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Abstract: Polyharmonic spline (PHS) radial basis functions (RBFs) have been used in conjunction
with polynomials to create RBF finite-difference (RBF-FD) methods. In 2D, these methods are usually
implemented with Cartesian nodes, hexagonal nodes, or most commonly, quasi-uniformly distributed
nodes generated through fast algorithms. We explore novel strategies for computing the placement
of sampling points for RBF-FD methods in both 1D and 2D while investigating the benefits of using
these points. The optimality of sampling points is determined by a novel piecewise-defined Lebesgue
constant. Points are then sampled by modifying a simple, robust, column-pivoting QR algorithm
previously implemented to find sets of near-optimal sampling points for polynomial approximation.
Using the newly computed sampling points for these methods preserves accuracy while reducing
computational costs by mitigating stencil size restrictions for RBF-FD methods. The novel algorithm
can also be used to select boundary points to be used in conjunction with fast algorithms that provide
quasi-uniformly distributed nodes.

Keywords: radial basis functions; RBF-FD; node sampling; lebesgue constant; complex regions;
finite-difference methods

MSC: 65D12; 65D25

1. Introduction

In [1–6], Polyharmonic Splines (PHSs) and polynomials were combined to generate
radial basis function finite-difference (RBF-FD) methods. One of the key benefits of combin-
ing PHSs with polynomials was the fact that high-order accuracy could be obtained from
resulting RBF-FD differentiation matrices. Another improvement was the elimination of
the requirement to select optimal shape parameters. When implementing RBF-FD methods,
the choice of shape parameter plays a crucial role in the conditioning of interpolation ma-
trices as well as accuracy [7,8]. As a result, the need to balance accuracy and conditioning
through the tuning of the shape parameter becomes a problem itself. The use of PHSs with
polynomials eliminates this requirement. Instead of having to select shape parameters to
handle different resolutions, the only parameter selection required is the degree of the PHS
and polynomials used, which is pre-selected and remains constant.

The need to tune the shape parameter can be observed in the stagnation error of RBF-
FD methods strictly using RBFs. These methods encountered convergence, which plateaued
or worsened as the number of sampling points increased. This was directly due to the
fact that as the resolution increases, the shape parameter needed to be tuned. As a result,
accuracy was traded off in order to maintain the conditioning of interpolation matrices.
The implementation of RBF-FD matrices using PHSs and polynomials eliminated such
stagnation error. These methods maintain accurate approximations while also eliminating
the complexities of shape parameter selection.

Along with these advantages for using PHSs with polynomials came one key con-
straint: the number of nodes used in each stencil was required to be approximately twice
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the size of the number of polynomial basis functions appended. For example, in [1,2],
stencils comprising of 37 nodes were used. In this case, only polynomials up to degree 4
could be appended to the RBFs. The accuracy of the resulting approximation depends on
the degree of the polynomials appended. Thus, for higher-order methods, larger stencils
are required. This results in increased computational costs as the differentiation matrices
used became less sparse since derivative calculations at each node require function values
from an increased number of nearest neighbors. The stencil size then becomes a limiting
factor when attempting to achieve a given order of accuracy efficiently.

RBF-FD methods using PHSs and polynomials are usually implemented using Carte-
sian points, hexagonal points, or quasi-uniformly distributed points. A few references that
looked into the placement of sampling points for finite-difference methods include [9–13];
however, for RBF-FD methods in 2D, the general strategy has been to generate a set of
quasi-uniformly distributed nodes based on repel algorithms in order to achieve a set
spacing. The algorithms for computing these scattered nodes can be found in [14–16]. The
points in [14,15] are generated using a spatial density function to inform the spacing of
the nodes throughout the domain. Similarly, the points in [16] are generated in order to
achieve a predetermined average separation between points. In this paper, we consider
finding the placement of sampling points for RBF-FD methods using PHSs and polynomi-
als by minimizing a piecewise-defined Lebesgue constant. This will be accomplished by
modifying a column-pivoting QR algorithm previously used to find near-optimal sampling
points for polynomial interpolation, also known as the approximate-Fekete points.

The modified column-pivoting QR algorithm presented in this work provides a novel
sampling method for RBF-FD methods with three major benefits. First, the sampled points
mitigate a key computational constraint of RBF-FD methods implemented with PHSs and
polynomials. That is, it dramatically reduces the number of nodes per stencil for high-order
approximation as compared to other node distributions such as Cartesian or hexagonal
points. This reduces the computational requirements of the RBF-FD method while retaining
high-order accuracy as it has been shown that the accuracy of these methods depends
on the polynomial degree and not the number of nodes in each stencil [6]. The newly
sampled points provide sparser differentiation matrices. The second benefit of the modified
column-pivoting QR algorithm is the ability to compute sampling points with a simple,
robust method. The implementation of the algorithm only requires a set of candidate
points and a choice of basis. The basis used in the novel method is chosen to match the
basis used for the RBF-FD computations. Thus, once a set of candidate points is chosen
and input into the algorithm, a set of sampling points is provided. This provides a simple
algorithm for point selection with few variable parameters. Lastly, the algorithm can be
used to inform the placement of boundary points for complex 2D regions. These boundary
points can then be used in conjunction with scattered repel point algorithms, which provide
quasi-uniformly distributed interior points.

We introduce the basics for RBF-FD methods in Section 2. In Section 3, we introduce
the novel piecewise-defined Lebesgue constant used to compare sampling point locations
for local RBF-FD methods. In this section, we also introduce the modified column-pivoting
QR algorithm used to generate sampling point locations for RBF-FD methods. In Section 4,
we investigate the behavior of varying sampling point locations in 1D. Section 5 extends
the results from 1D into 2D. Lastly, Section 6 implements test cases using the newly
generated points.

2. Background
2.1. RBF Setup

A thorough introduction to RBFs methods can be found in [17–20]. The RBF in-
terpolant is a linear combination of translates of a radially-symmetric function denoted
by φ

(
‖x−xj‖

)
. In 1D, interpolating through the points

(
xj,yj

)
gives us the interpolant

of the form
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s(x)=
n

∑
j=0

cjφ
(
‖x−xj‖

)
, (1)

where the coefficients ck are found by solving the linear interpolation system:
φ(‖x0−x0‖) φ(‖x0−x1‖) . . . φ(‖x0−xn‖)
φ(‖x1−x0‖) φ(‖x1−x1‖) . . . φ(‖x1−xn‖)
φ(‖x2−x0‖) φ(‖x2−x1‖) . . . φ(‖x2−xn‖)

...
...

. . .
...

φ(‖xn−x0‖) φ(‖xn−x1‖) . . . φ(‖xn−xn‖)




c0
c1
c2
...

cn

=


y0
y1
y2
...

yn

. (2)

Common examples of RBFs are listed in Table 1. Most of these examples, the multiquadric,
the inverse multiquadric, and the Gaussian RBFs in particular, contain the presence of the
shape parameter, ε. These shape parameters must be tuned in order to balance conditioning
and accuracy, and in the case where the number of sampling nodes used becomes large
enough, the accuracy stagnates or decreases due to the need to condition the interpolation
matrices (alternative options to shape parameter tuning are presented in [20] but are not
considered in this study).

Table 1. Example RBFs.

RBF Basis Function Parameter

Polyharmonic Spline φ(r)= rm m∈ 2N−1

Multiquadric φ(r)=
√

1+(εr)2 ε∈R

Inverse Multiquadric φ(r)= 1
1+(εr)2 ε∈R

Gaussian φ(r)= e−(εr)2
ε∈R

Using PHSs and polynomials, we can write the approximation as

s(x)=
n

∑
j=0

cj|x−xj|2m−1+
l

∑
j=0

cj+n+1xj. (3)

See [20] for more details on RBF approximations with appended polynomials. To imple-
ment a 2D finite-difference method with RBFs, the nearest neighbors are to be used in
the finite-difference weight calculations. This is accomplished using MATLAB’s KDTree
and knnsearch functions. To calculate the RBF-FD weights at a given point, a stencil size is
chosen and the nearest neighbors are found. These nearest neighbors are the points used
in the RBF-FD calculation for the given point. Figure 1 below illustrates two examples
of what these stencils should look like in a complex 2D region, such as the bumped-disk
shape. The sampling points are marked by the dots, while the center point is marked by an
asterisk with the relevant stencil points being outlined by circles.
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Figure 1. Fifteen-node stencil example for the bumped-disk region.

2.2. Calculating RBF-FD Weights

To find the RBF-FD weights for a given operator L, we first consider the system with
strictly RBFs, as shown in Equation (4).‖x0−x0‖2m−1

2 . . . ‖x0−xk‖2m−1
2

...
. . .

...
‖xn−x0‖2m−1

2 . . . ‖xn−xk‖2m−1
2


w0

...
wk

=
 L‖x−x0‖2m−1

2 |x=xc
...

L‖x−xk‖2m−1
2 |x=xc

. (4)

Appending the polynomial terms, as in Equation (3), expands the linear system, as shown
in Equations (5) and (6). This calculates the differentiation weights, w0, . . . ,wk, for the
point x= xc using an k+1 point stencil with RBFs being appended with the polynomials
1,x,y. Thus, the top-left sub-matrix is the usual RBF interpolation matrix. We see that a
Vandermonde matrix consisting of the same stencil points, but using a monomial basis,
is appended to the RBF interpolation matrix. For illustration, the PHSs in this case are
combined with polynomials up to the first degree; in most cases, polynomials of higher
degree are appended. Here, solving for the weights gives us an RBF-FD approximation for
the differentiation operator, L, using PHSs with polynomials.

Vw=L, (5)

‖x0−x0‖2m−1
2 . . . ‖x0−xk‖2m−1

2 1 x0 y0
...

. . .
...

...
...

...
‖xn−x0‖2m−1

2 . . . ‖xn−xk‖2m−1
2 1 xk yk

1 . . . 1 0 0 0
x0 . . . xk 0 0 0
y0 . . . yk 0 0 0





w0
...

wk
wk+1
wk+2
wk+3


=



L‖x−x0‖2m−1
2 |x=xc
...

L‖x−xk‖2m−1
2 |x=xc

L1|x=xc

Lx|x=xc

Ly|x=xc


. (6)

As previously mentioned, the system in Equation (5) does not contain any shape
parameters, thus eliminating the need to find the optimal value for such a parameter.
Instead, the conditioning of the matrix in the left-hand side is achieved by appending the
polynomials while using an appropriate stencil size.

2.3. Accuracy Considerations

The convergence rate of RBF-FD methods combining PHSs and polynomials depends
on the degree of polynomials used and is independent of both the parameter, m, which
defines the PHS, and the stencil size. Thus, approximations converge at the rate of O(hp),
where h is the spacing and p is the degree of polynomials appended. Figure 2 below depicts
an example of the convergence rate these RBF-FD methods provide. In this case, a hexago-
nal nodal set is used on the unit square. A 51 point stencil is used such that there are enough
nodes in the stencil to handle the inclusion of polynomials up to degree p= 5. The PHS used
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is φ(r)= r3. The relative error of the approximation of d
dx (1+sin(4x)+cos(3x)+sin(2y))

is plotted against the spacing, h, along with the expected convergence rate for each degree
of polynomials used in dashed lines.

10
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10
-6
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-4

10
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0
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2

First-order Derivative Accuracy

p=2

p=3

p=4

p=5

Figure 2. Convergence rates of a first-order derivative approximation using PHS and polynomials.

3. Node Sampling for RBF-FD Methods

To find sampling points for RBF-FD methods, we calculate the set of points with
a minimal Lebesgue constant. Lebesgue constants are commonly used to determine
the optimality of sets of sampling points for polynomial interpolation. The goal will
be to formulate a piecewise-defined Lebegue constant for RBF-FD methods. Previous
works [9–12] have looked to find point locations for finite-difference methods but do not
formulate piecewise-defined Lebesgue constants and have not focused on RBF-FD methods
using PHSs and polynomials. A few works, however, have considered Lebesgue constants
for RBF-FD methods for other purposes [21,22].

3.1. The Piecewise-Defined Lebesgue Constant for RBF-FD Methods

To formulate a notion of the Lebesgue constant for RBF-FD methods, we first recall
that for polynomial interpolation, given a set of n+1 sampling points, [(x0,y0), . . . ,(xn,yn)],
the Lebesgue constant is defined as:

Λ= sup
f

‖p f ‖∞

‖ f ‖∞
= sup

(x,y)

n

∑
j=0
|lj(x,y)|. (7)

Here, p is the approximation of functions f ∈C([−1,1]) and the lj’s are the cardinal func-
tions which satisfy:

lj(xk,yk)=

{
1 k= j
0 k 6= j.

(8)

To define the Lebesgue constant for RBF-FD methods, the cardinal functions must be
formulated similarly. Furthermore, the cardinal functions must be considered in a piecewise
manner to account for the local nature of RBF-FD methods. This is accomplished by
considering the piecewise cardinal functions.

Consider 1D piecewise polynomial interpolation with 4 sampling points,(
−1,− 1

3 , 1
3 ,1
)

, using a 3 point stencil. In this case, there are two stencil groupings as
outlined in Figure 3 below. For this example, the piecewise cardinal functions are shown in
Figure 4. Each piecewise cardinal function contains a discontinuity at x=0. For a given
x, each piecewise cardinal function, lj(x), is defined using the 3 closest sampling points.
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Thus, for x∈ [−1,0], the piecewise cardinal functions are defined using points
(
−1,− 1

3 , 1
3

)
,

while for x∈ (0,1], the piecewise cardinal functions are defined using points
(
− 1

3 , 1
3 ,1
)

.

Figure 3. Stencil grouping example.
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Figure 4. Piecewise cardinal function example. Clockwise starting from the top left: l1(x), l2(x), l4(x),
l3(x).

For RBF-FD methods, the piecewise cardinal functions are defined similarly. Consider
using a k-point stencil with degree p=1 polynomials being appended. The given 2D
region is discretized into a fine mesh, Ω, to calculate the piecewise cardinal functions on.
Then, the k nearest neighbors from a given set of sampling points, [(x0,y0), . . . ,(xn,yn)], are
found for each point in Ω. The cardinal function coefficients for a given stencil grouping,[
(x′0,y′0), . . . ,

(
x′k,y′k

)]
, can be calculated by solving the following system in Equation (9).

‖x′0−x′0‖
2m−1
2 . . . ‖x′0−x′k‖

2m−1
2 1 ′x0 y′0

...
. . .

...
...

...
...

‖x′k−x′0‖
2m−1
2 . . . ‖x′k−x′k‖

2m−1
2 1 x′k y′k

1 . . . 1 0 0 0
x′0 . . . x′k 0 0 0
y′0 . . . y′k 0 0 0





c0,0 . . . c0,k
...

...
...

ck,0 . . . ck,k
ck+1,0 . . . ck+1,k
ck+2,0 . . . ck+2,k
ck+3,0 . . . ck+3,k


=

[
I
0

]
. (9)

Once the piecewise cardinal function coefficients, C= ci,j for i= 0, . . . ,k, j= 0, . . . ,k, are
obtained, the matrix of piecewise cardinal functions is built according to Equation (10).
Here, (xx0 . . .xxm)⊆Ω denote the points in the fine mesh that have

[
(x′0,y′0), . . . ,

(
x′k,y′k

)]
as
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the k-nearest neighbors, and the indices i0 . . . ik are such that x′0 = x′i0
. . .x′k = x′ik

. Once this
process is repeated for all possible stencil groupings, the full matrix of piecewise cardinal
functions will have been tabulated, and the Lebesgue constant for RBF-FD methods is
defined as ΛRBF−FD = sup(x,y)∑n

j=0 |lj(x,y)|.

l =

 li0(xx0) . . . lik (xx0)
...

...
...

li0(xxm) . . . lik (xxm)

,

l =

 ‖xx0−x′0‖2m−1
2 . . . ‖xx0−x′k‖

2m−1
2 1 xx0 yy0

...
. . .

...
...

...
...

‖xxm−x′0‖2m−1
2 . . . ‖xxm−x′k‖

2m−1
2 1 xxm yym

C. (10)

3.2. Modified Column-Pivoting QR Algorithm (MCpQR Algorithm)

In the previous section, we discussed the metric used to determine the optimality of a
set of sampling points for RBF-FD methods using PHSs and polynomials. In this section,
we discuss how to sample point locations using this optimality measure. The algorithm
proposed is a modification of an algorithm commonly used to find near-optimal sampling
points for polynomial interpolation.

Finding optimal and near-optimal sampling points for polynomial interpolation has
been studied extensively [23–33]. A robust algorithm for near-optimal polynomial interpo-
lation sampling is modified to be used for RBF-FD methods. This method, which performs
column-pivoting QR factorizations, was originally implemented to approximate the Fekete
points. These points maximize the denominator of the cardinal function determinant
definition shown in Equation (11):

lj(x,y)=
det
(
Vn
[
(x0,y0), . . . ,

(
xj−1,yj−1

)
,(x,y),

(
xj+1,yj+1,

)
. . . ,(xn,yn)

])
det(Vn[x])

, (11)

where Vn is the Vandermonde matrix defined as:

Vn[x]=Vn[(x0,y0), . . . ,(xn,yn)]

=


φ0(x0,y0) φ1(x0,y0) φ2(x0,y0) . . . φn(x0,y0)
φ0(x1,y1) φ1(x1,y1) φ2(x1,y1) . . . φn(x1,y1)
φ0(x2,y2) φ1(x2,y2) φ2(x2,y2) . . . φn(x2,y2)

...
...

...
. . .

...
φ0(xn,yn) φ1(xn,yn) φ2(xn,yn) . . . φn(xn,yn)

.

Here, n denotes the number of basis columns in the Vandermonde matrix.
By maximizing this denominator term, the Fekete points provide bounds for the

cardinal functions, as well as the Lebesgue constant. These bounds are ‖lj‖∞≤1 and
Λ≤n+1. To approximate the Fekete points, a greedy algorithm was used in [24,26]. The
domain is first discretized into candidate points, x=(xi,yi)

M
i=1∈Ω. Then, to select N

approximate-Fekete points, the corresponding N-column Vandermonde matrix, VN−1[x]∈
RMxN , is generated. Finally, the greedy algorithm in Algorithm 1 is applied to A=V′N−1[x].

Algorithm 1 Greedy Volume Submatrix Algorithm

• Select ind1 as the index of the column of A with maximum length.
• Given indexes ind1, . . . , indk, select indk+1 such that the volume generated by columns

ind1, . . . , indk, indk+1 is maximal.
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This greedy algorithm can be easily implemented using a column-pivoting QR factor-
ization. A 1D example is given in Algorithm 2 below. A deeper explanation of approximate-
Fekete points can be found in [24,26].

Algorithm 2 Example Column-Pivoting QR Algorithm

n= 21; % number of interpolation points
m= 1000; % number of candidate points
xx= linspace(−1,1,m);
A = gallery(’chebvand’,n,xx) % generate Vandermonde matrix with Chebyshev basis
[Q, R, E]=qr(A,’vector’)
pts=xx(E(1:n))

A modified Column-pivoting QR Algorithm (MCpQR algorithm) is used to find
sampling nodes for RBF-FD methods combining PHSs and polynomials on complex regions
in 2D. The proposed method provides a robust algorithm for finding sampling nodes on
general complex regions. Furthermore, these nodes display the expected behavior in terms
of accuracy and convergence and build upon those results by providing differentiation
matrices with increased sparsity through the mitigation of crucial stencil size constraints.

In order to find sampling points using the MCpQR algorithm, a set of candidate
points and a basis to populate the matrix upon which we perform the column-pivoted
QR factorization is required. Suppose the region is discretized into candidate points
x=(xi,yi)

M
i=0∈Ω. To find sampling points in the RBF-FD setting, a basis needs to be

selected. In the case of RBF-FD methods, the locations of the centers are required in order
to determine the RBF basis. Furthermore, changing the location of the sampling nodes also
changes the RBF basis. Thus, in order to select a basis to use for the MCpQR algorithm,
we first make a starting guess for the sampling node locations. The matrix used in the
MCpQR algorithm must also account for this dynamic basis. The obvious choice of basis
then becomes the piecewise cardinal function basis. That is, to find n+1 sampling points,
the matrix calculated using Equation (10), L in Equation (12), is chosen as the matrix to
perform the MCpQR algorithm on. Specifically, we perform the algorithm on L′ since
column selection on L′ represents selecting candidate points.

L=


l0(x0,y0) l1(x0,y0) . . . ln(x0,y0)
l0(x1,y1) l1(x1,y1) . . . ln(x1,y1)
l0(x2,y2) l1(x2,y2) . . . ln(x2,y2)

...
...

. . .
...

l0(xM,yM) l1(xM,yM) . . . ln(xM,yM)

. (12)

Since the piecewise cardinal function basis is dependent on the sampling node loca-
tions, a starting guess is used to populate L. From here, the MCpQR algorithm is iterated.
We found that in most cases, 1 iteration is enough to obtain significantly better Lebesgue
constants for RBF-FD methods. In some rare cases, up to 5 iterations are required.

It is important to note the computational costs of the MCpQR algorithm. The compu-
tational costs of the algorithm may be broken down into two main parts: the calculation
of the matrix L and the implementation of the column-pivoting QR factorization. Due to
the piecewise nature, the matrix L is sparse. This is depicted in the 1D example shown in
Figures 3 and 4. Thus, we can save computational costs by only calculating the non-zero
parts of L. Each row in L has the same number of non-zero elements as there are points
in the stencil used. Further, candidate points with the same set of nearest neighbors can
be grouped together to form a linear system in which the cardinal function coefficients
are solved for (Equation (9)). We notice that to solve this system, we must compute the
inverse of the RBF-FD matrix of dimensions (k+1+d)× (k+1+d), where d is the number
of polynomials basis functions appended. Thus, for the unique stencil grouping, the cost
is O(k+1+d)3. This approach populates L in a piecewise manner. We note this cost is
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similar to the computational cost of generating the differentiation matrix for a given set of
sampling points, which requires solving the system in Equations (5) and (6).

Once the matrix L is populated, a QR factorization is performed. This factorization
costs O

(
(M+1)(n+1)2

)
. This factorization comprises the majority of the computational

cost. We see that the algorithm can benefit by limiting the number of candidate points,
M+1. We discuss in Sections 4 and 5 strategies for reducing this cost.

4. Results in 1D

To study the behavior of node configurations for RBF-FD methods using PHSs and
polynomials, we begin with an investigation in 1D. Along with the MCpQR algorithm,
we can consider other point locations generated by mappings made possible due to the
simpler nature of 1D domains. We compare the points from the MCpQR algorithm with
the mapped points in terms of eigenvalue stability and Lebesgue constant optimality.

4.1. Mapped Point Sets

A few references that have looked into the placement of sampling points for finite-
difference methods in 1D include [9–12,34]. The strategies used in these works include
adding nodes near the boundary to stabilize differentiation operators, moving nodes near
the boundary to optimize piecewise polynomial error formulae, and transforming node
locations using a mapping to stabilize differentiation operators. It is important to see that
these strategies focus on the placement of nodes near the boundaries. We will investigate
the effects of similar behavior near the boundary for 1D RBF-FD methods using PHSs and
polynomials in this section.

In 1D, we leverage the mapping proposed in [35] to control the placement of nodes
near the boundary. This mapping was implemented in [12,34] to generate point sets for 1D
finite-difference methods and in [36] for RBF approximations in 1D. The mapping, which
we shall refer to as the KTE mapping, is defined as:

xkte =
arcsin(αxcheb)

arcsin(α)
. (13)

xcheb represents a set of Chebyshev points. The outputted xkte approach Chebyshev points
as α→0, while for α=1, xkte are equispaced points. Alternatively, we also consider the
inverse of this mapping, which we shall call the IKTE mapping defined by:

xikte =
sin
(
arcsin

(
αxequi

))
α

. (14)

xequi represent a set of equispaced points. The outputted xikte approach equispaced points
as α→ 0, while for α= 1, xkte are Chebyshev points.

With these two mappings, we have one tunable parameter, α, that controls the spacing
of points near the boundary with a set of Chebyshev or equispaced points being the input
for the mappings. This allows us to investigate the behavior of point locations near the
boundary in terms of Lebesgue constant optimality and eigenvalue stability. In view of
the importance that certain eigenvalues have in the analysis of real models formulated by
Partial Differential Equations (PDEs), we refer for completeness also to [37,38].

For example, we consider a 37 point stencil, φ(r)= r5, polynomials up to degree
p=14, and 1000 nodes on the interval [−1,1] for RBF-FD calculations. For the KTE and
IKTE mapping, we use MATLAB’s fmincon to find the α that minimizes the Lebesgue
constant. For the KTE mapping, we plot the inputted Chebyshev points and the resulting
Dirichlet Laplacian eigenvalues on the left column of Figure 5. The spacing for the points
resulting from finding the α that minimizes the Lebesgue constant and the corresponding
Dirichlet Laplacian eigenvalues are depicted in the right column of Figure 5. In this case, the
Lebesgue constant for the Chebyshev points and the mapped points are ΛRBF−FD =2.69
and ΛRBF−FD =1.82, respectively. We notice that in this case, the mapped points are
equispaced away from the boundary and become clustered close to the boundary. Both sets
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of points have negative, real eigenvalues; however, the mapped points have eigenvalues of
smaller magnitude due to having a larger minimum spacing than the Chebyshev points.
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Figure 5. Chebyshev points, KTE optimized points, and their eigenvalues for a 37 point stencil with
polynomials up to degree p= 15. In this case, both point sets produce purely real eigenvalues.

Alternatively, we plot the results for the IKTE mapping in Figure 6. We notice that
for equispaced points, the eigenvalues are imaginary. After using the IKTE mapped
points, the eigenvalues return to being purely real. In this case, the Lebesgue constant
for the equispaced points and the mapped points are ΛRBF−FD =4.59 and ΛRBF−FD =
1.82, respectively.

One thing we notice is that α that minimizes ΛRBF−FD is very close to 1 from both
mappings. That is, the KTE mapping maps the Chebyshev points to points close to
equispaced points, and the IKTE mapping maps the equispaced points to points close to
the Chebyshev points. This behavior illustrates the fact that the two mappings impact
the behavior of clustering near the boundary in different ways, depending on what set of
points is being inputted. Figure 7 illustrates the behavior of ΛRBF−FD for different values
of α using the IKTE mapping. The subfigure on the right uses a log scale for α to illustrate
the behavior of ΛRBF−FD for α close to 1. The optimal α is circled.

The results from the KTE and IKTE mapping in this case lead us to conclude that
some clustering near the boundary gives the best results due to the fact that the equispaced
points lead to eigenvalues with a non-zero imaginary part, while both mapped sets lead to
purely real eigenvalues. Although the KTE and IKTE mappings inform the behavior of the
placement of nodes for RBF-FD methods by tuning just one parameter, these mappings
cannot be translated to 2D complex regions. As a result, we need a robust algorithm for
placing points near the boundary in 2D: the MCpQR algorithm.
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Figure 6. Equispaced points, IKTE optimized points, and their eigenvalues for a 37-point stencil with
polynomials up to degree p=15. The equispaced points produce complex eigenvalues, while the
IKTE optimized points produce purely real eigenvalues.
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Figure 7. Lebesgue constant for the IKTE mapped points using a 37-point stencil with polynomials
up to degree p= 15. The optimal α is circled.

4.2. MCpQR Algorithm Point Sets

Based on the results in Section 4.1, we see that a set of points that are equispaced in
most of the domain and clustered close to the boundary provide better eigenvalues. As a
result, we would like to be able to generate a similar point set using the MCpQR algorithm.
This algorithm would then be used to generate point sets for complex 2D regions.

Using the same selections for PHS, polynomial degree, stencil size, and number of
points as used in Section 4.1, we implement the MCpQR algorithm to compute point
locations for RBF-FD methods. As mentioned previously, we require a starting guess
of points to populate the piecewise cardinal function basis. Naturally, from the results
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Section 4.1, we use the equispaced points as the starting guess. The spacing for the points
computed by the MCpQR algorithm along with the Dirichlet Laplacian eigenvalues are
plotted in Figure 8. We notice that the algorithm is again able to compute points with
purely real eigenvalues. The eigenvalues closely resemble those from the KTE mapping in
Figure 5. In this case, we achieve ΛRBF−FD = 1.85
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Figure 8. MCpQR algorithm point spacing and Dirichlet Laplacian eigenvalues compared to equis-
paced points.

We notice that the points computed by the MCpQR algorithm are again near-
equispaced for most of the domain and clustered close to the boundary. One way to
decrease unnecessary computational costs is to optimize only the points close to the end
points of the domain. Thus, we choose a set of equispaced points away from the boundary
and keep them fixed. Then, we can choose the spacing of the points near the boundary
using our novel algorithm. The candidate points are populated only near the boundary,
eliminating the need to incorporate candidate points on the majority of the [−1,1] interval.
This greatly reduces the computational costs outlined for the QR factorization in Section 3.2.
Figure 9 illustrates the resulting point set when implementing this boundary-restricted
approach. Starting with 1000 equispaced points, we restrict the 1000−2k interior points
and allow the k points closest to −1 and 1 to be moved. The resulting points achieve
ΛRBF−FD = 1.85, the same value that resulted from an unrestricted algorithm. Additionally,
we notice that the spacing near the boundary and eigenvalues are similar to the unrestricted
algorithm. Thus, we are able to obtain these points for RBF-FD methods by just moving
selecting points near the boundary using the MCpQR algorithm.
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Figure 9. MCpQR algorithm point spacing and Dirichlet Laplacian eigenvalues compared to equis-
paced points. In this case, the majority of the points are fixed.

5. Results in 2D

Following the results in 1D, we naturally progress to point sets for RBF-FD methods
in 2D. The MCpQR algorithm can be used in 2D as long as we have the required basis
and candidate points. We begin with rectangular domains and follow with more complex
2D regions. We will demonstrate that the MCpQR algorithm provides a simple, robust
algorithm for finding point sets for RBF-FD methods with reduced computational cost.

5.1. Unit Square Results

The first 2D region we consider is the unit square. The unit square allows us to
consider the tensor product of resulting 1D point sets. We consider again a 37-point
stencil, φ(r)= r5, polynomials up to degree p= 4, and 961 nodes on the interval for RBF-FD
calculations. In this case, the 961 nodes are a tensor product of 31 nodes on the [−1,1]
interval. Polynomials up to degree p= 4 append 15 polynomial basis functions, the same
number appended for polynomials up to degree 14 in 1D. Figures 10–12 plot the resulting
QR algorithm points when using tensor product 1D points, hexagonal points, and scattered
points as starting guesses. The tensor product 1D points are obtained by taking the tensor
product of the points found using the QR algorithm in 1D, as shown in Figure 9.

We notice that for explicit time-stepping, the hexagonal points and the scattered points
provide the best eigenvalues. Using these sets for starting guesses, the MCpQR algorithm
moves the points near the boundary to decrease the Lebesgue constant while preserving
the general behavior of the eigenvalues. This is important, as for complex regions, we can
place the hexagonal points within the complex region, draw the boundary of the complex
region and move the points near the boundary with the algorithm. This will provide
a method similar to the algorithm used to obtain scattered points for complex regions.
We note that the tensor product points result in less optimal eigenvalues. The MCpQR
algorithm does not move the points near the boundaries for these sets. Thus, these point
sets should not be considered.

In Figure 13, we implement the MCpQR algorithm without fixing any nodes. The
closely matched results from Figures 11 and 13 show that limiting the algorithm to just
moving the points near the boundary produces adequate point sets while eliminating the
computational costs required by moving points both close to and away from the boundary.
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We notice that the points obtained from the MCpQR algorithm strongly depend on the
starting guess. Thus, we can conclude from this that the points from the QR algorithm can
only be considered as local minima, not global minima.
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Figure 10. Tensor product points and resulting MCpQR algorithm points with Dirichlet Lapla-
cian eigenvalues.
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Figure 11. Hexagonal points and resulting MCpQR algorithm points with Dirichlet Laplacian eigenvalues.
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Figure 12. Scattered points and resulting MCpQR algorithm points with Dirichlet Laplacian eigenvalues.
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Figure 13. Hexagonal points and resulting MCpQR algorithm points with Dirichlet Laplacian
eigenvalues. No interior points are fixed.

Next, we investigate the behavior of point sets for complex 2D regions. For complex
regions, we consider the scattered points along with the points resulting from inputting
hexagonal points into the QR algorithm since these two sets performed the best on the unit
square. We notice three key benefits of using the MCpQR algorithm to generate points for
RBF-FD methods in the examples above.

First, the robustness and simplicity of the algorithm allow us to easily generate point
sets for any given region. As mentioned previously, the only requirements are a given
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basis and a set of candidate points. The only tunable parameters in this case are how many
candidate points to use since the RBF-FD method already determines the basis used.

Second, in this case, the MCpQR algorithm-generated points produced eigenvalues
with smaller imaginary parts. Thus, these points produced eigenvalues closer to the true
Dirichlet Laplacian eigenvalues. This implies that for convective PDEs, less hyperviscosity
may be needed to be applied in order to handle spurious eigenvalues that arise from the
imaginary parts of the Dirichlet Laplacian.

Lastly, the points generated by the MCpQR algorithm allow for a decrease in the
stencil size requirements for RBF-FD methods. It has been previously recommended that
stencil sizes be at least twice the number of polynomial basis functions appended. Thus,
for the example used for the unit square, the stencil size should contain at least 30 points to
maintain the conditioning of the system in Equation (5). The use of the points generated by
the MCpQR algorithm alleviates the stencil size requirement. For this example, we are able
to find points for the RBF-FD method that allow for the use of a 19 point stencil. This is
done by first starting with a hexagonal point set using an adequate stencil size (30 in this
example), performing the MCpQR algorithm, and using the resulting set as the starting
guess to again run the MCpQR algorithm but now with a smaller stencil size. This is then
iterated until the conditioning of the system degrades. The resulting point set for a 19 point
stencil is shown in Figure 14.
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Figure 14. Resulting points for a 19-point stencil with Dirichlet Laplacian eigenvalues. These points
were obtained by iteratively applying the MCpQR algorithm for smaller stencils.

5.2. Complex 2D Regions

We adapt the MCpQR algorithm to generate point sets for RBF-FD methods on
complex 2D regions. We employ the same strategy: determine a starting point set, fix the
interior nodes, and implement the MCpQR algorithm to choose the location of points near
the boundary. We use the hexagonal points as the starting guess for the MCpQR algorithm
since these points were shown to perform the best in Section 5.1.

For complex regions, we populate the hexagonal points on the unit square, draw
the complex region, and keep only the points lying on the interior of the shape. The
boundary points of the complex region are then appended to the point set used as the
starting guess. In Figure 15, both the starting guess and the resulting MCpQR algorithm
sampling nodes for the bumped-disk region are plotted, along with their respective Dirich-
let Laplacian eigenvalues. This case considers the bumped-disk region using a 37 point
stencil, φ(r)= r3, and polynomials up to degree p= 4. In this example, 734 nodes are used
for RBF-FD calculations.

We note that the described method for populating the initial guess produces points
that lie too close to each other. This occurs when the boundary points for the shape are
located close to the hexagonal grid. As a result, the Dirichlet Laplacian eigenvalues are
affected due to the close proximity of certain points. We notice that the MCpQR algorithm
is able to remedy the clustering of points near the boundary and improve the behavior of
the eigenvalues.
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Figure 15. Hexagonal points and resulting MCpQR algorithm points with Dirichlet Laplacian
eigenvalues for the bumped-disk region.

Figure 16 displays the results for another complex region: the peanut region. This
example also considers a 37-point stencil, φ(r)= r3, and polynomials up to degree p=4.
Here, 830 nodes are used for the RBF-FD calculations. Similar improvements in the spacing
of points from the starting guess are observed.
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Figure 16. Hexagonal points and resulting MCpQR algorithm points with Dirichlet Laplacian
eigenvalues for the peanut region.

We see that the strategy described in this section provides another method for popu-
lating point locations for RBF-FD methods on complex regions. The MCpQR algorithm is
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able to handle complex regions. Furthermore, as mentioned in Section 5.1, the MCpQR
algorithm is able to be implemented with a few simple parameter selections (number of
candidate points and basis) and allows for decreased computational costs as a result of
lower stencil size requirements. Tables 2 and 3 list the stencil size requirement improve-
ment obtained by using the iteratively chosen points for different selections of polynomial
degree and PHS degree for both the bumped-disk and peanut regions.

Table 2. Stencil size reduction for different selections of polynomial degree and PHS degree for the
bumped-disk region.

Bumped-Disk Region, 734 Nodes

Polynomial Degree PHS Degree Two Times the Number of
Polynomial Basis Vectors

Required Stencil Size
(Optimized Pts)

deg = 3 r3 k = 20 15

deg = 3 r5 k = 20 15

deg = 3 r7 k = 20 15

deg = 4 r3 k = 30 19

deg = 4 r5 k = 30 21

deg = 4 r7 k = 30 21

deg = 5 r3 k = 42 31

deg = 5 r5 k = 42 31

deg = 5 r7 k = 42 27

Table 3. Stencil size reduction for different selections of polynomial degree and PHS degree for the
peanut region.

Peanut Region, 830 Nodes

Polynomial Degree PHS Degree Two Times the Number of
Polynomial Basis Vectors

Required Stencil Size
(Optimized Pts)

deg = 3 r3 k = 20 15

deg = 3 r5 k = 20 15

deg = 3 r7 k = 20 15

deg = 4 r3 k = 30 21

deg = 4 r5 k = 30 25

deg = 4 r7 k = 30 25

deg = 5 r3 k = 42 31

deg = 5 r5 k = 42 31

deg = 5 r7 k = 42 33

It should be noted that the MCcQR algorithm points and the scattered repel algorithm
points perform similarly on complex regions with regards to stencil requirements and
eigenvalue stability. Figure 17 plots the repel algorithm points on the bumped-disk region
with φ(r)= r3 and polynomials up to degree p= 3. In this case, the repel algorithm points
are able to handle a stencil size of 15 as well. Applying the MCpQR algorithm reduces
the repel points starting guess measure from ΛRBF−FD = 8.91 to ΛRBF−FD = 3.56; however,
there is no such improvement with regards to eigenvalue stability.
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Figure 17. Scattered repel algorithm points and resulting MCpQR points with Dirichlet Lapla-
cian eigenvalues.

The 1D results from Section 4 suggest there should be some point clustering near
the boundary of the region. It seems the MCpQR algorithm is not able to recreate the
same behavior from 1D in 2D complex regions. After inputting the repel algorithm points
(a quasi-uniformly distributed set with no clustering near the boundary) as a starting
guess, the MCpQR does not improve the eigenvalues. This may be due to the fact that
the algorithm is generating ’local minima’ type point sets. As a result, it is concluded that
these repel algorithm points perform well on 2D complex regions.

One major benefit the MCpQR algorithm can provide on complex 2D regions is bound-
ary point selection. Currently, the repel algorithm discretizes an equispaced boundary and
keeps the boundary points fixed throughout the algorithm [4]. In this case, the algorithm
does not inform any selection of boundary points. The MCpQR algorithm can be used in
conjunction with the repel algorithm to identify which boundary points to use along with
the interior points resulting from the repel algorithm. Consider the bumped-disk region
using a 37-point stencil, φ(r)= r3, and polynomials up to degree p=4. In Figure 18, we
see that if we implement the scattered repel algorithm points with too few points on the
boundary, the MCqQR algorithm selects additional points to place on the boundary. In this
case, the number of boundary points increases from 31 to 63. We notice the improvement
in the imaginary part of the eigenvalues. Thus, the MCpQR algorithm can be applied to
determine a minimum number of boundary points to use with the scattered repel algorithm
points. This again improves eigenvalue stability while decreasing computational cost by
keeping the number of boundary points to a minimum. Figure 19 illustrates the same
results for the peanut region using a 37 point stencil, φ(r)= r3, and polynomials up to
degree p= 4. In this case, the number of boundary points increases from 31 to 68, and the
same improvement in the imaginary part of the eigenvalues is observed. We see that the
MCpQR algorithm can be used in conjunction with the scattered repel point algorithm to
generate a set of boundary points along with a set of quasi-uniformly distributed interior
points with reduced computational requirements and improved eigenvalue stability.
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Figure 18. MCpQR boundary selection for scattered repel algorithm points on the bumped-disk region.
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Figure 19. MCpQR boundary selection for scattered repel algorithm points on the peanut region.

6. Test Cases Using MCpQR Algorithm Points

The accuracy of the RBF-FD method implemented with the optimized points is verified
by finding the solution to test case PDEs. After implementing the MCpQR algorithm to find
sampling points and differentiation matrices for the complex region (peanut and bumped-
disk), Ω, we find the solution to each test case listed below. A fourth-order Runge–Kutta
method is used for time-stepping.
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6.1. Diffusion Equation with Forcing Term

The first test case involves finding the solution, u(t,x,y), at time t= 10 for the follow-
ing PDE:

ut =∆u+sin(t), (15)

u0 = 0, (16)

u∂Ω = 0. (17)

This test case is implemented using a 37-point stencil, φ(r)= r3, and polynomials of
degree p=4. The expected rate of convergence is O

(
h4) since the rate is dependent on

the degree of polynomials used. Running this test case, the same rate of convergence
is observed with the optimized points. This is illustrated in Figure 20, which plots the
relative error against the average spacing between each sampling point. In this case, a node
refinement process is used, and the true solution is taken to be the solution resulting from
the case using the finest spacing.
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Figure 20. Solution convergence for the diffusion equation with forcing term using optimized points.

6.2. Wave Equation with Hyperviscosity

The second test case requires the implementation of the hyperviscosity methods. This
case involves finding the solution, u(t,x,y), at time t= 20 for the following PDE:

utt =∆u, (18)

u0 = f (x,y), (19)

(ut)0 = 0, (20)

u∂Ω = 0. (21)

Hyperviscosity methods were first introduced in [39] and further studied in [40,41]. These
methods allow stable numerical time-stepping for RBF-FD methods. Without hypervis-
cosity, the differentiation matrices for convective PDEs using RBF-FD methods presented
spurious eigenvalues. By damping the spurious eigenvalues while simultaneously preserv-
ing the relevant physical properties, the hyperviscosity methods effectively achieve stable
numerical time-stepping while still preserving accuracy in the PDE solutions.

The point sets from the MCpQR algorithm are used for hyperviscosity methods.
Implementing hyperviscosity methods requires the approximation of high order powers of
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the Laplacian operator to use as a filter for stable time-stepping. The technique is to then
add the high order Laplacian operator to the governing equation of the PDE. As a result,
spurious eigenvalues existing in the right (positive, real) half-plane are then shifted into
the left (negative, real) half-plane.

Consider the following setup: [
u
v

]
t
=L

[
u
v

]
, (22)

where L is some operator whose differentiation matrix, obtained by implementing RBF-FD
methods with PHSs and polynomials, contains spurious eigenvalues. The hyperviscosity
method is implemented by redefining the system as:[

u
v

]
t
=L

[
u
v

]
+(−1)K+1γh2K−1

[
∆ku
∆kv

]
, (23)

where k denotes the order of the Laplacian used in the hyperviscosity implementation, h
represents the average node-spacing, and γ is a parameter that tunes the hyperviscosity filter.

It is important to select a suitable value for the parameter γ. If γ is chosen to be
too large, the eigenvalues are forced further out in the left half-plane. Thus, the solution
to the PDE will be limited to smaller time-stepping. Furthermore, large values of γ
may end up filtering the physically relevant lower modes, thereby, creating accuracy
errors. If the hyperviscosity parameter is chosen to be too small, then the possibility of
still having eigenvalues existing in the right half-plane, and thus generating an unstable
method, remains.

To approximate the higher order Laplacian operators, Gaussian RBFs, φ(r)= e−(εr2),
are used due to the simplicity of higher order Laplacian formulas, which are generalized
in [20]. In the case of 2D complex regions, the operators can be approximated by:

∆0φ(r)=φ(r), (24)

∆1φ(r)= ε2
[
4(εr)2−4

]
φ(r), (25)

∆2φ(r)= ε4
[
16(εr)4−64(εr)2+32

]
φ(r), (26)

∆3φ(r)= ε6
[
64(εr)6−576(εr)4+1152(εr)2−384

]
φ(r). (27)

The hyperviscosity system for the PDE described in Equations (18)–(21) is then defined
as: [

u
v

]
t
=

[
(−1)K+1γh2K−1∆k I

∆ (−1)K+1γh2K−1∆k

][
u
v

]
,

= L̂
[

u
v

]
,

where v=ut.
This test case is implemented using a 28-point stencil, φ(r)= r9, polynomials of degree

p= 4, and ∆3-type hyperviscosity. Again, the expected rate of convergence is O
(
h4) since

the rate is dependent on the degree of polynomials used. Running this test case, the O
(
h4)

rate of convergence is again observed with the optimized points. This is illustrated in
Figure 21, where we plot the relative error against the average spacing between each
sampling point. For this example, a Bessel function of the first kind on the unit disk is used
to provide the initial and boundary conditions. The relative error is then calculated using
an exact solution to the PDE.
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Figure 21. Solution convergence for the wave equation with hyperviscosity for hexagonal and
optimized points.

7. Conclusions

A piecewise-defined Lebesgue constant for RBF-FD methods is introduced. Based
on the commonly used Lebesgue constant for polynomial interpolation, this measure
allows us to sample points for RBF-FD methods combining PHSs and polynomials. We
studied the behavior of point sets in 1D, simple 2D regions, and complex 2D regions.
Points were generated by modifying a column-pivoting QR algorithm previously used
to find optimal points for polynomial interpolation. The resulting points mitigate stencil
size restrictions resulting from the use of RBF-FD methods, thus reducing computational
cost while preserving accuracy and convergence properties. This method also provides a
simple, robust algorithm for point generation with few parameters needing to be tuned.
Lastly, we implement the MCpQR algorithm to inform the location of boundary points to
be used in conjunction with the scattered repel algorithm points. In the future, 3D regions
may be considered as well. One framework for a 3D application is given in [42]. The
column-pivoting QR algorithm may be modified to handle RBF-FD methods for 3D by
appending corresponding polynomial bases.
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