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Abstract: In this paper, we consider the oscillation behavior of the following second-order nonlinear

dynamic equation.
(

λ(s)Ψ
( 1

ϕ∆(s)

(
y(ϕ(s))

)∆))∆
+ η(s)Φ(y(τ(s))) = 0, s ∈ [s0, ∞)T. By employing

generalized Riccati transformation and inequality scaling technique, we establish some oscilla-
tion criteria.
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1. Introduction

The past decade has witnessed the tremendous development of time scale theory in
many fields such as inequality and dynamic equation, which was established by Hilger [1]
in 1988. The theory, which unified the representation of discrete and continuous, has
received a large amount of attention and studies. For details, we refer to [2–8] .

In general, we cannot obtain analytical solutions of an arbitrarily high order dynamic
equation, so the oscillation and asymptotic behavior of solutions is what we often focus
on. Dynamic equation has many applications [3,9], and the research of its properties is
significant. A great number of researches [10–22] have been done to explore the sufficient
conditions which ensure every solution is oscillation in second-order dynamic equations
on time scales.

To be specific, Erbe, Hassan and Perterson [13] explored the following equation
in 2009,

(λ(s)(y∆(s))γ)∆ + η(s)(y(τ(s)))γ = 0, s ∈ [s0, ∞)T. (1)

Erbe, Perterson and Saker [14] considered the following equation in 2007,

(λ(s)y∆(s))∆ + η(s)Ψ(y(τ(s))) = 0, s ∈ [s0, ∞)T. (2)

In 2008 and 2004, the authors investigated the following equations in [11,12], respectively.

(λ(s)(y∆(s))γ)∆ + η(s)(y(s))γ = 0, s ∈ [s0, ∞)T. (3)

(λ(s)y∆(s))∆ + η(s)Φ(y(σ(s))) = 0, s ∈ [s0, ∞)T. (4)

In 2017, Agwo, Khodier and Hassan [15] considered the following equation, which
provides a general form of the above equations.

(λ(s)Ψ(y∆(s)))∆ + η(s)Φ(y(τ(s))) = 0, s ∈ [s0, ∞)T. (5)
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In this paper, we focus on the following second-order nonlinear dynamic equation:(
λ(s)Ψ

( 1
ϕ∆(s)

(
y(ϕ(s))

)∆))∆
+ η(s)Φ(y(τ(s))) = 0, s ∈ [s0, ∞)T, (6)

which gives a more unified form of the equations in the above reference, where functions λ,
Ψ, ϕ, η, Φ and τ are defined in hypotheses in Section 2, and ∆ means the delta derivative
on time scales (see [2]).

Remark 1. If ϕ(s) = s, then Equation (6) transforms into (5); if ϕ(s) = s, Ψ(s) = Φ(s) = sγ,
where γ = 2m+1

2n+1 , m, n ∈ N+, then Equation (6) transforms into (1); if ϕ(s) = s, Ψ(s) = s,
then Equation (6) transforms into (2); if ϕ(s) = s, Ψ(s) = Φ(s) = sγ and τ(s) = s, where
γ = 2m+1

2n+1 , m, n ∈ N+, then Equation (6) transforms into (3); if ϕ(s) = s, Ψ(s) = s and
τ(s) = σ(s), then Equation (6) transforms into (4).

We will establish two kinds of oscillation criteria via different methods, respectively.
Next section is organized as follows, some lemmas and propositions, which are helpful

for the proof of Theorems 1, 2, and 3, are introduced firstly. Secondly, we will list some
hypotheses to simplify our statement. Furthermore, then Theorem 1, which explored some
qualities when Equation (6) has a positive solution, will be established. Finally, we obtain
two kinds of oscillation criteria in Theorems 2 and 3 by employing Theorem 1, respectively.

2. Main Results

To complete the proof of the desired Theorems 1, 2 and 3, we need the following
lemmas and propositions, which can be found in [2,23].

Definition 1. For s ∈ T, forward jump operator σ : T→ T is defined by

σ(s) = inf{l ∈ T : l > s}.

Definition 2. If ϕ : T→ R and for all given ε > 0 there exists a neighborhood U and ϕ∆(s) of s
such that ∣∣∣ϕ(σ(s))− ϕ(r)− ϕ∆(s)(σ(s)− r)

∣∣∣ ≤ ε|σ(s)− r|,

for all r ∈ U, then ϕ is called delta differentiable on Tk, where Tk is defined as follows:

Tk =

{
T \ (ρ(supT), supT), if supT < ∞,
T, if supT = ∞.

Moreover, for convenience, we denote f σ(s) as f (σ(s)).

Proposition 1 ([2] (Corollary 2.47)). Suppose ψ ∈ C([α, β)) is delta derivative, then ψ is
increasing (decreasing) if and only if ψ∆(s) ≥ 0(≤ 0) for all s ∈ [α, β).

Lemma 1 ([2] (Theorem 2.57)). Suppose function f is continuous and function g : T→ R is
delta-differentiable. Then, f (g(·)) is delta-differentiable with

( f (g(s)))∆ =
( ∫ 1

0
f ′(g(s) + tµ(s)g∆(s))dt

)
g∆(s).

Lemma 2 ([2] (Theorem 2.62)). Suppose g : T→ R is strictly increasing, f : T̃→ R, where
T̃ = g(T) is a time scale. If g∆(s) and f ∆̃(g(s)) exist for all s ∈ Tk, then

( f (g(s)))∆ = f ∆̃(g(s))g∆(s).
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Some necessary hypotheses, in order to simplify the statement, are listed as follows
before we give the theorems.

Hypothesis 1 (H1). T is an unbounded time scale, s0 ∈ T, we write [s0, ∞) ∩T as [s0, ∞)T and
denote

(
y(ϕ(s))

)∆ as y(ϕ(s))∆.

Hypothesis 2 (H2). Function Ψ defined on R is odd, continuous, increasing and has inverse
function Ψ−1. Exist positive constants K1, K2, function Ψ meets the conditions below for all
s, s1, s2 ∈ [s0, ∞)T
(1) sΨ(s) > 0;
(2) sΨ−1(s) > 0;
(3) Ψ(s1s2) ≥ K1Ψ(s1)Ψ(s2);
(4) Ψ−1(s1s2) ≤ K2Ψ−1(s1)Ψ−1(s2).

Hypothesis 3 (H3). Function Φ is continuous, increasing with sΦ(s) > 0 and has L > 0 subject

to sΦ∆(s)
Φ(s) ≥ L for all s ∈ [s0, ∞)T;

Hypothesis 4 (H4). λ, η : T→ R+ is a monotonically increasing function, ϕ is positive increas-
ing function with

∫ ∞
s0

ϕ∆(t)Φ−1( 1
λ(t) )∆t = ∞ and compound function ϕ−1(τ(·)) exists.

Hypothesis 5 (H5). τ : T→ T is increasing function with lim
s→∞

τ(s) = ∞.

Hypothesis 6 (H6).
∫ ∞

s0
η(t)Φ(τ(t))∆t = ∞ and inverse function ϕ−1(τ(·)) is increasing.

Hypothesis 7 (H7). exists an N > 0 subject to Φ(s1s2) ≥ NΦ(s1)Φ(s2) for all s1, s2 ∈
[s0, ∞)T.

In fact, based on the Lemma 2, we have(
y(ϕ(s))

)∆
= y∆̃(ϕ(s))ϕ∆(s),

where ∆̃ is the Delta derivative on T̃ = ϕ(T). Hence Equation (6) has another form.(
λ(s)Ψ

(
y∆̃(ϕ(s))

))∆
+ η(s)Φ(y(τ(s))) = 0, s ∈ [s0, ∞)T.

The following theorem, which explored some qualities of Equation (6) under the
assumption that has a positive solution on [s0, ∞)T, is foundational in this paper.

Theorem 1. Assume (H1)–(H5) hold and Equation (6) has a solution y(s) > 0 on [s0, ∞)T. Then,
there exists an S subject to the following hold for all s ∈ [S, ∞)T.

(1) λ(s)Ψ
( 1

ϕ∆(s)y(ϕ(s))∆) is strictly decreasing, namely,
(

λ(s)Ψ
( 1

ϕ∆(s)y(ϕ(s))∆))∆
< 0;

(2) y(ϕ(s)) is increasing, namely, y(ϕ(s))∆ ≥ 0;

(3) y(ϕ(s))∆

ϕ∆(s) = y∆̃(ϕ(s)) is decreasing, namely,
( y(ϕ(s))∆

ϕ∆(s)

)∆
< 0 and

(
y∆̃(ϕ(s))

)∆
< 0; and

y(ϕ(s))∆∆

y(ϕ(s))∆ < ϕ∆∆(s)
ϕ∆(s) ;

(4) y(ϕ(s)) ≥ R(s)y(ϕ(s))∆ where

R(s) =
1

K2
2 ϕ∆(s)Ψ−1( 1

λ(s) )

∫ s

s0

ϕ∆(t)
Ψ−1(λ(t))

∆t;
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(5) if (H6) and (H7) hold, then

y(ϕ(s)) ≥ ϕ(s)
ϕ∆(s)

y(ϕ(s))∆.

Proof. (1). Since y(s) > 0 on [s0, ∞)T, we have s1 such that y(τ(s)) > 0 on [s1, ∞)T. Then,(
λ(s)Ψ

( 1
ϕ∆(s)

y(ϕ(s))∆))∆
= −η(s)Φ(y(τ(s))) < 0, s ∈ [s1, ∞)T,

from which we can deduce λ(s)Ψ
( 1

ϕ∆(s)y(ϕ(s))∆) is strictly decreasing.
(2). To establish the desired conclusion, we assume it does not hold which means there

exists an s2 such that y(ϕ(s))∆ < 0 on [s2, ∞)T. Base on the fact that(
λ(s)Ψ

( 1
ϕ∆(s)

y(ϕ(s))∆))∆
< 0,

we obtain

λ(s)Ψ
( 1

ϕ∆(s)
y(ϕ(s))∆) < λ(s2)Ψ

( 1
ϕ∆(s2)

y(ϕ(s2))
∆) := l1 < 0, s ∈ (s2, ∞)T.

According to the Hypothesis (H2), we yield

y(ϕ(s))∆ < ϕ∆(s)Ψ−1(
l1

λ(s)
) ≤ ϕ∆(s)K2Ψ−1(l1)Ψ−1(

1
λ(s)

), s ∈ (s2, ∞)T.

Delta integrate from s2 to s on both sides arrive at

y(ϕ(s)) < y(ϕ(s2)) + K2Ψ−1(l1)
∫ s

s2

ϕ∆(t)Ψ−1(
1

λ(t)
)∆t, s ∈ (s2, ∞)T.

Noting that Ψ−1(l1) < 0 and
∫ ∞

s0
ϕ∆(t)Ψ−1( 1

λ(t) )∆t = ∞, hence the contradiction can
be concluded.

Moreover, based on the Lemma 2, we obtain y(ϕ(s))∆ = y∆̃(ϕ(s))ϕ∆(s). Therefore,
we can also find that y∆̃(ϕ(s)) > 0 according to the fact that ϕ∆(s) > 0.

(3). Noting that(
λ(s)Ψ

( 1
ϕ∆(s)

y(ϕ(s))∆))∆

= λ∆(s)Ψ
( 1

ϕ∆(s)
y(ϕ(s))∆)+ λσ(s)

(
Ψ
( 1

ϕ∆(s)
y(ϕ(s))∆))∆

< 0,

thus

λσ(s)
(

Ψ
( 1

ϕ∆(s)
y(ϕ(s))∆))∆

< −λ∆(s)Ψ
( 1

ϕ∆(s)
y(ϕ(s))∆) ≤ 0.

The conditions in Lemma 1 hold for Ψ
( 1

ϕ∆(s)y(ϕ(s))∆), thus

(
Ψ
( 1

ϕ∆(s)
y(ϕ(s))∆))∆

=
( ∫ 1

0
Ψ′(

1
ϕ∆(s)

y(ϕ(s))∆ + tµ(s)
(y(ϕ(s))∆

ϕ∆(s)
)∆

)dt
)(y(ϕ(s))∆

ϕ∆(s)
)∆.



Mathematics 2021, 9, 1867 5 of 11

Since function Ψ is increasing, namely,
∫ 1

0 Ψ′( 1
ϕ∆(s)y(ϕ(s))∆ + tµ(s)

( y(ϕ(s))∆

ϕ∆(s)

)∆
)dt > 0,

we have

λσ(s)
( ∫ 1

0
Ψ′(

1
ϕ∆(s)

y(ϕ(s))∆ + tµ(s)
(y(ϕ(s))∆

ϕ∆(s)
)∆

)dt
)(y(ϕ(s))∆

ϕ∆(s)
)∆

< 0,

which can deduce that
( y(ϕ(s))∆

ϕ∆(s)

)∆
< 0 for all s ∈ [s0, ∞)T. Using the delta quotient rule,

we have

(y(ϕ(s))∆

ϕ∆(s)
)∆

=
y(ϕ(s))∆∆ ϕ∆(s)− y(ϕ(s))∆ ϕ∆∆(s)

ϕ∆(s)ϕ∆(σ(s))
< 0,

so we also have y(ϕ(s))∆∆

y(ϕ(s))∆ < ϕ∆∆(s)
ϕ∆(s) .

(4). We want to determine a lower bound of y(ϕ(s))/y(ϕ(s))∆. By employing the
Hypothesis (H2), we have

Ψ−1
(

λ(s)Ψ
( 1

ϕ∆(s)
y(ϕ(s))∆))

≤ K2Ψ−1(λ(s))Ψ−1
(

Ψ
( 1

ϕ∆(s)
y(ϕ(s))∆)) =

K2Ψ−1(λ(s))
ϕ∆(s)

y(ϕ(s))∆,

namely,

y(ϕ(s))∆ ≥
ϕ∆(s)Ψ−1

(
λ(s)Ψ

( 1
ϕ∆(s)y(ϕ(s))∆))

K2Ψ−1(λ(s))
.

Delta integrates both sides from s0 to s, along with the fact that λ(s)Ψ
( 1

ϕ∆(s)y(ϕ(s))∆)
decreases and Ψ−1(s) increases, yields

y(ϕ(s))− y(ϕ(s0)) ≥
∫ s

s0

ϕ∆(t)Ψ−1
(

λ(t)Ψ
( 1

ϕ∆(t)y(ϕ(t))∆))
K2Ψ−1(λ(t))

∆t

≥
Ψ−1

(
λ(s)Ψ

( 1
ϕ∆(s)y(ϕ(s))∆))
K2

∫ s

s0

ϕ∆(t)
Ψ−1(λ(t))

∆t. (7)

Noting that

y(ϕ(s))∆

ϕ∆(s)
= Ψ−1

( 1
λ(s)

λ(s)Ψ(
1

ϕ∆(s)
y(ϕ(s))∆)

)
≤ K2Ψ−1(

1
λ(s)

)Ψ−1(λ(s)Ψ(
1

ϕ∆(s)
y(ϕ(s))∆)),

namely,

Ψ−1(λ(s)Ψ(
1

ϕ∆(s)
y(ϕ(s))∆)) ≥ y(ϕ(s))∆

K2 ϕ∆(s)Ψ−1( 1
λ(s) )

. (8)

Substitute (8) into (7) and note that y(s0) > 0, immediately we get

y(ϕ(s)) ≥ y(ϕ(s))∆ 1
K2

2 ϕ∆(s)Ψ−1( 1
λ(s) )

∫ s

s0

ϕ∆(t)
Ψ−1(λ(t))

∆t = y(ϕ(s))∆R(s).

(5). We can add some conditions to get a more concise lower bound of the function
y(ϕ(s))/y(ϕ(s))∆. Set

F(s) = y(ϕ(s))− ϕ(s)
ϕ∆(s)

y(ϕ(s))∆.
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We claim that there exists an s3 such that F(s) ≥ 0 on [s3, ∞), if not, exists an s4 such that
F(s) < 0 on [s4, ∞). We investigate the monotony of y(ϕ(s))/ϕ(s),

(y(ϕ(s))
ϕ(s)

)∆
=

y(ϕ(s))∆ ϕ(s)− y(ϕ(s))ϕ∆(s)
ϕ(s)ϕσ(s)

= − F(s)ϕ∆(s)
ϕ(s)ϕσ(s)

> 0,

which means y(ϕ(s))/ϕ(s) is increasing on [s4, ∞). Since τ(s) is increasing, there exists an
s5 such that τ(s5) > s4 and y(τ(s)) ≥ l2τ(s) for s ∈ [s5, ∞), where l2 = y(τ(s4))

τ(s4)
.

Delta integrates Equation (6) from s5 to ∞ on both sides, we yield

lim
s→∞

λ(s)Ψ
( 1

ϕ∆(s)
y(ϕ(s))∆)− λ(s5)Ψ

( 1
ϕ∆(s5)

y(ϕ(s5))
∆)+ ∫ ∞

s5

η(t)Φ(y(τ(t)))∆t = 0,

hence we have

λ(s5)Ψ
( 1

ϕ∆(s5)
y(ϕ(s5))

∆) >
∫ ∞

s5

η(t)Φ(y(τ(t)))∆t ≥
∫ ∞

s5

η(t)Φ(l2τ(t))∆t

≥
∫ ∞

s5

η(t)NΦ(l2)Φ(τ(t))∆t

= NΦ(l2)
∫ ∞

s5

η(t)Φ(τ(t))∆t = ∞,

and a contradiction is obtained. Hence, F(s) ≥ 0, which means y(ϕ(s)) ≥ ϕ(s)
ϕ∆(s)y(ϕ(s))∆

and y(τ(s)) ≤ y(τ(s3))
τ(s3)

τ(s) on [s3, ∞)T.

Theorems 2 and 3 give an oscillation criteria of Equation (6) by employing some
conclusions in Theorem 1, respectively.

Theorem 2. Assume (H1)–(H5) hold and exists a ∆-differentiable function δ : R→ R+ satisfies∫ ∞

s0

δ(t)η(t)e−C(t)(t, s0)∆t = ∞, (9)

where

C(s) =
δ∆(s)
δσ(s)

− Lδ(s)
δσ(s)B(ϕ−1(τ(s)))

,

and
B(s) = y(ϕ(s0)) + K2Ψ−1(l1)

∫ s

s0

ϕ∆(t)Ψ−1(
1

λ(t)
)∆t.

Then, Equation (6) is oscillatory.

Proof. We can assume, without loss of generality, that exists a positive solution y(s) of
Equation (6). If y(s) is negative, we can take y∗(s) = −y(s), where y∗(s) is a positive
solution of Equation (6). Take

ω(s) = δ(s)
λ(s)Ψ( 1

ϕ∆(s)y(ϕ(s))∆)

Φ(y(τ(s)))
.
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Then, we obtain

ω∆(s) =
( δ(s)

Φ(y(τ(s)))

)∆
λ(σ(s))Ψ(

1
ϕ∆(σ(s))

y(ϕ(σ(s)))∆)

+
δ(s)

Φ(y(τ(s)))
(λ(s)Ψ(

1
ϕ∆(s)

y(ϕ(s))∆))∆

= −δ(s)η(s) + λ(σ(s))Ψ(
1

ϕ∆(σ(s))
y(ϕ(σ(s)))∆)

( δ∆(s)Φ(y(τ(s)))− δ(s)
(

Φ(y(τ(s)))
)∆

Φ(y(τ(s)))Φ(y(τ(σ(s))))

)

= −δ(s)η(s) + ωσ(s)
( δ∆(s)

δσ(s)
−

δ(s)
(
Φ(y(τ(s)))

)∆

δσ(s)Φ(y(τ(s)))

)
≤ −δ(s)η(s) + ωσ(s)

( δ∆(s)
δσ(s)

− Lδ(s)
δσ(s)y(τ(s))

)
.

As we have proved in Theorem 1 (2), we have

y(ϕ(s))∆ < ϕ∆(s)Ψ−1(
l1

λ(s)
) ≤ K2 ϕ∆(s)Ψ−1(l1)Ψ−1(

1
λ(s)

), s ∈ (s0, ∞)T,

Delta integrate from s0 to s on both sides, and we get

y(ϕ(s))− y(ϕ(s0)) < K2Ψ−1(l1)
∫ s

s0

ϕ∆(t)Ψ−1(
1

λ(t)
)∆t,

then y(ϕ(s)) has an upper bound B(s) and y(τ(s)) ≤ B(ϕ−1(τ(s))).
Hence, we get

ω∆(s) ≤ −δ(s)η(s) + ωσ(s)
( δ∆(s)

δσ(s)
− Lδ(s)

δσ(s)B(ϕ−1(τ(s)))

)
= −δ(s)η(s) + ωσ(s)C(s).

Noting that(
ω(s)e−C(s)(s, s0)

)∆
= ω∆(s)e−C(s)(s, s0)− C(s)ωσ(s)e−C(s)(s, s0)

=
(

ω∆(s)− C(s)ωσ(s)
)

e−C(s)(s, s0) ≤ −δ(s)η(s)e−C(s)(s, s0),

Delta integrate from s0 to s and letting s→ ∞, and we have

lim
s→∞

ω(s)e−C(s)(s, s0)−ω(s0)e−C(s)(s0, s0) +
∫ ∞

s0

δ(t)η(t)e−C(t)(t, s0)∆t ≤ 0,

which is a contradiction based on the condition (9), where exponential function e f (t, s) is
defined by

e f (t, s) = exp
( ∫ t

s

1
µ(η)

ln
(
1 + f (η)µ(η)

)
∆η
)

.

Hence, we complete the proof.

By changing the method we deal with ω∆(s), we can get another oscillation criteria.
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Theorem 3. Suppose (H1)–(H7), τ(σ(s)) = σ(τ(s)), ϕ(σ(s)) = σ(ϕ(s)) hold, there exists a
∆-differentiable function δ : R→ R+ satisfies∫ ∞

s0

E(t)
1 + D(t)µ(t)

e− D(t)
1+D(t)µ(t)

(t, s0)∆t = −∞, (10)

and D(s) > 0, where

D(s) =
δ∆(s)
δ(s)

− Lδσ(s)
l2δ(s)τ(s)

,

E(s) = −Nδσ(s)η(s)Φ
(

H(s)
)
,

and

H(s) =
τ(s)

ϕ∆(ϕ−1(τ(s)))µ(ϕ−1(τ(s))) + τ(s)
.

Then Equation (6) is oscillatory.

Proof. We assume that there exists a solution y(s) of Equation (6) is eventually positive,
and take

ω(s) = δ(s)
λ(s)Ψ( 1

ϕ∆(s)y(ϕ(s))∆)

Φ(y(τ(s)))
,

then

ω∆(s) = δ∆(s)
λ(s)Ψ( 1

ϕ∆(s)y(ϕ(s))∆)

Φ(y(τ(s)))
+ δσ(s)

(λ(s)Ψ( 1
ϕ∆(s)y(ϕ(s))∆)

Φ(y(τ(s)))

)∆

=
δ∆(s)
δ(s)

ω(s) + δσ(s)
( (λ(s)Ψ( 1

ϕ∆(s)y(ϕ(s))∆))∆Φ(y(τ(s)))

Φ(y(τ(s)))Φ(y(τ(σ(s))))

−
λ(s)Ψ( 1

ϕ∆(s)y(ϕ(s))∆)(Φ(y(τ(s))))∆

Φ(y(τ(s)))Φ(y(τ(σ(s))))

)
=

δ∆(s)
δ(s)

ω(s)− δσ(s)×

(η(s)Φ(y(τ(s)))
Φ(y(τ(σ(s))))

+
λ(s)Ψ( 1

ϕ∆(s)y(ϕ(s))∆)(Φ(y(τ(s))))∆

Φ(y(τ(s)))Φ(y(τ(σ(s))))

)
.

Based on conclusion (5) in Theorem 1, we have

y(ϕ(s))
y(ϕ(s))∆ =

y(ϕ(s))
y(ϕ(σ(s)))−y(ϕ(s))

µ(s)

≥ ϕ(s)
ϕ∆(s)

,

namely,
y(ϕ(s)))

y(ϕ(σ(s)))
≥ ϕ(s)

ϕ∆(s)µ(s) + ϕ(s)
.
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Since τ(σ(s)) = σ(τ(s)) and ϕ(σ(s)) = σ(ϕ(s)), we have

y(τ(s))
y(τ(σ(s)))

=
y(τ(s))

y(σ(τ(s)))

=
y(ϕ(ϕ−1(τ(s))))

y(σ(ϕ(ϕ−1(τ(s)))))

=
y(ϕ(ϕ−1(τ(s))))

y(ϕ(σ(ϕ−1(τ(s)))))

≥ ϕ(ϕ−1(τ(s)))
ϕ∆(ϕ−1(τ(s)))µ(ϕ−1(τ(s))) + ϕ(ϕ−1(τ(s)))

=
τ(s)

ϕ∆(ϕ−1(τ(s)))µ(ϕ−1(τ(s))) + τ(s)
:= H(s).

Whereupon, we have

Φ(y(τ(s)))
Φ(y(τσ(s)))

≥ Φ(H(s)y(τσ(s)))
Φ(y(τσ(s)))

≥ NΦ
(

H(s)
)
. (11)

Consequently, using (11) and the Hypothesis (H6), we have

ω∆(s) ≤ δ∆(s)
δ(s)

ω(s)− δσ(s)
(

Nη(s)Φ
(

H(s)
)

+
λ(s)Ψ( 1

ϕ∆(s)y(ϕ(s))∆)(Φ(y(τ(s))))∆

Φ(y(τ(s)))Φ(y(τ(σ(s))))

)
≤ δ∆(s)

δ(s)
ω(s)− δσ(s)

(
Nη(s)Φ

(
H(s)

)
+

Lλ(s)Ψ( 1
ϕ∆(s)y(ϕ(s))∆)

y(τ(s))Φ(y(τ(σ(s))))

)
=

δ∆(s)
δ(s)

ω(s)− δσ(s)
(

Nη(s)Φ
(

H(s)
)
+

Lω(s)Φ(y(τ(s)))
δ(s)y(τ(s))Φ(y(τ(σ(s))))

)
≤ δ∆(s)

δ(s)
ω(s)− δσ(s)

(
NΦ

(
H(s)

)(
η(s) +

Lω(s)
δ(s)y(τ(s))

))
.

Based on Theorem 1 (5), there exists s3 such that the function

F(s) = y(ϕ(s))− ϕ(s)
ϕ∆(s)

y(ϕ(s))∆,

is non-negative on [s3, ∞). Then direct calculations show that

(y(ϕ(s))
ϕ(s)

)∆
=

y(ϕ(s))∆ ϕ(s)− y(ϕ(s))ϕ∆(s)
ϕ(s)ϕσ(s)

= − F(s)
ϕ(s)ϕ∆(s)ϕσ(s)

≤ 0,

namely, y(ϕ(s))
ϕ(s) is decreasing on [s3, ∞). Thus, y(τ(s)) ≤ l2τ(s) holds on [s3, ∞), where

l2 = y(τ(s3))
τ(s3)

.
We can arrive at

ω∆(s) ≤ δ∆(s)
δ(s)

ω(s)− δσ(s)
(

NΦ
(

H(s)
)(

η(s) +
Lω(s)

δ(s)l2τ(s)
))

= D(s)ω(s) + E(s),

namely,

ω∆(s) ≤ D(s)
1 + D(s)µ(s)

ωσ(s) +
E(s)

1 + D(s)µ(s)
, s ∈ [s3, ∞)T.
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Noting that (
ω(s)e− D(s)

1+D(s)µ(s)
(s, s0)

)∆

= ω∆(s)e− D(s)
1+D(s)µ(s)

(s, s0)−
D(s)

1 + D(s)µ(s)
ωσ(s)e− D(s)

1+D(s)µ(s)
(s, s0)

=
(

ω∆(s)− D(s)
1 + D(s)µ(s)

ωσ(s)
)

e− D(s)
1+D(s)µ(s)

(s, s0)

≤ E(s)
1 + D(s)µ(s)

e− D(s)
1+D(s)µ(s)

(s, s0),

integrating from s3 to s and letting s→ ∞, it yields

lim
s→∞

ω(s)e− D(s)
1+D(s)µ(s)

(s, s3)−ω(s3)e− D(s)
1+D(s)µ(s)

(s3, s3)

−
∫ ∞

s3

E(t)
1 + D(t)µ(t)

e− D(t)
1+D(t)µ(t)

(t, s3)∆t ≤ 0,

which is a contradiction according to (10).

3. Conclusions

In this paper, we explore a more general second-order nonlinear dynamic equation.
Some oscillation criteria are established by using generalized Riccati transformation. Our
work has greatly promoted the development of dynamic equations on time scales.

Author Contributions: Conceptualization, Y.-R.Z.; methodology, Y.-R.Z.; formal analysis, Z.-X.M.;
writing—original draft preparation, Z.-X.M.; writing—review and editing, Z.-X.M., S.-P.L. and J.-F.T.;
supervision, S.-P.L. and J.-F.T.; funding acquisition, Y.-R.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Fundamental Research Funds for the Central Universities
under Grant MS117.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in this
published article.

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Hilger, S. Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Thesis, Universität Würzburg, Würzburg,

Germany, 1988.
2. Bohner, M.; Georgiev, S.G. Multivariable Dynamic Calculus on Time Scales; Spriner: Cham, Switzerland, 2016
3. Bohner, M.; Peterson, A. Dynamic Equations on Time Scales; Spriner: Boston, MA, USA, 2001.
4. Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Spriner: Boston, MA, USA, 2003.
5. Martynyuk, A.A. Stability Theory for Dynamic Equations on Time Scales; Spriner: Boston, MA, USA, 2016.
6. Mozyrska, D.; Torres, D.F.M.; Wyrwas, M. Solutions of systems with the Caputo-Fabrizio fractional delta derivative on time

scales. Nonlinear Anal.-Hybri. 2019, 32, 168–176.
7. Ragusa, M.A. Hölder regularity results for solutions of parabolic equations. In Variational Analysis and Applications; Nonconvex

Optimization and Its Applications; Spriner: Boston, MA, USA, 2005; Volume 79, pp. 921–934.
8. Yang, D.; Bai, C. On the oscillation criteria for fourth-order p-Laplacian differential equations with middle term. J. Func. Space.

2021, 2021, 5597947.
9. Hale, J.K.; Lunel, S.M.V. Introduction to Functional Differential Equations; Springer: New York, NY, USA, 1993.
10. Erbe, L.; Peterson, A.A. Riccati equations on a measure chain. Dynam. Syst. Appl. 2001, 3, 193–199. [CrossRef]
11. Bohner, M.; Saker, S.H. Oscillation of second order nonlinear dynamic equations on time scales. Rocky. Mt. J. Math. 2004,

34, 1239–1254.

http://doi.org/10.1016/j.nahs.2018.12.001


Mathematics 2021, 9, 1867 11 of 11

12. Hassan, T.S. Oscillation criteria for half-linear dynamic equations on time scales. J. Math. Anal. Appl. 2008, 345, 176–185.
13. Erbe, L.; Hassan, T.S.; Perterson, A. Oscillation criteria for half-linear delay dynamic equations on time scales. Nonlinear Dyn.

Syst. Theory 2009, 9, 51–68.
14. Erbe, L.; Peterson, A.; Saker, S.H. Oscillation criteria for second-order nonlinear delay dynamic equations. J. Math. Anal. Appl.

2007, 333, 505–522.
15. Agwo, H.A.; Khodier, A.M.M.; Hassan, H.A. Oscillation criteria of second order half linear delay dynamic equations on time

scales. Acta Math. Appl. Sin. E. 2017, 33, 83–92. [CrossRef]
16. Deng, X.-H.; Wang, Q.-R.; Zhou, Z. Oscillation criteria for second order nonlinear delay dynamic equations on time scales. Appl.

Math. Comput. 2015, 269, 834–840. [CrossRef]
17. Jia, B.-G.; Erbe, L.; Peterson, A. An oscillation theorem for second order superlinear dynamic equations on time scales. Appl.

Math. Comput. 2013, 219, 10333–10342.
18. Zhou, Y.; He, J.-W.; Ahmad, B. Necessary and sufficient conditions for oscillation of fourth order dynamic equations on time

scales. Adv. Differ. Equ. 2019, 308, 1–17. [CrossRef]
19. Sui, Y.; Han, Z.-L. Oscillation of third-order nonlinear delay dynamic equation with damping term on time scales. J. Appl. Math.

Comput. 2018, 58, 577–599. [CrossRef]
20. Zhou, Y. Nonoscillation of higher order neutral dynamic equations on time scales. Appl. Math. Lett. 2019, 94, 204–209. [CrossRef]
21. Anderson, D.R.; Zafer, A. Nonlinear oscillation of second-order dynamic equations on time scales. Appl. Math. Lett. 2009,

22, 1591–1597.
22. Agarwal, R.P.; Bohner, M.; Li, T.-X. Oscillation criteria for second-order dynamic equations on time scales. Appl. Math. Lett. 2014,

31, 34–40. [CrossRef]
23. Atasever, N. On Diamond-Alpha Dynamic Equations and Inequalities. Master’s Thesis, Georgia Southern University, Statesboro,

America, 2011. [CrossRef]

http://dx.doi.org/10.1216/rmjm/1181069797
http://dx.doi.org/10.1016/j.jmaa.2008.04.019
http://dx.doi.org/10.1016/j.jmaa.2006.10.055
http://dx.doi.org/10.1007/s10255-017-0639-4
http://dx.doi.org/10.1016/j.amc.2015.08.010
http://dx.doi.org/10.1186/s13662-018-1939-6
http://dx.doi.org/10.1007/s12190-017-1158-4

	Introduction
	Main Results
	Conclusions
	References

