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Abstract: This paper proposes an extrapolation method to solve a class of non-linear weakly singular
kernel Volterra integral equations with vanishing delay. After the existence and uniqueness of
the solution to the original equation are proved, we combine an improved trapezoidal quadrature
formula with an interpolation technique to obtain an approximate equation, and then we enhance
the error accuracy of the approximate solution using the Richardson extrapolation, on the basis of
the asymptotic error expansion. Simultaneously, a posteriori error estimate for the method is derived.
Some illustrative examples demonstrating the efficiency of the method are given.

Keywords: weakly singular kernel Volterra integral equation; proportional delay; improved trape-
zoidal quadrature formula; Richardson extrapolation; posteriori error estimate

1. Introduction

Delay functional equations are often encountered in biological processes, such as
the growth of the population and the spread of an epidemic with immigration into the
population [1,2], and a time delay can cause the population to fluctuate. In general, some
complicated dynamics systems are also modeled by delay integral equations since the
delay argument could cause a stable equilibrium to become unstable. The motivation of
our work is twofold: one of the reasons is based on the first-kind delay Volterra integral
equation (VIE) of the form [3]∫ t

qt
k(t, s)y(s)ds = f (t), t ∈ I := [0, T],

which was discussed and transformed into the second-kind equivalent form

k(t, t)y(t)− qk(t, qt)y(qt) +
∫ t

qt

∂k(t, s)
∂t

y(s)ds = f ′(t),

if k(t, t) 6= 0 for t ∈ I, the normal form was given by

y(t) = f (t) + y(qt) +
∫ t

0
K1(t, s)y(s)ds +

∫ qt

0
K(t, s)y(s)ds, t ∈ I.

There has been some research [4–6] to the following form

y(t) = f (t) +
∫ t

0
K1(t, s)y(s)ds +

∫ qt

0
K(t, s)y(s)ds, t ∈ I.
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Another source of motivation comes from the weakly singular delay VIE [7–9]

y(t) = f (t) +
∫ qt

0

K(t, s)
(qt− s)λ

G(s, y(s))ds, t ∈ [0, 1],

where λ ∈ (0, 1), K(t, s) is smooth and G(s, y(s)) is a smooth non-linear function. However,
there has not yet been investigated for the case where two integral terms are presented, the
first integral term is the weakly singular Volterra integral and the second integral terms not
only has weak singularity in the left endpoint but also its upper limit is a delay function,
which is challenging to calculate. It is the aim of this paper to fill this gap.

With theoretical and computational advances, some numerical methods for delay
differential equations [10–13], delay integral equations [14], delay integral–differential
equations [15–18], and fractional differential equations with time delay [19–22] have been
investigated widely. Here, we consider the following non-linear weakly singular kernel
VIE with vanishing delay

y(t) = f (t) +
∫ t

0
sλk1(t, s; y(s))ds +

∫ θ(t)

0
sµk2(t, s; y(s))ds, t ∈ I, (1)

where θ(t) := qt, q ∈ (0, 1), λ, µ ∈ (−1, 0), f (t), k1(t, s; y(s)), k2(t, s; y(s)) are r(r ≥ 1,
r ∈ N) times continuously differentiable on I, D × R, Dθ × R, respectively,
D := {(t, s) : 0 ≤ s ≤ t ≤ T} and Dθ := {(t, s) : 0 ≤ s ≤ θ(t) ≤ θ(T), t ∈ I}. Ad-
ditionally, ki(t, s; y(s)) (i = 1, 2) satisfy the Lipschitz conditions with respect to y(s) on the
domains, respectively. That is, for fixed s and t, there are two positive constants Lj (j = 1, 2)
which are independent of s and t, such that

|k j(t, s; y(s))− k j(t, s; v(s))| ≤ Lj|y(s)− v(s)|. (2)

Then, Equation (1) possesses a unique solution (see Theorem 1). In this paper, we consider
the case where the solution is smooth.

Some numerical investigations of delay VIE have been conducted, such as discontinu-
ous Galerkin methods [23], collocation methods [24–26], the iterative numerical method [27],
and the least squares approximation method [28]. In [29], an hp version of the pseudo-
spectral method was analyzed, based on the variational form of a non-linear VIE with
vanishing variable delays. The algorithm increased the accuracy by refining the mesh
and/or increasing the degree of the polynomial. Mokhtary et al. [7] used a well-conditioned
Jacobi spectral Galerkin method for a VIE with weakly singular kernels and proportional de-
lay by solving sparse upper triangular non-linear algebraic systems. In [8], the Chebyshev
spectral-collocation method was investigated for the numerical solution of a class of weakly
singular VIEs with proportional delay. An error analysis showed that the approximation
method could obtain spectral accuracy. Zhang et al. [9] used some variable transformations
to change the weakly singular VIE with pantograph delays into new equations defined on
[−1, 1], and then combined it with the Jacobi orthogonal polynomial.

The extrapolation method has been used extensively [30,31]. We apply the extrapola-
tion method for the solution of the non-linear weakly singular kernel VIE with proportional
delay. We prove the existence of the solution to the original equation using an iterative
method, while uniqueness is demonstrated by the Gronwall integral inequality. We obtain
the approximate equation by using the quadrature method based on the improved trape-
zoidal quadrature formula, combining the floor technique and the interpolation technique.
Then, we solve the approximate equation through an iterative method. The existence
of the approximate solution is validated by analyzing the convergence of the iterative
sequence, while uniqueness is shown using a discrete Gronwall inequality. In addition,
we provide an analysis of the convergence of the approximate solution and obtain the
asymptotic expansion of the error. Based on the error asymptotic expansion, the Richardson
extrapolation method is applied to enhance the numerical accuracy of the approximate
solution. Furthermore, we obtain the posterior error estimate of the method. Numerical
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experiments effectively support the theoretical analysis, and all the calculations can be
easily implemented.

This paper is organized as follows: In Section 2, the existence and uniqueness of the
solution for (1) are proven. The numerical algorithm is introduced in Section 3. In Section 4,
we prove the existence and uniqueness of the approximate solution. In Section 5, we
provide the convergence analysis of the approximate solution. In Section 6, we obtain
the asymptotic expansion of error, the corresponding extrapolation technique is used for
achieving high precision, and a posterior error estimate is derived. Numerical examples
are described in Section 7. Finally, we outline the conclusions of the paper in Section 8.

2. Existence and Uniqueness of Solution of the Original Equation

In this section, we discuss the existence and uniqueness of the solution of the original
equation. There are two cases, 0 ≤ t ≤ T ≤ 1 and 1 < t ≤ T, that we will discuss in
the following.

Lemma 1 ([32]). Let y(t) and g(t) be non-negative integrable functions, t ∈ [0, T], A ≥ 0,
satisfying

y(t) ≤ A +
∫ t

0
g(s)y(s)ds,

then, for all 0 ≤ t ≤ T,

y(t) ≤ Ae
∫ t

0 g(s)ds.

Theorem 1. f (t), k1(t, s; y(s)), k2(t, s; y(s)) are r(r ≥ 1, r ∈ N) times continuously differ-
entiable on I, D × R, Dθ × R, respectively. Additionally, assume that ki(t, s; y(s)) (i = 1, 2)
satisfies the Lipschitz conditions (2), respectively. Then, Equation (1) has a unique solution.

Proof. We first construct the sequence {yn(t), n ∈ N} as follows:

y0(t) = f (t),

yn(t) = f (t) +
∫ t

0
sλk1(t, s; yn−1(s))ds +

∫ qt

0
sµk2(t, s; yn−1(s))ds.

Let b = max
0≤t≤T

|y1(t)− y0(t)|, L = max{L1, L2}, γ = min{λ, µ}.

• Case I. For 0 ≤ s ≤ t ≤ T ≤ 1, by means of mathematical induction, when n = 1,

|y2(t)− y1(t)| =
∣∣∣∣ ∫ t

0
sλ
(

k1
(
t, s; y1(s)

)
− k1

(
t, s; y0(s)

))
ds +

∫ qt

0
sµ
(

k2
(
t, s; y1(s)

)
− k2

(
t, s; y0(s)

))
ds
∣∣∣∣

≤
∫ t

0
sλ
∣∣∣k1
(
t, s; y1(s)

)
− k1

(
t, s; y0(s)

)∣∣∣ds +
∫ qt

0
sµ
∣∣∣k2
(
t, s; y1(s)

)
− k2

(
t, s; y0(s)

)∣∣∣ds

≤
∫ t

0
L1sλ

∣∣y1(s)− y0(s)
∣∣+ ∫ t

0
L2sµ

∣∣y1(s)− y0(s)
∣∣ds

≤
∫ t

0
(sλLb + sµLb)ds

≤ 2Lb
∫ t

0
sγds

= 2Lb
tγ+1

γ + 1
.

(3)

Suppose that the following expression is established when n = k,

|yk(t)− yk−1(t)| ≤ b
(2L)k−1

(k− 1)!(γ + 1)k−1 t(k−1)(γ+1). (4)

Let n = k + 1; then,
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∣∣yk+1(t)− yk(t)
∣∣ ≤ ∫ t

0
sλ
∣∣∣k1
(
t, s; yk(s)

)
− k1

(
t, s; yk−1(s)

)∣∣∣ds +
∫ qt

0
sµ
∣∣∣k2
(
t, s; yk(s)

)
− k2

(
t, s; yk−1(s)

)∣∣∣ds

≤
∫ t

0
L1sλ

∣∣yk(s)− yk−1(s)
∣∣+ ∫ t

0
L2sµ

∣∣yk(s)− yk−1(s)
∣∣ds

≤ 2L
∫ t

0
sγ
∣∣yk(s)− yk−1(s)

∣∣ds

≤ b
(2L)k

k!(γ + 1)k tk(γ+1),

that is, the recurrence relation is established when n = k + 1, then the inequality (4) is
also established. Next, we prove that the sequence yn(t) is a Cauchy sequence,∣∣yn(t)− yn+m(t)
∣∣ ≤ ∣∣yn+1(t)− yn(t)

∣∣+ ∣∣yn+2(t)− yn+1(t)
∣∣+ · · ·+ ∣∣yn+m(t)− yn+m−1(t)

∣∣
≤ b

(2L)n

n!(γ + 1)n tn(γ+1) + · · ·+ b
(2L)n+m−1

(n + m− 1)!(γ + 1)n+m−1 t(n+m−1)(γ+1)

≤ b
n+m+1

∑
i=n

(
2L

γ + 1
)iTi(γ+1) 1

i!
.

The term
∞
∑

i=0
( 2L

γ+1 )
iTi(γ+1) 1

i! is convergent, so the Cauchy sequence {yn}n∈N is con-

vergent uniformly to y(t). Thus, y(t) is the solution to Equation (1), the existence
is proved.

• Case II. For 1 < s ≤ t ≤ T, the process is similar. Let γ̃ = max{λ, µ}, when n = 1,

|y2(t)− y1(t)| ≤ 2Lb
tγ̃+1

γ̃ + 1
. (5)

Suppose that the following expression is established when n = k,

|yk(t)− yk−1(t)| ≤ b
(2L)k−1

(k− 1)!(γ̃ + 1)k−1 t(k−1)(γ̃+1). (6)

Let n = k + 1. Then, we have

∣∣yk+1(t)− yk(t)
∣∣ ≤ b

(2L)k

k!(γ̃ + 1)k tk(γ̃+1),

i.e., the recurrence relation is established when n = k + 1, such that the inequality (6)
is also established. For the sequence yn(t),

∣∣yn(t)− yn+m(t)
∣∣ ≤ b

n+m+1

∑
i=n

(
2L

γ̃ + 1
)iTi(γ̃+1) 1

i!
.

Since the term
∞
∑

i=0
( 2L

γ̃+1 )
iTi(γ̃+1) 1

i! is convergent, so the Cauchy sequence {yn}n∈N is

convergent uniformly to y(t). Thus, y(t) is the solution to Equation (1), the existence
is proved.
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Now, we prove that the solution to Equation (1) is unique. Let y(t) and v(t) be two dis-
tinct solutions to Equation (1), and denote the difference between them by
w(t) = |y(t)− v(t)|. We obtain

w(t) =
∣∣∣ ∫ t

0
sλ
(

k1
(
t, s; y(s)

)
− k1

(
t, s; v(s)

))
ds +

∫ qt

0
sµ
(

k2
(
t, s; y(s)

)
− k2

(
t, s; v(s)

))
ds
∣∣∣

≤
∫ t

0
sλ
∣∣∣k1
(
t, s; y(s)

)
− k1

(
t, s; v(s)

)∣∣∣ds +
∫ qt

0
sµ
∣∣∣k2
(
t, s; y(s)

)
− k2

(
t, s; v(s)

)∣∣∣ds

≤
∫ t

0
L1sλw(s)ds +

∫ qt

0
L2sµw(s)ds

≤
∫ t

0
(Lsλ + Lsµ)w(s)ds.

Let g(s) = Lsλ + Lsµ, then g(s) is a non-negative integrable function, according to
Lemma 1. We obtain w(t) = 0, i.e., y(t) = v(t), the solution to Equation (1) is unique.

3. The Numerical Algorithm

In this section, we first provide some essential lemmas which are useful for the deriva-
tion of the approximate equation. Next, the discrete form of Equation (1) is obtained by
combining an improved trapezoidal quadrature formula and linear interpolation. Finally,
we solve the approximate equation using an iterative method. The process does not have
to compute the integrals; hence, the method can be implemented easily.

3.1. Some Lemmas

Lemma 2 ([32]). Let u ∈ C3(0, 1) and z = βx + (1− β)y with β ∈ [0, 1], x, y ∈ [0, T]. Then,

u(z) = βu(x) + (1− β)u(y)− β(1− β)

2
(x− y)2u′′(z) + O((x− y)3). (7)

Proof. The Taylor expansion of function u(x) at the point z is

u(x) = u(βx + (1− β)x)

= u(βx + (1− β)y + (1− β)(x− y))

= u(z + (1− β)(x− y))

= u(z) + (1− β)(x− y)u′(z) +
(1− β)2

2
(x− y)2u′′(z) + O((x− y)3).

(8)

Similarly, the Taylor expansion of function u(y) at point z is

u(y) = u(z− β(x− y)) = u(z)− β(x− y)u′(z) +
β2

2
(x− y)2u′′(z) + O((x− y)3), (9)

combining (8) with (9), the proof is completed.

Lemma 3 ([33,34]). Let g(t) ∈ C2r̃[a, b] (r̃ ≥ 1, r̃ ∈ N), G(t) = (b − t)λg(t), h = (b−a)
N ,

and tk = a + kh for k = 0, · · · , N, as for the integral
∫ b

a G(t)dt. Then, the error of the modified
trapezoidal integration rule

TN(G) =
h
2

G(t0) + h
N−1

∑
j=1

G(tk)− ζ(−λ)g(b)h1+λ, (10)

has an asymptotic expansion
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EN(G) =
r̃−1

∑
j=1

B2j

(2j)!
G(2j−1)(a)h2j +

2r̃−1

∑
j=1

(−1)jζ(−λ− j)
g(j)(b)hj+λ+1

(j!)
+ O(h2r̃), (11)

where −1 < λ < 0, ζ is the Riemann–Zeta function and B2j represents the Bernoulli numbers.

3.2. The Approximation Process

In this subsection, we describe the numerical method used to find the approxi-
mate solution to Equation (1). Let y(t) have continuous partial derivatives up to 3 on I,
f (t), k1(t, s; y(s)), k2(t, s; y(s)) are four times continuously differentiable on I,
D × R, Dθ × R, respectively. Let y(ti), yi denote the exact solution and approximate
solution when t = ti, respectively. We divide I = [0, T] into N subintervals with a uniform
step size h = T

N , ti = ih, i = 0, 1, · · · , N. Let t = ti in Equation (1). Then,

y(ti) = f (ti) +
∫ ti

0
sλk1

(
ti, s; y(s)

)
ds +

∫ qti

0
sµk2

(
ti, s; y(s)

)
ds

= f (ti) +
∫ ti

0
sλk1

(
ti, s; y(s)

)
ds +

∫ t[qi]

0
sµk2

(
ti, s; y(s)

)
ds +

∫ qti

t[qi]

sµk2
(
ti, s; y(s)

)
ds

= f (ti) + I1 + I2 + I3,

(12)

where [qi] denotes the maximum integer less than qi. According to Lemma 3, we have

I1 =
∫ ti

0
sλk1

(
ti, s; y(s)

)
ds ≈ −ζ(−λ)k1

(
ti, t0; y(t0)

)
h1+λ + h

i−1

∑
k=1

tλ
k k1
(
ti, tk; y(tk)

)
+

h
2

tλ
i k1
(
ti, ti; y(ti)

)
. (13)

For I2 and I3, there are two cases.

• Case I. If [qi] = 0, then

I2 = 0;

I3 =
∫ qti

0
sµk2

(
ti, s; y(s)

)
ds ≈ −ζ(−µ)(qti)

1+µk2
(
ti, t0; y(t0)

)
+

qti
2
(qti)

µk2
(
ti, qti; y(qti)

)
.

(14)

• Case II. If [qi] ≥ 1, we obtain

I2 ≈


−ζ(−µ)h1+µk2

(
ti, t0; y(t0)

)
+ h

2 tµ
1 k2
(
ti, t1; y(t1)

)
, [qi] = 1,

−ζ(−µ)h1+µk2
(
ti, t0; y(t0)

)
+ h

[qi]−1
∑

k=1
tµ
k k2
(
ti, tk; y(tk)

)
+ h

2 tµ

[qi]k2
(
ti, t[qi]; y(t[qi])

)
, [qi] > 1.

I3 ≈
qti − t[qi]

2

(
tµ

[qi]k2
(
ti, t[qi]; y(t[qi])

)
+ (qti)

µk2
(
ti, qti; y(qti)

))
. (15)

y(qti) can be represented by linear interpolation of the adjacent points y(t[qi]) and y(t[qi]+1).
For the node ti = ih, i = 0, 1, · · · , N, since [qi] ≤ qi ≤ [qi] + 1, we obtain
t[qi] ≤ qti ≤ t[qi]+1; according to Lemma 2, there exists βi ∈ [0, 1] such that
qti = βit[qi] + (1 − βi)t[qi]+1. The value of βi = 1 + [qi] − qi can be calculated easily.
Then, the approximate expression of y(qti) is

y(qti) ≈ βiy(t[qi]) + (1− βi)y(t[qi]+1). (16)

Then, (15) can be written as

I3 ≈
qti − t[qi]

2

(
tµ

[qi]k2
(
ti, t[qi]; y(t[qi])

)
+ (qti)

µk2
(
ti, qti; βiy(t[qi]) + (1− βi)y(t[qi]+1)

))
. (17)

The approximation equations are as follows
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• Case I. When [qi] = 0,

y0 = f (t0);

yi ≈ f (ti)− ζ(−λ)k1
(
ti, t0; y0

)
h1+λ + h

i−1

∑
k=1

tλ
k k1
(
ti, tk; yk

)
+

h
2

tλ
i k1
(
ti, ti; yi

)
− ζ(−µ)(qti)

1+µk2
(
ti, t0; y0

)
+

qti
2
(qti)

µk2
(
ti, qti; βiy[qi] + (1− βi)y[qi]+1

)
.

(18)

• Case II. When [qi] ≥ 1,

y0 = f (t0);

yi ≈ f (ti)− ζ(−λ)k1
(
ti, t0; y0

)
h1+λ + h

i−1

∑
k=1

tλ
k k1
(
ti, tk; yk

)
+

h
2

tλ
i k1
(
ti, ti; yi

)
− ζ(−µ)h1+µk2

(
ti, t0; y0

)
+ δi +

h
2

tµ

[qi]k2
(
ti, t[qi]; y[qi]

)
+

qti − t[qi]

2

(
tµ

[qi]k2
(
ti, t[qi]; y[qi]

)
+ (qti)

µk2
(
ti, qti; βiy[qi] + (1− βi)y[qi]+1

))
,

(19)

where

δi ≈


0, [qi] = 1,

h
[qi]−1

∑
k=1

tµ
k k2
(
ti, tk; yk

)
, [qi] ≥ 2.

3.3. Iterative Scheme

Now, the solution of the approximate equation can be solved by an iterative algorithm.

Iterative algorithm

Step 1. Take sufficiently small ε > 0 and set ỹ0 = f (t0), i := 1.
Step 2. Let ỹ0

i = ỹi−1, m := 0, then we compute ym+1
i (i ≤ N) as follows:

• Case I. When [qi] = 0,

y0 = f (t0);

ym+1
i ≈ f (ti)− ζ(−λ)k1

(
ti, t0; ỹ0

)
h1+λ + h

i−1

∑
k=1

tλ
k k1
(
ti, tk; ỹk

)
+

h
2

tλ
i k1
(
ti, ti; ym

i
)

− ζ(−µ)(qti)
1+µk2

(
ti, t0; ỹ0

)
+

qti
2
(qti)

µk2
(
ti, qti; βi ỹ[qi] + (1− βi)ym+1

[qi]+1

)
.

(20)

• Case II. When [qi] ≥ 1,

y0 = f (t0);

ym+1
i ≈ f (ti)− ζ(−λ)k1(ti, t0; ỹ0)h1+λ + h

i−1

∑
k=1

tλ
k k1(ti, tk; ỹk) +

h
2

tλ
i k1(ti, ti; ym

i )

− ζ(−µ)h1+µk2
(
ti, t0; ỹ0

)
+ δ̃i +

h
2

tµ

[qi]k2
(
ti, t[qi]; ỹ[qi]

)
+

qti − t[qi]

2

(
tµ

[qi]k2(ti, t[qi]; ỹ[qi]) + (qti)
µk2
(
ti, qti; βi ỹ[qi] + (1− βi)ym+1

[qi]+1

))
,

(21)

where

δ̃i ≈
{

0, [qi] = 1,

h ∑
[qi]−1
k=1 tµ

k k2
(
ti, tk; ỹk

)
, [qi] ≥ 2.

Step 3. If |ym+1
i − ym

i | ≤ ε, then let ỹi := ym+1
i and i := i + 1, and return to step 2. If

otherwise, let m := m + 1, and return to step 2.
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Remark 1. In Section 3.2, we considered the regularity of ki(t, s; y(s))(i = 1, 2) only up to r̃ = 2
in Lemma 3, since the desired accuracy has been obtained, and it is sufficient for the subsequent
convergence analysis and extrapolation algorithm.

4. Existence and Uniqueness of the Solution to the Approximate Equation

In this section, we investigate the existence and uniqueness of the solution to the
approximate equation. We first introduce the following discrete Gronwall inequality.

Lemma 4 ([35,36]). Suppose that the non-negative sequence {wn}, n = 0, · · · , N, satisfy

wn ≤ h
n−1

∑
k=1

Bkwk + A, 0 ≤ n ≤ N, (22)

where A and Bk, k = 1, · · · , N are non-negative constants, h = 1/N, when h max
0≤k≤N

wk ≤ 1
2 then

we have

max
0≤n≤N

wn ≤ A exp(2h
N

∑
k=1

Bk).

Theorem 2. Let f (t), k1(t, s; y(s)), k2(t, s; y(s)) are four times continuously differentiable on
I, D× R, Dθ × R, respectively. Additionally, y(t) has continuous partial derivatives up to 3 on
I and ki(t, s; y(s)) (i = 1, 2) satisfy Lipschitz conditions (2). Assume that h is sufficiently small,
then the solution to Equation (21) exists and is unique.

Proof. We discuss the existence of the approximate solution under two cases.

• Case I. When [qi] = 0,

∣∣ym+1
i − ym

i
∣∣ =∣∣∣h

2
tλ
i
(
k1(ti, ti; ym

i )− k1(ti, ti; ym−1
i )

)∣∣∣
≤L1

h
2

tλ
i
∣∣ym

i − ym−1
i

∣∣.
When h is sufficiently small, such that L1

h
2 tλ

i ≤
1
2 , then |ym+1

i − ym
i | ≤

1
2 |ym

i − ym−1
i |

holds. Therefore, the iterative algorithm is convergent and the limit is the solution to
the approximation equation. The existence of approximation is proved when [qi] = 0.
Now, we prove the uniqueness of approximation. Suppose yi and xi are both solutions
to Equation (20). Denote the absolute differences as wi = |yi − xi|. We have

w0 =0,

wi ≤− ζ(−λ)
∣∣k1(ti, t0; y0)− k1(ti, t0; x0)

∣∣h1+λ + h
i−1

∑
k=1

tλ
k
∣∣k1(ti, tk; yk)− k1(ti, tk; xk)

∣∣
+

h
2

tλ
i
∣∣k1(ti, ti; yi)− k1(ti, ti; xi)

∣∣− ζ(−µ)(qt1)
1+µ
∣∣k2(ti, t0; y0)− k2(ti, t0; x0)

∣∣
+

qti
2
(qti)

µ
∣∣k2(ti, qti; βiy[qi] + (1− βi)y[qi]+1)− k2(ti, qti; βix[qi] + (1− βi)x[qi]+1)

∣∣
≤L1h

i−1

∑
k=1

tλ
k wk + L1

h
2

tλ
i wi + L2

qti
2
(qti)

µ(βiw[qi] + (1− βi)w[qi]+1)

≤Lh
i−1

∑
k=1

tλ
k wk + L

h
2

tλ
i wi + L

qti
2
(qti)

µ(1− βi)w1. (23)
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where L = max{L1, L2}. When h is sufficiently small, such that L1
h
2 tλ

i ≤
1
2 , we have

wi ≤2Lh
i−1

∑
k=1

tλ
k wk + Lhtλ

i wi + Lqti(qti)
µ(1− βi)w1

≤
[
2Lhtλ

k + Lh(qti)
µ(1− βi)

]
w1 + 2Lh

i−1

∑
k=2

tλ
k wk

=h
i−1

∑
k=1

Bkwk,

where

Bk =

{
2Ltλ

k + L(qti)
µ(1− βi), j = 1,

2Lhtλ
k , j = 2, · · · , i− 1.

According to Lemma 4 with A = 0, we have wi = 0, i.e., yi = xi, the solution of
Equation (20) is unique.

• Case II. For [qi] > 1, we consider the following cases.

(1) The first situation is [qi] + 1 = i, namely, when i ≤ 1
1−q , we have∣∣ym+1

i − ym
i
∣∣ =∣∣∣h

2
tλ
i
(
k1(ti, ti; ym

i )− k1(ti, ti; ym−1
i )

)∣∣∣
+

qti − t[qi]

2
(qti)

µ
∣∣∣k2
(
ti, qti; βi ỹ[qi] + (1− βi)ym

[qi]+1
)
− k2

(
ti, qti; βi ỹ[qi] + (1− βi)ym−1

[qi]+1

)∣∣∣
≤L1

h
2

tλ
i
∣∣ym

i − ym−1
i

∣∣+ L2
qti − t[qi]

2
(qti)

µ
∣∣(1− βi)ym

[qi]+1 − (1− βi)ym−1
[qi]+1

∣∣
≤L

h
2
(
tλ
i + (qti)

µ(1− βi)
)∣∣ym

i − ym−1
i

∣∣.
Let the step size h be small enough, such that L h

2
(
tλ
i + (qti)

µ(1− βi)
)
≤ 1

2 . Then,
we can determine that |ym+1

i − ym
i | ≤

1
2 |ym

i − ym−1
i | holds.

(2) The second situation is [qi] + 1 < i, namely, when i > 1
1−q , we obtain

∣∣ym+1
i − ym

i
∣∣ =∣∣∣h

2
tλ
i
(
k1(ti, ti; ym

i )− k1(ti, ti; ym−1
i )

)∣∣∣
≤ L1

h
2

tλ
i
∣∣ym

i − ym−1
i

∣∣
≤ L

h
2

tλ
i
∣∣ym

i − ym−1
i

∣∣.
Let L h

2 tλ
i ≤

1
2 for a sufficiently small h, then |ym+1

i − ym
i | ≤

1
2 |ym

i − ym−1
i | holds.

The above two situations show that the iterative algorithm is convergent and that the
limit is the solution to Equation (21).

Next, we prove that the solution to Equation (21) is unique. Suppose yi and x̃i are both
solutions to Equation (21). Denote the differences as w̃i = |yi − x̃i|, i = 1, · · · , N. Then,
we have
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w̃0 =0;

w̃i ≤− ζ(−λ)
∣∣k1(ti, t0; y0)− k1(ti, t0; x̃0)

∣∣h1+λ + h
i−1

∑
k=1

tλ
k
∣∣k1(ti, tk; yk)− k1(ti, tk; x̃k)

∣∣
+

h
2

tλ
i
∣∣k1(ti, ti; yi)− k1(ti, ti; x̃i)

∣∣− ζ(−µ)h1+µ
∣∣k2(ti, t0; y0)− k2(ti, t0; x̃0)

∣∣
+ h

[qi]−1

∑
k=1

tµ
k |k2(ti, tk; yk)− k2(ti, tk; x̃k)

∣∣+ h
2

tµ

[qi]|k2(ti, t[qi]; y[qi])− k2(ti, t[qi]; x̃[qi])
∣∣

+
qti − t[qi]

2
(tµ

[qi]

∣∣k2(ti, t[qi]; y[qi])− k2(ti, t[qi]; x̃[qi])
∣∣ (24)

+ (qti)
µ
∣∣k2
(
ti, qti; βiy[qi] + (1− βi)y[qi]+1)

)
− k2

(
ti, qti; βi x̃[qi] + (1− βi)x̃[qi]+1)

)∣∣
≤h

i−1

∑
k=1

tλ
k L1w̃k +

h
2

tλ
i L1w̃i + h

[qi]−1

∑
k=1

tµ
k L2w̃k +

h
2

tµ

[qi]L2w̃[qi]

+
qti − t[qi]

2
(
tµ

[qi]L2w̃[qi] + (qti)
µL2(βiw̃[qi] + (1− βi)w̃[qi]+1)

)
≤Lh

i−1

∑
k=1

tγ
k w̃k + L

h
2

tγ
i w̃i + Lh

[qi]−1

∑
k=1

tγ
k w̃k + L

h
2

tγ
[qi]w̃[qi]

+ L
h
2

(
tγ
[qi]w̃[qi] + tγ

[qi]

(
βiw̃[qi] + (1− βi)w̃[qi]+1

))
.

(1) The first situation is [qi] + 1 = i (i.e., when i ≤ 1
1−q ). Then, (24) entails

w̃i ≤Lh
[qi]−1

∑
k=1

tγ
k w̃k + Lhtγ

[qi]w̃[qi] + L
h
2

tγ
i w̃i + Lh

[qi]−1

∑
k=1

tγ
k w̃k + L

h
2

tγ
[qi]w̃[qi]

+ L
h
2

(
tγ
[qi]w̃[qi] + tγ

[qi]

(
βiw̃[qi] + (1− βi)w̃[qi]+1

))
=2Lh

[qi]−1

∑
k=1

tγ
k w̃k + (2Lhtγ

[qi] + L
h
2

βit
γ
[qi])w̃[qi] +

(
L

h
2

tγ
i + L

h
2

tγ
[qi](1− βi)

)
w̃[qi]+1.

(25)

By letting h be so small that
(

L h
2 tγ

i + L h
2 tγ

[qi](1− βi)
)
≤ 1

2 , we can easily derive

w̃i ≤ 4Lh
[qi]−1

∑
k=1

tγ
k wk + (4Lhtγ

[qi] + Lhβit
γ
[qi])w̃[qi] = h

i−1

∑
k=1

Bkw̃k,

where

Bk =

{
4Ltγ

k , j = 1, · · · , [qi]− 1,
4Ltγ

[qi] + Lβit
γ
[qi], j = [qi].

According to Lemma 4 with A = 0, we have wi = 0, and the solution of Equation (21)
is unique.

(2) The second situation is [qi] + 1 < i (i.e., when i > 1
1−q ). Then, (24) can imply
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w̃i ≤Lh
[qi]−1

∑
k=1

tγ
k w̃k + Lhtγ

[qi]w̃[qi] + Lhtγ
[qi]+1w̃[qi]+1 + Lh

i−1

∑
k=[qi]+2

tγ
k w̃k + L

h
2

tγ
i w̃i

+ Lh
[qi]−1

∑
k=1

tγ
k w̃k + L

h
2

tγ
[qi]w̃[qi] + L

h
2

(
tγ
[qi]w̃[qi] + tγ

[qi]

(
βiw̃[qi] +

(
1− βi)w̃[qi]+1

))
=2Lh

[qi]−1

∑
k=1

tγ
k w̃k +

(
2Lhtγ

[qi] + L
h
2

βit
γ
[qi]

)
w̃[qi] +

(
Lhtγ

[qi]+1 + L
h
2

tγ
[qi](1− βi)

)
w̃[qi]+1

+ Lh
i−1

∑
k=[qi]+2

tγ
k w̃k + L

h
2

tγ
i w̃i.

(26)

Letting h be so small that L h
2 tγ

i ≤
1
2 , then

w̃i ≤4Lh
[qi]−1

∑
k=1

tγ
k w̃k + (4Lhtγ

[qi] + Lhβit
γ
[qi])w̃[qi] +

(
2Lhtγ

[qi]+1 + Lhtγ
[qi](1− βi)

)
w̃[qi]+1 + 2Lh

i−1

∑
k=[qi]+2

tγ
k w̃k

=h
n−1

∑
k=1

B̃kw̃k,

where

B̃k =


4Ltγ

k , j = 1, · · · , [qi]− 1,
4Ltγ

[qi] + Lβit
γ
[qi], j = [qi],

2Ltγ
[qi]+1 + Ltγ

[qi](1− βi), j = [qi] + 1,

2Ltγ
k , j = [qi] + 2, · · · , i− 1.

According to Lemma 4 with A = 0, we have w̃i = 0, i.e., yi = x̃i, the solution
of Equation (21) is unique. Combining the above situations, the proof of Theorem 2
is completed.

5. Convergence Analysis

In this section, we will discuss errors caused by the process of obtaining discrete
equations using a quadrature formula and interpolation technique and the errors caused
by solving the discrete equation using iterative algorithms. According to the quadrature
rule, Equation (12) can be expressed as

y(t0) = f (t0),

y(ti) = f (ti)− ζ(−λ)k1
(
ti, t0; y(t0)

)
h1+λ + h

i−1

∑
k=1

tλ
k k1
(
ti, tk; y(tk)

)
+

h
2

tλ
i k1
(
ti, ti; y(ti)

)
+ E1,i

− ζ(−µ)h1+µk2
(
ti, t0; y(t0)

)
+ h

[qi]−1

∑
k=1

tµ
k k2
(
ti, tk; y(tk)

)
+

h
2

tµ

[qi]k2
(
ti, t[qi]; y(t[qi])

)
+ E2,i

+
qti − t[qi]

2

(
tµ

[qi]k2
(
ti, t[qi]; y(t[qi])

)
+ (qti)

µk2
(
ti, qti; βiy(t[qi]) + (1− βi)y(t[qi]+1)

))
+ E3,i.

(27)

From Lemmas 2 and 3, the remainders are

E1,i = [k1
(
ti, s; y(s)

)
]′
∣∣
s=0ζ(−λ− 1)h2+λ +

[k1
(
ti, s; y(s)

)
]′
∣∣
s=0

2!
ζ(−λ− 2)h3+λ + O(h4+λ)

= T1(ti)h2+λ + O(h3+λ),
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E2,i = [k2(ti, s; y(s))]′
∣∣
s=0ζ(−µ− 1)h2+γ +

[k2(ti, s; y(s))]′
∣∣
s=0

2!
ζ(−µ− 2)h3+µ + O(h4+µ)

= T2(ti)h2+µ + O(h3+µ),

E3,i =−
β(1− β)

2
h2y′′(qti)(qti)

γk2

(
ti, qti;

(
βiy(t[qi]) + (1− βi)y(t[qi]+1)

))
+

(qti − t[qi])
2

12

∫ qti

t[qi]

∂2

∂s2

(
k2
(
ti, s; y(s)

)
sµ
)

ds + O(h3)

=T3(ti)h2 +
(qti − t[qi])

2 − h2

12

∫ qti

t[qi]

∂2

∂s2

(
k2
(
ti, s; y(s)

)
sµ
)

ds + O(h3)

=T3(ti)h2 + O(h3),

where

T1(ti) = [k1
(
ti, s; y(s)

)
]′
∣∣
s=0ζ(−λ− 1),

T2(ti) = [k2
(
ti, s; y(s)

)
]′
∣∣
s=0ζ(−µ− 1),

T3(ti) = −
β(1− β)

2
u′′(qti)(qti)

µk2

(
ti, qti;

(
βiy(t[qi]) + (1− βi)y(t[qi]+1)

))
+

1
12

∫ qti

t[qi]

∂2

∂s2 k2
(
ti, s; y(s)

)
sµds.

In order to investigate the error between the exact solution and the approximate
solution of Equation (1), we first give the following theorem.

Theorem 3. Under the conditions of Theorem 2, y(ti) is the exact solution of Equation (1) when
t = ti and yi is the solution of discrete Equation (19) at ti. Assume that h is sufficiently small, then,
the absolute error denote by e1,i = |y(ti)− yi| has the estimate

max
1≤i≤N

|e1,i| ≤ O(h2+γ).

Proof. Subtracting (19) from (27),∣∣e1,0
∣∣ =0,∣∣e1,i
∣∣ =− ζ(−λ)

∣∣k1(ti, t0; y(t0))− k1(ti, t0; y0)
∣∣h1+λ + h

i−1

∑
k=1

tλ
k
∣∣k1(ti, tk; y(tk))− k1(ti, tk; yk)

∣∣
+

h
2

tλ
i
∣∣k1(ti, ti; y(ti))− k1(ti, ti; yi)

∣∣− ζ(−µ)h1+µ
∣∣k2(ti, t0; y(t0))− k2(ti, t0; y0)

∣∣
+ h

[qi]−1

∑
k=1

tµ
k

∣∣k2(ti, tk; y(tk))− k2(ti, tk; yk)
∣∣+ h

2
tµ

[qi]

∣∣k2(ti, t[qi]; y(t[qi]))− k2(ti, t[qi]; y[qi])
∣∣

+
qti − t[qi]

2

(
tµ

[qi]

∣∣k2(ti, t[qi]; y(t[qi]))− k2(ti, t[qi]; y[qi])
∣∣

+ (qti)
µ
∣∣k2
(
ti, qti; βiy(t[qi]) + (1− βi)y(t[qi]+1)

)
− k2(ti, qti; βiy[qi] + (1− βi)y[qi]+1)

∣∣)
+ T1(ti)h2+λ + T2(ti)h2+µ + T3(ti)h2 + O(h3+γ)

=h
i−1

∑
k=1

tλ
k L1|e1,k|+

h
2

tλ
i L1|e1,i|+ h

[qi]−1

∑
k=1

tµ
k L2|e1,k|+

h
2

tµ

[qi]L2|e1,[qi]|

+
qti − t[qi]

2

(
tµ

[qi]L2|e1,[qi]|+ (qti)
µL2|βie1,[qi] + (1− βi)e1,[qi]+1|

)
+ T1(ti)h2+λ + T2(ti)h2+µ + T3(ti)h2 + O(h3+γ).

(28)
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Letting h be so small, that h
2 tλ

i L1 ≤ 1
2 , it is easy to derive

|e1,i| ≤ A + h
i−1

∑
j=1

Bj|e1,j|, 0 ≤ i ≤ N,

where
A = 2|T1(ti)h2+λ + T2(ti)h2+µ + T3(ti)h2 + O(h3+γ) = O(h2+γ).

By Lemma 4, we have
max

1≤i≤N
|e1,i| ≤ O(h2+γ).

The proof is complete.

Next, we evaluate the error arising from the iterative process.

Theorem 4. Under the conditions of Theorem 2, yi is the solution of Equation (19) and ỹi is the
approximate solution of Equation (1), and ỹi is defined by (21). The absolute error is denoted by
e2,i = |yi − ỹi|. Assume that h is sufficiently small, then, there exist two positive constants, C1 and
C2, which are independent of h = T

N , such that

vi ≤
{

C1hε, [qi] + 1 = i,
C2hε, [qi] + 1 ≤ i.

Proof. Subtracting (21) from (19), we have e2,0 = 0. We consider two cases.

(1) The first case is [qi] + 1 = i (i.e., when i ≤ 1
1−q ). Then, we have

e2,i =h
i−1

∑
k=1

tλ
k L1e2,k +

h
2

tλ
i L1ε + h

[qi]−1

∑
k=1

tµ
k L2e2,k +

h
2

tµ

[qi]L2e2,[qi]

+
qti − t[qi]

2
(
tµ

[qi]L2e2,[qi] + (qti)
µL2(βie2,[qi] + (1− βi)ε)

)
≤h

i−1

∑
k=1

tλ
k Le2,k + h

[qi]−1

∑
k=1

tµ
k Le2,k +

h
2

tµ

[qi]Le2,[qi]

+
h
2
(
tµ

[qi]L + (qti)
µβi
)
e2,[qi] +

(h
2
(qti)

µL(1− βi) +
h
2

tλ
i L
)
ε

=h
i−1

∑
k=1

Bke2,k +
(1

2
(qti)

µL(1− βi) +
1
2

tλ
i L
)
hε.

(29)

According to Lemma 4, we have e2,i ≤ C1hε.
(2) The second case is [qi] + 1 ≤ i (i.e., when i > 1

1−q ). Then, we obtain

e2,i =h
i−1

∑
k=1

tλ
k L1e2,k +

h
2

tλ
i L1ε + h

[qi]−1

∑
k=1

tµ
k L2e2,k +

h
2

tµ

[qi]L2e2,[qi]

+
qti − t[qi]

2
(
tµ

[qi]L2e2,[qi] + (qti)
µL2(βie2,[qi] + (1− βi)e2,[qi]+1)

)
≤h

i−1

∑
k=1

tλ
k Le2,k +

h
2

tλ
i Lε + h

[qi]−1

∑
k=1

tµ
k Le2,k +

h
2

tµ

[qi]Le2,[qi]

+
h
2
(
tµ

[qi]Le2,[qi] + (qti)
µL(βie2,[qi] + (1− βi)e2,[qi]+1)

)
=h

i−1

∑
k=1

Bke2,k +
1
2

tλ
i Lhε.

(30)
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According to Lemma 4, we have e2,i ≤ C2hε.

Theorem 5. Under the conditions of Theorem 2, y(ti) is the exact solution of Equation (1), ỹi is
the approximate solution of Equation (1) when t = ti, we have

|y(ti)− ỹi| ≤
{

C1hε + O(h2+γ), [qi] + 1 = i,
C2hε + O(h2+γ), [qi] + 1 ≤ i.

Proof. By Theorems 3 and 4, the absolute error between y(ti) and ỹi has the expression

|y(ti)− ỹi| = |y(ti)− yi + yi − ỹi|
≤ |y(ti)− yi|+ |yi − ỹi|.

(31)

We obtain the conclusion of Theorem 5.

6. Extrapolation Method

In this section, we first describe the asymptotic error expansion and then present an
extrapolation technique for achieving high precision. Finally, a posterior error estimate is
derived.

Theorem 6. Let f (t), k1(t, s; y(s)), k2(t, s; y(s)) are four times continuously differentiable on
I, D× R, Dθ × R, respectively. Additionally, y(t) has continuous partial derivatives up to 3 on I
and ki(t, s; y(s)) (i = 1, 2) satisfy Lipschitz conditions (2). There exist functions Ŵi(t)(i = 1, 2, 3)
independent of h, such that we have the following asymptotic expansions:

yi = y(ti) + Ŵ1(ti)h2+λ + Ŵ2(ti))h2+µ + Ŵ3(ti)h2 + O(h3+γ), −1 < λ < 0, −1 < µ ≤ 0. (32)

Proof. Assume that {Ŵk(t), k = 1, 2, 3} satisfy the auxiliary delay equations

Ŵk(t) = Wk(t) +
∫ t

0
sλk1(t, s; y(s))Ŵk(s)ds +

∫ qt

0
sµk2(t, s; y(s))Ŵk(s)ds,

and Ŵk(ti), i = 1, · · · , N satisfy the approximation equations

Ŵk(ti) =− ζ(−λ)h1+λk1(ti, t0; y(t0))Ŵk(t0) + h
i−1

∑
k=1

tλ
k k1(ti, tk; y(tk))Ŵk(tk)

+
h
2

tλ
i k1
(
ti, ti; y(ti)

)
Ŵk(ti)− ζ(−µ)h1+µk2(ti, t0; y(t0))Ŵk(t0)

+ h
[qi]−1

∑
k=1

tµ
k k2(ti, tk; y(tk))Ŵk(tk) +

h
2

tµ

[qi]k2(ti, t[qi]; y(t[qi])Ŵk(ti)

+
qti − t[qi]

2

(
tµ

[qi]k2(ti, t[qi]; y(t[qi]))Ŵk(t[qi]) + (qti)
µk2
(
ti, qti; βiy(t[qi])Ŵk(t[qi])

+ (1− βi)y(t[qi]+1)Ŵk(t[qi]+1)
))

+ Wk(ti).

(33)

The analysis procedure is similar to the proof of Theorem 3. We obtain

max
1≤i≤N

|Ŵk(ti)−W(ti)| ≤ Lh2+γ.

Let
Ei = ei −

(
W1(ti)h2+λ + W2(ti)h2+µ + W3(ti)

)
h2.

Then, we obtain



Mathematics 2021, 9, 1856 15 of 19

Ei =− ζ(−λ)h1+λk1(ti, t0; y(t0))E0 + h
i−1

∑
k=1

tλ
k k1(ti, tk; y(tk))Ek +

h
2

tλ
i k1(ti, ti; y(ti))Ei

− ζ(−µ)h1+µk2(ti, t0; y(t0))E0 + h
[qi]−1

∑
k=1

tµ
k k2(ti, tk; y(tk))Ek +

h
2

tµ

[qi]k2(ti, t[qi]; y(t[qi])E[qi]

+
qti − t[qi]

2

(
tµ

[qi]k2(ti, t[qi]; y(t[qi]))E[qi] + (qti)
µk2
(
ti, qti; βiy(t[qi])E[qi] + (1− βi)y(t[qi]+1)E[qi]+1

))
.

According to Lemma 4, there exists a constant d such that

max
1≤i≤N

|Ei| ≤ dh3+γ.

The asymptotic expansion is

ỹi = y(ti) + Ŵ1(ti)h2+λ + Ŵ2(ti))h2+µ + Ŵ3(ti)h2 + O(h3+γ).

From Theorem 6, we consider the Richardson extrapolation method to achieve
higher accuracy.

Extrapolation algorithm

Step 1. Assume γ = min (λ, µ) = λ, and halve the step length to obtain

ỹ
h
2
i = y(ti) + Ŵ1(ti)

(
h
2

)2+λ

+ Ŵ2(ti)

(
h
2

)2+µ

+ Ŵ3(ti)

(
h
2

)2
+ O

((
h
2

)3+λ
)

. (34)

Then, the term Ŵ1(ti)h2+λ can be removed.

ỹ1,h
i =

22+λỹ
h
2
i − ỹh

i
22+λ − 1

= y(ti) + Ŵ2(ti))h2+µ + Ŵ3(ti)h2 + O(h3+λ). (35)

Step 2. To eliminate Ŵ2(ti))h2+µ, we apply Richardson h2+µ extrapolation:

ỹ1, h
2

i = y(ti) + Ŵ2(ti)

(
h
2

)2+µ

+ Ŵ3(ti)

(
h
2

)2
+ O

((
h
2

)3+λ
)

. (36)

Combining (35) and (36), we have

ỹ2,h
i =

22+µỹ1, h
2

i − ỹ1,h
i

22+µ − 1
= y(ti) + Ŵ3(ti)h2 + O(h3+λ). (37)

A posterior asymptotic error estimate is

∣∣∣ỹ h
2
i − y(ti)

∣∣∣ = ∣∣∣22+λỹ
h
2
i − ỹh

i
22+λ − 1

− y(ti) +
ỹh

i − ỹ
h
2
i

22+λ − 1

∣∣∣ ≤ ∣∣∣22+λỹ
h
2
i − ỹh

i
22+λ − 1

− y(ti)
∣∣∣+ ∣∣∣ ỹh

i − ỹ
h
2
i

22+λ − 1

∣∣∣
=
∣∣∣ỹ1,h

i − y(ti)
∣∣∣+ ∣∣∣ ỹh

i − ỹ
h
2
i

22+λ − 1

∣∣∣+ O(h2)

(38)

The error ỹ
h
2
i − y(ti) is bounded by ỹh

i −ỹ
h
2
i

22+λ−1 , which is important for constructing
adaptable algorithms.
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7. Numerical Experiments

In this section, we illustrate the performance and accuracy of the quadrature method
using the improved trapezoid formula. For ease of notation, we define

Eh = |y(ti)− ỹh
i |, Ek,i = |y(ti)− ỹk,h

i | (k = 1, 2), Rate = log2

( Eh
E h

2

)
,

where ỹh
i is the approximate solution of Equation (1), ỹk,h

i is the approximate solution of
k-th extrapolation, Ek,i is the absolute error between the exact solution and the approximate
solution of k-th extrapolation when t = ti. The procedure was implemented in MATLAB.

Example 1. Consider the following equation

y(t) = f (t)−
∫ t

0
sλ sin(y(s))ds +

∫ qt

0
(t + s) sin(y(s))ds, t ∈ [0, T], (39)

with T = 1, λ = − 1
2 , and q = 0.95. The exact solution is given by y(t) = t and f (t) is determined

by the exact solution.
Applying the algorithm with N = 24, 25, 26, 27, 28, the numerical results at t = 0.4 are

presented in Table 1, the CPU time(s) are 0.34, 0.55, 0.98, 1.62, and 3.01 s, respectively. By
comparing Eh and E1,i, we can observe that the accuracy was improved and the extrapolation
algorithm was effective. In the third column, the rate values show that the convergence order was
consistent with the theoretical analysis.

Table 1. Numerical results at t = 0.4 of Example 1.

N Eh Rate E1,i Posteriori Errors

24 3.32× 10−4 — — —
25 1.18× 10−4 21.50 4.70× 10−6 1.17× 10−4

26 4.01× 10−5 21.55 2.04× 10−6 4.21× 10−5

27 1.35× 10−5 21.57 9.90× 10−7 1.46× 10−5

28 4.51× 10−6 21.58 4.21× 10−7 4.92× 10−6

Example 2. Consider the following equation

y(t) = f (t)−
∫ t

0
sλ(t2 + s)(y(s))2ds +

∫ qt

0
sµ sin(y(s))ds, t ∈ [0, T], (40)

where T = 1, λ = µ = − 1
2 , q = 0.8 and the analytical solution is y(t) = t. Then, f (t) is

determined by the exact solution.
By applying the numerical method for N = 24, 25, 26, 27, 28, the obtained results at t = 0.2

are shown in Table 2. By comparing Eh and E1,i, we can observe that the accuracy was improved,
proving that the extrapolation algorithm is effective. The results verified the theoretic convergence
order, which is O(h1.5).

Table 2. Numerical results at t = 0.2 of Example 2.

N Eh Rate E1,i Posteriori Errors

24 6.57× 10−4 — — —
25 2.30× 10−4 21.51 3.13× 10−6 2.33× 10−4

26 8.03× 10−5 21.52 1.58× 10−6 8.19× 10−5

27 2.81× 10−5 21.52 5.38× 10−7 2.86× 10−5

28 9.82× 10−6 21.52 1.56× 10−7 9.97× 10−6
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Example 3. We consider the following equation

y(t) = f (t)−
∫ t

0
sλ(t + s) sin(y(s))ds +

∫ qt

0
sµ(t + s)(y(s))2ds, t ∈ [0, T], (41)

where T = 1, λ = − 1
3 , µ = − 1

4 , q = 0.9, and the analytical solution is y(t) = t. Then, f (t) is
determined by the exact solution.

By applying the numerical method for N = 24, 25, 26, 27, and 28, the obtained results at
t = 0.4 are shown in Table 3. As λ was not equal to µ, we first applied the Richardson h2+λ

extrapolation, and then adopted the Richardson h2+µ extrapolation. By comparing Eh, E1,i and
E2,i, these results verify the theoretical results, and we can see that the extrapolation improved the
accuracy dramatically. When N = 8, 16, 32, 64, 128, the CPU time(s) are 1.43, 2.41, 3.99, 17.46, and
21.36 s, respectively. The exact solution and the approximation when N=8 are plotted in Figure 1.

Table 3. Numerical results at t = 0.4 of Example 3.

N Eh Rate E1,i E2,i Posteriori Errors

24 9.36× 10−5 — — — —
25 3.23× 10−5 21.53 4.12× 10−6 — 2.82× 10−5

26 1.06× 10−5 21.61 6.00× 10−7 8.89× 10−7 9.99× 10−6

27 3.41× 10−6 21.63 1.17× 10−7 8.70× 10−8 3.30× 10−6

28 1.10× 10−6 21.65 2.31× 10−8 1.68× 10−8 1.07× 10−6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N=2
3

exact solution

Figure 1. The absolute errors and the approximations when N = 23.

8. Conclusions

In this paper, by using the improved trapezoidal quadrature formula and linear inter-
polation, we obtained the approximate equation for non-linear Volterra integral equations
with vanishing delay and weak singular kernels. The approximate solutions were obtained
by an iterative algorithm, which possessed a high accuracy order O(h2+γ). Additionally,
we analyzed the existence and uniqueness of both the exact and approximate solutions.
The significance of this work was that it demonstrated the efficiency and reliability of the
Richardson extrapolation. The computational findings were compared with the exact solu-
tion: we found that our methods possess high accuracy and low computational complexity,
and the results showed good agreement with the theoretical analysis. For future work, we
can apply this method for solving two-dimensional delay integral equations.
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