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Abstract: In this paper, we investigate the asymptotic distributions of two types of Mahalanobis dis-
tance (MD): leave-one-out MD and classical MD with both Gaussian- and non-Gaussian-distributed
complex random vectors, when the sample size n and the dimension of variables p increase under
a fixed ratio c = p/n → ∞. We investigate the distributional properties of complex MD when the
random samples are independent, but not necessarily identically distributed. Some results regarding
the F-matrix F = S−1

2 S1—the product of a sample covariance matrix S1 (from the independent
variable array (be(Zi)1×n) with the inverse of another covariance matrix S2 (from the independent
variable array (Z j 6=i)p×n)—are used to develop the asymptotic distributions of MDs. We generalize
the F-matrix results so that the independence between the two components S1 and S2 of the F-matrix
is not required.

Keywords: Mahalanobis distance; complex random vector; moments of MDs

1. Introduction

Mahalanobis distance (MD) is a fundamental statistic in multivariate analysis. It
is used to measure the distance between two random vectors or the distance between
a random vector and its center of distribution. MD has received wide attention since it
was proposed by Mahalanobis [1] in the 1930’s. After decades of development, MD has
been applied as a distance metric in various research areas, including propensity score
analysis, as well as applications in matching [2], classification and discriminant analysis [3].
In the former case, MD is used to calculate the propensity scores as a measurement of
the difference between two objects. In the latter case, the differences among the clusters
are investigated based on MD. The applications of MD are also related to multivariate
calibration [4], psychological analysis [5] and the construction of multivariate process
control charts [6]; it is a standard method to assess the similarity between the observations.

As an essential scale for distinguishing objects from each other, the robustness of
MD is important for guaranteeing the accuracy of an analysis. Thus, the properties of
MD have been investigated in the last decade. Gath and Hayes [7] investigated the
bounds for extreme MDs. Dai et al. [8] derived a number of marginal moments of the
sample MD and showed that it behaves unexpectedly when p is relatively larger than
n. Dai and Holgersson [9] examined the marginal behavior of MDs and determined their
density functions. With the distribution derived by Dai and Holgersson [9], one can
set the inferential boundaries for the MD itself and acquire robust criteria. Beside the
developments above, some attention has been paid to the Fisher matrix (F-matrix) and Beta
matrix which can be considered as the generalizations of MD.

We provide the definition of the Fisher matrix (see [10]) which is essential here. The
Fisher matrices, or simply F -matrices, are an ensemble of matrices with two components
each. Let

{
Zjk, j, k = 1, 2, . . .

}
be either both real or both complex random variable arrays.

For p ≥ 1 and n ≥ 1, let
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Z =
(

Zjk : 1 ≤ j ≤ p, 1 ≤ k ≤ n
)
= (Z·1, . . . , Z·n),

z(i) = (zi : 1 ≤ i ≤ n, i 6= k) = Z·i,

be the arrays, with column vectors (Z·k). The z(i) corresponds to the ith observation in
Z. This observation is isolated from the rest of the observations, so that z(i),i 6=k,(p×1) and
Zp×(n−1) are two independent samples. We determine the following matrices:

S1 = z(i),i 6=kz∗(i),i 6=k = z(i)z∗(i),
S2 = 1

n ∑n
k=1 Z·kZ∗·k =

1
n ZZ∗,

where ∗ stands for complex conjugate transpose. These two matrices are both of size p× p.
Then the Fisher matrix (or F -matrix) is defined as

F := S1S−1
2 .

Pillai [11], Pillai and Flury [12] and Bai et al. [13] have studied the spectral properties
of the F-distribution. Johansson [14] investigated the central limit theorem (CLT) for the
random Hermitian matrices, including the Gaussian unitary ensemble. Guionnet [15]
established the CLT for the non-commutative functional of Gaussian large random ma-
trices. Bai et al. [16] obtain the CLT for the linear spectral statistics of the Wigner matrix.
Zheng [10] extends the moments of the F-matrix into non-Gaussian circumstances with
the assumption that the two components S1 and S2 of an F-matrix F = S−1

2 S1 are indepen-
dent. Gallego et al. [17] extended the MD into the condition of a multidimensional Normal
distribution and studied the properties of MD for this case.

However, to the best of our knowledge, the properties of MDs with non-Gaussian
complex random variables have not been studied much in the literature. In this paper,
we derive the CLT for an MD with complex random variables under a more general
circumstance. The common restrictions on the random vector, such as independent and
identically distributed (i.i.d.) for the random sample, are not required. The independence
between the two components S1 and S2 of the F-matrix F = S−1

2 S1 is relaxed. We investigate
the distributional properties of complex MD without assuming normal distribution. The
fourth moments of the MDs are allowed to be an arbitrary value.

This paper is organized as follows. In Section 2, we introduce the basic definitions
concerning different types of complex random vectors, their covariance matrix, and the
corresponding MDs. In Section 3, the first moments of different types of MDs and their
distribution properties are given. The connection of leave-one-out MD and classical MD
is derived, and their respective asymptotic distributions under general assumptions are
investigated. We end up this paper by giving some concluding remarks and discussions
in Section 4.

Some Examples of Mahalanobis Distance in Signal Processing

MD has been applied in different research areas. We give two examples that are related
to the applications of MD in signal processing.

Example 1. We illustrate our idea by using an example. In Figure 1, each point corresponds to
the real and comlex part of an MD. The circle in red is an inferential boundary with the radius
calculated based on MDs. The points that are outside the boundary are considered to be signals,
while the points that are lying inside the circle are detected as noise.

This example has been used in some research; for example, in evaluating the capacity of
multiple-input, multiple-output (MIMO) wireless communication systems (see [18] for more
details). Denote the number of inputs (or transmitters) and the number of outputs (or receivers) of
the MIMO wireless communication system by nt and nr respectively, and assume that the channel
coefficients are correlated at both the transmitter and the receiver ends. Then the MIMO channel
can be represented by an nr × nt complex random matrix H with corresponding covariance matrices
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Σr and Σt. For most of the cases, Σr and Σt should be replaced by the sample covariance matrices Sr
and St to represent the channel correlations at the receiver and transmitter ends, respectively. The
information processed by this random channel is a random quantity which can be measured by MD.

Figure 1. Inferential on the signals based on MD.

Example 2. Zhao et al. [19] use MD in a fuzzy clustering algorithm in order to reduce the
effect of noise on image segmentation. They compare the boundaries of clusters calculated by
both the Euclidean distance and MD. The boundaries calculated by the Euclidean distance are
straight lines which misclassify the observations that diverge far from their cluster center, while
the boundaries based on the MDs are curves that fit better with the covariance of the cluster. This
example implies that the MD is more accurate with regards to the measure of dissimilarity for image
segmentation. It can be extended to the application of clustering when the channel signals are
complex random variables.

2. Preliminaries

In this section, some important definitions of complex random variables and related
concepts are introduced, including the covariance matrix of a complex random vector and
the corresponding MDs.

We first define the covariance matrix of a general complex random vector on an n× p
dimension complex random variable z where p is the number of variables and n is the
sample size of the dataset, as given in [20]:

Definition 1. Let zj = (z1, . . . , zp) ∈ Cp, j = 1, . . . , n be a complex random vector with known
mean E

[
zj
]
= µz,j where zj = xj + iyj, i =

√
−1 and xj, yj ∈ Rp. Let Γp×p be the covariance

matrix and Cp×p be the relation matrix of zj respectively. Then Γp×p and Cp×p are defined
respectively as follows:

Γ = E
[
(zj − µz,j)(zj − µz,j)

∗
]
,

C = E
[(

zj − µz,j

)(
zj − µz,j

)′]
,

where ′ is the transpose.
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Definition 1 shows a general presentation of the complex random variables with-
out imposing any distributional assumption on zj. If we set the components of zj, the
random variables xj and yj, as normally distributed, then we are in a more familiar con-
text in the complex space: circular symmetricity. The circular symmetricity of a complex
normal random variable is an assumption that is used for the standardized form of com-
plex Gaussian-distributed random variables. The definition of circular symmetricity is
the following.

Definition 2. A p-dimensional complex random variable zp×1 = xp×1 + iyp×1 is a circularly
symmetric complex normal one if the vector vec[x y]′ is normally distributed, i.e.,(

xp×1
yp×1

)
∼ N

([
Re µz,p×1
Im µz,p×1

]
, 1

2

[
Re Γz,p×1 − Im Γz,p×1
Im Γz,p×1 Re Γz,p×1

])
,

where µz,p×1 = E[z] and Γz,p×p = E[(z− µz)(z− µz)
∗], “Re” stands for the real part and “Im”

stands for the imaginary part.

The circularly symmetric normally distributed complex random variable can be used
in the circumstance of a standard normal distribution in real space to simplify the deriva-
tions on complex random variables. Based on this condition, we acquire a simplified
probability density function (hereinafter p.d.f.) on a complex normal random vector which
is presented in the following example.

Example 3. The circularly symmetric complex random vector z = (z1, . . . , zp)′ ∈ Cp with mean
vector µz = 0 and relation matrix C = 0 has the p.d.f. as follows:

f (z) =
1

πp|z| exp(−z∗Γ−1
z z),

where Γz is the covariance matrix of z and “|.|” is the determinant.

Based on Example 3, one can see the possibility of transforming the expression of a
complex random vector into a form consisting of vector multiplication between a complex
constant vector and a real random vector. Let zj be a complex random variable; then, the
transformation between a complex random variable and its real random variables can be
presented as follows:

zj = J
(

xj
yj

)
, where J =

(
1 i

)
.

The transformation offers a different way of inspecting the complex random vector [21].
The complex random vector can be considered as the bivariate form of a real random vector
pre-multiplied by a constant vector. This transformation offers another way to present the
complex covariance matrix in the form of real random vectors. The idea is presented by
the example as follows.

Define matrices Γxx = E
[
(x− Re µ)(x− Re µ)′

]
, Γyy = E

[
(y− Im µ)(y− Im µ)′

]
,

Γxy = E
[
(x− Re µ)(y− Im µ)′

]
and Γyx = E

[
(y− Im µ)(x− Re µ)′

]
. The covariance

matrix Γ of a p-dimensional complex random vector can be represented in the form of real
random vectors x and y, as follows:

Γz,2p×2p =

(
Γxx Γxy
Γyx Γyy

)
.
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3. MD on Complex Random Variables

In this section, we introduce two types of MDs given in Definitions 5 and 6. We start
with the classical MD which is based on a known mean and a known covariance matrix.
The definition is given as follows.

Definition 3. The MD of the complex random vector zj ∈ Cp, j = 1, . . . , n with known mean µ
and known covariance matrix Γz is defined as follows:

D
(
Γz, zj, µ

)
=

(
zj − µ

)∗
Γ−1

z
(
zj − µ

)
. (1)

There are both real and complex parts for a complex random vector. Thus, we define
the corresponding MDs of the two components in a complex random variable.

Definition 4. The MDs on the real part and imaginary part xj, yj ∈ Rp, j = 1, . . . , n of a complex
random vector zj ∈ Cp, j = 1, . . . , n with known mean µ and known covariance matrix Γ.. are
defined as follows:

D
(
Γxx, xj, Re µ

)
=
(
xj − Re µ

)∗
Γ−1

xx
(

xj − Re µ
)
, (2)

D
(

Γyy, yj, Im µ
)
=
(

yj − Im µ
)∗

Γ−1
yy

(
yj − Im µ

)
. (3)

Under the definitions above, we can derive the distribution of the MDs on a complex
random vector with known mean and covariance. We present the distribution as follows.

Proposition 1. Let Z be an n× p row-wise double array of i.i.d. complex normally distributed
random variables with E

[
z.j
]
= 0, j = 1, . . . , p and complex positive definite Hermitian covariance

matrix Γz. Then we have the distribution of the MD in (1) as D(Γz, zi, 0) ∼ χ2
2p.

Proof. For the proof of this proposition, the reader can refer to reference [22].

The result of Proposition 1 is employed here to derive the moments of the MDs on the
real and complex parts below.

Proposition 2. The first moment of D
(
Γz, zj, 0

)
defined in (1) is given as follows:

E
[
D
(
Γz, zj, 0

)]
= 2p.

Proof. The result follows Proposition 1.

Theorem 1. Set the random variables xi and yi to be normally distributed, and the covariance of
D(Γxx, xi, 0) and D

(
Γyy, yi, 0

)
as given in (2) and (3). Then their distributions are given as follows:

Cov
[
D(Γxx, xi, 0), D

(
Γyy, yi, 0

)]
= tr

[
Γ−1

xx ⊗ Γ−1
yy Φ

]
− p2,

(
D
(
Γxx, xj, 0

)
D
(

Γyy, yj, 0
) ) ∼ ( χ2

p
χ2

p

)
,

where ⊗ is the tensor product, Φ = E
(

xjxj
′ ⊗ yjyj

′
)

and tr(.) stands for trace.
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Proof. Proposition 1 shows D
(

Γyy, yj, 0
)
∼ χ2

p and D
(
Γxx, xj, 0

)
∼ χ2

p. In order to derive
the covariance of these two MDs, we need to first derive their cross moments.

E
(

x′Γ−1
xx xy′Γ−1

yy y
)
= Etr

[(
x′ ⊗ y′

)(
Γ−1

xx ⊗ Γ−1
yy

)
(x⊗ y)

]
= Etr

[(
Γ−1

xx ⊗ Γ−1
yy

)
(x⊗ y)

(
x′ ⊗ y′

)]
= Etr

[(
Γ−1

xx ⊗ Γ−1
yy

)(
xx′ ⊗ yy′

)]
= tr

[(
Γ−1

xx ⊗ Γ−1
yy

)
E
(

xx′ ⊗ yy′
)]

.

Thus, the covariance is given as follows:

Cov
[

D
(
Γxx, xj, 0

)
, D
(

Γyy, yj, 0
)]

= E
[

D
(
Γxx, xj, 0

)
D
(

Γyy, yj, 0
)]
− E

[
D
(
Γxx, xj, 0

)]
E
[

D
(

Γyy, yj, 0
)]

= E
[

D
(
Γxx, xj, 0

)
D
(

Γyy, yj, 0
)]
− p2

= tr
[(

Γ−1
xx ⊗ Γ−1

yy

)
Φ
]
− p2,

which completes the proof.

The results presented so far concern a complex random vector with known mean
and known covariance matrix. In practice, the mean µ and covariance matrix Γz are not
available all the time. Thus, some alternative statistics such as sample mean z̄ = n−1 ∑n

j=1 zj

and sample covariance Sz = n−1 ∑n
j=1
(
zj − z̄

)(
zj − z̄

)∗ are used as substitutions of the
population mean and variance when building the MDs.

We introduce the definitions of MDs with sample mean and sample covariance matrix
in the following.

Definition 5. Let zj ∈ Cp, j = 1, . . . , n, be a complex normally distributed random sample. The
MD on the complex random vector zj with sample mean z̄ = n−1 ∑n

j=1 zj and sample covariance
matrix Sz = (n− 1)−1 ∑n

j=1
(
zj − z̄

)(
zj − z̄

)∗ is defined as follows:

Dj = D
(
Sz, zj, z̄

)
=
(
zj − z̄

)∗S−1
z
(
zj − z̄

)
. (4)

For the purpose of deriving further distributional properties, we give an alternative
definition of an MD: the leave-one-out case. Leave-one-out here means that we remove
one observation each time and use the rest of the observations for constructing the MD.

Definition 6. Let the leave-one-out sample mean of a complex random vector be z̄(i) = (n− 1)−1

∑n
j=1,j 6=i zj and the corresponding leave-one-out sample covariance matrix S(i) = (n− 2)−1

∑n
j=1,j 6=i

(
zj − z̄(i)

)(
zj − z̄(i)

)∗
. The leave-one-out MD on the complex random vector zi is

defined as follows:

D(i) = D
(

S(i), zj, z̄(i)
)
=
(

zi − z̄(i)
)∗

S−1
(i)

(
zi − z̄(i)

)
. (5)

The advantage of leaving one observation out of the dataset is the achieved indepen-
dence between the removed observation and the sample covariance matrix of the other
observations. The similarity in structure between the estimated and the leave-one-out MDs
can be explored in theorems on their distributions. The distribution of the leave-one-out
MD is derived as in the following theorem.

Theorem 2. (n− 1)2n−1Dj given in (4) follows a Beta distribution B(p/2, (n− p− 1)/2).
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The proofs of this theorem and others are relegated to Appendix A, so that readers
can perceive the results more smoothly. The distribution of a leave-one-out MD can be
used to derive the distribution of an estimated MD. We show this in Theorems 3 and 4.

We present the main results of this paper in the following two theorems. The assump-
tion of a normal distribution on the complex random variable is released. Instead, we
introduce two more general assumptions. Assume:

(i) The entries of complex random matrix Zn×p are independent complex random vari-
ables, but not necessarily identically distributed with mean 0 and variance 1. Let
the 4th moment of the entries have arbitrary value β. The limiting ratio of their
dimensions is p/n→ c ∈ (0, 1).

(ii) For any η,

lim
n→∞

n−1η−1 ∑
jk

E|z(n)jk |
4 I(|z(n)jk | ≥ η

√
n) = 0,

where I(.) is the indicator function. This assumption is a standard Linderberg-type
condition that guarantees the convergence of the random variable without the as-
sumption of identical distribution.

Theorem 3. Under the assumptions (i) and (ii), set the 4th moment of the complex random vector
E(z)4 = β < ∞. Then the asymptotic distribution of D(i) in (5) is:

lim
n,p→∞

√
pυ−1/2

(
p−1D(i) − τ

)
`→N(0, 1),

where h =
√

p + c− pc,

τ =
β · p
h2

[
∑

i1+i2+i3=2

i3!(−1)i3 h2(1− c)1−i1

2(1− i1)!(1− i2)!

(
h2 − c

)1−i2
(−c)−1−i3

+ ∑
i1+i2+i3=0

(2 + i3)!(−1)i3

(1− i1)!(1− i2)!2
· h1+i1−i2

(
h
c

)3+i3
]
+

β

2(1− c)

×
[

∑
i1+...+i4=1

i4!(−1)i4 hi1(1− c)1−i1

(1− i1)!(1− i2)!

(
h2 − c

h

)1−i2(√c− c
h

)1−i3(
−h

c

)1+i4

+ ∑
i1+...+i4=1

i4!(−1)i4 hi1(1− c)1−i1

(1− i1)!(1− i2)!

(
h2 − c

h

)1−i2(−√c− c
h

)1−i3(
−h

c

)1+i4

+ ∑
i1+...+i4=0

(i4 + 1)!(−1)i4

(1− i1)!(1− i2)!
· h1+i1−i2

((√
c

h

)1−i3
+

(
−
√

c
h

)1−i3
)(

h
c

)2+i4

− ∑
i1+...+i5=2

i5!(1− c)1−i1

(1− i1)!(1− i2)!(−1)i4+2i5

(
h2 − c

)1−i2(√
c− c

)1−i3(√c + c
)1−i4 c−1−i5

− ∑
i1+...+i5=0

(i5 + 2)!(−1)i5

(1− i1)!(1− i2)!
· h1+i1−i2

(√
c

h

)1−i3(
−
√

c
h

)1−i4(h
c

)3+i5
]

,
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and

υ =
1

(1− c)4 ∑
i1+i2+i3=0

∑
j1+j2=2+i3

(i3 + 1)!h2+i1−i2+j1−j2

(1− i1)!(1− i2)!(2 + i3)!(1− j1)!(1− j2)!

+
β(p + c)(1− c)2

h2

[
∑

i1+i2+i3=1

(i3)!(−1)i3

(1− i1)!(1− i2)!
hi1(1− c)1−i1

(
h2 − c

h

)1−i2(
−h

c

)1+i3

+ ∑
i1+i2+i3=0

(1 + i3)!(−1)i3

(1− i1)!(1− i2)!
h1+i1−i2

(
h
c

)2+i3
]2

.

By using the results above, we derive the asymptotic distribution of the estimated MD
in (4).

Theorem 4. The asymptotic distribution of Dj in (4) is given as follows:

√
pυ−1/2 p−1(n + τ)2/(n

√
n− 1)

(
Dj − (n− 1)τ/(n + τ)2

)
`→N(0, 1),

where τ and υ are given in Theorem 3.

In the F-matrix F = S−1
2 S1 = S−1(zj − z̄

)(
zj − z̄

)∗, the two component S−1 and(
zj − z̄

)(
zj − z̄

)∗ are assumed to be independent. Theorem 3 is derived under this restric-
tion, while the results in Theorem 4 extend the circumstance and release the assumption of
independence in Theorem 3.

4. Summary and Conclusions

This paper defines different types of MDs on complex random vectors with either
known or unknown mean and covariance matrix. The MDs’ first moments and the dis-
tributions of MD with known mean and covariance matrix are derived. Further, some
asymptotic distributions of the estimated and leave-one-out MDs under complex non-
normal distribution are investigated. We have relaxed several assumptions from our
previous work [9]. The random variables in the MD are required to be independent but not
necessarily identically distributed. The fourth moment of our random variables can be of
arbitrary value. The independence between the two components S2 and S1 of the F-matrix
F = S−1

2 S1 can be ignored in our results.
In conclusion, the MDs on complex random vectors are useful tools when dealing

with complex random vectors in many situations, for example, robust analysis with signal
processing [23,24]. The asymptotic properties of MDs can be used in some inferential
studies for finance theory [25]. Further studies could develop upon the real and imaginary
parts of MDs over a complex random sample.
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Appendix A

Appendix A.1. Proof of Theorem 2

Proof. Follow the setting in (4). Then Hardin and Rocke [26] shows that n−1(n− 1)2Dj
with a scalar follows a Beta distribution Beta(p/2, (n− p− 1)/2).

Appendix A.2. Proof of Theorem 3

Proof. By using the Theorem 3.2 from [10], we can acquire the mean and covariance of the

complex F matrix F = S−1
(i)

(
zi − z̄(i)

)(
zi − z̄(i)

)∗
. Set β to be arbitrary. Then we receive

τ = lim
r↓1

1
4πi

∮
|ξ|=1

(1 + hξ)(ξ + h)

(1− c)2 · ξ

(
1

ξ + r−1 +
1

ξ − r−1 −
2

ξ + c/h

)
dξ

+
βp(1− c)2

2πi · h2

∮
|ξ|=1

(1 + hξ)(ξ + h)

(1− c)2 · ξ
1

(ξ + c/h)3 dξ

+
β(1− c)

4πi

∮
|ξ|=1

(1 + hξ)(ξ + h)

(1− c)2 · ξ
ξ2 − c/h2

(ξ + c/h)2

×
[

1
ξ −
√

c/h
+

1
ξ +
√

c/h
− 2

ξ + c/h

]
dξ

=
βp
h2

[
∑

i1+i2+i3=2

i3!(−1)i3 hi1(1− c)1−i1

2(1− i1)!(1− i2)!

(
h2 − c

h

)1−i2(
−h

c

)1+i3

+ ∑
i1+i2+i3=0

(2 + i3)!(−1)i3

(1− i1)!(1− i2)!2
· h1+i1−i2

(
h
c

)3+i3
]
+

β

2(1− c)

×
[

∑
i1+...+i4=1

i4!(−1)i4 hi1(1− c)1−i1

(1− i1)!(1− i2)!

(
h2 − c

h

)1−i2(√c− c
h

)1−i3(
−h

c

)1+i4

+ ∑
i1+...+i4=1

i4!(−1)i4 hi1(1− c)1−i1

(1− i1)!(1− i2)!

(
h2 − c

h

)1−i2(−√c− c
h

)1−i3(
−h

c

)1+i4

+ ∑
i1+...+i4=0

(i4 + 1)!(−1)i4

(1− i1)!(1− i2)!
· h1+i1−i2

((√
c

h

)1−i3
+

(
−
√

c
h

)1−i3
)(

h
c

)2+i4

− ∑
i1+...+

i5=2

(−1)2−i4 i5!(1− c)1−i1

(1− i1)!(1− i2)!

(
h2 − c

)1−i2(√
c− c

)1−i3(√c + c
)1−i4 c−1−i5

− ∑
i1+...+i5=0

(i5 + 2)!(−1)i5

(1− i1)!(1− i2)!
· h1+i1−i2

(√
c

h

)1−i3(
−
√

c
h

)1−i4(h
c

)3+i5
]

=
βp
h2

[
∑

i1+i2+i3=2

i3!(−1)i3 h2(1− c)1−i1

2(1− i1)!(1− i2)!

(
h2 − c

)1−i2
(−c)−1−i3

+ ∑
i1+i2+i3=0

(2 + i3)!(−1)i3

(1− i1)!(1− i2)!2
· h1+i1−i2

(
h
c

)3+i3
]
+

β

2(1− c)

×
[

∑
i1+...+i4=1

i4!(−1)i4 hi1(1− c)1−i1

(1− i1)!(1− i2)!

(
h2 − c

h

)1−i2(√c− c
h

)1−i3(
−h

c

)1+i4

+ ∑
i1+...+i4=1

i4!(−1)i4 hi1(1− c)1−i1

(1− i1)!(1− i2)!

(
h2 − c

h

)1−i2(−√c− c
h

)1−i3(
−h

c

)1+i4

+ ∑
i1+...+i4=0

(i4 + 1)!(−1)i4

(1− i1)!(1− i2)!
· h1+i1−i2

((√
c

h

)1−i3
+

(
−
√

c
h

)1−i3
)(

h
c

)2+i4
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− ∑
i1+...+i5=2

(−1)2−i4 i5!(1− c)1−i1

(1− i1)!(1− i2)!

(
h2 − c

)1−i2(√
c− c

)1−i3(√c + c
)1−i4 c−1−i5

− ∑
i1+...+i5=0

(i5 + 2)!(−1)i5

(1− i1)!(1− i2)!
· h1+i1−i2

(√
c

h

)1−i3(
−
√

c
h

)1−i4(h
c

)3+i5
]

.

For the variance, we have

υ = − 1
4π2 lim

r↓1

∮ ∮
|ξ1|=|ξ2|=1

(1 + hξ1)(ξ1 + h)(1 + hξ2)(ξ2 + h)

(1− c)4(ξ1 − rξ2)
2ξ1ξ2

dξ1 dξ2

− β(p + c)(1− c)2

4π2h2

∮
|ξ1|=1

(1 + hξ1)(ξ1 + h)

(ξ1 + c/h)2ξ1
dξ1

∮
|ξ2|=1

(1 + hξ2)(ξ2 + h)

(ξ2 + c/h)2ξ2
dξ2,

where

− 1
4π2 lim

∮ ∮
|ξ1|=|ξ2|=1

(1 + hξ1)(ξ1 + h)(1 + hξ2)(ξ2 + h)

(1− c)4(ξ1 − rξ2)
2ξ1ξ2

dξ1 dξ2

= − i
2

∮
|ξ2|=1

(1 + hξ2)(ξ2 + h)
ξ2

(∮
|ξ1|=1

(1 + hξ1)(ξ1 + h)
ξ1(ξ1 − rξ2)

2 dξ1

)
dξ2

= − i

2π(1− c)4 ∑
i1+i2+i3=0

(i3 + 1)!h1+i1−i2

(1− i1)!(1− i2)!

∮
|ξ2|=1

(1 + hξ2)(ξ2 + h)

ξ3+i3
2

dξ2

=
1

(1− c)4 ∑
i1+i2+i3=0

∑
j1+j2=2+i3

(i3 + 1)!h2+i1−i2+j1−j2

(1− i1)!(1− i2)!(2 + i3)!(1− j1)!(1− j2)!
,

and ∮
|ξ1|=1

(1 + hξ1)(ξ1 + h)

(ξ1 + c/h)2ξ1
dξ1

= 2πi

[
∑

i1+i2+i3=1

(i3)!(−1)i3

(1− i1)!(1− i2)!
hi1(1− c)1−i1

(
h2 − c

h

)1−i2(
−h

c

)1+i3

+ ∑
i1+i2+i3=0

(1 + i3)!(−1)i3

(1− i1)!(1− i2)!
h1+i1−i2

(
h
c

)2+i3
]

.

So we obtain

υ = (1− c)−4 ∑
i1+i2+i3=0

∑
j1+j2=2+i3

(i3 + 1)!h2+i1−i2+j1−j2

(1− i1)!(1− i2)!(2 + i3)!(1− j1)!(1− j2)!

+β(p + c)(1− c)2h−2

×
[

∑
i1+i2+i3=1

(i3)!(−1)i3

(1− i1)!(1− i2)!
hi1(1− c)1−i1

(
h2 − c

h

)1−i2(
−h

c

)1+i3

+ ∑
i1+i2+i3=0

(1 + i3)!(−1)i3

(1− i1)!(1− i2)!
h1+i1−i2

(
h
c

)2+i3
]2

,

which completes the proof.

Appendix A.3. Proof of Theorem 4

Proof. Regarding asymptotic distribution discussed, one may ignore the rank-1 matrix ZZ∗

in the definition of the sample covariance matrix and define the sample covariance matrix to
be S = n−1 ∑n

j=1
(
zj − z̄

)(
zj − z̄

)∗. This idea is given in [27]. Using the results from [9], set
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W = nS and W−i = (n− 1)S−i = ∑n
j=1,j 6=i yjyj

∗ where yj =
(
zj − z̄

)
. Let D−i = y∗i S−1

−i yi.

Then |W−i + yiy
∗

i| = |W−i|
(

1 + y∗
iW
−1
−i yi

)
and |W − yiy

∗
i| = |W |

(
1− y∗

iW
−1yi

)
so

that |W−i + yiy
∗

i|
/
|W−i| = 1 + (n− 1)−1D−i and |W − yiy

∗
i|
/
|W | = 1− n−1Di. Hence(

1− cp−1Di
)(

1 + cp−1D−i
)
= 1. Now D−i is not independent of observation i, since X i is

included in the sample mean vector X̄, and hence does not fully represent the leave-one-
out estimator of Di. However, using the identity (Xi − X̄) =

(
(n− 1)

/
n
)(

Xi − X̄(i)

)
and

substituting it into the above expressions, we find that
(
1− n−1Di

) (1+D(i)n
−1)

(1+D(i)n−2)
= 1. This

can be used to derive properties of Di as a function of D(i), and vice versa. Note that Di is
used in the proof to make the derivation easier to follow. This subscript can be replaced by
Dj in the theorem.

Set g(p−1D(i)) = p−1(n− 1)D(i)/
(

n + D(i)

)
; we acquire its first derivative that ġ =

∂g(D(i))/∂D(i) = p−1(n− 1)n/
(

n + D(i)

)2
. The same applies to the function g(τ), so that

we can acquire ġ(τ) = p−1(n− 1)n/(n + τ)2. With the results in Theorem 3 and the identity

from above, we apply Cramer’s theorem [28] and derive g
(

p−1D(i)

)
− g(τ)

`→N
(
0, ġ2(τ)

)
.

As a result,
√

pυ−1/2(n + τ)2/(n
√

n− 1)
(

p−1Di − p−1(n− 1)τ/(n + τ)2
)

`→N(0, 1)
as n, p→ ∞, which completes the proof.
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