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Abstract: Artificial intelligence (AI) methods are interesting alternatives to classical approaches for
modeling financial time series since they relax the assumptions imposed on the data generating
process by the parametric models and do not impose any constraint on the model’s functional form.
Even if many studies employed these techniques for modeling financial time series, the connection of
the models’ performances with the statistical characteristics of the data series has not yet been inves-
tigated. Therefore, this research aims to study the performances of Gene Expression Programming
(GEP) for modeling monthly and weekly financial series that present trend and/or seasonality and
after the removal of each component. It is shown that series normality and homoskedasticity do not
influence the models’ quality. The trend removal increases the models’ performance, whereas the
seasonality elimination results in diminishing the goodness of fit. Comparisons with ARIMA models
built are also provided.

Keywords: BET; GEP; statistical analysis; modeling

1. Introduction

Financial time series analysis and forecasting have been interesting research fields for
decades. Time series analysis may explain the law governing the data generating process,
while good models may provide accurate predictions of its future behavior, supporting the
decisions for profitable trading strategies [1,2].

From the apparition of the Box–Jenkins methodology [3] for times series analysis and
forecast, ARIMA and SARIMA models have been extensively used to forecast financial
time series [4,5]. In 1989, Hamilton [6] introduced the Markov Switching Model, which
became one of the most popular models used for the nonlinear series, involving multiple
equations that characterize the series behavior in different regimes [7]. The switching
mechanism has also been incorporated in conditional variance models, such as stochastic
volatility models [8] or GARCH [9]. Recent studies suggest that GARCH [10,11] can be a
promising alternative to the traditional SARIMA method in forecasting problems, especially
for nonlinear data. Still, it was shown that it is difficult to find such models with very high
accuracy for long series with high variability.

The efficient market hypotheses, which assert that the market is efficient, attracted
many criticisms from behavioral economists or psychologists. Introduced by Lo [12], for
the reconciliation of the economic theories based on the efficient market hypothesis with
behavioral economics, the adaptive market hypotheses apply the principles of evolution
(competition, adaptation, and natural selection) [13]. The present study is in line with
this theory.

Last period, artificial intelligence methods were extensively used for modeling finan-
cial series [14,15] because the traditional statistical methods cannot capture high nonlinear-
ity and discontinuities. It seems that the evolutionary algorithms have the learning capacity
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of capturing the nonlinear future (which is dominant in financial series) [16,17], having
the advantage to not rely on a specific form of the fitting model. Approaches like support
vector regression [15,18,19], neural networks [14,20], or hybrid algorithms provided [13,21]
valuable solutions to modeling economic and financial problems.

Part of the family of evolutionary techniques, the genetic programming paradigm, is
defined as a generalization of Holland’s genetic algorithms. Starting from Koza’s seminal
work [22], many algorithms have been developed as alternatives to genetic programming.
One of them is Gene Expression Programming (GEP) [23], which was successfully used for
modeling economics problems. For example, Huang et al. [24] used the GEP to generate
trading signals for stocks, Chen et al. [16,25] utilized the Sortino ratio for fund selection,
followed by the application of GEP for evolving dynamic trading strategies for them.
Modeling economics problems, forecasting mutual funds, and financial indices’ evolution
have also been conducted by other scientists [13,15,25–33].

Despite the significant number of articles in this field, only one investigated the
relationship between the statistical properties of some financial series and the AI models’
goodness of fit. Still, it refers to the generalized regression neural networks [14]. Therefore,
this study will fill a gap in this field. We analyze the statistical properties of different
financial time series and investigate the connection between these properties and the GEP
models’ goodness of fit. Comparisons of these models with the classical ARIMA are also
provided, showing better performances of the GEP models. The research is important for
selecting the best model from a diversity of options.

2. Materials and Methods
2.1. Studied Data and Statistical Tests

The data studied here consist of the BET index closing values, monthly series registered
during October 2000–September 2014, and weekly series recorded in the period 1 October
2000–29 September 2014, downloaded from the website of the Bucharest Stock Exchange
(BSE) [34]. Both series are complete, without gaps. The BET monthly and weekly series are
represented in Figure 1.
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BET, the first index developed by BSE, is a free-float weighted capitalization index
with ten constituents being the reference index for BSE. BET reflects the performance of
the most traded Romanian companies, listed at BVB, meeting the highest standards in the
fields of investor relations and corporate governance. Constituents’ weights are capped
quarterly to ensure that they fulfill the standards for portfolio diversification [35].

Since the series presents high variability, we took the logarithms of their values. The
resulted monthly and weekly data series are denoted by S_m and S_w, respectively.

Statistical tests have been performed at the significance level of 5% for S_m, S_w,
and their subseries determined after the change point detection. The null and alternative
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hypotheses (denoted by H0 and H1, respectively) of these tests are presented in Table 1, to-
gether with the references. Since the statistical tests are well-known, they are not discussed
in detail here. For a deeper insight into them, readers may refer to [36–49].

Table 1. Tests performed for data analysis.

No. Type of Test Null and Alternative Hypotheses Tests Performed

I. Normality H0: The series is Gaussian
H1: The series is not Gaussian

Robust Jarque-Bera [36], Anderson-Darling,
and Shapiro-Wilk tests [37]

II. Homoskedasticity H0: The series is homoskedastic
H1: The series is heteroskedastic Levene test [38]

III. Randomness H0: The series comes from a random process
H1: The series does not come from a random process

Runs test [39,40]
Autocorrelation function [41]

IV. Trend existence H0: The series does not have a monotonic trend
H1: The series has a monotonic trend Mann-Kendall test [42]

V. Unit root tests H0: The series has a unit root
H1: The series is stationary

Augmented Dickey-Fuller test (ADF) [43],
Phillips-Perron test(PP) [44]

VI. Stationarity

H0: The series is stationary (a) in level or (b) around
a deterministic trend

H1: The series is not stationary (a) in level or (b)
around a deterministic trend

KPSS test [45]

VII. Breakpoint H0: The series has no breakpoint
H1: The series has at least a breakpoint Pettitt test [46], CUSUM [47], mDP [48]

2.2. Methods

For modeling purposes, gene expression programming (GEP) was used.
GEP is an algorithm for implementing symbolic regression, that does not request the

advanced specification of the form of the function be determined.
In GEP, an individual is a solution to the problem, with all the individuals (e.g., the

problem’s solutions) forming a population. GEP individuals are represented by hierarchical
mathematical expressions, encoded as multi-genic linear chromosomes of a fixed length,
which are linear strings of functional symbols (+, −, ∗, /, and functions—exponential,
trigonometric, logarithmic, etc.), variables (containing the lagged values of the time series),
and constants [13].

A gene is composed of a head (that may contain any symbol) and a tail (containing
only constants and variables). The user must set the number of genes and the set of symbols
before running the algorithm.

The word generation describes an iteration of the algorithm, pointing out the evolution-
ary aspect of the search process. The initial generation of individuals is randomly selected.

An iteration of the algorithm consists of modifying the individuals and choosing them
based on their quality. The individuals’ modifications are realized by applying genetic
operators: crossover, mutation, and transposition. Crossover combines the features of two
or more parent individuals into one or more children. The mutation alters an individual,
modifying some of its features. The gene transposition randomly chooses one of the
chromosome’s genes and moves it in the place of another gene.

The fitness function evaluates the solution quality.
GEP was used with good results for solving symbolic regression problems and time

series forecasting. In the context of time series modeling, a candidate solution is a mathe-
matical expression formed by functions, variables, and constants, and as a consequence, it
is represented as a parse tree of the mathematical expression [20,23].

If (xt) (t = 1, . . . ,n) represent the values of the data series and (x̂t)t=1, ...,n are those
computed by the algorithm, GEP aims to determine a function f that estimates the registered
value at a moment t (t < n), as best as possible, such that x̂t = f (xt−1, . . . , xt−w), where w
is a window size, and xt−1, . . . , xt−w, 0 ≤ t− w ≤ n are the previous w values.

The analytical form of the function is not specified, being the result of the evolution of
the mathematical expressions in the algorithm.
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The basic structure of the gene expression algorithm is [23]:

(1) Create chromosomes of the initial population;
(2) Express chromosomes and evaluate their fitness;

i If the stopping criterion is satisfied, designate results and stop;
ii If stopping criterion is not satisfied, go to the next step;

(3) Select chromosomes and keep the fittest for the next generation;
(4) Perform genetic modifications via genetic operators and gene recombination;
(5) Select next-generation individuals;
(6) Go to (2).

The termination criterion is the number of generations.
The accuracy of a model for a series of n observations is measured by the correlation

between the actual and predicted values, the root mean squared error (RMSE), the mean
squared error (MSE), the mean absolute error (MAE), and the mean absolute percentage
error (MAPE) [13,14].

The settings for GEP parameters utilized in the present study (typical in the litera-
ture) are: the population size—50, the number of genes per chromosome—4, the gene
head length—8, the maximum generations—2000, and the number of generations with-
out improvement—1000. The settings of the evolution rate were: mutation rate—0.044,
inversion rate—0.1, transposition rates—0.1, recombination rates: one point—0.3, two-
point—0.3, gene rate—0.1. Other settings, recommended by the literature [13,16,22,23] and
used for running the algorithm are:

• The window size, w, was considered between 1 and 12. In the following, we report
only the overall best result experiments;

• The mutation rate of random constants: 0.01;
• Maximum number of iterations: 1000;
• Functions used in expressions: addition, subtraction, multiplication, division, square root;
• Linking function: addition.
• The fitness function is the mean squared error (MSE):

MSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (1)

where xi is the actual value and x̂i is the computed value.
The best solution is the one with the smallest fitness.
The studied series was divided into two parts, the first one for training (70% of data)

and the rest for the test (30% of data). The model was built using the training data (the
algorithm learns the data on this set) and was validated on the test set.

The GEP was chosen for modeling purposes, since it is computationally faster than
the methods based on neural networks and support vector regression, and generally gives
better results in comparison to them.

For details about GEP and its applications, readers may refer to [20,23,49].
ARIMA models have been built as benchmark models for the series and their subseries

determined by the change points.
A linear process (Xt)( t ∈ Z) is called autoregressive of p order—AR(p)—if

Xt =
p

∑
i=1

ϕiXt−i + εt, ϕp 6= 0, t ∈ Z (2)

where (εt, t ∈ Z) is a white noise with the variance σ2.
Defining

Φ(z) = 1− ϕ1z− . . .− ϕpzp, (3)
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the Equation (2) becomes (
1− ϕ1B− . . .− ϕpBp)Xt = εt (4)

or
Φ(B)Xt = εt (5)

where (εt, t ∈ Z) is a white noise with the variance σ2, B is the backshift operator (defined
by B(Xt) = Xt−1 ) and Bk(Xt) = Xt−k.

A linear process (Xt) (t ∈ Z) is called moving average of q order—MA(q)—if

Xt = εt −
q

∑
j=1

θjεt−j + εt, θq 6= 0, t ∈ Z (6)

where (εt, t ∈ Z) is a white noise with the variance σ2.
Defining

Θ(z) = 1− θ1z− . . .− θqzq, (7)

the relation (6) becomes
Θ(B)εt = Xt (8)

A linear process (Xt) (t ∈ Z) is called an autoregressive moving average of p, q orders
ARMA(p, q) if

Φ(B)Xt = c + Θ(B)εt

where (εt, t ∈ Z) is a white noise with the variance σ2. The constant c is called drift.
An autoregressive integrated moving average process ARIMA (p, d, q) is defined by

the equation
Φ(B)∆dXt = Θ(B)εt (9)

where ∆dXt =(1 − B)dXt (d > 0) the absolute values of Φ şi Θ are greater than 1 and
(εt, t ∈ Z) is a centered white noise.

To select the best ARIMA model, the Akaike (AIC) criterion was used. The lower the
AIC is, the better the model is.

For a deeper insight into ARIMA models, the reader may refer to [41].
Statistical tests and modeling were performed using the R and DTREG software.

3. Results and Discussion
3.1. Results of Statistical Analysis and the GEP Models for the Monthly Series

The results of the statistical analysis of the lnBET monthly series are the following.
The normality and homoskedasticity hypotheses were rejected. After the application of
the runs test, the null hypothesis was rejected. The analysis of the correlogram confirms
the existence of the data autocorrelation. After performing the Mann–Kendall test, the
alternative hypothesis of the existence of a monotonic trend could not be rejected. Both
ADF and PP tests did not support the rejection of the existence of a unit root, while the
KPSS rejected the hypothesis of series’ stationarity in level or around a deterministic trend.
After taking the first-order difference, the ADF and PP tests rejected the existence of the
unit root, while the KPSS test did not reject the hypothesis of the stationarity in level and
around a deterministic trend.

The Pettitt test provides December 2004 (the 51st value of the series) as a breakpoint,
while the mDP algorithm and CUSUM detected December 2004, November 2007 (86th
value of the series), and March 2009 (102nd value of the series) as change points.

The same statistical tests have been performed for each subseries, detected after the
segmentation. Here are the notations used in the rest of the paper for the above monthly
series: S_m is lnBET, S1_m—the series containing the first 51 values of S series (October
2000–December 2004), S2_m—the series containing the values from the 52nd one to the
86th one (January 2005–November 2007), S3_m—the series containing 16 values recorded
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from December 2007 to March 2009, S4_m—the series registered in the period April 2009
–September 2014 (the last 66 values), U1_m—the series recorded between January 2005 and
September 2014.

For each monthly series and subseries, the Mann–Kendall test [42] was used for testing
the hypothesis that the series does not have a monotonic trend (H0) against the existence of
such a trend (H1).

The results of all the tests are presented in Table 2, where yes means that H0 is rejected,
and no means that H0 cannot be rejected.

Table 2. Results of statistical tests on the monthly series.

Type of Test
Series

S_m S1_m S2_m S3_m S4_m U1_m

I. Normality yes yes no no no yes
II. Homoskedasticity yes no yes no no yes
III. Randomness yes yes yes yes yes yes
IV. Trend existence yes yes yes yes yes no
V. Unit root no no no no no no
VI. a. Level stationarity yes yes yes yes yes yes

b. Trend stationarity yes yes yes no yes yes

For building GEP models for the monthly series, the window size, w, was selected
between 1 and 12, considering the possible existence of a seasonal component. The perfor-
mances of the best models are presented in Tables 3–7 for the training and test sets.

Table 3. Performances of the best models built for the monthly series with lag 1 variables as regressors.

Series
Training Test

S_m S1_m S2_m S3_m S4_m S_m S1_m S2_m S3_m S4_m

Correlation actual-
predicted values 0.965 0.893 0.850 0.785 0.743 0.617 0.980 0.570 0.577 0.960

RMSE 0.213 0.213 0.102 0.234 0.101 0.405 0.141 0.070 0.130 0.096
MSE 0.053 0.045 0.010 0.016 0.010 0.164 0.020 0.004 0.016 0.009
MAE 0.091 0.087 0.072 0.118 0.057 0.355 0.114 0.055 0.118 0.086

MAPE 1.205 1.323 0.830 1.529 0.690 4.129 1.421 0.608 1.529 0.979
Removed trend none none none none none none none none none none

Table 4. The goodness of fit indicators for the best models built for the monthly series with lag 1 and
lag 12 variables as regressors.

Series
Training Test

S_m S1_m S2_m S4_m S_m S1_m S2_m S4_m

Correlation
actual-predicted

values
0.965 0.895 −0.292 0.743 0.558 0.980 0.200 −0.874

RMSE 0.228 0.212 0.275 0.096 0.147 0.226 0.097 0.239
MSE 0.052 0.044 0.075 0.009 0.021 0.051 0.009 0.057
MAE 0.091 0.087 0.193 0.056 0.123 0.184 0.074 0.215

MAPE 1.203 1.320 2.239 0.669 1.419 2.274 2.811 2.451

Tables 3–5 contain the results of the modeling of the monthly series without the trend
removal, when the regressors were lag 1, and lag 1 and lag 12 variables, respectively. Since
S3_m is too short, the model with lag 1 and lag 12 variables could not be built.
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Table 5. The goodness of fit indicators for the best models built for U1_m.

Indicators
Regressors: Lag 1 and Lag 12 Regressors: Lag 1

Training Test Training Test

Correlation actual-predicted values 0.958 0.515 0.956 −0.933
RMSE 0.101 0.136 0.104 0.183
MSE 0.010 0.018 0.010 0.033
MAE 0.073 0.114 0.074 0.151

MAPE 0.868 1.312 0.879 1.729

Table 6. The equations of the trend for the monthly series and subseries.

Trend Equation Variance Explained by the Trend

S_m Yt = 7.2878 + 0.0112t 47.938%
S1_m Yt = 6.1794 + 0.0422t 97.307%
U1_m Yt = 8.5511 + 0.3236 e−0.0264t 7.392%
S2_m Yt = 8.5607 + 0.0202t 84.604%
S3_m Yt = 10.2396 − 1.0992 e−0.0604t 92.758%
S4_m Yt = 8.3897 + 0.03742 e−0.0388t 54.772%

Note. Yt denotes the trend and t is the time.

Table 7. Performances of the best models built for the detrended monthly series with lag 1 variable as regressors.

Indicators/Series
Training Test

S_md S1_md S2_md S3_md S4_md S_md S1_md S2_md S3_md S4_md

Correlation actual-
predicted values 0.988 0.988 0.927 0.810 0.576 0.975 0.980 0.567 0.699 0.942

RMSE 0.130 0.070 0.071 0.124 0.084 0.485 0.062 0.073 0.150 0.034
MSE 0.017 0.005 0.005 0.015 0.007 0.236 0.003 0.005 0.022 0.001
MAE 0.078 0.054 0.058 0.097 0.053 0.426 0.050 0.056 0.115 0.025

MAPE 1.006 0.791 0.664 1.126 0.633 4.956 0.630 0.625 1.482 0.290
Removed trend linear linear linear exp exp linear linear linear exp exp

When analyzing the goodness of fit indicators for the series S_m and S1_m, one can
see that the models’ performances on the training sets are not significantly different when
lag 1 and lag 12 variables, or only lag 1 variables are considered.

The two-sided Diebold–Mariano test [50] was also used to cross-validate these findings.
The null hypothesis was (H0) Both models have the same accuracy, and the alternative was
(H1) The models do not have the same accuracy.

The p-values were 0.341 (0.532), when comparing the models for S_m (S1_m) on the
training set. Therefore, the null hypothesis could not be rejected.

The model for S_m is better on the test set when using both regressors than when using
only the first one (lag 1 variable), in terms of all indicators but the correlation between
the actual and predicted values. The result of the Diebold–Mariano test confirms this
assertion. This time the null hypothesis was the same as previously, while the alternative
one was (H1′ ) The model obtained using both regressors is better than the models obtained utilizing
lag 1 regressor.

Comparing the goodness of fit indicator, the results for the S1_m model are better
when considering only the lag 1 regressor. Still, the two-sided Diebolo–Mariano test does
not reject the null hypothesis.

The models obtained for S2_m and S4_m are better when using only the lag 1 variable,
than when using lag 1 and lag 12 because a negative correlation between the actual and
predicted values is noticed in the second case.

From the point of view of the correlation between actual and predicted values, GEP
models with lag 1 regressors perform satisfactorily on both training and test sets, the
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best results being obtained for S1_m and S4_m. Since the models with lag 1 variables as
regressors are better, in terms of correlation between the actual and predicted values, we
kept these models for further comparisons.

For U1_m (Table 5), the quality of the model obtained with lag 1 variable is worse
than that obtained with lag 1 and lag 12 as regressors on the test set (see the negative value
of the correlation between actual and predicted values), but on the training one, the results
are not significantly different (through applying the Diebold–Mariano two-sided test).

GEP models have been built for the detrended series and subseries, with the same
variables as regressors. The models with significant coefficients and the highest variance of
the series explained by the model (among the linear, exponential, polynomial of second
and third degrees, and logarithmic) have been chosen to express the trend. The best trends
were found to be linear or exponential, as presented in Table 6.

For S1_m, S3_m, and S2_m, the variance of the data series explained by the models is
very high.

The following notations are adopted for the monthly detrended series and subseries:
S_md, S1_md, S2_md, S3_md, S4_md, and U1_md, respectively.

Tables 7–9 contain the modeling results after the trend removal.

Table 8. Performances of the best models built for the detrended monthly series and subseries with lag 1 and lag 12 variables
as regressors.

Indicators/Series
Training Test

S_md S1_md S2_ md S4_md S_md S1_md S2_md S4_md

Correlation
actual-predicted values 0.989 0.991 0.928 0.989 0.448 0.839 0.444 0.448

RMSE 0.129 0.061 0.075 0.121 0.656 0.295 0.108 0.656
MSE 0.016 0.003 0.005 0.016 0.431 0.087 0.011 0.431
MAE 0.078 0.048 0.059 0.078 0.587 0.239 0.088 0.587

MAPE 1.009 0.711 0.681 1.009 6.828 3.023 0.977 6.828
Removed trend linear linear linear linear linear linear linear linear

Table 9. Performances of the best models built for U1_md.

Indicators
Regressors: Lag 1 and Lag 12 Regressors: Lag 1

Training Test Training Test

Correlation actual-predicted values 0.958 0.168 0.954 −0.916
RMSE 0.102 0.171 0.106 0.180
MSE 0.010 0.029 0.011 0.032
MAE 0.077 0.152 0.077 0.148

MAPE 0.902 1.754 0.904 1.694
Removed trend linear linear exp exp

Table 7 shows that the trend removal improved the models’ performances (most
significantly for S1_m and S4_m) on both training and test series, when the regressors were
the lag 1 variables. Indeed, the MAPEs values diminished after the trend removal for all
but the S_m series on the test set.

For example, Figure 2 presents the chart of S1_md (corresponding to the data from
Table 7, columns 3 and 8). The equation of the detected linear trend in this model is:

Yt = 6.179 + 0.042t (10)

where t = 1, . . . ,51 is the number of the month, and Yt is the trend. The standard errors of
the coefficients are respectively 0.0235 and 0.0142.
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The equation of the GEP model is:

yt = 0.151y2
t−1+0.7745yt−1 (11)

The standard errors of the coefficients are respectively 0.0121 and 0.0415. All the
model’s coefficients are significant, at a significance level of 0.05.

From Table 8, one remarks that the algorithm learns the input data well for the
monthly series and its subseries, after the trend elimination. It better performs, in terms of
correlation between the actual and predicted values on the test sets S2_md and S4_md.

A significantly diminished MAPE was computed for the S2_md test set. When the
regressors are lag 1 and lag 12 variables, a notable improvement of the models is noticed
only on the training set. The algorithm learns data well, but it cannot use what it learned
on the test sets. Overall, the models’ performances are comparable or better with one
regressor (Table 7) than with two regressors (Table 8).

The best models for U1_md have been obtained for two regressors (columns 2 and 3
from Table 9). The models for U1_md are better than those for U1, in terms of RMSE, MSE,
MAE, and MAPE. Comparing the results from Tables 5 and 9, one may remark that the
trend removal contributed to improving the models’ quality when using lag 1 variables as
regressors. Still, the model is not satisfactory, in terms of the correlation between actual
and predicted values on the test series.

The next stage of this analysis was building the deseasonalized series (and subseries)
and the corresponding GEP models. For this aim, the classical decomposition method was
employed. The equation is:

yt = Yt + St + εt (12)

where yt is the series to be decomposed, Yt is the trend, St is the seasonality index, and εt,
the random variable.

The difference yt − St is by definition the deseasonalized series.
In the following, the deseasonalized monthly series S is denoted by S_ms.
Analogous notations are used for the monthly subseries.
The performances of the best models are presented in Tables 10 and 11.
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Table 10. Performances of the best models built for the deseasonalized monthly series its subseries with lag 1 variables
as regressors.

Indicators/Series
Training Test

S_ms S1_ms S2_ms S4_ms S_ms S1_ms S2_ms S4_ms

Correlation
actual-predicted values 0.065 0.911 0.855 0.743 0.617 0.961 0.442 0.960

RMSE 0.231 0.198 0.096 0.101 0.405 0.212 0.105 0.096
MSE 0.053 0.039 0.009 0.010 0.164 0.044 0.011 0.009
MAE 0.091 0.080 0.055 0.057 0.355 0.187 0.083 0.086

MAPE 1.205 1.206 0.635 0.690 4.129 2.314 0.910 0.979
Removed trend none none none none none none none none

Table 11. Performances of the best models built for U1_ms.

Indicators/Series
Regressors: Lag 1 and Lag 12 Regressors: Lag 1

Training Test Training Test

Correlation actual-predicted values 0.958 0.420 0.956 −0.933
RMSE 0.102 0.112 0.104 0.184
MSE 0.010 0.031 0.011 0.034
MAE 0.152 0.097 0.075 0.151

MAPE 0.902 0.857 0.879 1.727
Removed trend none none none none

For S_ms, the correlation between the actual and predicted values on the training set
is close to zero. On the test set, the same indicator is higher. Still, it remains lower than for
the raw series or the detrended one. Generally, the models for the deseasonalized subseries
are worse than those for the raw and detrended series.

For example, in Figure 3, one may see the modeling errors for S4_ms (Table 10,
columns 5 and 9) which are very low compared to the data values (that are in the interval
(7.916, 8.932)). The equation of the corresponding GEP model is

yt= (2.7144406/
√

yt−1 ) + yt−1 − 0.9135744. (13)
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For U1_ms, the best model has been obtained for lag 1 and 12 as regressors.
To conclude, removing the seasonality did not improve the modeling quality.
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3.2. Results of Statistical Analysis and the GEP Models for the Monthly Series

The change point determined by the Pettitt test for the weekly series is 215 (26 Decem-
ber 2004), and those found by mDP are 215 (26 December 2004), 365 (9 December 2007),
435 (26 April 2009). In what follows, the weekly series is denoted by S_w, and the subseries
determined by the change points are denoted, respectively, by S1_w (containing the values
1–215), S2_w (containing the values 216–365), S3_w (containing the values 366–435), S4_w
(containing the values 436–717), and U1_w (containing the values 216–717). The subseries
and the fitted linear trend are presented in Figure 4.
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Table 12 contains the equations of the trend lines of the weekly series. The coefficients
and the models are significant at a 0.05 significance level (based on the t-test and the F-test).
The trend determined for the series and subseries is the best fit for the data series, selected
from a set of deterministic models (linear, exponential, polynomial of the second and
third-order, logarithmic, and power functions).

Table 12. The equations of the trend for the weekly series and subseries.

Trend Equation Variance Explained by the Trend

S_w Yt = 7.2800 + 0.0026t 47.650%
S1_w Yt = 6.1372 + 0.0100t 97.412%
U1_w Yt = 8.7731 − 0.0005 t 5.589%
S2_w Yt = 8.5569 + 0.0047t 86.379%
S3_w Yt = 11.3341 − 2.1602e0.0081t 89.660%
S4_w Yt = 8.4420 + 0.0117e0.0137t 49.732%

The results of the statistical tests on the weekly series are presented in Table 13. For all
tests except normality and homoskedasticity, they are similar to those for the monthly series.
To summarize, the hypotheses that the series are Gaussian, homoskedastic, stationary (in
trend and level), and are not random, have been rejected, while the unit root hypothesis
could not be rejected. Therefore, the series differentiation has been performed for finding
the best ARIMA model (presented in the next section).
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Table 13. Results of statistical tests on the weekly series.

Type of Test
Series

S_w S1_w S2_w S3_w S4_w U1_w

I. Normality yes yes yes yes yes yes
II. Homoskedasticity yes yes yes yes yes yes
III. Randomness yes yes yes yes yes yes
IV. Trend existence yes yes yes yes yes yes
V. Unit root no no no no no no
VI. a. Level stationarity yes yes yes yes yes yes

b. Trend stationarity yes yes yes yes yes yes

A window size from one to five has been considered when selecting the best GEP
models for the weekly series. Therefore, in the models, the regressors were the lagged
variables from one to five. These lag values have been selected because the actual values
could be influenced by the values from the same week (and taking into account that during
Saturdays and Sundays, the stocks are not traded at BSE). The best GEP models for the
weekly series are presented in Table 14.

Table 14. Performances of the best models built for S_w and its subseries.

Series
Training Test

S_w S1_w S2_w S3_w S4_w U1_w S_w S1_w S2_w S3_w S4_w U1_w

Correlation actual-predicted values 0.992 0.976 0.957 0.952 0.930 0.991 0.610 0.968 0.604 0.268 0.901 0.916
RMSE 0.111 0.102 0.053 0.101 0.052 0.048 0.226 0.080 0.055 0.216 0.042 0.063
MSE 0.012 0.010 0.003 0.010 0.003 0.002 0.051 0.006 0.003 0.047 0.002 0.004
MAE 0.034 0.032 0.030 0.055 0.027 0.032 0.197 0.066 0.045 0.149 0.031 0.055

MAPE 0.448 0.493 0.339 0.638 0.323 0.380 2.294 0.828 0.491 1.887 0.356 0.642
Regressors (lag) 1 & 5 1 1 & 5 1 1 & 5 1 ÷ 5 1 & 5 1 1 & 5 1 1 & 5 1 ÷ 5

The models for S1_w, S3_w, and S4_w are good on both training and test sets. The
correlations between actual and predicted values on the training sets are high for the other
subseries, but they are much lower for the test set (0.610 for S_w and 0.268 for S3_w). On
the same test sets, MAPEs are 2.294 and 1.887, confirming that the algorithm does not apply
what it learned on the test sets S_w and S3_w. Since the data series are not monthly or
annual, the seasonal component does not appear.

The study results on the detrended series are presented in Table 15. The best models
are those for S1_wd and S4_wd. Considering all indicators but the correlation between
actual and predicted values, the second place is occupied by the model for S2_wd, whereas
taking into account this indicator, the model for U1_wd is in second place. The worst
model is for S3_wd. The trend removal improved the model quality (compared to the raw
monthly series) for the training series and S1 test set.

Table 15. Performances of the best models built for the S_w and its subseries, after the trend removal. The detrended series
are denoted by S_wd, S1_wd, S2_wd, S3_wd, S4_wd, and U1_wd.

Series
Training Test

S_wd S1_wd S2_wd S3_wd S4_wd U1_wd S_wd S1_wd S2_wd S3_wd S4_wd U1_wd

Correlation actual-predicted values 0.998 0.997 0.982 0.981 0.944 0.989 0.556 0.976 0.600 0.213 0.938 0.836
RMSE 0.060 0.033 0.034 0.065 0.046 0.050 0.487 0.058 0.059 0.204 0.045 0.187
MSE 0.004 0.001 0.001 0.004 0.002 0.002 0.237 0.003 0.003 0.041 0.002 0.035
MAE 0.032 0.025 0.025 0.043 0.026 0.032 0.439 0.049 0.046 0.142 0.037 0.152

MAPE 0.405 0.367 0.285 0.505 0.307 0.380 5.101 0.620 0.507 1.803 0.423 1.740
Removed trend lin. lin. lin. exp exp lin lin lin. lin. exp exp lin
Regressors (lag) 1 & 5 1 ÷ 5 1 & 5 1 1 1 1 & 5 1 ÷ 5 1 & 5 1 1 1

For the test set, the models for S1_wd and U1_wd are worse than S_w and U1_wd,
respectively. The models for S2_w and S2_wd are comparable. The model for S3_w
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(S4_wd) is better than for S3_wd (S4_w), only based on the correlation between the actual
and predicted values.

3.3. ARIMA Models for Monthly Series

The best ARIMA models for the monthly series are presented in the following. The
lnBET series and subseries present a unit root, so the best models are obtained after taking
the first-order difference of the raw series. Therefore, the goodness of fit coefficients will be
smaller for the differentiated series (Figure 5) than for the raw series. This aspect should be
taken into consideration when comparing the GEP and ARIMA models.
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The best ARIMA models for the monthly series are presented in Table 16. For S1_m,
S2_m, and S3_m, they are the differentiated series with or without drift. The models for
S_m and S4_m are ARIMA, for which the autoregressive part is missing; for U1_m, it is an
ARIMA whose moving average part is absent.

Table 16. ARIMA models for the monthly series and subseries.

Series Model Type
Coefficients The Goodness of Fit Indicators

AR1 Drift MA1 RMSE MSE MAE MAPE

S_m ARIMA (0,1,1) with drift - 0.2449 0.0156 0.0875 0.0076 0.0621 0.7638
S1_m ARIMA (0,1,0) with drift - 0.0422 - 0.0707 0.0050 0.0531 0.7386
S2_m ARIMA (0,1,0) - - - 0.0755 0.0057 0.0551 0.6203
S3_m ARIMA (0,1,0) with drift - −0.0949 - 0.1508 0.0227 0.1187 1.4401
S4_m ARIMA (0,1,1) - - 0.2774 0.0552 0.0030 0.0432 0.5073
U1_m ARIMA (1,1,0) 0.2152 - - 0.0893 0.0080 0.0630 0.7375

To validate the ARIMA models, the hypothesis that the residual forms a white noise
has been tested by using the Anderson–Darling (A–D) test (for normality), the Levene
test (for homoskedasticity), and plotting the autocorrelation and partial autocorrelation
functions (ACF and PACF). For the last two functions, the lag at which the correlation
appears is listed, while p-values (with three decimals) are displayed for the other tests. If
the correlation is absent, ‘none’ is inserted in Table 17 that summarizes the results.
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Table 17. Results of the statistical tests on the residual from ARIMA models for the monthly series.

A–D Levene ACF PACF Remark

S_m ARIMA (0,1,1) with drift 0.000 0.012 4 4 Yes
S1_m ARIMA (0,1,0) with drift 0.195 0.708 none none No
S2_m ARIMA (0,1,0) 0.335 0.199 none none No
S3_m ARIMA (0,1,0) with drift 0.942 0.179 none none No
S4_m ARIMA (0,1,1) 0.247 0.017 6 6 Yes
U1_m ARIMA (1,1,0) 0.000 0.000 none none Yes

Note. Yes means that the hypothesis that the residual forms a white noise could be rejected.

Among the ARIMA models for the monthly series, only three are correct from a
statistical viewpoint, those for S1_m, S2_m, and S3_m. These are kept for comparisons,
given that only valid models can be employed for a possible forecast. The GEP models for
S_m, S4_m, and U1_m (Tables 4 and 5) are kept.

Comparing the models for S2_m (Table 4), it results that the GEP one is the best on the
test set (showing that the GEP algorithm learned the data well, and applied what it learned
on the new dataset). The same is true for S3_m considering all indicators but MAPE, which
is slightly higher for S3_m (the test set).

For a fair comparison, the GEP has been run for S1_m, S2_m, and S3_m without
dividing the series into two parts, for training and test. It resulted in:

• For S1_m, RMSE = 0.1788, MSE = 0.0320, MAE = 0.0759, MAPE = 1.1035;
• For S2_m, RMSE = 0.09165, MSE = 0.0084, MAE = 0.0638, MAPE = 0.7226;
• For S3_m, RMSE = 0.2200, MSE = 0.0484, MAE = 0.1594, MAPE = 1.8826.

Therefore, in these cases, ARIMA models are the best.
The ARIMA models for the monthly detrended series are presented in Table 18.

Table 18. ARIMA models for monthly detrended series.

Series Model Type
Coefficients The Goodness of Fit Indicators

AR Coefficients Drift MA1 RMSE MSE MAE MAPE

S_md ARIMA (0,1,1) - - 0.2462 0.0875 0.0077 0.0626 111.8606
S1_md ARIMA (1,0,0) with 0 mean - 0.7873 - 0.6720 0.4516 0.0530 41.9276
S2_md ARIMA (1,0,0) with 0 mean AR1 = 0.6492 - - 0.0693 0.0048 0.0552 197.9489
S3_md ARIMA (0,1,0) - - - 0.2260 0.0511 0.1675 65.7451

S4_md ARIMA (2,0,0) AR1 = 1.2211
AR2 = −0.3352 - - 0.0540 0.0029 0.0417 103.3804

U1_md ARIMA (3,0,1)
AR1 = 2.0902

AR2 = −1.2549
AR3 = 0.1561

- −0.9868 0.0858 0.0074 0.0610 87.0538

Among them, there are an ARMA(3,1) (for U1_d) and three AR (for S1_d, S2_d,
and U1_d) models. At first sight, all of them have significantly higher MAPE than the
corresponding GEP models (Tables 7 and 9). Being a non-dimensional indicator, MAPE
is most suitable for comparing different kinds of models. Based on this, GEP models are
more competitive.

The results of the models’ validation are contained in Table 19. Based on this, only two
models (Table 18) should be compared to the GEP ones, S1_md and S3_md. For these series,
all the indicators of the GEP models are lower than the corresponding ones for ARIMA.
Therefore, the best performances are noticed for all the GEP detrended series.

The ARIMA models for the monthly deseasonalized series are given in Table 20, and
the results of their validation are in Table 21. Among the models, only that for S2_ms was
validated (the hypothesis that the residual forms a white noise could not be rejected), so
only the quality of this model should be discussed. The corresponding goodness of fit
indicators in the ARIMA are smaller than those in the GEP model for S2_ms (Table 15). Still,
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for a relevant comparison of both models, the entire series has been used for building a GEP
model. The indicators that characterize it are RMSE = 0.0523, MSE = 0.0027, MAE = 0.0384,
MAPE = 0.4237. Therefore, the GEP model is the best one.

Table 19. Results of the statistical tests on the residual from ARIMA models for the monthly detrended series.

Series Model Type A–D Levene ACF PACF Remark

S_md ARIMA (0,1,1) 0.000 0.001 4 4 Yes
S1_md ARIMA (1,0,0) with 0 mean 0.248 0.843 none none No
S2_md ARIMA (1,0,0) with 0 mean 0.005 0.032 none none Yes
S3_md ARIMA (0,1,0) 0.089 0.237 none none No
S4_md ARIMA (2,0,0) 0.164 0.012 4 4 Yes
U1_md ARIMA (3,0,1) 0.005 0.000 none none Yes

Note. Yes means that the hypothesis that the residual forms a white noise could be rejected.

Table 20. ARIMA models for the monthly deseasonalized series.

Coefficients The Goodness of Fit Indicators

Series Model Type AR1 Drift MA1 RMSE MSE MAE MAPE

S_ms ARIMA (0,1,1) with drift - 0.01564 0.0156 0.0904 0.0080 0.0635 0.7816
S1_ms ARIMA (0,1,0) with drift - 0.0424 - 0.0740 0.0055 0.0540 0.0127
S2_ms ARIMA (0,1,0) with drift - 0.0156 - 0.0572 0.0033 0.0422 0.4753
S4_ms ARIMA (0,1,0) with drift 0.0154 - 0.0606 0.0037 0.0431 0.5044
U1_ms ARIMA (0,1,0) - - - 0.0954 0.0091 0.0654 0.7698

Table 21. Results of the statistical tests on the residual from ARIMA models for the monthly deseasonalized series.

Series Model Type A–D Levene ACF PACF Remark

S_ms ARIMA (0,1,1) with drift 0.942 0.001 4 4 Yes
S1_ms ARIMA (0,1,0) with drift 0.017 0.723 none none Yes
S2_ms ARIMA (0,1,0) with drift 0.061 0.833 none none No
S4_ms ARIMA (0,1,0) with drift 0.001 0.017 none none Yes
U1_ms ARIMA (0,1,0) 0.000 0.000 1 1 Yes

Note. Yes means that the hypothesis that the residual forms a white noise could be rejected.

Comparison of the ARIMA models for the raw series, the detrended and deseasonal-
ized ones shows that:

• In terms of MAPE, the models for the detrended series are the worst.
• Taking into account RMSE, MSE, and MAE, the raw series models have similar

performances with those for the detrended series for all but S3. Still, the model for
S2_md is worse than for S2, since the first one does not satisfy the hypotheses on
the residuals.

• In terms of MAPE, the ARIMA models for S2_ms and S4_ms are better than those of
S2_m and S4_m. Even if the MAPE for S1_ms is smaller than for S1_m, the residual is
not white noise, so the first model cannot be considered better than the corresponding
one for the raw data series.

• Comparative results have been obtained for U1_m and U1_ms.
• The other goodness of fit indicators generally have comparative values for the rest of

the initial and deseasonalized series.

3.4. ARIMA Models for Weekly Series

The same procedure was followed for studying the weekly series. The ARIMA models
for the series and the detrended ones are given in Tables 22 and 23.
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Table 22. ARIMA models for weekly series S_w, S1_w, S2_w, S3_w, S4_w, and U1_w.

Series Model Type
Coefficients The Goodness of Fit Indicators

AR Coef. Drift MA Coef. RMSE MSE MAE MAPE

S_w ARIMA (1,0,5) AR1 = −0.9765 -

MA1 = 0.0167
MA2 = −0.8277
MA3 = 0.0373

MA4 = −0.1195
MA5 = −0.0816

0.0373 0.0014 0.0260 0.3219

S1_w ARIMA (0,1,0) with drift - 0.0101 - 0.0320 0.0010 0.0242 0.3404
S2_w ARIMA (0,1,0) - 0.0041 - 0.0342 0.0012 0.0258 0.2910
S3_w ARIMA (0,1,0) with drift - −0.017 - 0.0681 0.0046 0.0471 0.0012

S4_w ARIMA (4,1,1) with drift

AR1 = −0.6230
AR2 = 0.1165
AR3 = 0.0737

AR4 = −0.1307

0.0030 MA1 = 0.5924 0.0292 0.0009 0.0208 0.2444

U1_w ARIMA (3,1,0) with drift
AR1 = 0.0034
AR2 = 0.1779
AR3 = 0.0934

- - 0.0391 0.0015 0.0267 0.3123

Table 23. ARIMA models for detrended weekly series S_wd, S1_wd, S2_wd, S3_wd, S4_wd, and U1_wd.

Series Model Type
Coefficients The Goodness of Fit Indicators

AR Drift MA1 RMSE MSE MAE MAPE

S_wd ARIMA (0,0,1) with 0 mean - - 0.2462 0.0875 0.0077 0.0626 111.8606
S1_wd ARIMA (1,0,0) with 0 mean - 0.7873 - 0.6720 0.4516 0.0530 41.9276
S2_wd ARIMA (1,0,0) with 0 mean AR1 = 0.6492 - - 0.0693 0.0048 0.0552 197.9489
S3_wd ARIMA (0,1,0) - - - 0.2260 0.0511 0.1675 65.7451

S4_wd ARIMA (2,0,0) AR1 = 1.2211
AR2 = −0.3352 - - 0.0540 0.0029 0.0417 103.3804

U1_wd ARIMA (3,0,1)
AR1 = 2.0902

AR2 = −1.2549
AR3 = 0.1561

- −0.9868 0.0858 0.0074 0.0610 87.0538

The output of the tests for validating the models is contained in Tables 24 and 25.

Table 24. Tests of the residuals in ARIMA models for the weekly series S_w, S1_w, S2_w, S3_w, S4_wd, and U1_w.

Series Model Type A–D Levene ACF PACF Remark

S_w ARIMA (1,0,5) 0.000 0.000 none none Yes
S1_w ARIMA (0,1,0) with drift 0.004 0.130 11 11 Yes
S2_w ARIMA (0,1,0) 0.117 0.287 none none No
S3_w ARIMA (0,1,0) with drift 0.000 0.285 2 3 Yes
S4_w ARIMA (4,1,1) with drift 0.000 0.000 none none Yes
U1_w ARIMA (3,1,0) with drift 0.000 0.000 12 12 Yes

Note. Yes means that the hypothesis that the residual forms a white noise could be rejected.

Table 25. Tests of the residuals in ARIMA detrended models for weekly series S_wd, S1_wd, S2_wd, S3_wd, S4_wd,
and U1_wd.

Series Model Type A–D Levene ACF PACF Remark

S_w ARIMA (0,0,1) with 0 mean 0.000 0.000 12 12 Yes
S1_w ARIMA (1,0,0) with 0 mean 0.003 0.146 none 11 Yes
S2_w ARIMA (1,0,0) with 0 mean 0.087 0.317 10 11 Yes
S3_w ARIMA (0,1,0) 0.000 0.352 none none Yes
S4_w ARIMA (2,0,0) 0.000 0.000 none none Yes
U1_w ARIMA (3,0,1) 0.000 0.000 12 11 Yes

Note. Yes means that the hypothesis that the residual forms a white noise could be rejected.
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Table 24 shows that all but the ARIMA model for S2_w do not satisfy the hypothesis
that the residual series form a white noise.

To compare the models for S2_w, the GEP algorithm has been run without divid-
ing the series into training and test. The following values of the indicators have been
obtained: RMSE = 0.0477, MSE = 0.0023, MAE = 0.0285, MAPE = 0.3222 (higher than the
corresponding values in the ARIMA model). Therefore, ARIMA performs better than GEP
only on S2_w.

Table 25 shows that the ARIMA models for the detrended weekly series cannot be
validated. Furthermore, MAPE is extremely high by comparison to those of the GEP
models for the same series, and of ARIMA models for the raw weekly data. So, the trend
removal does not lead to the quality augmentation.

4. Conclusions

Financial time series are characterized by nonlinearity and high variability, often
accompanied by heteroskedasticity and non-stationarity, which make the deterministic
methods unsuitable for modeling such series. Different stochastic models rely on restrictive
assumptions on the data generating processes. The artificial intelligence methods do not
impose such restrictions, making them good options when other kinds of algorithms cannot
be used, or satisfactory models cannot be found by other approaches.

Despite their advantages, the relationship between the statistical properties of the data
series—normality, homoscedasticity, autocorrelation, stationarity, and the trend existence—
and the quality of the models built for the series utilizing AI techniques was not inves-
tigated. Knowledge on the performances of different algorithms applied on time series
with the same statistical properties would eliminate some modeling options, and reduce
the time of searching for the appropriate approach. Such modeling is suitable not only for
financial time series but for other fields as well, according to the statistical characteristics
of a series.

Therefore, in this article, we built GEP and ARIMA models for lnBET series and
subseries, to determine if the statistical properties are connected to the goodness of fit of
such models. The modeling results show that:

(1) The normality and homoskedasticity do not have a major influence on the mod-
els’ performances;

(2) The trend removal results in better GEP models;
(3) The seasonality elimination does not lead to an improvement of the modeling quality.
(4) The trend removal results in worse ARIMA models;
(5) Generally, GEP performed better than ARIMA on the study series.

Remark (1) does not seem surprising, since we are dealing with point forecasts and
performance measures of conditional location parameters of the conditional density.

The first three findings are in concordance with the results from [14], which refers to
GRNN models.

The study should be extended on simulated and other real data series for collect-
ing more evidence on the connection between the models’ performances and the series
statistical characteristics.
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