significant ones.

In this respect, in the same way that (univarate) WOE variables can allow avoiding the
similar dilemma mentioned at the end of Section 2.1, the proposed bivariate WOE variables
can, in turn, provide a rather simple way out of this just-exposed dilemma regarding the
significance of interaction crosses. This issue shall be discussed later in Section 3.2.

2.3. WOE Variables

The use of the WOE (Weight Of Evidence, see [19]) variables has become one of the
most well-known methodologies within the context of credit scoring (see [20]). They are
obtained through the discretization process carried out for explanatory variables as an
average of the binary response in each of the categories resulting from such discretization.
Apart from retaining the advantages associated with discretization (management of outliers
and missing values and modelling of non-monotonous effects, see Section 2.1), WOE
variables enable concentrating all the information contained in the mentioned categories
into a single continuous variable, thus avoiding the generation of a dummy variable for
each of those categories. This allows solving the dilemma exposed at the end of Section 2.1
regarding whether or not to include a discretized variable in the regression model for
which some of its categorical levels are not significant. Since the relevant information is
concentrated in a single variable, it is possible to noticeably simplify such decision as it
then relies on just a single p-value.

Formally, let Y denote the binary response, X an explanatory variable, and CX the
categorical variable obtained through the discretization of X. Let x1, x2, ..., xLX also denote
the LX categories associated with CX . Then, the transformation of X as a WOE variable, to
be denoted by WX , is carried out by assigning a value to WX in each category xi, as shown
in Equation (8).

WX(xi) = log(
(P̂(Y = 1|CX = xi)

(P̂(Y = 0|CX = xi)
) (8)
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It is easy to realize that WX(xi) as given in Equation (8) is just the logarithm of the
estimated odds associated with category xi.

Then, assuming that p explanatory variables X1, . . . , Xp are available, let the vec-
tor of transformed WOE variables obtained from the original variables be denoted as
~WX = (WX1 , WX2 , ..., WXp). It is then possible to fit a logistic regression model using the
transformed variables as usual continuous variables, as illustrated in Equation (9):

logit(π(~WX)) = β0 + β1WX1 + β2WX2 + . . . + βpWXp (9)

where

logit(π(~WX)) = log(
π(WX)

1− π(WX)
) (10)

with π(~WX) = p̂(Y = 1 | ~WX).
It is important to notice that the odds ratio associated with a variable WXj in the model

in Equation (9) does not allow interpreting the effect on the response of the corresponding
original variable Xj, since WXj reflects a probability ratio and, therefore, does not refer to
the original units of Xj.

For this reason, balance scorecards apply a linear transformation of the product of
WX(xi) and the regression coefficient β associated with WX for each original input variable
X [21]. The aim of this transformation is to map the product into a points scale that makes
sense for the analyst. These score points establish a kind of assessment for certain patterns
or profiles of clients asking for credit, as they are assigned proportionally to the logarithm
of the predicted default/non-default odds of the client following Equation (8). In particular,
for a client belonging to category xi of variable X, the amount of assigned score points are
calculated according to Equation (11):

SCOREX(xi) = (−WX(xi) · β + β0/p) ∗ f actor + o f f set/p (11)

where

• β is the regression coefficient associated to variable WX ;
• β0 is the intercept or constant term of the regression model;
• p is the number of explanatory variables included in the regression model;
• f actor and o f f set are scale parameters that allow the analyst to control the range of

the score function, as well as the needed variation in the odds ratio for a given increase
in points.

These score points are calculated for all explanatory variables, their sum providing
the total score of a client. The loan will be granted only if a client total score is below a
predefined threshold. Therefore, score points allow the justification and explanation of
loan decisions, providing the necessary interpretability of the credit scoring model.

3. Bivariate WOE Variables

This section is devoted to presenting the proposed methodology in order to generate
bivariate WOE variables aimed at reflecting interactions between variables in a logistic
regression model while addressing the difficulties mentioned in Section 2.2:

• On the one hand, by reducing the amount of dummy variables needed to reflect the
interaction between categorical variables, the relevant information is concentrated in a
single WOE variable, similarly to how (univariate) WOE variables allow the concentra-
tion of the levels of a discretized categorical variable into a single continuous variable
(see Section 2.3).

• On the other hand, by avoiding the inherent difficulty in the interpretation of the coef-
ficients associated with interaction terms in logistic regression models, the translation
of interaction effects to score points through a similar transformation to that described
in Equation (11) is proposed as an alternative.
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This section is organized as follows: Section 3.1 introduces a motivating example to
illustrate the difficulties that arise when trying to reflect interactions through products
of (univariate) WOE variables and provides the basic intuitions underlying the proposed
bivariate WOE variables. Section 3.2 presents the definition of bivariate WOE variables
and discusses their main properties. Finally, Section 3.3 illustrates the application of the
proposed methodology on a real credit scoring dataset.

3.1. Motivating Example

Let us now illustrate with an example some of the problems associated with using
interaction terms obtained as the product of (univariate) WOE variables. These motivate
the proposal of an alternative methodology based on bivariate WOE variables; the basic
idea of which shall also be presented with this example.

Thus, let us consider Equation (12), associated to a logistic regression model with an
interaction term given by the product of variables X1 and X2:

P(Y = 1) =
1

1 + e−3+5·X1·X2
(12)

where X1 and X2 are standard normal deviates.
By generating values from such distribution, it is possible to obtain probabilities

P(Y = 1). Simulated points (x1, x2) are assigned to classes 1 or 0 depending on whether
the corresponding probability lies above or below 0.5, respectively. Figure 1 shows the
distribution of classes after 10000 simulations.

Let us now try to capture the observed interaction behaviour by means of (univariate)
WOE variables. To this aim, WOE variables WX1 and WX2 are generated by discretizing
variables X1 and X2 through classification trees based on the CHAID algorithm [22].
The result of this discretization process is shown in Figure 2. The values taken by the
corresponding WOE variables, obtained by Equation (8), are presented below each tree leaf.

Figure 1. Representation of 10,000 simulations of the logistic model in Equation (12) with an isolated
interaction term between X1 and X2. The red axes correspond to the classification tree cut-off points
resulting from the discretization of both variables (see Figure 2). The resulting quadrants are also
enumerated in red.
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Figure 2. Univariate trees fitted using variables X1 and X2.

Then, the product variable WX1 ·WX2 is computed in order to provide the interaction
term between variables WX1 and WX2 . Table 1 presents the frequency distribution of this
product variable on the quadrants depicted in Figure 1, combining the cut-off points of the
trees shown in Figure 2.

Table 1. Frequency distribution of WX1 ·WX2 with respect to the four quadrants depicted in Figure 1.

Quadrant

WX1 · WX2 1 2 3 4

(−0.5164) · (−0.5279) = 0.2726 0 0 283 0

(−1.4968) · (−0.5279) = 0.7902 0 0 0 1310

(−0.5164) · (−1.5096) = 0.7796 0 1205 0 0

(−1.4968) · (−1.5096) = 2.2596 7202 0 0 0

It is easily observed that the product WX1 ·WX2 takes a similar value in quadrants 2
and 4, but quite different values in quadrants 1 and 3. This is not adequate, since lower
values should be associated to one of the classes and higher ones to the other. However,
quadrants 1 and 3 are both mainly associated to class 1 and obtain the highest and lowest
values for WX1 ·WX2 , respectively. Consequently, the product WX1 ·WX2 does not seem to
provide an adequate solution, at least in this case, for capturing the interaction between X1
and X2.

Alternately, fitting a single classification tree by using both variables X1 and X2 is
considered. The obtained tree is shown in Figure 3. By looking at this tree, it is now
observed that class 1 rates are higher in leaves 1 and 4 (counted from left to right), which by
attending to the cut-off values imposed on both X1 and X2 can be observed to be associated
with the previous quadrants 1 and 3. Conversely, class 1 rates are lower in leaves 2 and 3,
associated with quadrants 2 and 4. Moreover, the cut-off values of X1 indicate that the effect
of this variable on class 1 rates varies depend on the values of X2. When X2 < −1.0097
lower values of X1 are associated with a greater class 1 rate. However, when X2 ≥ −1.0097,
the effect is the inverse: Greater values of X1 are, in this case, associated with greater class 1
rates. Thus, this tree seems to capture the interaction behaviour between variables X1 and
X2. Consequently, it would be sound to construct a (bivariate) WOE variable according to
the leaves of this tree. Indeed, by applying Equation (13) in Section 3.2, the values of that
WOE variable shown below the leaves of the tree in Figure 3 are obtained. Leaves 1 and 4
now receive lower values than leaves 2 and 3, and therefore this new WOE variable allows
the reflection of the desired interaction effect. This is the intuition underlying the proposed
bivariate WOE variables. The formal definition will be presented in Section 3.2.
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Figure 3. Classification tree grown using variables X1 and X2.

Finally, let us remark that, regarding this example, another possibility would consist
in first generating the product variable Z = X1 · X2 and then constructing a WOE variable
by discretization of Z through a (again univariate) classification tree. This approach, which
is valid when X1 and X2 are continuous variables, is similarly adaptable to the case in
which both variables are categorical. In this latter case, it would be enough to construct
a categorical variable Z by crossing the categories of X1 and X2 and then to construct a
(univariate) WOE variable after fitting the corresponding classification tree. However,
when one of the variables, say X1, is continuous and the other, X2, is categorical, the
discretization of X1 · X2 would necessarily imply generating as many dummy variables as
categories of X2. This would make obtaining a unique WOE variable through Equation (8)
impossible. The proposed methodology based on fitting classification trees to pairs of
variables avoids this difficulty, since trees permits combining variables of any nature.

3.2. Generation of Bivariate WOE Variables

As illustrated in the motivating example of previous section, when the main ef-
fects in a logistic regression model are represented through univariate WOE variables
WXi , i = 1, . . . , p, the usual product interaction terms WXi ·WXj , j 6= i, can fail to ade-
quately capture the interaction behaviour between the corresponding original variables
Xi and Xj. This occurs mainly because univariate WOE transformations are carried out
independently for each variable without taking into account the others. That is, the cut-off
values obtained by each tree when generating each WOE variable are obtained by taking
into account its direct relationship with the target variable Y. However, when another vari-
able intervenes in this relationship, univariate trees cannot adapt and produces different
cut-off points depending on the values of the other variable. Indeed, as explained in [18]
in a statistical learning context, the depth of the decision trees assembled in a boosting
model conditions the complexity of the model. When trees are at depth 1, the assembled
models possess an additive nature with a single term that implies a single variable. How-
ever, greater levels of depth permit reflecting interactions between different variables if
they alternate at these levels. This motivates our proposal of complementing univariate
WOE-based logistic models with two-dimensional or bivariate WOE variables, obtained
through fitting a classification tree to each pair of variables Xi and Xj. Thus, the objective
is to provide a general and widely applicable methodology enabling WOE-based logistic
models to capture interactions effects.

Let us now focus on formally defining the construction of bivariate WOE variables.
Given a pair of original input variables Xi and Xj, i, j = 1, . . . , p, i 6= j, a classification
tree is fitted to explain the response Y in terms of both Xi and Xj. Let CXi_Xj denote the
categorical variable for which its values {xij,1, xij,2, ..., xij,LXij

} identify each of the LXij leaves
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of the adjusted tree. From these categories, a WOE transformation can be applied to obtain
what shall be called a bivariate WOE variable, which is to be denoted as WXi_Xj . In this
manner, in each leaf k of the tree (category xij,k), the transformed variable WXi_Xj is defined
to take the value given by Equation (13).

WXi_Xj(xij,k) = log
p̂(Y = 1|CXi_Xj = xij,k)

p̂(Y = 0|CXi_Xj = xij,k)
(13)

Let us point out some remarks that are important to be taken into account:

• The fact that two variables are considered in the tree segmentation process does not
guarantee that both will end up participating in it. For example, if Xi and Xj are two
input variables, then it could be possible that only one of them appeared along the
splitting process. Thus, in this case, the variable WXi_Xj reflecting the corresponding
interaction effect is not considered to be defined, precisely because such interaction is
not reflected in the tree.

• The subscript of variable WXi_Xj does not represent the order in which the variables
participate in the segmentation process, but simply responds to a lexicographic order.
This case is due to the fact that although the entry of Xi could be forced in the first
depth level and that of Xj in the next, this would only reduce the predictive capability
of the transformed variables included in the regression model. This circumstance is
not adequate since, as mentioned in Section 2.1, the objective of using decision trees
to perform the discretization of variables seeks to enhance the predictive capability of
the obtained categories.

• Related to the previous point, at most only one interaction term is generated for each
pair of variables. Thus, the maximum potential number of bivariate WOE variables to
be included in the regression model is (p

2). In fact, the effective number will be lower
if the tree generated for a pair (Xi, Xj) does not include one of these variables.

Therefore, a distinction is made between two types of WOE variables:

• Univariate WOE variables with notation WXi and generated through Equation (8).
Let ~Wuni = (WX1 , WX2 , . . . , WXp) denote the vector of univariate WOE variables ob-
tained from the original variables;

• Bivariate WOE variables denoted WXi_Xj and generated through Equation (13).

Let ~Wbi = (WX1_X2 , WX1_X3 , . . . , WXp−1_Xp) denote the vector of bivariate WOE vari-
ables obtained from pairs of original variables.

Thus, in principle, the fit of a full logistic regression model using the univariate WOE
variables ~Wuni associated with all available inputs, as well as the bivariate WOE transforms
~Wbi corresponding to all possible pairs of such inputs can be considered. This would result
in the model given by Equation (14).

logit(π(~Wuni, ~Wbi)) = β0 + β1 ·WX1 + ... + βp ·WXp +
p

∑
i=1

p

∑
j=1
j 6=i

βij ·WXi_Xj (14)

Similarly to what was discussed at the end of Section 2.3, neither the coefficient βij
of the bivariate WOE variable WXi_Xj nor its odds ratio allow an interpretation of the
interaction effect between the original variables Xi and Xj on the response. Rather, this in-
terpretation is provided by the classification tree model associated with the definition of
WXi_Xj , from which it is possible to assess the different cut-off values obtained for a variable,
say Xj, given the previous cut-off points for Xi, as well as to compare them with the cut-off
values produced in the corresponding univariate trees fitted in the construction of both
WXi and WXj . Furthermore, it is possible to easily adapt the score points transformation in
Equation (11) in order to provide an explanation of the relative effect of variable WXi_Xj on
the loan decision regarding a given client, as shown in Equation (15):
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SCOREXi_Xj(xij) = (−WXi_Xj(xij) · βij + β0/m) ∗ f actor + o f f set/m (15)

where

• βij is the regression coefficient associated to variable WXi_Xj ;
• β0 is the intercept or constant term of the regression model;
• m is the total number of variables effectively included in the regression model in

Equation (14);
• f actor and o f f set are scale parameters that allow the analyst to control the range of

the score function as well as the needed variation in the odds ratio for a given increase
in points.

Let us now discuss some practical aspects regarding the configuration of the growing
process of the classification trees to be employed in the construction of both univariate and
bivariate WOE variables:

• It is important to notice the interdependence between the number of obtained tree
leaves, on the one hand, and the interpretability and predictive capability of the
resulting tree models, on the other hand. Typically, allowing more tree leaves will
result in an enhanced predictive capability of the resulting WOE variables, at least
until overfitting issues appear. However, a tree with many leaves will usually also be
more difficult to interpret.

• The interpretability of univariate WOE variables used is to be associated with a certain
monotonicity of the default rates in relation to the categories obtained for the original
input variable. Such monotonicity is more difficult to achieve as the number of
categories increases. Obviously, monotonicity of the default rates is not a problem
when only two tree leaves or categories are considered. However, this quantity used is
too small for adequately representing the variability of the input and tends to provide
a poor predictive capability. In this sense, it has been considered that a maximum
of four leaves may provide a good trade-off between interpretability and predictive
capability of the resulting univariate WOE variables. In future works, this issue will
be analyzed.

• In the case of bivariate WOE variables, interpretability is not as dependent on mono-
tonicity since they are devised to capture interaction behaviours that manifest through
variations in the trends of the univariate WOE variables. However, in this case, two is
the minimum depth required in binary branching trees in order to allow reflecting
an interaction between two variables, although the associated predictive capability
may be rather poor. On the other extreme, allowing more than 16 categories (those
that would result from crossing two variables with four categories each) can result in
model that is too complex to interpret.

• How can the number of obtained leaves be controlled in order to remain between
the discussed ranges? In the case of univariate WOE variables, the only two options
would be using either a depth-2 tree with binary branching or a depth-1 tree with
up to four branches. Although binary branching is most well-known and extended,
depth-1 trees with 4-ary branching provide a more convenient option in this case since
they tend to provide more leaves than depth-2 trees with binary branching. Precisely
for this reason, in the case of bivariate WOE variables, binary-branching trees with a
depth-level between two and four are instead preferred, as a slightly lower number of
leaves may favour interpretability of the interaction behaviour.

• CHAID-like classification trees [22] can be used to establish significance levels and test
for the statistical significance of each tree leaf. This may provide more robust categories
with an enhanced predictive behaviour in comparison to other methodologies, such
as CART-like classification trees [23]. However, precisely because of their more
demanding branching process, CHAID trees tend to provide less leaves than CART
trees, and they can even avoid the discretization of some inputs. In this sense, when
a variable selection procedure (e.g., stepwise variable selection) is applied after the



Mathematics 2021, 9, 1903 13 of 26

construction of WOE variables, CART-like trees may be preferable to CHAID ones.
This happens since the former guarantees the discretization of the original inputs,
and although the predictive capability of some resulting WOE variables may be
comparatively lower, the variable selection procedure would discard them during the
model building process.

• Both in the case of univariate and bivariate WOE variables and independently of using
either CHAID or CART trees, pruning the resulting trees by using a validation sample
before actually computing the WOE transformation may allow the improvement of the
actual predictive capability of the resulting WOE variables, as well as the enhancement
of its interpretability.

As just mentioned, once WOE variables have been constructed it may be worth apply-
ing a variable selection procedure in order to enhance interpretability and avoid overfitting
by obtaining a model with lower complexity to that of the full model in Equation (14). In
particular, some variants of the stepwise procedure can further enhance interpretability
when working with WOE variables (see [24]). Moreover, when a validation sample is avail-
able in addition to a training one, the sequence of models provided by the application of
the variable selection procedure on the training sample can be ranked in terms of a perfor-
mance criteria obtained on the validation sample. In this manner, the model finally selected
would be the model in the sequence with best performance on the validation sample.

Finally, let us summarize the main ideas supporting the use of the proposed bivariate
WOE variables methodology:

• In the definition of WXi_Xj , the interaction between the variables Xi and Xj from which
it is generated is implicit. Therefore, bivariate WOE variables allow addressing the
main criticism regarding the use of (univariate) WOE variables that refers to their
incapability to reflect interaction effects, as univariate classification trees are unable to
produce different cut-off points depending on the values of other variables.

• WOE variables, as explained in Section 2.3, allow retaining most of the advantages
associated with the discretization of input variables in the context of logistic regression
(outliers and missing values and non-monotonous effects) while avoiding its main
drawbacks (the potentially huge number of dummy variables to be considered and
the associated dilemma regarding the inclusion of non-significant effects). This also
applies to bivariate WOE variables since bivariate trees behave similarly to univariate
ones in this respect (let us remark that the term bivariate tree is used to emphasize the
presence of two explanatory variables instead of a single one). Moreover, bivariate
WOE variables contribute to a potentially greater reduction than univariate ones in the
number of variables to be considered since they allow concentrating the information
of up to (p

2) · (L− 1)2 crosses of dummy variables for interaction terms into just (p
2)

bivariate WOE variables (see also Section 2.2).
• The construction steps of bivariate WOE variables do not depend on the nature or

typology of the two original input variables being combined. A bivariate classifica-
tion tree provides the basis for applying Equation (13) independently of whether the
original variables are both continuous, both categorical or one continuous and the
other categorical. This fact does not hold when trying to model interactions through
univariate WOE transforms of the product or combination of the original variables
since there is no way to produce a single interaction term in case one of the original
variables is continuous and the other is categorical. In this sense, bivariate WOE vari-
ables provide a more general methodology to deal with interactions than univariate
WOE transforms of usual interaction terms.

• Bivariate WOE variables are constructed in such a way that only existing interactions
are reflected. In this sense, notice that a cross WXi ·WXj between univariate WOE
variables may not be significant or possess insufficient case support in order to be
generalizable. However, each value of the variable WXi_Xj is supported by a leaf of
a classification tree for which its minimum support can be prespecified in order to
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guarantee some level of generalizability. Furthermore, CHAID-like classification trees
can be used whenever statistical significance of the discretized categories is required.

• Let us remark that variables WXi_Xj arise from making Xi and Xj interact, but they are
not the result of the interaction of WXi and WXj . This observation is important since,
as WXi_Xj 6= WXi ·WXj , the fulfillment of the hierarchical principle (see Section 2.2)
does not apply to a stepwise variable selection process in the context of the model in
Equation (14). This circumstance provides more flexibility to the proposed methodology.

• The interaction behaviour associated to variables WXi_Xj can be interpreted through
the bivariate trees associated to their construction, and their effect on loan decisions
can be explained through score points transformations.

3.3. Illustrative Example

The objective of this section is to briefly illustrate how bivariate WOE variables allow
capturing interaction patterns between variables, as well as the potential ease they provide
for the interpretation of such interaction effects. To this aim, the CS_ACCEPTS dataset,
for which its description can be observed in Appendix A, will be used. In this manner,
this section complements the motivating example in Section 3.1, showing that the alleged
features of bivariate WOE variables can indeed be useful on real data. Particularly in the
first part of this example, the focus will be on variables AGE (age in years of a client asking
for credit) and CHILDREN (number of children of a client) of the CS_ACCEPTS dataset.
As it is well-known for credit scoring analysts, both variables usually present a meaningful
interaction, namely the effect of having children on loan default probability is dependent
on the age of the clients.

To begin, a pair of CART classification trees are fitted to explain the target variable GB
(=1 (Bad), = 0 (Good)) according to AGE and CHILDREN, respectively, in order to obtain
the univariate WOE variables WAGE and WCHILDREN .

As recommended in the last section, a depth-1, 4-ary branching configuration is used
in the case of AGE. The resulting tree is shown in Figure 4 (left). Notice the (decreasing)
monotonicity of the default rates as AGE increases that allows a clear interpretation of the
effect of this variable on the default probability: The higher the age of a client, the lower
the probability of defaulting. The values of the corresponding WAGE variable are given
in Table 2, showing also the mentioned monotone behaviour. For illustrative purposes,
a depth-1 tree with just binary branching is used for CHILDREN. This allows a simple
monotone pattern to also arise in this case: Clients with children have a lower default
probability, as can be observed in the tree at Figure 4 (right). The obtained values of
WCHILDREN are provided in Table 3.

Figure 4. CART trees adjusted to variables AGE and CHILDREN in the CS_ACCEPTS dataset
(depth = 1).
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Table 2. Values obtained for WAGE from the tree depicted in Figure 4 (left).

LEAF AGE WAGE

1 (−∞, 27.5) 0.735396727

2 [27.5, 35.5) 0.0598981416

3 [35.5, 49.5) 0.4566512156

4 [49.5, ∞) 1.0742208355

Table 3. Values obtained for WCHILDREN from the tree depicted in Figure 4 (right).

LEAF CH ILDREN WCH ILDREN

1 0 −0.214062899

2 (0, ∞) 0.240014873

Now, a third tree in which both AGE and CHILDREN simultaneously participate
is fitted to generate the bivariate WOE variable WAGE_CHILDREN . This binary branching
depth-2 tree is shown in Figure 5. The cut-off values in this tree have been introduced
manually in order to reproduce the analyst intuition that the main difference in the effect of
having children is between young (i.e., AGE < 27.5) and not-young (AGE ≥ 27.5) clients.
The resulting tree captures this interaction pattern: the effect of having children on default
probability is almost nonexistent in the case of young clients (67.73% for clients without
children vs. 67.19% for clients with children), while it is quite more significant for not-
young clients (43.20% vs. 38.98%; a 4% reduction in absolute terms). The bivariate WOE
variable WAGE_CHILDREN for which its values are provided in Table 4 adequately reflects
this interaction effect, taking quite similar values in the first two leaves associated to young
clients, while being noticeably different in the last two leaves associated with not-young
clients. Notice that the tree in Figure 5 could be prunned by the branch associated with
the younger clients. However, it has been left unprunned for the illustrative purposes of
this example.

Figure 5. CART tree fitted with variables AGE and CHILDREN in the CS_ACCEPTS (depth = 2).

Let us now introduce a second example focusing on variables CARDS (type of credit
card owned by a client) and CASH (loan requested cash in US$) of the same CS_ACCEPTS
dataset. Notice that CARDS is a nominal variable, while CASH is a continuous one.
This example will then allow the illustration of the mentioned capability of the proposed
bivariate WOE variables methodology in order to deal with this casuistic, which is other-
wise difficult to deal with without introducing as many dummy variables as categories of
the nominal variable (minus one).
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Table 4. Values obtained for WAGE_CHILDREN from the tree depicted in Figure 5.

LEAF AGE CH ILDREN WAGE_CH ILDREN

1 (−∞, 27.5) 0 −0.741372533

2 (−∞, 27.5) (0, ∞) −0.716957829

3 [27.5, ∞) 0 0.2738586439

4 [27.5, ∞) (0, ∞) 0.447963401

As before, the first step consists of fitting a pair of depth-1, 4-ary branching CART
trees explains the response GB in terms of CARDS and CASH, respectively. The resulting
trees are shown in Figure 6. Notice that, although a 4-ary branching tree was requested,
the tree for CARDS only has three leaves. This is due to the very reduced support of the
Residual Credit Cards category (which includes Visa and American Express, among others)
that holds for just 10 observations or clients in the CS_ACCEPTS dataset. Since a 1%
support threshold was required to create a leaf, this category was merged in the tree with
No Credit Cards. Regarding the tree for CASH, the first 3 categories present a (decreasing)
monotone behaviour of the default rates, which is broken at the last category containing
the highest loans (CASH ≥ 9500). Although this pattern may seem counter-intuitive at
first sight, it actually is not so: Lowest loans (CASH < 1150) are typically asked only by
low-income clients, which explains the relatively high default rate at this category. Higher
loans (CASH ∈ [1150, 4500) or CASH ∈ [4500, 9500)) tend to be only granted to relatively
middle-to-high-income clients, thus explaining the decreasing pattern of default rates.
However, the highest loan category contains considerably high loans (max(CASH) =
100, 000), which may be defaulted even by high-income clients. This explains why the
default rate rises at this category. The values obtained for the corresponding WOE variables
WCARDS and WCASH are provided in Tables 5 and 6, respectively.

Figure 6. CART trees adjusted to variables CREDIT_CARDS and CASH in CS_ACCEPTS dataset
(depth = 1).

Table 5. Values obtained for WCARDS from the tree depicted in Figure 6 (left).

LEAF VALUES WCARDS

1 NoCreditCards/Residual −0.256378923

2 ChequeCard 0.6566397642

3 Mastercard/Euroc 0.9267620317

Table 6. Values obtained for WCASH from the tree depicted in Figure 6 (right).

LEAF VALUES WCASH

1 (−∞, 1150) −0.1564247

2 [1150, 4500) 0.0418972109

3 [4500, 9500) 0.5668534552

4 [9500, ∞) 0.1300531282
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Now, a binary branching, depth-2 CART tree is fitted using both CARDS and CASH
to obtain the bivariate WOE WCARDS_CASH variable (see Figure 7). By looking at the leaves
of this tree, a variation in the effect of CASH on default probability depending on the
credit cards owned by clients can be observed: When the client possesses either no credit
card or a residual card, higher loans (CASH ≥ 3500) are associated with a lower default
rate than lower loans. However, when the client possesses either a Cheque Card or a
Mastercard/Eurocard, higher loans (now CASH ≥ 2250) are instead associated with a
higher default probability than lower loans. The bivariate WOE variable WCARDS_CASH
for which its values are provided in Table 7 reflect this interaction pattern, taking a lower
value in leaf one than in leaf two, while instead taking a greater value in leaf four than in
leaf three.

Figure 7. CART tree adjusted with variables CREDIT_CARDS and CASH in CS_ACCEPTS
(depth = 2).

Table 7. Values obtained for WCARDS_CASH from the tree depicted in Figure 7.

LEAF CARDS CASH WCARDS_CASH

1 NoCreditCards/Residual (−∞, 3500) 0.7747746746

2 NoCreditCards/Residual [3500, ∞) 0.4274440148

3 Mastercard/Euroc (−∞, 2250) −0.352137368

4 Mastercard/Euroc [2250, ∞) 0.2498117984

In addition to this variation in the effect of CASH for different credit cards, another
fact to emphasise is that, in the tree in Figure 7, the cut-off value for CASH also varies
depending on CARDS: In the left branch for CARDS, the cut-off for CASH is 3500, while
in the right branch it is 2250. Therefore, the interaction between a pair of variables may
not only be reflected through changes in the trend of the default probability as the second
variable to enter the tree varies but also through variations in the cut-off values obtained
for the second variable that separates the categories in which such variations in trend may
occur. Obviously, this kind of interaction effect cannot be reflected through products of
univariate WOE variables, since the cut-off values obtained in the univariate trees will
determine the joint categories obtained from crossing the univariate variables. In this sense,
notice also that the cut-off values for CASH obtained in the bivariate tree in Figure 7 do not
coincide with those obtained for the same variable in the univariate tree in Figure 6 (right).
These observations further illustrate the flexibility provided by bivariate WOE variables to
capture different aspects of the interaction between a pair of variables.
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4. Computational Study

This section is devoted to presenting a computational experiment carried out in order
to assess the predictive behaviour of the proposed methodology in the context of WOE-
based logistic regression models for credit scoring. To this aim, Section 4.1 details the
experimental setting of this computational study: methods to be compared, datasets to be
used, division of the data, evaluation metric, etc. Next, Section 4.2 presents and discuss the
obtained results, providing statistical tests to rigorously compare the performance of the
methods being assessed.

4.1. Experimental Framework

A set of WOE-based logistic regression models will be applied to different datasets
in order to assess the potential benefits of adding bivariate WOE variables to capture
interactions between variables. In this sense, the baseline or reference method will be given
by logistic regression models fitted through a stepwise variable selection procedure by
using only univariate WOE variables without any interaction term. A first variation of this
reference will be provided by the inclusion of interaction terms given by the product of
univariate WOE variables, either fulfilling or not fulfilling the hierarchical principle. Finally,
the reference models will also be modified instead by adding bivariate WOE variables
created by using classification trees with different depth levels.

Note that stepwise selection has been used instead of the well-known Information
Value for feature selection based on WOE variables definition [14] because it must be
observed that the selection method based on the Information Value criteria does not take
into account possible interactions between variables. So for example, we can consider a
regressor which is only related with the dependent variable through the interaction with
another regressor, but not directly related with the target. In this case, Information Value
criteria would not select the variable but stepwise method would do it in the case that the
other regressor would have been previously included in the model.

Specifically, the following kinds of logistic regression models will be used:

• No Int.: Models using univariate WOE variables as main effects but without interac-
tion terms between these univariate WOE variables. This constitutes the baseline or
reference method of the study.

• Int.(HP): Interaction terms given by products of univariate WOE variables are allowed
to enter the previous reference model, forcing the hierarchical principle to always be
fulfilled. That is, the interaction term WXi ·WXj can only be included in a model if
both WXi and WXj are already included.

• Int.(NHP): The same configuration as Int.(HP) but without forcing the hierarchical
principle to be fulfilled. The elimination of this restriction seeks to maximize the
predictive capacity of the models.

• BiWOE2: Bivariate WOE variables created through binary branching, depth-2 trees
are allowed to be included in baseline No Int. models to capture interactions between
variables. In this manner, bivariate WOE variables replace the product interaction
terms used in configurations Int.(HP) and Int.(NHP).

• BiWOE4: The same configuration as BiWOE2 but by using depth-4 trees to create
bivariate WOE variables.

For all five methods, some considerations must be made regarding the configuration
of the classification trees used to create both univariate and bivariate WOE variables from
the original inputs:

• For univariate WOE variables, all inputs are discretized in a maximum of four cate-
gories. In order to achieve this, either 4-ary branching, depth-1 trees (Tree = (Depth1))
or binary branching, depth-2 trees (Tree = (Depth2)) have been used. Both kinds of
trees are applied for obtaining the univariate WOE variables in each of the above five
methods to assess whether the tree typology influences their predictive capability.
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A priori, as mentioned in Section 3.2, the former trees are more likely to reach the
maximum of four categories.

• Bivariate WOE variables are created for each pair of original inputs. As just men-
tioned, the effect of depth-2 and depth-4 trees is compared, in both cases with binary
branching. As explained in Section 3.2, the former trees are in principle more adapted
to achieve easily interpretable models, while the last trees would provide a greater
predictive capability. Thus, it should be noted that depth-4 trees allow obtaining up to
16 categories, which is the same as the number of different WOE values obtained as a
product of two univariate WOE variables with four categories each.

• For both univariate and bivariate WOE variables, two different algorithms have been
considered to grow the trees:

– CHAID trees (Tree=CHAID): A significance level of 0.2 (SAS Enterprise Miner
default value) is established for the Chi-square tests involved in the segmentation.
The tree pruning process is carried out attending to the minimization of the
misclassification rate of the model (on a validation sample);

– CART trees (Tree=CART): The Gini index is used for both segmentation and pruning.

• In addition to the stopping criteria associated with the significance level (for CHAID
trees) and the depth level of the trees, an additional support criterion has been estab-
lished through the minimum number of observations any leaf must contain, estab-
lished at 1% of the observations in the training sample.

The study has been carried out on 12 well-known reference datasets within the scope
of credit scoring. The main details of these 12 datasets are provided in Table 8. The
datasets and their description are accessed on 29 June 2021 and available at https://github.
com/JLZml/Credit-Scoring-Data-Sets. Appendix B provides some further considerations
regarding the definition of the target variable and the exclusion of some inputs from
these datasets.

In order to fit models and to assess their performance, each dataset has been randomly
partitioned into three samples by using stratified sampling in order to obtain similar
proportions for the classes of the target variable (the percentage distribution responds to
the default configuration of SAS Enterprise Miner):

• A training sample containing 40% of the dataset observations, which is first used for
growing both univariate and bivariate trees, as well as to compute the values of the
WOE variables after the trees are pruned. Later, the same training sample is used to
apply stepwise variable selection in order to create a sequence of models for each of
the five applied methods.

• A validation sample containing 30% of the dataset observations, which is first used to
prune the trees grown with the training sample and later to select a model from the
stepwise sequence of models created with the training sample.

• A test sample with 30% of the dataset observations, which is only used to compute a
performance metric for the selected model (for this dataset) of each method.

Therefore, in each of the 12 datasets, for each of the above described five methods and
for each combination of tree depth levels (for univariate WOE variables) and tree-growing
algorithms, the following steps are applied:

1. Grow both univariate and bivariate trees using the training sample;
2. Prune both kinds of trees using the validation sample;
3. Compute both univariate and bivariate WOE variables on the corresponding pruned

trees by using the training sample;
4. Apply standard stepwise variable selection by using the training sample, thus obtain-

ing a sequence of models;
5. Select the model in the sequence with the best performance on the validation sample;
6. Assess the performance of the selected model on the test sample.

https://github.com/JLZml/Credit-Scoring-Data-Sets
https://github.com/JLZml/Credit-Scoring-Data-Sets
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The performance metric used for both model selection (step 5) and final model evalua-
tion (step 6) is the area under the ROC curve, that is, the AUC metric. This metric has been
chosen since its application in the credit scoring field is rather usual due to the typically
unbalanced nature of the datasets, which result in trying to obtain models that maximize
AUC instead of just classification accuracy [25].

Table 8. Main details of the 12 datasets employed in the computational study: name of the dataset,
number of inputs (number of numeric/categorical variables), number of observations, presence of
missing values, and ratio between default and non-default observations.

Dataset Inputs Patterns Missings Ratio

AUSTRALIAN 14 (6/8) 690 NO 44.49%

CREDIT_CARD 9 (4/5) 1319 NO 22.44%

CS_ACCEPTS 26 (13/13) 3000 YES 50.00%

GERMAN_CREDIT 20 (3/17) 1000 NO 30.00%

GIVE_ME_SOME_CREDIT 10 (5/5) 150,000 YES 6.68%

HMEQ 12 (7/5) 5960 YES 19.95%

JAPAN 15 (6/9) 690 YES 44.49%

LOAN_DATA 14 (9/5) 1225 NO 26.37%

MORTGAGE 18 (4/14) 41,747 NO 36.31%

PAKDD 52 (7/45) 50,000 YES 26.08%

POLISH 18 (18) 43,405 YES 4.82%

TAIWAN 23 (14/9) 30,000 NO 22.12%

4.2. Results

In this section, the results obtained after applying the experimental setting described
in the previous section are presented and discussed. The discretization process and the
regression models have been adjusted by using the Credit Scoring module of the Enterprise
Miner tool of the SAS software. This solution has been chosen since the functions that
this module has implemented are especially oriented to the treatment of Credit Scoring
problems. On the other hand, the comparison of results has been carried out by using the
functions friedman.test and wilcox.test of the package stats of the R software [26], since a
function has not been found that would allow this comparison to be made in the specified
SAS module.

Table 9 shows the test AUC performances of the five compared methods in each
dataset for each combination of tree depth levels and tree growing algorithms. Within
each table cell, the best performance among the five methods is highlighted in bold type.
Moreover, the best performance for each dataset is underlined. In Appendix C, a more
detailed description of the models resulting from the application of the stepwise selection
procedure on the CS_ACCEPTS datasets can be found.

Notice that there are 11 cases for which no AUC result is shown. This occurs because no
WOE variables were generated during the discretization process. Consequently, there were
no variables to include in the regression model. This can happen with the CHAID algorithm
when the chi-squared tests carried out to determine if there is a dependence relationship
between the variable to be categorized and the response is above the pre-established
significance level. This circumstance can also occur if, once the segmentation is completed,
the pruning process leaves the tree reduced to the root node. In any case, it can be observed
that this situation did not occur for any of the results of the method BiWOE4; that is, the
bivariate WOE variables are obtained through depth-4 trees, which is a point in favor for
using this methodology in comparison with the rest.
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Table 9. AUC test performances by dataset for each combination of tree growing algorithm, depth of the trees, and method.

Tree Method AUSTRA CCARDD CSACPT GERMAN GMSC HMEQ JAPAN LOANDA MORTGG PAKDD POLISH TAIWAN

CHAID
(Depth1)

No Int. 0.9036 0.6930 0.7108 0.6238 0.6564 0.8907 0.9402 0.5881 0.8156 0.6058 — 0.7669
Int.(HP) 0.8870 0.6930 0.7108 0.6238 0.6564 0.8907 0.9402 0.5881 0.8178 0.6000 — 0.7669

Int.(NHP) 0.8899 0.6930 0.7108 0.6238 0.6564 0.8963 0.9401 0.5881 0.8179 0.602 — 0.7659
BiWOE2 0.9197 0.7818 0.7244 0.7319 0.6562 0.8979 0.9309 0.5881 0.8241 0.6006 — 0.7654
BiWOE4 0.8939 0.7980 0.7149 0.7319 0.7784 0.9082 0.9309 0.5892 0.8237 0.6085 0.7478 0.7644

CHAID
(Depth2)

No Int. 0.8975 0.6453 0.7052 — 0.6564 0.8761 0.9411 0.5881 0.7973 0.6030 — 0.7584
Int.(HP) 0.8913 0.6453 0.7052 — 0.6564 0.8761 0.9411 0.5881 0.7936 0.5905 — 0.7588

Int.(NHP) 0.8909 0.6453 0.6978 — 0.6564 0.8745 0.9373 0.5881 0.7966 0.6032 — 0.7632
BiWOE2 0.9197 0.7330 0.7167 0.7297 0.6562 0.8891 0.9309 0.5881 0.8166 0.5998 — 0.7584
BiWOE4 0.8967 0.7561 0.7149 0.7297 0.7784 0.9909 0.9309 0.5892 0.8365 0.5967 0.7478 0.7566

CART
(Depth1)

No Int. 0.8817 0.7428 0.7148 0.7473 0.8502 0.9045 0.9402 0.5817 0.8308 0.6124 0.8050 0.7705
Int.(HP) 0.8820 0.7428 0.7148 0.7448 0.8497 0.9035 0.9399 0.5817 0.8333 0.6144 0.8038 0.7714

Int.(NHP) 0.8558 0.7486 0.7163 0.7438 0.8511 0.9054 0.9218 0.5603 0.8355 0.6126 0.8327 0.7703
BiWOE2 0.9013 0.8011 0.7245 0.7548 0.8569 0.9057 0.9318 0.5906 0.8373 0.6163 0.8614 0.7713
BiWOE4 0.8918 0.8021 0.7258 0.7444 0.8614 0.9116 0.9525 0.5865 0.8493 0.6218 0.8977 0.7737

CART
(Depth2)

No Int. 0.8965 0.7634 0.7187 0.7015 0.8587 0.9058 0.9470 0.5817 0.8358 0.6152 0.8346 0.7677
Int.(HP) 0.8917 0.7634 0.7185 0.7015 0.8584 0.9024 0.9417 0.5817 0.8408 0.6157 0.8359 0.7658

Int.(NHP) 0.8917 0.7624 0.7195 0.7132 0.8608 0.9089 0.9339 0.5652 0.8407 0.6172 0.8366 0.7682
BiWOE2 0.9073 0.8088 0.7264 0.7458 0.8605 0.9058 0.9318 0.6091 0.8358 0.6197 0.8579 0.7665
BiWOE4 0.8918 0.8025 0.7236 0.7444 0.8614 0.9116 0.9525 0.5865 0.8489 0.6203 0.8956 0.7737

In order to rigorously compare the performance of the five methods, a statistical
analysis using non-parametric tests following the recommendations made in [27] was
performed. It is a set of simple, safe and robust non-parametric tests [28–30] where
objective is to evaluate if there are significant differences between the median performances
of the different methods. For multiple comparisons, the Friedman test [31] is used and
the Wilcoxon Signed-Ranks test [32] adjusted with the Holm method [33] is used for
pairwise comparisons.

In order to carry out multiple comparisons, it is necessary to first check if the results
obtained by all methods present significant differences (Friedman test). If that is the
case, pairwise differences can then be searched by using a post hoc test to compare the
control method (in this case, BiWOE4) with the remaining ones (Holm test). The level of
significance contemplated to carry out the analysis has been 0.05.

The results of the multiple comparisons between the different methods as well as the
pairwise comparisons are shown in Table 10. In the last row, it is observed that no significant
differences for CHAID trees were found between the different methods (p = 0.075 and
p = 0.373, respectively, for depth-1 and depth-2 trees). However, when analyzing the
results for the CART trees, significant differences were found since p < 0.001 in both cases.
When studying pairwise comparisons for the methods using CART trees, the BiWOE4
method was found to be superior to the NoInt. method (p = 0.026 and p = 0.034). The
former also shows superiority when compared to Int.(HP) and Int.(NHP) (p = 0.026 and
p = 0.025). Finally, no statistically significant differences were found between the BiWOE2
and BiWOE4 methods when using CART trees (p = 0.679 and p = 0.999).

Table 10. Results of non-parametric tests. Holm test p-values of the pairwise comparisons (for each
combination of tree growing algorithm and depth) are given at the four middle rows. Friedman test
p-values for multiple comparisons are given in the last row.

Comparison CHAID1 CHAID2 CART1 CART2

BiWOE4 vs. No Int 0.664 0.931 0.026 0.034
BiWOE4 vs. Int.(HP) 0.294 0.528 0.026 0.025
BiWOE4 vs. Int.(NHP) 0.294 0.884 0.025 0.025
BiWOE4 vs. BiWOE2 0.999 0.954 0.679 0.999

Friedman-test 0.075 0.373 <0.001 <0.001

5. Conclusions

An extension of the WOE-based methodology usually applied for credit scoring pur-
poses has been presented in this work. The main aims of this extension are as follows: (1)
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addressing the lack of adaptation of the standard WOE-based approach to deal with inter-
acting variables; and, related to the previous point, (2) enhancing the predictive capability
of the WOE-based methodology while simultaneously safeguarding its interpretability
and, particularly, its main interpretability tool, that is, balance scorecards.

The core of the proposed extension resides at the discretization process intended to
transform the original inputs into explanatory WOE variables to be introduced in a logistic
regression model. It has been shown that by simultaneously discretizing each pair of inputs
through a single classification tree, it is possible to obtain a new kind of WOE variable that
allows reflecting the interaction behaviour between such pair of inputs. The tree model
underlying the construction of these variables allows for an easy interpretation of the
interaction effects involved. Furthermore, it is straightforward to extend the scorecards
methodology to provide explainability tools for the proposed extended methodology.
Moreover, the proposed extension provides a general and widely and easily applicable
methodology to reflect interaction effects in a WOE-based logistic regression model since
it can be applied to any pair of inputs independent of their (continuous or categorical)
nature and avoids both the usual problems derived from the generation of (possibly a lot
of) dummy variables and the dilemmas regarding their statistical significance.

Moreover, the computational study presented in this work shows that the proposed
extension allows a statistically significant improvement on the predictive capability of
WOE-based models by not considering the interactions or introducing them through
products of the usual univariate WOE variables. This study has focused on credit scoring
classification problems, since these are typically associated with the application of a WOE-
based methodology due to its ability to translate the contribution of each input variable to
scorecards points in explaining loan decisions. However, the application of the presented
methodology in the context of medical problems in which interpretable or explainable
logistic regression models also find a wide application is being devised as future work (in
some aspects, it is currently in development).
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Appendix A. Details of the CS_ACCEPTS Dataset

Table A1 describes the variables contained in the CS_ACCEPTS dataset. This dataset
consist of 3000 accepted credit applications, which are known to have been defaulted
(GB = 1 (BAD)) or not (GB = 0 (GOOD)).
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Table A1. CS_ACCEPTS Table.

Variable Role Typology Description

AGE Input Interval Age of the client

BUREAU Input Interval Credit Bureau Risk Class

CAR Input Nominal Type of vVehicle

CARDS Input Nominal Credit Cards

CASH Input Interval Requested Cash

CHILDREN Input Interval Number of Children

DIV Input Interval Large region

EC_CARD Input Interval EC_card Holders

FINLOAN Input Interval Number of Finished Loans

GB Target Binary Bad = 1, Good = 0

INC Input Interval Salary

INC1 Input Interval Salary + EC_card

INCOME Input Interval Income

LOANS Input Interval Number of Running Loans

LOCATION Input Interval Location of Credit Bureau

NAT Input Nominal Nationality

NMLOAN Input Interval Number of Mybank Loans

PERS_H Input Interval Number in Household

PRODUCT Input Nominal Type of Business

PROF Input Nominal Profession

REGN Input Interval Region

RESID Input Nominal Type of Residence

STATUS Input Nominal Status

TEL Input Binary Telephone

TITLE Input Nominal Title

TMADD Input Interval Time at Address

TMJOB1 Input Interval Time at Job

Appendix B. Remarks on the Employed Datasets

Here, some further considerations regarding the variables of the datasets employed in
the computational study described in Section 4 are provided:

• Input variables SHARE and EXPEDINTURE in dataset CREDIT_CARD have been
excluded from the computational study due to their perfect correlation with the
target variable.

• In principle, the target variable STATUS_TIME of the dataset MORTGAGE takes
values 1 (default), 2 (payoff), and 0 (non-default/non-payoff). In order to model a
binary event, only those cases with values 1 or 2 have been considered. Moreover,
the input variables DEFAULT_TIME and PAYOFF_TIME of the same dataset have
been excluded from the experiment due to their perfect correlation with the men-
tioned target.
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• From the 64 original inputs (X1–X64) of dataset POLISH, a subset of 18 variables
was preselected to avoid the computationally unmanageable volume of possible
interactions. In order to carry out this selection, dependency tests of individual
variables with respect to the target were avoided, since otherwise no interactions
patterns would be taken into account. Instead, it has been relied on as a usual
procedure that consists in fitting a random forest model to the binary target, and then
selecting those variables with a greater participation degree. To this aim, the same
training and validations samples employed in the computational study of Section 4
were used. Specifically, those variables that participated in at least 1000 splits along the
1000 ensembled trees were selected. The variables finally selected were the following
(between brackets, the number of splits each variable participated in): X9 (2230), X7
(1769), X8 (1617), X63 (1450), X64 (1429), X58 (1427), X61 (1426), X62 (1415), X60
(1228), X46 (1217), X6 (1213), X56 (1199), X55 (1165), X57 (1160), X27 (1098), X34
(1098), X29 (1044), and X24 (1003).

Appendix C. Application Details of the Stepwise Variable Selection Procedure for the
CS_ACCEPTS Dataset

Table A2 illustrates the stepwise variable selection processes associated with each of
the five methods. As in Section 3.3, the CS_ACCEPTS dataset is again used to this aim.
A variable removing step is only performed in the case of the BiWOE4 method (step 7).

Table A2. Summary of the stepwise variable selection processes carried out for each method on the
CS_ACCEPTS dataset.

Step No Int. Int. (HP) Int. (NHP) BiWOE2 BiWOE4

1 WAGE WAGE WAGE WAGE_CARDS WAGE_INC1

2 WINC1 WINC1 WINC1 WCAR_TEL WINCOME_TMJOB1

3 WTMJOB1 WTMJOB1 WTMJOB1 WEC_CARD_TMJOB1 WAGE_CAR

4 WBUREAU WBUREAU WBUREAU WBUREAU_NMBLOAN WBUREAU_NMBLOAN

5 WCAR WCAR WCAR WLOANS_PROF WCASH_TEL

6 WNMBLOAN WNMBLOAN WNMBLOAN WAGE_STATUS WCARDS_PROF

7 WTEL WTEL WLOANS ·WTMJOB1 WLOANS_PRODUCT WAGE_INC1 (removed)

8 WPROF WPROF WTEL WCARDS_INC WCASH_STATUS

9 WLOANS WLOANS WPROF WNAT_TMJOB1

10 WCARDS WLOANS ·WTMJOB1 WCARDS WLOANS

11 WCARDS

Notice the following:

• The model with interactions terms that forces the hierarchy principle to be fulfilled
(Int.(HP)) only differs from the model that does not include interactions terms (No Int.)
in that the former contemplates the product between the variables W_LOANS and
W_TMJOB1.

• In the two models with interactions terms (Int.(HP) and Int.(NHP)), a single interaction
term given by W_LOANS ·W_TMJOB1 is contemplated. However, in the model that
forces the hierarchical principle to be fulfilled, this interaction does not enter until
step 10, when the variables W_LOANS and W_TMJOB1 are already included in the
model. On the other hand, in the model that does not force this principle to be fulfilled,
the inclusion of this interaction term occurs in step 7 as it does not require the variable
W_LOANS to be previously included. In fact, both models contain the same variables
except for this variable, which was never included in the Int.(NHP) model.

• In the models using bivariate WOE variables, practically all the included variables
are of that type. A univariate WOE variable (W_LOANS) is included (in the last step)
only in the BiWOE4 case.
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