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Abstract: In 1961, Kestelman first proved the change in the variable theorem for the Riemann integral
in its modern form. In 1970, Preiss and Uher supplemented his result with the inverse statement.
Later, in a number of papers (Sarkhel, Výborný, Puoso, Tandra, and Torchinsky), the alternative
proofs of these theorems were given within the same formulations. In this note, we show that one
of the restrictions (namely, the boundedness of the function f on its entire domain) can be omitted
while the change of variable formula still holds.
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1. Introduction

Throughout this paper, we denote [a, b] as the closed interval connecting the points
a, b ∈ R, and denote R[a, b] as the class of all Riemann-integrable real functions on
[a, b]. In 1961, Kestelman (see [1]) first proved the following fundamental theorem for
the Riemann integral.

Theorem 1. Suppose that g ∈ R[α, β], c ∈ R,

G(t) :=
t∫

α

g(y)dy + c (1)

and f ∈ R
(
G([α, β])

)
. Then, ( f ◦ G)g ∈ R[α, β] and the following change of variable formula

holds:
G(β)∫

G(α)

f (x)dx =

β∫
α

f
(
G(t)

)
g(t)dt (2)

In 1970, Preiss and Uher (see [2]) supplemented this result with the following statement.

Theorem 2. Suppose that g ∈ R[α, β], G is defined by (1), f is bounded on [c, d] := G([α, β]) and
( f ◦ G)g ∈ R[α, β]. Then f ∈ R[c, d] ⊂ R[G(α), G(β)] and the change of variable Formula (2)
holds.

Later, in a number of papers (see [3–6]), the alternative Proofs of Theorems 1 and 2
were given within the same formulations. The main goal of this note is to abandon the
requirement of boundedness of the function f on [c, d] := G([α, β]) in Theorem 2. At the
same time, the condition for the boundedness of the function f on [G(α), G(β)] is essential
for the existence of the integral on the left-hand side of (2) and does not follow from other
conditions of the theorem, which are shown by the example at the end of [3]. Let us now
proceed to formulating the main result.
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2. The Main Result

Theorem 3. Suppose that g ∈ R[α, β], G is defined by (1), f is bounded on I := [G(α), G(β)]
and ( f ◦ G)g ∈ R[α, β]. Then, f ∈ R(I) and the change of variable Formula (2) holds.

For the proof of Theorem 3, we need the following lemma.

Lemma 1. If g, gh ∈ R[α, β], then g|h| ∈ R[α, β].

Proof. By Lebesgue’s criterion, the functions g and gh are both continuous a.e. on [α, β].
Let x0 ∈ [α, β] be the point of their mutual continuity. If h is continuous at x0, then g|h| is
continuous at x0. If h is discontinuous at x0, then the equality g(x0) = 0 must hold because
otherwise, h must be continuous at x0 as a quotient of continuous functions gh and g. Then,
we have the following:

g(x)h(x)→ g(x0)h(x0) = 0,

and therefore,

g(x)|h(x)| = g(x)h(x)sgn
(
h(x)

)
→ 0 = g(x0)|h(x0)|

as x → x0, which means the continuity of g|h| at x0, and thus, its continuity a.e. on [α, β].
Thus, g|h| ∈ R[α, β] by Lebesgue’s criterion.

Proof of Theorem 3. By the hypothesis of the theorem, there is M1 > 0 such that | f (x)| ≤
M1 for all x ∈ I. For all n ∈ N, let cn := M1 + n and define for all x ∈ [c, d] := G([α, β])
the following function:

fn(x) :=


f (x), if | f (x)| ≤ cn;
cn, if f (x) > cn;
−cn, if f (x) < −cn.

From the given definition for all n ∈ N, we obtain the boundedness of fn as well as
the following equality:

fn
∣∣

I = f
∣∣

I . (3)

Additionally, for every n ∈ N for all x ∈ [c, d], we obtain the following:

| fn(x)| ≤ | f (x)|, (4)

and for all x ∈ [c, d], we have the following:

fn(x)→ f (x) (5)

as n→ ∞. Next, we show that ( fn ◦ G)g ∈ R[α, β] for all n ∈ N. For each n ∈ N, we have
the following explicit formula:

fn = min{max{ f ,−cn}, cn} =
1
4
(

f − cn − | f − cn|+
∣∣3cn + f − | f − cn|

∣∣),
from which, for h := f ◦ G, we obtain the following equality:

( fn ◦ G)g =
1
4
(
h− cn − |h− cn|+

∣∣3cn + h− |h− cn|
∣∣)g. (6)

Since by the hypothesis of the theorem g, gh ∈ R[α, β], then by Lemma 1, we have
g|h− cn| ∈ R[α, β], and thus, g

∣∣3cn + h− |h− cn|
∣∣ ∈ R[α, β] by the same lemma. Finally, (6)

implies that ( fn ◦ G)g ∈ R[α, β] for all n ∈ N.
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Since the function ( f ◦ G)g is integrable (and, thus, bounded), there exists M2 > 0
such that for all n ∈ N, t ∈ [α, β] holds the inequality as follows:

∣∣ fn
(
G(t)

)
g(t)

∣∣ (4)
≤
∣∣ f (G(t)

)
g(t)

∣∣ ≤ M2,

Additionally, for all t ∈ [α, β] as n→ ∞, we have the following:

fn
(
G(t)

)
g(t)

(5)→ f
(
G(t)

)
g(t).

By virtue of (3), using Theorem 2 and Arzela’s bounded convergence theorem for the
Riemann integral (see [7]), as n→ ∞ we obtain the following:

G(β)∫
G(α)

f (x)dx
(3)
=

G(β)∫
G(α)

fn(x)dx Th. 2
=

β∫
α

fn
(
G(t)

)
g(t)dt→

β∫
α

f
(
G(t)

)
g(t)dt,

which completes the verification of (2) and the proof of the theorem.

3. Some applications

The following example illustrates Theorem 3 in use: let α := −1, β := 2, g(t) := 2t,
G(t) := t2 and

f (x) :=


1√
x

if x > 0;

0 if x = 0.

Clearly, f is unbounded on G([−1, 2]) = [0, 4], but there exists

4∫
1

dx√
x
=

G(β)∫
G(α)

f (x)dx Th. 3
=

β∫
α

f
(
G(t)

)
g(t)dt =

2∫
−1

2 sgn(t)dt = 2.

To illustrate some other applications of our result, we obtain as a consequence the
theorem on the change of a variable in an improper integral (in one direction) under quite
general conditions.

Corollary 1 (of Theorem 3). Suppose that a < b, α < β, f is bounded on [a, c] for all c ∈ (a, b),
g ∈ R[α, γ] for all γ ∈ (α, β),

G(t) :=
t∫

α

g(y)dy + a
t→β−−−−→ b−

and

lim
z→β−

z∫
α

f
(
G(t)

)
g(t)dt = I.

Then, the following holds:

lim
x→b−

x∫
a

f (s)ds = I.
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