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Abstract: The semi-circular bend (SCB) specimen is widely used to measure fracture toughness of
brittle materials such as rock. In this work, the stress field, fracture process zone (FPZ), and crack
propagation velocity of SCB specimen are analyzed during the fracture process of rock specimens.
The FPZ of specimen is obtained by experimental and numerical methods under a three-point bend
test. The stress concentration zones of specimen present a heart shape at peak load points. FPZ
forms before macro fracture occurs. The macro fracture form inside FPZ in a post-peak region of a
load–displacement curve. The crack propagation process of specimen include two stages, namely
the rapid crack initial development stage, and the final crack splitting stage. The maximum crack
propagation velocity of specimen is about 267 m/s, and the average crack propagation velocity is
about 111 m/s.

Keywords: numerical simulation; rock mechanics; mode I fracture toughness; fracture process zone;
digital image correlation

1. Introduction

Fracture toughness is defined to describe the capacity of materials to resist crack
propagation, which include three categories under different loading statuses [1]. Crack
propagation in brittle materials such as rock and concrete can be easily produced by mode
I loading because tensile strength of these materials is lower than compressive strength. In
addition, Mode I fracture toughness of rock is proportional to tensile strength under quasi-
static and low-rate impact loads [2]. Therefore, most studies of rock fracture toughness
focus on mode I [3–10]. Since the semi-circular bend (SCB) specimen is easy to fabricate
and is convenient to test, it has been suggested to determine mode I fracture toughness
by the International Society for Rock Mechanics [11]. It is widely used in testing fracture
toughness of brittle materials such as rock. Kuruppu et al. [12] believed that the SCB
specimen can be well used to measure dynamic fracture toughness of rocks. Funatsu
et al. [13] obtained effects of temperature and confining pressure on mixed-mode (I–II)
toughness of SCB specimens. Gao et al. [14] calculated the fracture initiation toughness and
fracture propagation toughness of SCB specimens by using the digital image correlation
method. Wei et al. [15] predicted SCB specimen’s fracture using the maximum tangential
strain criterion.

However, it is not easy to fabricate sharp enough notch tips for the SCB specimen
made of fine-grained hard rocks, and the notch tip is often an arc which may lead to
the change of crack initiation position. In the numerical model, there is an angle at the
notch tip to ensure that the crack initiation position is in the center of tip because the
model size can be accurately determined by coordinates. Xu et al. [16] calculated fracture
initiation toughness and fracture energy of SCB specimens by the discrete element method.
Dai et al. [17] regarded that the fracture of the SCB specimen agreed with the measuring
principle by numerical investigation. Wei et al. [18] observed the fracture process zone
of SCB specimens by both acoustic emission monitoring and numerical simulation. On
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the other hand, the rock is transferred from continuum to fractured dis-continuum due to
the crack initiation and propagation. The fracture process can be better reproduced by a
numerical tool that can couple this transition from the continuum to the dis-continuum
state [19–22]. The FDEM numerical method (coupled finite element and discrete element
method) has provided a way for both continuous and dis-continuous problems [23,24].

Based on the above consideration, SCB specimens under mode I condition are studied
by both the laboratory test and the FDEM numerical method. The digital image correlation
(DIC) method [25–31] is used to record and analyze deformation and the fracture process
of specimens in laboratory tests. The FDEM numerical method is adopted to further reveal
details such as the stress field, fracture process zone, and crack propagation velocity, which
are difficult obtained in laboratory tests.

2. Experimental Tests
2.1. Specimen and Test Method

The granite material is obtained from Changtai County, Fujian Province, China. The
mechanical properties of the granite are shown in Table 1.

Table 1. Mechanical properties of the granite.

Young’s
Modulus Density Poisson’s

Ratio
P-Wave
Velocity

Indirect
Tensile

Strength

Uniaxial
Compressive

Strength

40.71 GPa 2790.3 kg/m3 0.23 5345.36 m/s 12.5 MPa 183.3 MPa

The loading diagram of SCB granite specimen is shown in Figure 1. A 5 mm long
notch is machined at the bottom of the specimen with a cutting machine and the radius
of notch tip is 0.5 mm. The corresponding geometric parameters of specimen are listed
in Table 2. Test is carried out on MTS Landmark electro-hydraulic servo control material
testing machine at Central South University. Load velocity is 1 mm/min.
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Figure 1. Loading diagram of the SCB specimen (Note: R is radius of specimen; B is thickness; a is notch length; s is 
distance between two supporting rollers; P is applied load). 
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between two supporting rollers; P is applied load).
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Table 2. Geometrical sizes of granite specimens.

Specimen No. Radius/mm Thickness B/mm Notch Length a/mm s/mm Y
′

(SIF)

SCB-1 23.37 25.28 5.85 30 3.501
SCB-2 23.56 25.24 5.93 30 3.457
SCB-3 23.64 24.94 6.11 30 3.449

In addition, the DIC method is applied to record the fracture process of granite
specimens. White paint is sprayed on the surface of specimen, and then black speckle is
brushed. Speckle diameter on the specimen surface is 0.33 mm (0.013 inches). Two CMOS
cameras (GS3-U3-123S6M-C) are used to capture the failure process of granite specimens.
The photography frequency is set to 10 fps and takes a picture every 0.1 s. The speckle
displacement change is analyzed by a software (Vic-2D 6.0) to determine the evolution
of the strain field of the specimen surface. The two cameras are arranged on the left and
right sides, and the photos taken by the camera may make it feel that the loading pin is not
in the notch line. It can be seen from the last figure in Figure 1 that the loading pin is in
notch line.

The calculation formula and processing of test data are based on the suggested method
by ISRM. Fracture toughness KIC of SCB specimen is calculated by Equation (1) [11]:

KIC = Y′
Pmax
√

πa
2RB

, (1)

where

Y′ = −1.297 + 9.516
s

2R
− (0.47 + 16.457

s
2R

)
a
R
+ (1.071 + 34.401

s
2R

)
a2

R2 (2)

Pmax is the peak load of specimen failure; and Y′ is dimensionless stress intensity factor.

2.2. Experimental Results

Table 3 lists test results of three SCB specimens, where the peak displacement is
displacement corresponding to peak load. The fracture toughness is 1.627, 1.586, and
1.597 MPa ·m1/2, respectively, indicating that fracture toughness of the granite is relatively
homogeneous. It provides a basis for subsequent numerical simulation.

Table 3. The results of Mode I fracture toughness of the granite by the three-point bend test.

Specimen No. Peak
Displacement/mm Peak Load/KN KIC/MPa ·m1/2 Average of KIC

SCB-1 0.096 4.05 1.627
1.603SCB-2 0.108 4.00 1.586

SCB-3 0.117 3.94 1.597

Figure 2 shows the load–displacement curve of three specimens. The load–displacement
curve of three specimens are slightly different due to the difference in geometrical dimen-
sions, but their general shape and variation trend are same. It can be seen that the slope
of curve is small during initial loading, and increases significantly with the increase of
displacement (after about 0.03 mm). When reaching the peak load point, specimens sud-
denly fail and load capacity suddenly drops to zero. It is difficult to get a post-peak curve
of specimens due to the sudden failure of granite, which is supplemented in the next
numerical results.

The post processing of the DIC procedure is as follows: firstly, a study area is selected
on the surface of specimen; then, the region is divided into several subsets, and the initial
displacements of these subsets are calculated; the corresponding subset is searched based on
assumption, and the displacement is calculated; finally, the deformation field of specimen
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is obtained by processing. The calculation configurations of VIC-2D 6.0 software in DIC
post-processing are as follows [32]: subset: 15, step: 4, subset weights: Gaussian weights,
error estimation: about 26 µε, correlation criterion: normalized squared differences.
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Figure 2. Load–displacement curve of the laboratory test.

Figure 3 shows the maximum principal strain evolution process of specimen SCB-1
during the test. It can be seen from Figure 3b,c that the tensile strain zone first occurs at
the tip of the notch (indicated by red in the figure), and then tensile strain zone develops
rapidly upward, resulting in instantaneous failure of the specimen. When strain reaches
about 0.5% (0.005), this area can be regarded as damaged, so the blue-enclosed part in
Figure 3c can be considered as the fracture process zone. Figure 3d shows the final failure
mode of the specimen; therefore, there is no colorbar. Figure 3e,f show the fracture surface
of the specimen.

Due to the rapid failure process of specimen, the static CMOS camera captures a few
pictures (10 fps) during the crack propagation process of specimens. The failure process
and crack propagation speed are very difficult to obtain accurately, and stress field of the
specimen cannot be obtained by the present experiment. Therefore, the FDEM numerical
simulation is used in this study to reveal more details during the failure process. The FDEM
numerical method has been well applied in rock mechanics. Mahabadi et al. [19] used a
coupled finite-discrete element method to simulate behavior of Brazilian disk specimens
under dynamic loading. Li et al. [33] studied mechanical properties and the failure process
of marble rings under static and dynamic loads by finite-discrete element. The FDEM
numerical method can well simulate mechanical properties and the failure process of rocks
under external load.
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3. Numerical Simulation
3.1. Numerical Model and Results

The FDEM numerical modeling is performed by software ELFEN. The modeling
geometric size is set according to specimen SCB-1 as shown in Figure 4. The radius,
thickness, and notch length are 23.37 mm, 25.28 mm, and 5.85 mm, respectively. The
model is subdivided into triangular meshes with a side length of 1 mm, and the end of
prefabricated notch is sharpened. The international society of rock mechanics and rock
engineering recommends that the specimen diameter be more than 10 times the material
particle size [11]. The specimen diameter in the numerical model is about 50 mm, larger
than 10 times of the mesh size (10 mm), which basically meets the requirements. In addition,
the influence of the mesh size on the loading curves is discussed in Appendix A.

The material parameters in model are the same as the granite’s. The material properties
and discrete contact parameters are listed in Table 4. The Mohr–Coulomb criterion with
tension cut-off is used to judge the material’s damage as shown in Figure 5, which can judge
both tensile and shear fracture of rock. The fracture energy of hard and brittle materials
is usually between 0.01 and 0.3 N/mm [19]. Based on previous research, 0.08 N/mm is
suitable to describe the hard and brittle granite in this work.
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Figure 4. Model geometry and meshes of the SCB-3 specimen test.

Table 4. Material properties adopted in the numerical model.

Name Granite Loading Platen

Mechanical parameters
Young’s modulus (E, GPa) 40.71 211.00

Poisson’s ratio (µ) 0.23 0.29
Shear modulus (G, Gpa) 16.48 —
Density (ρ, Ns2/mm4) 2.79 × 109 7.84 × 109

Friction angle (ϕ) 34◦

Cohesion (c, MPa) 50
Tensile strength (σt, MPa) 12.5 —

Fracture energy (Gf, N/mm) 0.08 —
Normal penalty (Pn, N/mm2) 8142 211,000

Tangential penalty(Pt, N/mm2) 814 21,100
Discrete contact parameters

Friction of newly generated cracks (γ) 0.65 —
Mesh element size (mm) 1 1

Smallest element size (mm) 0.5 0.5
Contact type Node-Edge Node-Edge
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Displacement control is applied on top loading platen. Constant velocity is 0.3 mm/s
and strain rate is about 0.012 s−1. Bottom platen is a fixed in the model. Upper platen is a
non-fixed with an applied constant velocity.

Figure 6 shows a load–displacement curve of specimens in laboratory and numerical
models. The two curves agree well with each other. It indicates that the numerical
model can simulate the mechanical properties of granite specimens quite well. Therefore,
the numerical simulation is reliable, and it can provide us with more details about the
mechanical behavior of specimens.
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Figure 6. Load–displacement curve.

The simulation is performed quasi-static. The crack is produced when the tensile
stress exceeds the tensile strength, and the strain energy reaches the energy required for
failure. The length of crack propagation is equal to the strain energy released of the notch
divided by the failure energy per unit area of the material. As shown in Figure 7, initial
crack is generated from the tip of notch of the specimen, and then grows zigzag toward the
top. Eventually, the specimen split into two halves along the middle. Numerical simulation
results reproduce failure process of the SCB specimen.
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3.2. Stress Field Evolution

During loading process, the stress field on specimen surface can be used to judge
the local stress concentration and the overall stress distribution, which is an important
information to judge whether the specimen is damaged or not. It is difficult to get the stress
field on the surface of specimens in laboratory tests, but the information of the stress field
on the surface of specimens can be well obtained in the numerical calculation software.

As shown in Figures 6 and 8, the peak load is 4357 N with the maximum vertical
displacement of 0.097 mm under numerical simulation. The specimen is in the tensile state,
except the part in contact with platen. The tensile stress concentration is initially created
at the tip of pre-notch as shown in Figure 8a. The tensile stress concentration zone of the
specimen presents a heart shape at the peak stress point as shown in Figure 8c. After the
crack is generated (shown in Figure 8d–f), the maximum tensile stress concentration zone
moves up with the crack and expands upward until the crack penetrates the specimen.
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Figure 8. The maximum principal stress evolution at different loads: (a) 720 N; (b) 2884 N; (c) 4357 N
(100% peak); (d) 4153 N (Post peak); (e) 3537 N (Post peak); (f) 1849 N (Post peak) (Note: positive
stress value represents tensile stress, and the unit is MPa).

For Mode I dominated problems, the failure of rock is dominated by the formation of
tensile cracks (Mode I) when the tensile stress exceeds the tensile strength of the material.
It can be seen from Figure 9 that the shear stress is concentrated on the top of the specimen
and does not cause cracking. The cracks and branches are caused by tensile stress; they are
all Mode I crack.
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3.3. Evolution of the Fracture Process Zone

The result difference in rock fracture toughness test obtained by different specimen
types has attracted the attention of many scholars. Most scholars believe that the frac-
ture process zone (FPZ) near the crack tip is responsible for variation of fracture tough-
ness [35–39]. Therefore, it is necessary to analyze distribution and evolution of the speci-
men’s FPZ during the loading process, in order to provide more understanding of rock frac-
tures.

The damaging behavior and plastic strain law in the numerical model are shown in
Figure 10. During the loading process, the increase of stress causes the elastic strain εe
of material. When the stress of a point reaches the tensile strength σt, the elastic strain εe

reaches the maximum ε
peak
e . The strain after the peak elastic strain ε

peak
e is plastic strain

εp. The plastic strain will continue to increase when the energy stored is not enough to
produce cracks. The ε f is the strain when the material is fractured. The area G f under the
curve is the energy required for material fracture. When the energy stored is enough to
destroy the mesh, the crack will appear in the plastic strain zone.
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Figure 10. The damaging behavior and plastic strain law in the numerical model.

The plastic strain in the numerical model is shown in Figure 11. The area where the
strain reaches about 0.5% (0.005) is considered damaged and can be defined as FPZ. The
FPZ is first produced around the tip of the notch and then develops vertically upwards.
When the specimen is subjected to a load of 4357 N (peak load), FPZ is obvious (red part as
shown in Figure 11b). The plastic strain is about 5 mm, and no macroscopic fractures can
be observed at this time. When FPZ (light blue part) grows to about 12 mm as shown in
Figure 11d, the tip of the notch began to produce macro fractures inside FPZ. Then, the FPZ
continues to develop with loading, and the macro fracture continues to occur inside FPZ.
When FPZ penetrates the specimen, the bearing capacity of specimen has been reduced
to zero.



Mathematics 2021, 9, 1769 10 of 14

Mathematics 2021, 9, x 10 of 14 
 

 

curve is the energy required for material fracture. When the energy stored is enough to 
destroy the mesh, the crack will appear in the plastic strain zone. 

 
Figure 10. The damaging behavior and plastic strain law in the numerical model. 

The plastic strain in the numerical model is shown in Figure 11. The area where the 
strain reaches about 0.5% (0.005) is considered damaged and can be defined as FPZ. The 
FPZ is first produced around the tip of the notch and then develops vertically upwards. 
When the specimen is subjected to a load of 4357 N (peak load), FPZ is obvious (red part 
as shown in Figure 11b). The plastic strain is about 5 mm, and no macroscopic fractures 
can be observed at this time. When FPZ (light blue part) grows to about 12 mm as shown 
in Figure 11d, the tip of the notch began to produce macro fractures inside FPZ. Then, the 
FPZ continues to develop with loading, and the macro fracture continues to occur inside 
FPZ. When FPZ penetrates the specimen, the bearing capacity of specimen has been re-
duced to zero. 

  
(a) (b) 

  
(c) (d) 

Mathematics 2021, 9, x 11 of 14 
 

 

  
(e) (f) 

Figure 11. Plastic strain evolution at different loads: (a) 2838 N; (b) 4357 N (peak load); (c) 4152 N 
(post peak); (d) 3537 N; (e) 1849 N; and (f) 0 N. 

From the above analysis, it can be known that FPZ is ahead of macro fractures, and 
macro fractures are generated after peak load. When FPZ penetrates the specimen, the 
bearing capacity of specimen has been reduced to 0, and the macro fracture has not com-
pletely penetrated the specimen at this time. This indicates FPZ control fracture behavior 
of the specimen. 

3.4. The Crack Propagation Velocity 
The crack propagation velocity is an important piece of information in specimen fail-

ure. In order to obtain the crack propagation velocity, the crack length was measured 
every 30 microseconds. Figure 12 shows a relationship between the crack length and the 
time increment. It can be calculated that the average crack propagation velocity is about 
111 m/s. The crack propagation process includes two stages according to crack propaga-
tion velocity, namely the rapid crack initiation development stage (A to B) and the final 
crack splitting stage (B to C). The crack propagates rapidly at the crack initiation develop-
ment stage and velocity is about 267 m/s, which is also the main stage of the crack for-
mation. The crack propagation velocity is slowed down at the final splitting stage. The 
crack propagation experienced fast and slow stages in the whole process. 

 
Figure 12. The relationship of crack length and the loading time increment. 

4. Conclusions 
The mode I fracture process of the semi-circular bend (SCB) rock specimen is ana-

lyzed by experimental and numerical methods in this work. The main conclusions were 
obtained as follows: 

Figure 11. Plastic strain evolution at different loads: (a) 2838 N; (b) 4357 N (peak load); (c) 4152 N
(post peak); (d) 3537 N; (e) 1849 N; and (f) 0 N.

From the above analysis, it can be known that FPZ is ahead of macro fractures,
and macro fractures are generated after peak load. When FPZ penetrates the specimen,
the bearing capacity of specimen has been reduced to 0, and the macro fracture has not
completely penetrated the specimen at this time. This indicates FPZ control fracture
behavior of the specimen.

3.4. The Crack Propagation Velocity

The crack propagation velocity is an important piece of information in specimen
failure. In order to obtain the crack propagation velocity, the crack length was measured
every 30 microseconds. Figure 12 shows a relationship between the crack length and
the time increment. It can be calculated that the average crack propagation velocity is
about 111 m/s. The crack propagation process includes two stages according to crack
propagation velocity, namely the rapid crack initiation development stage (A to B) and
the final crack splitting stage (B to C). The crack propagates rapidly at the crack initiation
development stage and velocity is about 267 m/s, which is also the main stage of the crack
formation. The crack propagation velocity is slowed down at the final splitting stage. The
crack propagation experienced fast and slow stages in the whole process.
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4. Conclusions

The mode I fracture process of the semi-circular bend (SCB) rock specimen is analyzed
by experimental and numerical methods in this work. The main conclusions were obtained
as follows:

(1) The notch tip of is a SCB specimen, often an arc, which may lead to the change of the
crack initiation position. In the numerical model, there is an angle at the notch tip to
ensure that the crack initiation position is in the center of tip. The FDEM numerical
calculation method can well simulate the mode I failure mode and the stress–strain
curve of the SCB specimen. It can provide important information of the mode I failure
process, such as the stress field and strain field, which is difficult to obtain in the
laboratory test, and provides powerful help for the study of mode I fracture.

(2) During the loading process, the tensile stress concentration zone of the SCB specimen
generates and grows at the notch tip of the specimen. The tensile stress concen-
tration zone of specimens presents a heart shape at peak load. After macro cracks
were generated, the maximum tensile stress concentration zone moves upward with
crack propagation.

(3) The fracture process zone (FPZ) of the specimen forms before macro fractures under
both experimental tests and numerical simulation. The macroscopic fracture forms
inside FPZ in the post-peak region of a load–displacement curve. The macroscopic
fracture’s length is behind FPZ’s. The FPZ controls fracture behavior of the specimen.

(4) The crack propagation process of the specimen includes two stages according to crack
propagation velocity, namely the rapid crack initiation development stage and the
final crack splitting stage. The maximum crack propagation velocity is about 267 m/s
and the average crack propagation velocity is about 111 m/s.

Author Contributions: Conceptualization, P.X.; methodology, P.X.; software, P.X.; validation, P.X.,
D.L., G.Z. and M.L.; formal analysis, P.X.; investigation, M.L.; resources, P.X.; data curation, P.X.;
writing—original draft preparation, P.X.; writing—review and editing, P.X., G.Z. and D.L.; visualiza-
tion, P.X.; supervision, D.L. and G.Z.; project administration, D.L.; funding acquisition, D.L., G.Z.
and P.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Outstanding Youth Science Foundations of Hunan
Province of China (No. 2019JJ20028), the National Natural Science Foundation of China (No.
52074349), the State Key Research Development Program of China (No. 2018YFC0604606), and
the independent exploration and innovation project of graduate students from Central South Univer-
sity (No. 160171001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Mathematics 2021, 9, 1769 12 of 14

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The influence of the mesh size on the loading curves is shown in Figure A1. It can be
seen that the loading curves of different mesh sizes are almost identical before the peak,
and there is a small difference at the peak point. The mesh size of 1 mm can basically reflect
the mechanical properties and failure of SCB specimens.

Generally, the smaller the mesh size can make, the finer the result. However, the crack
propagation velocity of SCB specimen is fast. It needs to output a graphic data every 30 µs
in the numerical model to capture the crack propagation process, resulting in a total of
10,000 graphic data outputs in the whole calculation process. The output of a large number
of graphic data and too small mesh size will lead to numerical calculation and very slow
post-processing.

Considering the running speed of the computer, in order to obtain the crack propaga-
tion process and reduce the influence of mesh size on the loading curve, the 1 mm mesh
size and outputting 10,000 graphic data are selected in the numerical model.
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