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1. Introduction

The Hermite–Hadamard inequalities and their weighted versions, the so-called Hermite-
Hadamard-Fejér inequalities, are the most well-known inequalities related to the integral
mean of a convex function (see [1] (p. 138)).

Theorem 1 (The Hermite–Hadamard–Fejér inequalities). Let h : [a, b] → R be a convex
function. Then

h
(

a + b
2

) ∫ b

a
u(x) dx ≤

b∫
a

u(x)h(x) dx ≤
[

1
2

h(a) +
1
2

h(b)
] ∫ b

a
u(x) dx, (1)

where u : [a, b]→ R is nonnegative, integrable and symmetric about a+b
2 . If h is a concave function,

then the inequalities in (1) are reversed.

If u ≡ 1, then we are talking about the Hermite–Hadamard inequalities.
Hermite–Hadamard and Hermite–Hadamard–Fejér-type inequalities have many appli-

cations in mathematical analysis, numerical analysis, probability and related fields. Their
generalizations, refinements and improvements have been an important topic of research
(see [1–13], and the references listed therein). In the past few years, Hermite–Hadamard–
Fejér-type inequalities for superquadratic functions [2], GA-convex functions [7], quasi-convex
functions [11] and convex functions [13] have been largely investigated in the literature.

The importance and significance of our paper are reflected in the way in which we
prove new Hermite–Hadamard–Fejér-type inequalities for higher-order convex functions
and the general weighted three-point quadrature formula by using inequality (1), and a
weighted version of the integral identity expressed by w-harmonic sequences of functions.

For this purpose, let us introduce the notations and terminology used in relation to
w-harmonic sequences of functions (see [14]).
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Let us consider a subdivision σ = {a = x0 < x1 < · · · < xm = b} of the segment [a, b],
m ∈ N. Let w : [a, b]→ R be an arbitrary integrable function. For each segment [xj−1, xj],
j = 1, . . . , m, we define w-harmonic sequences of functions {wjk}k=1,...,n by:

w′j1(t) = w(t), t ∈ [xj−1, xj], (2)

w′jk(t) = wj,k−1(t), t ∈ [xj−1, xj], k = 2, 3, . . . , n.

Further, the function Wn,w is defined as follows:

Wn,w(t, σ) =



w1n(t), t ∈ [a, x1],
w2n(t), t ∈ (x1, x2],
.
.
.
wmn(t), t ∈ (xm−1, b].

(3)

The following theorem gives a general integral identity (see [14]).

Theorem 2. Let f : [a, b] → R be such that f (n) is piecewise continuous on [a, b]. Then, the
following holds:

b∫
a

w(t) f (t) dt =
n

∑
k=1

(−1)k−1
[
wmk(b) f (k−1)(b) (4)

+
m−1

∑
j=1

[
wjk(xj)− wj+1,k(xj)

]
f (k−1)(xj)− w1k(a) f (k−1)(a)

]

+ (−1)n
b∫

a

Wn,w(t, σ) f (n)(t) dt.

In [15], the authors proved the following Fejér-type inequalities by using identity (4).

Theorem 3. Let f : [a, b] → R be (n + 2)-convex on [a, b] and f (n) piecewise continuous on
[a, b]. Further, let us suppose that the function Wn,w, defined in (3), is nonnegative and symmetric
about a+b

2 (i.e., Wn,w(t, σ) = Wn,w(a + b− t, σ)). Then

Un(σ) · f (n)
(

a + b
2

)
(5)

≤ (−1)n


b∫

a

w(t) f (t) dt−
n

∑
k=1

(−1)k−1
[
wmk(b) f (k−1)(b)

+
m−1

∑
j=1

[
wjk(xj)− wj+1,k(xj)

]
f (k−1)(xj)− w1k(a) f (k−1)(a)


≤ Un(σ) ·

[
1
2

f (n)(a) +
1
2

f (n)(b)
]

,

where

Un(σ) =
(−1)n

n!

b∫
a

w(t) · tn dt− (−1)n
n

∑
k=1

(−1)k−1

(n− k + 1)!

·
(

wmk(b)bn−k+1 +
m−1

∑
j=1

(
wjk(xj)− wj+1,k(xj)

)
xn−k+1

j − w1k(a)an−k+1

)
. (6)
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If Wn,w(t, σ) ≤ 0 or f is an (n + 2)-concave function on [a, b], then the inequalities in (5) hold
with reversed inequality signs.

Further, let us recall the definition of the divided difference and the definition of an
n-convex function (see [1] (p. 15)).

Definition 1. Let f be a real-valued function defined on the segment [a, b]. The divided difference
of order n of the function f at distinct points x0, . . . , xn ∈ [a, b] is defined recursively by

f [xi] = f (xi), (i = 0, . . . , n)

and

f [x0, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
.

The value f [x0, . . . , xn] is independent of the order of points x0, . . . , xn.

Definition 2. A function f : [a, b]→ R is said to be n-convex on [a, b], n ≥ 0, if, for all choices
of (n + 1) distinct points x0, . . . , xn ∈ [a, b], the n-th order divided difference in f satisfies

f [x0, . . . , xn] ≥ 0.

From the previous definitions, the following property holds: if f is an (n + 2)-convex
function, then there exists the n-th order derivative f (n), which is a convex function
(see, e.g., [1] (pp. 16, 293)).

The paper is organized as follows. After this introduction, in Section 2, we establish
Hermite–Hadamard–Fejér-type inequalities for weighted three-point quadrature formulae
by using the integral identity with w-harmonic sequences of functions, the properties of
harmonic sequences of polynomials and the properties of n-convex functions. Since we
deal with three-point quadrature formulae that contain values of the function in nodes
x, a+b

2 and a + b− x and values of higher-ordered derivatives in inner nodes, the level
of exactness of these quadrature formulae is retained. In Section 3, we derive Hermite–
Hadamard–Fejér-type estimates for a generalization of the Gauss–Legendre three-point
quadrature formula, and a generalization of the Gauss–Chebyshev three-point quadrature
formula of the first and of the second kind.

Throughout the paper, the symbol B denotes the beta function defined by

B(x, y) =
1∫

0

sx−1(1− s)y−1 ds,

Γ denotes the gamma function defined as:

Γ(x) = 2
∞∫

0

s2x−1e−s2
ds,

and

F(α, β, γ; z) =
1

B(β, γ− β)

1∫
0

tβ−1(1− t)γ−β−1(1− zt)−α dt

is a hypergeometric function with γ > β > 0, z < 1.
In the paper, we assume that all considered integrals exist and that they are finite.

2. Hermite–Hadamard–Fejér-Type Inequalities for Three-Point Quadrature Formulae

In this section, we establish Hermite–Hadamard–Fejér-type inequalities for the weighted
three-point formula using a weighted version of the integral identity expressed by w-
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harmonic sequences of functions that are given in Theorem 2 and the method that origi-
nated in [15].

In [16] (p. 54), the authors proved the following theorem.

Theorem 4. Let w : [a, b] → R be an integrable function, x ∈ [a, a+b
2 ), and let

{
Lj,x
}

j=0,1,...,n,
n ∈ N, be a sequence of harmonic polynomials such that deg Lj,x ≤ j− 1 and L0,x ≡ 0. Further, let
us suppose that {wjk}k=1,..,n are w-harmonic sequences of functions on [xj−1, xj], for j = 1, 2, 3, 4,
defined by the following relations:

w1k(t) =
1

(k− 1)!

t∫
a

(t− s)k−1w(s) ds, t ∈ [a, x],

w2k(t) =
1

(k− 1)!

t∫
x

(t− s)k−1w(s) ds + Lk,x(t), t ∈
(

x,
a + b

2

]
,

w3k(t) = −
1

(k− 1)!

a+b−x∫
t

(t− s)k−1w(s) ds + (−1)kLk,x(a + b− t), t ∈
(

a + b
2

, a + b− x
]

,

w4k(t) = −
1

(k− 1)!

b∫
t

(t− s)k−1w(s) ds, t ∈ (a + b− x, b].

If f : [a, b]→ R is such that f (n) is piecewise continuous on [a, b], then we have

b∫
a

w(t) f (t) dt =
n

∑
k=1

Ak(x)
(

f (k−1)(x) + (−1)k−1 f (k−1)(a + b− x)
)

+
n

∑
k=1

Bk(x) f (k−1)
(

a + b
2

)
+ (−1)n

b∫
a

Wn,w(t, x) f (n)(t) dt, (7)

where

Ak(x) = (−1)k−1

 1
(k− 1)!

x∫
a

(x− s)k−1w(s) ds− Lk,x(x)

, k ≥ 1, (8)

Bk(x) = 2

 1
(k− 1)!

a+b
2∫

x

(
a + b

2
− s
)k−1

w(s) ds + Lk,x

(
a + b

2

), for odd k ≥ 1, (9)

and
Bk(x) = 0, for even k ≥ 1,

such that

Wn,w(t, x) =


w1n(t), t ∈ [a, x],

w2n(t), t ∈
(

x, a+b
2

]
,

w3n(t), t ∈
(

a+b
2 , a + b− x

]
,

w4n(t), t ∈ (a + b− x, b].

(10)

Remark 1. If we assume w(t) = w(a + b− t), for each t ∈ [a, b], then the following symmetry
conditions hold for k = 1, . . . , n:

w1k(t) = (−1)kw4k(a + b− t), for t ∈ [a, x],

and
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w2k(t) = (−1)kw3k(a + b− t), for t ∈
(

x,
a + b

2

]
.

Using Theorems 1 and 4, the properties of both n-convex functions and w-harmonic se-
quences of functions, and the method that originated in [15], in the next theorem, we derive
new Hermite–Hadamard–Fejér-type inequalities for the weighted three-point quadrature
Formula (7).

Theorem 5. Let w : [a, b] → R be an integrable function such that w(t) = w(a + b − t),
for each t ∈ [a, b] and x ∈ [a, a+b

2 ). Let the function W2n,w, defined by (10), be nonnegative. If
f : [a, b]→ R is (2n + 2)-convex on [a, b] and f (2n) is piecewise continuous on [a, b], then

Un,w(x) · f (2n)
(

a + b
2

)
(11)

≤
b∫

a

w(t) f (t) dt−
2n

∑
k=1

Ak(x)
(

f (k−1)(x) + (−1)k−1 f (k−1)(a + b− x)
)

−
2n

∑
k=1,k odd

Bk(x) f (k−1)
(

a + b
2

)
≤ Un,w(x) ·

[
1
2

f (2n)(a) +
1
2

f (2n)(b)
]

,

where

Un,w(x) =
1

(2n)!

b∫
a

w(t) · t2n dt (12)

−
2n

∑
k=1

Ak(x)
x2n−k+1 + (−1)k−1(a + b− x)2n−k+1

(2n− k + 1)!

−
2n

∑
k=1,k odd

Bk(x)
(a + b)2n−k+1

22n−k+1(2n− k + 1)!
,

and Ak and Bk are defined as in Theorem 4. If W2n,w(t, x) ≤ 0 or f is a (2n + 2)-concave function,
then inequalities (11) hold with reversed inequality signs.

Proof. Let us observe that the function f is (2n + 2)-convex. Hence, f (2n) is a con-
vex function. It follows from Remark 1 that the function W2n,w is symmetric about
a+b

2 , i.e., W2n,w(t, x) = W2n,w(a + b − t, x). Thus, inequalities (11) follow directly from
Theorem 1, replacing a nonnegative and symmetric function u by a nonnegative and sym-
metric function W2n,w, and a convex function h by a convex function f (2n), and then using

identity (7) in
b∫
a

W2n,w(t, x) f (2n)(t) dt.

Identity (7) yields Un,w(x) by substituting n with 2n and putting f (t) = t2n

(2n)! . Then,

f (2n)(t) = 1 and f (k−1)(t) = 1
(2n−k+1)! · t

2n−k+1. On the other hand, if W2n,w(t, x) is
nonpositive, then −W2n,w(t, x) is nonnegative, from where there follow reversed signs
in (11).

Further, let us assume that f is a (2n+ 2)-concave function. Hence, the function− f (2n)

is convex. Reversed signs in (11) are obtained by putting − f (2n) and the nonnegative
function W2n,w(t, x) in (1). This completes the proof.

Remark 2. The value of Un,w(x) can be obtained from Theorem 3 by taking an appropriate
subdivision of the segment [a, b] and applying the properties of functions w1k, w2k, w3k and w4k.
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To get a maximum degree of exactness of quadrature Formula (7) for fixed x ∈[
a, a+b

2

)
, we consider a sequence of harmonic polynomials {Lj,x}j=0,1,...,n defined as follows:

L0,x(t) = 0, for t ∈
[

x,
a + b

2

]
,

L1,x(x) =

x∫
a

w(s) ds− 2
(a + b− 2x)2

b∫
a

(
s2 −

(
a + b

2

)2
)

w(s) ds, (13)

Lj,x(x) =
1

(j− 1)!

x∫
a

(x− s)j−1w(s) ds, j = 2, 3, 4, 5, 6,

Lj,x(t) =
6∧j

∑
k=1

Lk,x(x)
(t− x)j−k

(j− k)!
, for t ∈

[
x,

a + b
2

]
, j = 1, . . . , n.

Therefore, we have

A1(x) =
2

(a + b− 2x)2

b∫
a

(
s2 −

(
a + b

2

)2
)

w(s) ds, (14)

B1(x) =
b∫

a

w(s) ds− 2A1(x),

Ak(x) = 0, for k = 2, 3, 4, 5, 6 and Bk(x) = 0, for k = 2, 3, 4.
Finally, from identity (7), for x ∈

[
a, a+b

2

)
, we obtain the following three-point

weighted integral formula:

b∫
a

w(t) f (t) dt = A1(x)[ f (x) + f (a + b− x)] +

 b∫
a

w(s) ds− 2A1(x)

 f
(

a + b
2

)

+ Tn,w(x) + (−1)n
b∫

a

Wn,w(t, x) f (n)(t) dt, (15)

where

Tn,w(x) =
n

∑
k=7

Ak(x)
(

f (k−1)(x) + (−1)k−1 f (k−1)(a + b− x)
)

+
n

∑
k=5,odd k

Bk(x) f (k−1)
(

a + b
2

)
. (16)

Now, applying results from Theorem 5 to identity (15), we get the following results.

Corollary 1. Let w : [a, b]→ R be an integrable function such that w(t) = w(a+ b− t), for each
t ∈ [a, b] and let x ∈ [a, a+b

2 ). Let the function W2n,w, defined by (10), be nonnegative and let Lj,x

be defined by (13). If f : [a, b]→ R is (2n + 2)-convex on [a, b] and f (2n) is piecewise continuous
on [a, b], then
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Un,w(x) · f (2n)
(

a + b
2

)
(17)

≤
b∫

a

w(t) f (t) dt− A1(x)[ f (x) + f (a + b− x)]

−

 b∫
a

w(s) ds− 2A1(x)

 f
(

a + b
2

)
− T2n,w(x)

≤ Un,w(x) ·
[

1
2

f (2n)(a) +
1
2

f (2n)(b)
]

,

where

Un,w(x) =
1

(2n)!

b∫
a

w(t) · t2n dt− A1(x)
x2n + (a + b− x)2n

(2n)!
(18)

−

 b∫
a

w(s) ds− 2A1(x)

 (a + b)2n

22n(2n)!

−
2n

∑
k=7

Ak(x)
x2n−k+1 + (−1)k−1(a + b− x)2n−k+1

(2n− k + 1)!

−
2n

∑
k=5,k odd

Bk(x)
(a + b)2n−k+1

22n−k+1(2n− k + 1)!
.

If W2n,w(t, x) ≤ 0 or f is a (2n + 2)-concave function, then inequalities (17) hold with reversed
inequality signs.

Proof. The proof follows from Theorem 5 for the special choice of the polynomials Lj,x.

Remark 3. If we assume B5(x) = 0, then we get

x =
a + b

2
−

√√√√√√√√
b∫
a

(
s− a+b

2

)4
w(s) ds

b∫
a

(
s2 −

(
a+b

2

)2
)

w(s) ds

.

Therefore, for such a choice of x, we obtain the quadrature formula with three nodes, which is
accurate for the polynomials of degree at most 5, and the approximation formula includes derivatives
of order 6 and more.

3. Special Cases

Considering some special cases of the weight function w, in our results given in the
previous section, we obtain estimates for the Gauss–Legendre three-point quadrature
formula and for the Gauss–Chebyshev three-point quadrature formula of the first and of
the second kind.

3.1. Gauss–Legendre Three-Point Quadrature Formula

Let us assume that w(t) = 1, t ∈ [a, b] and x ∈
[

a, a+b
2

)
.

Now, from Theorem 4, we calculate
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WGL
n (t, x) =


w1n(t) =

(t−a)n

n! , t ∈ [a, x],

w2n(t) =
(t−x)n

n! + Ln,x(t), t ∈
(

x, a+b
2

]
,

w3n(t) =
(t−a−b+x)n

n! + (−1)nLn,x(a + b− t), t ∈
(

a+b
2 , a + b− x

]
,

w4n(t) =
(t−b)n

n! , t ∈ (a + b− x, b],

(19)

and

AGL
k (x) = (−1)k−1

[
(x− a)k

k!
− Lk,x(x)

]
, for k ≥ 1,

BGL
k (x) = 2


(

a+b
2 − x

)k

k!
+ Lk,x

(
a + b

2

), for odd k ≥ 1,

and
BGL

k (x) = 0, for even k > 1.

Corollary 2. Let w2,2n(t) ≥ 0, for all t ∈
(

x, a+b
2

]
and for n ∈ N. If f : [a, b] → R is a

(2n + 2)-convex function and f (2n) is piecewise continuous on [a, b], then

UGL
n (x) · f (2n)

(
a + b

2

)
(20)

≤
b∫

a

f (t) dt−
2n

∑
k=1

AGL
k (x)

(
f (k−1)(x) + (−1)k−1 f (k−1)(a + b− x)

)

−
2n

∑
k=1,k odd

BGL
k (x) f (k−1)

(
a + b

2

)
≤ UGL

n (x) ·
[

1
2

f (2n)(a) +
1
2

f (2n)(b)
]

,

where

UGL
n (x) =

b2n+1 − a2n+1

(2n + 1)!
(21)

−
2n

∑
k=1

AGL
k (x)

x2n−k+1 + (−1)k−1(a + b− x)2n−k+1

(2n− k + 1)!

−
2n

∑
k=1,k odd

BGL
k (x)

(a + b)2n−k+1

22n−k+1(2n− k + 1)!
.

If f is a (2n + 2)-concave function, then inequalities (20) hold with reversed inequality signs.

Proof. A special case of Theorem 5 for w(t) = 1, t ∈ [a, b], and a nonnegative function
WGL

2n defined by (19).

If we assume that the polynomials Lj,x(t) are such that

L0,x(t) = 0, for t ∈
[

x,
a + b

2

]
, (22)

L1,x(x) = x− a− (b− a)3

6(a + b− 2x)2 ,

Lj,x(x) =
(x− a)j

j!
, j = 2, 3, 4, 5, 6,

Lj,x(t) =
6∧j

∑
k=1

Lk,x(x)
(t− x)j−k

(j− k)!
, for t ∈

[
x,

a + b
2

]
, j = 1, . . . , n,
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we get AGL
1 (x) = (b−a)3

6(a+b−2x)2 , AGL
k (x) = 0, for k = 2, 3, 4, 5, 6, BGL

1 (x) = b− a− 2AGL
1 (x)

and BGL
3 (x) = 0. Thus, we obtain the following non-weighted three-point quadrature

formulae:

b∫
a

f (t) dt =
(b− a)3

6(a + b− 2x)2 [ f (x) + f (a + b− x)]

+

(
b− a− (b− a)3

3(a + b− 2x)2

)
f
(

a + b
2

)

+ TGL
n (x) + (−1)n

b∫
a

WGL
n (t, x) f (n)(t) dt, (23)

where

TGL
n (x) =

n

∑
k=7

AGL
k (x)

(
f (k−1)(x) + (−1)k−1 f (k−1)(a + b− x)

)
+

n

∑
k=5,odd k

BGL
k (x) f (k−1)

(
a + b

2

)
. (24)

In particular, according to Remark 3, for [a, b] = [−1, 1] and x = −
√

15
5 , we get

BGL
5 (x) = 0, and there follows a generalization of the Gauss–Legendre three-point formula.

Now, we derive Hermite–Hadamard–Fejér-type estimates for this generalization of the
Gauss–Legendre three-point formula.

If the assumptions of Corollary 1 hold for w(t) = 1, t ∈ [−1, 1], and if f : [−1, 1]→ R
is a (2n + 2)-convex function, we derive:

UGL
n

(
−
√

15
5

)
· f (2n)(0) (25)

≤
1∫
−1

f (t) dt− 1
9

[
5 f

(
−
√

15
5

)
+ 8 f (0) + 5 f

(√
15
5

)]
− TGL

2n

(
−
√

15
5

)

≤ UGL
n

(
−
√

15
5

)
·
[

1
2

f (2n)(−1) +
1
2

f (2n)(1)
]

,

where

UGL
n

(
−
√

15
5

)
=

2 · 5n−1 − 2(2n + 1) · 3n−2

5n−1(2n + 1)!

−
2n

∑
k=7

AGL
k

(
−
√

15
5

)
(−
√

15)2n−k+1 + (−1)k−1(
√

15)2n−k+1

52n−k+1(2n− k + 1)!
.

In a special case, for n = 3, we get

1
15, 750

· f (6)(0) (26)

≤
1∫
−1

f (t) dt− 1
9

[
5 f

(
−
√

15
5

)
+ 8 f (0) + 5 f

(√
15
5

)]

≤ 1
15, 750

·
[

1
2

f (6)(−1) +
1
2

f (6)(1)
]

.
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3.2. Gauss–Chebyshev Three-Point Quadrature Formula of the First Kind

Let us assume that w(t) = 1√
1−t2 , t ∈ (−1, 1) and x ∈ [−1, 0).

From Theorem 4, there follow:

WGC1
n,w (t, x) =



w1n(t) = 1
(n−1)!

t∫
−1

(t−s)n−1
√

1−s2 ds, t ∈ [−1, x],

w2n(t) = 1
(n−1)!

t∫
x

(t−s)n−1
√

1−s2 ds + Ln,x(t), t ∈ (x, 0],

w3n(t) = − 1
(n−1)!

−x∫
t

(t−s)n−1
√

1−s2 ds + (−1)nLn,x(−t), t ∈ (0,−x],

w4n(t) = − 1
(n−1)!

1∫
t

(t−s)n−1
√

1−s2 ds, t ∈ (−x, 1],

(27)

AGC1
k (x) = (−1)k−1

 (x + 1)k−1/2√π
√

2Γ
(

1
2 + k

) F
(

1
2

,
1
2

,
1
2
+ k,

x + 1
2

)
− Lk,x(x)

, k ≥ 1,

and

BGC1
k (x) = 2

 (−1)k−1

(k− 1)!

0∫
x

sk−1
√

1− s2
ds + Lk,x(0)

, for odd k ≥ 1,

and
BGC1

k (x) = 0, for even k > 1.

Corollary 3. Let w2,2n(t) ≥ 0, for all t ∈ (x, 0] and for n ∈ N. If f : [−1, 1] → R is a
(2n + 2)-convex function and f (2n) is piecewise continuous on [−1, 1], then

UGC1
n (x) · f (2n)(0) (28)

≤
1∫
−1

f (t)√
1− t2

dt−
2n

∑
k=1

AGC1
k (x)

(
f (k−1)(x) + (−1)k−1 f (k−1)(−x)

)

−
2n

∑
k=1,k odd

BGC1
k (x) f (k−1)(0) ≤ UGC1

n (x) ·
[

1
2

f (2n)(−1) +
1
2

f (2n)(1)
]

,

where

UGC1
n (x) =

1
(2n)!

B
(

1
2

,
1
2
+ n

)
(29)

−
2n

∑
k=1

AGC1
k (x)

x2n−k+1 + (−1)k−1(−x)2n−k+1

(2n− k + 1)!
.

If f is a (2n + 2)-concave function, then inequalities (28) hold with reversed inequality signs.

Proof. A special case of Theorem 5 for w(t) = 1√
1−t2 , t ∈ (−1, 1), and a nonnegative

function WGC1
2n,w defined by (27).

If we assume that the polynomials Lj,x(t) are such that
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L0,x(t) = 0, for t ∈ [x, 0],

L1,x(x) = arcsin x +
π

2
− π

4x2 ,

Lj,x(x) =
(x + 1)j−1/2√π
√

2Γ
(

1
2 + j

) F
(

1
2

,
1
2

,
1
2
+ j,

x + 1
2

)
, j = 2, 3, 4, 5, 6,

Lj,x(t) =
6∧j

∑
k=1

Lk,x(x)
(t− x)j−k

(j− k)!
, for t ∈ [x, 0], j = 1, . . . , n,

we calculate AGC1
1 (x) = π

4x2 , AGC1
k (x) = 0, for k = 2, 3, 4, 5, 6, BGC1

1 (x) = π − π
2x2 and

BGC1
3 (x) = 0.

Now, we derive

1∫
−1

f (t)√
1− t2

dt =
π

4x2 f (x) +
(

π − π

2x2

)
f (0) +

π

4x2 f (−x)

+ TGC1
n,w (x) + (−1)n

1∫
−1

WGC1
n,w (t, x) f (n)(t) dt, (30)

where

TGC1
n,w (x) =

n

∑
k=7

AGC1
k (x)

(
f (k−1)(x) + (−1)k−1 f (k−1)(−x)

)
+

n

∑
k=5,odd k

BGC1
k (x) f (k−1)(0). (31)

In particular, there follows a generalization of the Gauss–Chebyshev three-point
quadrature formula of the first kind for x = −

√
3

2 . Now, we derive Hermite–Hadamard-
type estimates for the Gauss–Chebyshev three-point quadrature formula of the first kind.

If the assumptions of Corollary 1 hold for w(t) = 1√
1−t2 , t ∈ (−1, 1), and if f :

[−1, 1]→ R is a (2n + 2)-convex function, we get

UGC1
n

(
−
√

3
2

)
· f (2n)(0) (32)

≤
1∫
−1

f (t)√
1− t2

dt− π

3

[
f

(
−
√

3
2

)
+ f (0) + f

(√
3

2

)]
− TGC1

2n,w

(
−
√

3
2

)

≤ UGC1
n

(
−
√

3
2

)
·
[

1
2

f (2n)(−1) +
1
2

f (2n)(1)
]

,

where

UGC1
n

(
−
√

3
2

)
=

1
(2n)!

B
(

1
2

,
1
2
+ n

)
− π · 3n−1

22n−1(2n)!

−
2n

∑
k=7

AGC1
k

(
−
√

3
2

)
(−
√

3)2n−k+1 + (−1)k−1(
√

3)2n−k+1

22n−k+1(2n− k + 1)!
.

In a special case, for n = 3, we obtain
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π

23, 040
· f (6)(0) (33)

≤
1∫
−1

f (t)√
1− t2

dt− π

3

[
f

(
−
√

3
2

)
+ f (0) + f

(√
3

2

)]

≤ π

23, 040
·
[

1
2

f (6)(−1) +
1
2

f (6)(1)
]

.

3.3. Gauss–Chebyshev Three-Point Quadrature Formula of the Second Kind

Assuming w(t) =
√

1− t2, t ∈ [−1, 1] and x ∈ [−1, 0) and using Theorem 4, we obtain

WGC2
n,w (t, x) =



w1n(t) = 1
(n−1)!

t∫
−1

(t− s)n−1
√

1− s2 ds, t ∈ [−1, x],

w2n(t) = 1
(n−1)!

t∫
x
(t− s)n−1

√
1− s2 ds + Ln,x(t), t ∈ (x, 0],

w3n(t) = − 1
(n−1)!

−x∫
t
(t− s)n−1

√
1− s2 ds + (−1)nLn,x(−t), t ∈ (0,−x],

w4n(t) = − 1
(n−1)!

1∫
t
(t− s)n−1

√
1− s2 ds, t ∈ (−x, 1],

(34)

AGC2
k (x) = (−1)k−1

[
(x + 1)k+1/2√2π

Γ
( 3

2 + k
) F

(
−1

2
,

3
2

,
3
2
+ k,

x + 1
2

)
− Lk,x(x)

]
, k ≥ 1,

BGC2
k (x) = 2

 (−1)k−1

(k− 1)!

0∫
x

sk−1
√

1− s2 ds + Lk,x(0),

, for odd k ≥ 1,

and
BGC2

k (x) = 0, for even k > 1.

Corollary 4. Let w2,2n(t) ≥ 0, for all t ∈ (x, 0] and for n ∈ N. If f : [−1, 1] → R is a
(2n + 2)-convex function and f (2n) is piecewise continuous on [−1, 1], then

UGC2
n (x) · f (2n)(0) (35)

≤
1∫
−1

f (t)
√

1− t2 dt−
2n

∑
k=1

AGC2
k (x)

(
f (k−1)(x) + (−1)k−1 f (k−1)(−x)

)

−
2n

∑
k=1,k odd

BGC2
k (x) f (k−1)(0) ≤ UGC2

n (x) ·
[

1
2

f (2n)(−1) +
1
2

f (2n)(1)
]

,

where

UGC2
n (x) =

1
(2n)!

B
(

3
2

,
1
2
+ n

)
(36)

−
2n

∑
k=1

AGC2
k (x)

x2n−k+1 + (−1)k−1(−x)2n−k+1

(2n− k + 1)!
.

If f is a (2n + 2)-concave function, then inequalities (35) hold with reversed inequality signs.

Proof. A special case of Theorem 5 for w(t) =
√

1− t2, t ∈ [−1, 1], and a nonnegative
function WGC2

2n,w defined by (34).
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If the polynomials Lj,x(t) are such that

L0,x(t) = 0, for t ∈ [x, 0],

L1,x(x) =
1
2

(
arcsin x +

π

2
− π

8x2 +
x
√

1− x2

2

)
,

Lj,x(x) =
(x + 1)j+1/2√2π

Γ
( 3

2 + j
) F

(
−1

2
,

3
2

,
3
2
+ j,

x + 1
2

)
, j = 2, 3, 4, 5, 6,

Lj,x(t) =
6∧j

∑
k=1

Lk,x(x)
(t− x)j−k

(j− k)!
, for t ∈ [x, 0], j = 1, . . . , n,

we have AGC2
1 (x) = x

√
1−x2

4 − π
16x2 , AGC2

k (x) = 0, for k = 2, 3, 4, 5, 6, BGC2
1 (x) = π

2 −
x
√

1−x2

2 + π
8x2 and BGC2

3 (x) = 0, so we obtain

1∫
−1

f (t)
√

1− t2 dt = AGC2
1 (x)[ f (x) + f (−x)] + BGC2

1 (x) f (0)

+ TGC2
n,w (x) + (−1)n

1∫
−1

WGC2
n,w (t, x) f (n)(t) dt, (37)

where

TGC2
n,w (x) =

n

∑
k=7

AGC2
k (x)

(
f (k−1)(x) + (−1)k−1 f (k−1)(−x)

)
+

n

∑
k=5,odd k

BGC2
k (x) f (k−1)(0). (38)

In particular, a generalization of the Gauss–Chebyshev three-point quadrature formula
of the second kind follows for x = −

√
2

2 . Now, we derive Hermite–Hadamard-type
estimates for the Gauss–Chebyshev three-point quadrature formula of the second kind.

Applying Corollary 1 to w(t) =
√

1− t2, t ∈ [−1, 1], x = −
√

2
2 , and a (2n + 2)-convex

function f , we obtain

UGC2
n

(
−
√

2
2

)
· f (2n)(0)

≤
1∫
−1

f (t)
√

1− t2 dt− π

8

[
f

(
−
√

2
2

)
+ 2 f (0) + f

(√
2

2

)]
− TGC2

2n,w

(
−
√

2
2

)

≤ UGC2
n

(
−
√

2
2

)
·
[

1
2

f (2n)(−1) +
1
2

f (2n)(1)
]

,

where

UGC2
n

(
−
√

2
2

)
=

1
(2n)!

B
(

3
2

,
1
2
+ n

)
− π

2n+2(2n)!

−
2n

∑
k=7

AGC2
k

(
−
√

2
2

)
(−
√

2)2n−k+1 + (−1)k−1(
√

2)2n−k+1

22n−k+1(2n− k + 1)!
.

As a special case, for n = 3, we obtain
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π

92, 160
· f (6)(0)

≤
1∫
−1

f (t)
√

1− t2 dt− π

8

[
f

(
−
√

2
2

)
+ 2 f (0) + f

(√
2

2

)]

≤ π

92, 160
·
[

1
2

f (6)(−1) +
1
2

f (6)(1)
]

.
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