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1. Introduction

The Hermite-Hadamard inequalities and their weighted versions, the so-called Hermite-
Hadamard-Fejér inequalities, are the most well-known inequalities related to the integral
mean of a convex function (see [1] (p. 138)).

Theorem 1 (The Hermite-Hadamard-Fejér inequalities). Let h : [a,b] — R be a convex
function. Then

h(a;b) /ab”(x) dx < ju(x)h(x) dx < Bh(a)—l—;h(b)} /abu(x) dx, )

where u : [a,b] — R is nonnegative, integrable and symmetric about % If his a concave function,
then the inequalities in (1) are reversed.

If u = 1, then we are talking about the Hermite-Hadamard inequalities.

Hermite-Hadamard and Hermite-Hadamard-Fejér-type inequalities have many appli-
cations in mathematical analysis, numerical analysis, probability and related fields. Their
generalizations, refinements and improvements have been an important topic of research
(see [1-13], and the references listed therein). In the past few years, Hermite-Hadamard-
Fejér-type inequalities for superquadratic functions [2], GA-convex functions [7], quasi-convex
functions [11] and convex functions [13] have been largely investigated in the literature.

The importance and significance of our paper are reflected in the way in which we
prove new Hermite-Hadamard-Fejér-type inequalities for higher-order convex functions
and the general weighted three-point quadrature formula by using inequality (1), and a
weighted version of the integral identity expressed by w-harmonic sequences of functions.

For this purpose, let us introduce the notations and terminology used in relation to
w-harmonic sequences of functions (see [14]).
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Let us consider a subdivision o = {a = xg < x1 < --- < x; = b} of the segment [a, b],
m € N. Letw : [a,b] — R be an arbitrary integrable function. For each segment [x;_1, x;],
j=1,...,m, we define w-harmonic sequences of functions {wjk}kzl,...,n by:

wi(t) = w(t), t € [xi1,x], @)
wi(t) = wixa(t), t € [xj-1,x], k=23,

Further, the function W, ,, is defined as follows:

wi,(t), t€E[a,x],
Wy (t), t€ (x1,x2],

Wiw(t,o) =< ©))

Wmn(t), t S (xmfl,b].
The following theorem gives a general integral identity (see [14]).

Theorem 2. Let f : [a,b] — R be such that f\") is piecewise continuous on [a,b]. Then, the

following holds:
b n
Jwwf@a = ¥ (=1 o)t ) @
2 k=1

3
L

+ Y o) = wya ()] 5 () — e ) f 4 (a)

1

-
Il

b
+o(-1) / Wit ) F0 (1) dt

In [15], the authors proved the following Fejér-type inequalities by using identity (4).
Theorem 3. Let f : [a,b] — R be (n + 2)-convex on [a,b] and f") piecewise continuous on

[a, b]. Further, let us suppose that the function Wy, y,, defined in (3), is nonnegative and symmetric
about # (i.e., Wnw(t,0) = Wyw(a+b—t,0)). Then

(o) -5 (57) ©)

b n
< (1)n{ [l dt = Y- (<1) (b)) (0)

. k=1

+ X [w(x7) = @) | £ () = o) Y (”)] }

<Uo)- |37+ 370 0),

where

_1\n b n k 1
u"(g):(nl!) / (8)- £ dt = nz n(flkJrl)

2 i

m—1
-(wmk<b>b”“+ ¥ (wpelx) = wja4(xy) ) e w1k<a>a”k“). ©)
j=1
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If Wy (t,0) < 0or fisan (n+ 2)-concave function on [a,b], then the inequalities in (5) hold
with reversed inequality signs.

Further, let us recall the definition of the divided difference and the definition of an
n-convex function (see [1] (p. 15)).

Definition 1. Let f be a real-valued function defined on the segment [a,b]. The divided difference
of order n of the function f at distinct points x, ..., x, € [a,b] is defined recursively by

flxil = f(xi), (i=0,...,n)

and

flxo, .-, xn) = f[xl""'xﬂ)]cn_f}[:;o,...,xn_l].

The value f[xo, ..., Xy is independent of the order of points x, . .., Xp.

Definition 2. A function f : [a,b] — R is said to be n-convex on [a,b], n > 0, if, for all choices
of (n+ 1) distinct points xo, ..., x, € [a,b], the n-th order divided difference in f satisfies

f[x0/-~-/xn] > 0.

From the previous definitions, the following property holds: if f is an (1 + 2)-convex
function, then there exists the n-th order derivative f\"), which is a convex function
(see, e.g., [1] (pp- 16, 293)).

The paper is organized as follows. After this introduction, in Section 2, we establish
Hermite-Hadamard-Fejér-type inequalities for weighted three-point quadrature formulae
by using the integral identity with w-harmonic sequences of functions, the properties of
harmonic sequences of polynomials and the properties of n-convex functions. Since we
deal with three-point quadrature formulae that contain values of the function in nodes
X, # and a + b — x and values of higher-ordered derivatives in inner nodes, the level
of exactness of these quadrature formulae is retained. In Section 3, we derive Hermite—
Hadamard-Fejér-type estimates for a generalization of the Gauss—Legendre three-point
quadrature formula, and a generalization of the Gauss—Chebyshev three-point quadrature
formula of the first and of the second kind.

Throughout the paper, the symbol B denotes the beta function defined by

1
B(x,y) = /sxfl(l —s)¥1s,
0

I' denotes the gamma function defined as:
o
I'(x)= 2/ R
0

and )
F(a,B,7;2) = m 0/ 11— )T P11 — 2t) e

is a hypergeometric function withy > > 0,z < 1.
In the paper, we assume that all considered integrals exist and that they are finite.

2. Hermite-Hadamard-Fejér-Type Inequalities for Three-Point Quadrature Formulae

In this section, we establish Hermite-Hadamard-Fejér-type inequalities for the weighted
three-point formula using a weighted version of the integral identity expressed by w-
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harmonic sequences of functions that are given in Theorem 2 and the method that origi-
nated in [15].
In [16] (p. 54), the authors proved the following theorem.

Theorem 4. Let w : [a,b] — R be an integrable function, x € |a, #), and let {Lj'X}j:O,l,...,n’

n € N, be a sequence of harmonic polynomials such that deg L, < j—1and Lo = 0. Further, let
us suppose that {wjx }x—1,., are w-harmonic sequences of functions on [x;_1,x;], forj = 1,2,3,4,
defined by the following relations:

wik(t) = (k—ll)' /(t — s)k_lw(s) ds, te€lax|,

t

wyr(t) = (k—ll)! /(t—s)k_lw(s) ds+ L (t), te <x, a—;b}
1 a+b—x ; 4t b
wa(t) = ~ T / (t—s) w(s) ds+ (1) Lgc(a+b—t), te ( 5 ,a+bfx},

-~

b
wy(t) = — (k—ll)' /(t —s)k_lw(s) ds, te(a+b—uxb].

If f : [a,b] — Ris such that f") is piecewise continuous on [a, b], then we have

h n
[ewr@a = LA (4@ + 0 V- x)
a =1

n b
+ kZlBk(x)f(kl)(a;—b) +<—l)n/wn,w(t,x)f(n)(t) dt, @)

where

Apx) = (-1 [(,{11) =) ats) ds - Lk,x<x>] , k>, ®)

a

a+b

Bi(x) =2 (kll)! /2 <a—;b —s)klw(s) ds + Lk,x<a—£b> , foroddk>1, (9)

X

and
By(x) =0, forevenk>1,
such that
wiy(t), t€ax],
woy,(t), te x,m ,
Wt x) = zn(t) Jz } (10)
w3, (t), t€ %,a—l—b—x},
way(t), t€ (a+b—x,bl.

Remark 1. If we assume w(t) = w(a+ b —t), for each t € [a,b], then the following symmetry
conditions hold fork =1,...,n:

wi(t) = (—1)kw4k(a +b—t), fortéelax],

and
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Wy (t) = (=D Xwg(a+b—1t), forte <x, ot b].

2

Using Theorems 1 and 4, the properties of both n-convex functions and w-harmonic se-
quences of functions, and the method that originated in [15], in the next theorem, we derive
new Hermite-Hadamard-Fejér-type inequalities for the weighted three-point quadrature
Formula (7).

Theorem 5. Let w : [a,b] — R be an integrable function such that w(t) = w(a+b—1t),
foreach t € [a,b] and x € [a, #) Let the function Way, 4, defined by (10), be nonnegative. If

f:[a,b] = Ris (2n + 2)-convex on [a,b] and f3") is piecewise continuous on [a, b], then

Up(x) - f2) (T) (11)

b 2n
< [w(f(e) dt - L Alx) (FI ) + ()5 b - x))

2n
- L B0 S ) [5@ ¢ 570
=1,ko
where
1 ¢
Uno(®) = [wit)- £t (12)
2n x2n7k+1 + (_1)k71<a +bh— x)2n7k+1
- ,;A"(x) 2n—k+1)!

2n (a + b)Zn—k-H

- Bk(x) ’
k:l,Zkodd 22n—k+1(2pn — k +1)!

and Ay and By, are defined as in Theorem 4. If Woy, o (t,x) < 0 or f is a (2n + 2)-concave function,
then inequalities (11) hold with reversed inequality signs.

Proof. Let us observe that the function f is (21 + 2)-convex. Hence, f?") is a con-
vex function. It follows from Remark 1 that the function Wy, , is symmetric about
%b, i.e., Woy o(t,x) = Woyw(a+b—t,x). Thus, inequalities (11) follow directly from
Theorem 1, replacing a nonnegative and symmetric function u by a nonnegative and sym-

metric function Wy, 4, and a convex function & by a convex function f (21) ‘and then using

b
identity (7) in [ Way o (t, x) f@0(t) dt.
a

th

Identity (7) yields Uy, (x) by substituting n with 2n and putting f(t) = ;. Then,

(2n)!
@I (t) = 1 and fED (1) = m - 2"=k+1" On the other hand, if Wa, 5 (t, x) is

nonpositive, then —Wy, ,(t, x) is nonnegative, from where there follow reversed signs
in (11).

Further, let us assume that f is a (21 4 2)-concave function. Hence, the function — f(2")
is convex. Reversed signs in (11) are obtained by putting —f(*) and the nonnegative
function Wy, 1, (t, x) in (1). This completes the proof. []

Remark 2. The value of Uy (x) can be obtained from Theorem 3 by taking an appropriate
subdivision of the segment [a, b] and applying the properties of functions wyy, Wo, W3k ANd W .
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To get a maximum degree of exactness of quadrature Formula (7) for fixed x €

{a, %b) , we consider a sequence of harmonic polynomials {L;  }—o,...» defined as follows:

Lo (t) = 0, forte {x,a;—b},
’ 2 ; +b\2
_ _ 2_ (4
Lix(x) = /w(s) ds ST /(s ( 7 ) )w(s) ds, (13)
a a
1 X
Lj,x(x) = W /(x - S)]_lw(s) dS/ ]: 2/3/4/5/ 6/
6 t—x)i—k a+b] .
L],x(t) = ZLk’x(x)((j—]){)', fOI'tE |:x,2:|, ]:1,...,1’1.
k=1 :
Therefore, we have
2 ; 5 a+b\?
Al(x) = m/ T — 5 ZU(S) dS, (14)
b

Bi(x) = [ w(s) ds —241(x),
a
Ax(x) =0,fork =2,3,4,5,6 and By(x) =0, fork = 2,3,4.
Finally, from identity (7), for x € [a, #), we obtain the following three-point

weighted integral formula:

: b
Jwtra = A1(x)[f(x)+f(a+b—x)]+</ w(s)ds—ZAl(x)> f(ﬂ;b>

a

b
b Thw(x) 4 (—1)" / W w(t, ) f (1) dt, (15)

where

n

Tow(x) = 3 Ak (FE0 () + (- 6D+ b - x))

k=7
. (k-1) ”+b)
£ L B ( o, 16)

Now, applying results from Theorem 5 to identity (15), we get the following results.

Corollary 1. Let w : [a,b] — R be an integrable function such that w(t) = w(a+ b — t), for each
t € [a,b] and let x € [a, %) Let the function Way, 4, defined by (10), be nonnegative and let L; ,
be defined by (13). If f : [a, b] — R is (21 + 2)-convex on [a, b] and f?") is piecewise continuous
on [a, b, then
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Up,zw(x) ‘f(Zn) (a—;—b) 17)

b
< [wf (1)t = M [F(x) + fla+b )
b
— (/w(s) ds — 2A1(x))f<a —; b> = Tanw(x)
< Upo(x) Bf(zn)(a) ;f(Zn)(b)}
where
b
Unlx) = g [ 0(t)- 27 dt - Ayt (‘g;)b! —x) 18)

b
(a+b)2"
_ <a/ZU(S> ds — 2A1<x)) W

B ZZn A (x) x2n—k+l + (—l)k_l(a+b—x)2"_k+l
P (2n—k+1)!

2n (a + b)Zn—k-i—l

- By (X) 75— :
k:S,Zkodd 22—F1(2n — k + 1)

If Wa w(t,x) < 0or fisa (2n + 2)-concave function, then inequalities (17) hold with reversed
inequality signs.

Proof. The proof follows from Theorem 5 for the special choice of the polynomials L;,. U

Remark 3. If we assume Bs(x) = 0, then we get

j(s — ”Zih>4w(s) ds
j<s2 _ (a;b)z>w(s) i

Therefore, for such a choice of x, we obtain the quadrature formula with three nodes, which is
accurate for the polynomials of degree at most 5, and the approximation formula includes derivatives
of order 6 and more.

x7u+b_
2

3. Special Cases

Considering some special cases of the weight function w, in our results given in the
previous section, we obtain estimates for the Gauss-Legendre three-point quadrature
formula and for the Gauss—-Chebyshev three-point quadrature formula of the first and of
the second kind.

3.1. Gauss—Legendre Three-Point Quadrature Formula

Let us assume that w(t) =1,¢ € [a,b] and x € {a, "Zib)
Now, from Theorem 4, we calculate
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Wi, (t) = (t;‘f)n, t € lax],
WL(t ) — wm(®) = EL L), te (xo4t], )
" wsn(t)z%nL(—l)"Lm(a%—b—t), te “;b,a—i—b—x},
Wy (1) = (t;l,’)ﬂ, te(a+b—x,b),
and
GL k1| (x —”)k
A (x) = (-1) % —Lpy(x)|, fork>1,
k
a+b x
BCL(x) =2 ( - ) +Lk,x(“+b> , forodd k>1,
and

BSL(x) =0, forevenk > 1.

Corollary 2. Let wp,(t) > 0, forall t € (x, ”;b} and forn € N. If f : [a,b] — Risa

(21 4 2)-convex function and f3") is piecewise continuous on [a, b], then

ugt(x)- £ (“17) (20)
b

2n
< [far= L AT @ (@ + () - x)
=1

a

L GLy o k1) (A D GL L on) L on)
- ), Br(wf — )= U, = (x) - 2f (a) + Ef (b)|,
k=1,kodd
where
b2n+1 _ a2n+1
GL
U™ (x) (2n+1)! 1)
2n n—k+1 4 (_1\k-1 \2n—k+1
B ZAI?L(x)x +(-1) (a—i—l'? x)
= 2n—k+1)!
B 2271 BI?L(X) (a + b)2n7k+1 '
k=1Fkodd 22n—k+1 (211 —k+ 1)!

If f is a (2n + 2)-concave function, then inequalities (20) hold with reversed inequality signs.

Proof. A special case of Theorem 5 for w(t) = 1, t € [a,b], and a nonnegative function
WZGHL defined by (19). O

If we assume that the polynomials L;(t) are such that

Lo(t) = 0, forte [x, 1 ;— b], (22)
o (b-ap
Lix(x) = x—a m/
L]X(x) = (x]-'a) 4 ] _2/3/4/5/6/
8 (t— x)ik +b
L:.(t) = Ly (x)— ,forte[x, ], =1,...,n,
]x( ) k:z1 kx( ) <] k)! 2
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b— 3
we get AFL(x) = U, AL (x) = 0, for k = 2,3,4,5,6, BYL(x) = b—a — 245 (x)

and B$L(x) = 0. Thus, we obtain the following non-weighted three-point quadrature
formulae:

b

[roae = (5 4 flatb )
) ~ 6(a+b—2x)?2
(b—a)d a+b
* (b‘”‘ <a+b—2x>2>f< )
+ TCL(x / WL (¢, x) F09) (1) dt, (23)
where
Tohx) = ZAGL )(FED ) + ()R D a4 b - x)
+ i BEL(x)f("‘”(thb)- (24)
k=5,0dd k
In particular, according to Remark 3, for [4,b] = [-1,1] and x = *T\/ﬁ, we get

BSL(x) = 0, and there follows a generalization of the Gauss-Legendre three-point formula.
Now, we derive Hermite-Hadamard-Fejér-type estimates for this generalization of the
Gauss-Legendre three-point formula.

If the assumptions of Corollary 1 hold for w(t) =1,t € [-1,1], and if f : [-1,1] = R
is a (2n + 2)-convex function, we derive:

uyt (f) f2(0) (25)

1
S_/lf(t) dt—;[5f<_\5/ﬁ> +8f(0)+5f<\/5175>] —T2G,1L<_\5/ﬁ>

<uﬁﬁ<§ﬁ>-[§f@"< 1)+ 3£,

where
LIGL —v15\ 2.5l -2(2n+1)-3"2
" 5 5n-1 (271 + 1)!
2n cL 7\/@ (7\/@)2n—k+1 4 (71)k—1(\/ﬁ)2n—k+1
- Z Ak 5 52n—k+1 (271 —k+ 1)! ’
k=7 :

In a special case, for n = 3, we get

L5

g )

= 15,1750' [2f(6)(_1)+ ;f(é)(l)}
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3.2. Gauss—Chebyshev Three-Point Quadrature Formula of the First Kind

Let us assume that w(t) = ﬁ,t €(—1,1)and x € [-1,0).

From Theorem 4, there follow:

t _o\n—1
wln(t) = (n_ll)! j; (11/1817 ds, te [*1,9(],
¢ _g)n-1
WGC] (t ) wzn(t) - (n*ll)! 5[ (t\/1152 dS+L”/x(t)/ te (x/ 0]/ (27)
nw X = -x n—1
w3 () = — Gy, tf %}%2 ds+ (—1)"Ly(—t), te€ (0,—x],
w41’l(t) = _(n_ll)' } (t\;i”;l ds, te (—x, 1],
+ 1-s

and

GCl [(—1)k_1 © sl
BSCl(x) =2 |/ ds+ L, (0)], foroddk>1,
— _ 2 7
(k 1) ] V1 S

and
BSCl(x) =0, forevenk > 1.

Corollary 3. Let wy2,(t) > 0, forall t € (x,0] and forn € N. If f : [-1,1] — Risa
(21 + 2)-convex function and f?") is piecewise continuous on [—1,1], then

uge(x) - f#(0) (28)

1 n
< / f(t) df — ZZ: AECl(x) (f(kfl)(x) + (—1)k*1f(k*1)(—x))
7

vV1i-t k=1

- kude B () f5V(0) < Uy (x) - Bf@")(—l) + if@”)m]

where
1 11
GC1 _ i
u;~ (x) = (2n)1B<2'2+n) (29)

B ZZHAGC1(x) x2n—k+1 +(71)k—1(7x)2n—k+1
=k (2n —k+1)!

If f is a (2n + 2)-concave function, then inequalities (28) hold with reversed inequality signs.

Proof. A special case of Theorem 5 for w(t) = \/11,712’ t € (—1,1), and a nonnegative

function WSC! defined by (27). O

2n,w

If we assume that the polynomials L; . (#) are such that
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Lox(t) = 0, forte [x,0],
. T
L1x(x) = arcsinx+ 7T 2
j-1/2
L]',x(x) = WF(;/ %/%4—]/ x_2|—1>/ j:2/3/4/5/6/
Var(}+ j)
6/\j x)]ek
Lit(t) = Zka myaY ————, forte[x0], j=1,...,n,
we calculate AT (x) = 75, A (x) = 0, for k = 2,3,4,5,6, Bf!(x) = m — %5 and
B§Cl(x) = 0.
Now, we derive
[0
T s s
/1 = = gl (52 fO + gafy)
1
+ TSC (x) + (-1)" / WESL(t, x) F)(¢) dt, (30)
21
where
n
TS () = Y ASC) (£ () + ()R ()
k=7
n
+ Y B 0). (31)
k=5,0dd k

In particular, there follows a generalization of the Gauss—Chebyshev three-point
quadrature formula of the first kind for x = ‘[ . Now, we derive Hermite-Hadamard-
type estimates for the Gauss—-Chebyshev three- pomt quadrature formula of the first kind.

If the assumptions of Corollary 1 hold for w(t) = ﬁ, t € (—1,1), and if f :
[-1,1] — Risa (2n + 2)-convex function, we get

7! (f) - f2(0) (32)

-3 1 11 .31
Uy <2> - (Zn)!B(Z' 2t ”) 221 )1
B ZZnAGCl 7\6 (7\/§)Zn—k+1 +(71)k—1(\@)2n—k+1
22n—k+1(2p — k4 1)! '

In a special case, for n = 3, we obtain
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e fO(0) (33)

3.3. Gauss—Chebyshev Three-Point Quadrature Formula of the Second Kind
Assuming w(t) = V1 —#2,t € [-1,1] and x € [—1,0) and using Theorem 4, we obtain

t
Wy, (1) = ﬁ [ (t—s)""1V1—s2ds, te[-1,x],
1
¢
W () = ﬁ J(t—=s)"" W1 —sZds+ Lyx(t), t e (x,0],
WG (£ x) = * L (34)
w3y () = —ﬁ [ (t=s)"" 11 —s2ds+ (—1)"Ly(—t), te€(0,—x],
t
1
W () = —ﬁ J(t—s)"" V1 —s2ds, te(—x1],
t
k+1/2
GC2pn ¢ k-1 ] (x+1) v2rm (133 x+1Y S
Ak (x)i( 1) r(%+k) F 21212+k1 2 Lk,x(x) Ik_l/
(-1
B =2 | gy, /sk_1\/1 —2ds + Lx(0), |, forodd k> 1,
X

and
BS%(x) =0, forevenk > 1.

Corollary 4. Let wy,(t) > O, forall t € (x,0] and forn € N. If f : [-1,1] — Risa
(21 + 2)-convex function and f?") is piecewise continuous on [—1,1], then

U7 (x) - £(0) (35)
< /11 FOVI= = 32 4G (100 + (1))
- k_jz:m BP0 (0) < uFH) - [ 3120 (-1 + 3 ),
where
Uus®?(x) = (zln)!B @ % + n) (36)
- Lage T OGO

If f is a (2n + 2)-concave function, then inequalities (35) hold with reversed inequality signs.

Proof. A special case of Theorem 5 for w(t) = v/1—#2,t € [~1,1], and a nonnegative
function W$C2 defined by (34). O

2n,w
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If the polynomials L; . (t) are such that

Lox(t) = 0, forte [x,0],
1 T m  xV1—x2
Liy(x) = 5 (arcsmx—l— > a2 + 2)/
oy G TPVaR 133 a1
Lix(x) = T3+ —5iy5th T ) i=23456,
¥ ) )
Lix(t) = Eka =R forte[x,0], j=1,...,n,
we have AYC2(x) = x\/14? Texs AGC2( x) =0, fork = 2,3,4,56, BS<2(x) = £ —
@ + gz and B§2(x) = 0, so we obtain
1
/f(f)vl—f2 dt = AT (x)[f(x) + f(—x)] + BY(x)£(0)
21
1
+ TSR0+ () [ WER M a @)
21
where

TSR (x) = Y AT (D) + (-1 ()
k=7
FY BRI (0), (38)
k=5,0dd k

In particular, a generalization of the Gauss—-Chebyshev three-point quadrature formula

of the second kind follows for x = —%. Now, we derive Hermite-Hadamard-type
estimates for the Gauss—Chebyshev three-point quadrature formula of the second kind.

Applying Corollary 1 to w(t) = V1 —t2,t € [-1,1], x = —% and a (2n 4 2)-convex
function f, we obtain

-2 Y
(2) o
1
< [rovi-ea-T [f(—f) +2f(0) +f<\f>] -1 (f)
5
Uy Cz(f) (3 e+ 3 m),
where

A 1 (31 u
UEC2<2> = (Zn)!B(z’z +n) - 22(2n)!

_ ZAGC2< \@) (—v/2)2n Kt —|—(—1)k*1(\/§)2n7k+1.

22n—k+1(2n —k +1)!

As a special case, for n = 3, we obtain
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T (6
92,160 F0)

1
e ()

= 92,7;60 ' Bf(é)<_1) + ;f(é)(l)}
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