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Abstract: We consider a cooperative packing game in which the characteristic function is defined as
the maximum number of independent simple paths of a fixed length included in a given coalition.
The conditions under which the core exists in this game are established, and its form is obtained. For
several particular graphs, the explicit form of the core is presented.

Keywords: network packing game; simple paths; core; linear programming

1. Introduction

In this paper, we study cooperative games on a graph in which the vertices represent
the players, and the characteristic function is defined using the maximum packing of the
graph by connected coalitions. Simple paths in the graph are considered coalitions.

In particular, coalitions can be pairs of vertices connected by edges. In real life, there
are many examples of paired relationships: supplier–customer, man–woman, predator–
prey, source–sink, and so forth. Moreover, agents can interact with each other via vehicles,
mobile devices, or social networks, forming paired communications. For example, in a
mobile network, the vertices of the corresponding graph represent mobile devices, and the
connections between them occur within the network coverage. In practice, it is important
to find the maximum load on a mobile network under which any two devices can simulta-
neously communicate with one another. In sociology and various TV shows, it is important
to divide the participants into the maximum number of pairs (see, for example, the pop-
ular show “Speed Dating”, https://en.wikipedia.org/wiki/Speed_dating (accessed on
10 July 2021); https://www.imdb.com/find?q=speed+dating&ref_=nv_sr_sm (accessed
on 10 July 2021). The same problems arise in electrical and radio networks or the physics
of magnetic structures of solid crystals.

The maximum packing is not necessarily realized through pairs of connected ver-
tices. For example, simple paths of a fixed length can be chosen as packing coalitions.
Such problems arise when laying fiber-optic lines to connect urban areas to the Internet.
Another application is the development of transportation networks in a city or between
cities. The network packing determines a partition of the set of players into coalitions.
After defining the characteristic function, an imputation can be found to rank the graph
vertices by their value for organizing links in the network or transmitting data, depending
on the problem under consideration.

In the papers [1,2], a general class of such cooperative games was formulated and
called combinatorial optimization games. This class includes packing games as well.
In such games, the characteristic function is defined as follows. Let a matrix A(m× n) of
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zeros and ones, and integer vector c be given. The value of a coalition K ⊆ N is a solution
of the integer linear programming problem

max{(y, c) : yT AK ≤ 1K, y ∈ {0, 1}m},

where the matrix AK is a submatrix of A with the columns from the set K. This problem is
known as the set packing problem [3]. In a similar form, such games were investigated
in [4] as linear production games. In the cooperative game of this type, the core (if it
exists) is a solution of the dual problem. The balancedness (non-emptiness of the core) of
the cooperative game is closely related to solving both problems. As some applications,
games with maximum flows on a graph, and graph packing games with pairs of connected
vertices, were considered.

In packing games, other allocation principles can be adopted as imputations. Since the
cooperative game is defined on a graph, the most natural approach to determine the signif-
icance of a particular graph vertex is the Myerson value [5,6]. In the papers [7,8], the Owen
value [9–11] was used as an allocation principle in the cover game. In the paper [12],
the nucleolus was proposed, including an algorithm for its construction. The paper [13]
was dedicated to the Shapley value: its properties were investigated and an algorithm for
calculating this value was proposed.

There are other games related to packing undirected graphs. For example, in graph
coloring problems, the chromatic number of a graph can be taken as the characteristic
function [1,14–16]. Graph clustering problems can be treated as cooperative games with a
Nash stable coalition partition when none of the players benefit from changing the coalition
structure. In this case, the Myerson value is used as an allocation principle; see [17,18].

In packing by pairs of connected vertices, two approaches to graph packing problems
are well known: vertex cover and edge cover [1,19]. A vertex cover of a graph is any subset
U of its vertex set N, such that any edge of this graph is incident to at least one vertex
of the set U. Here, the characteristic function is defined using the vertex cover with the
minimum number of vertices (the so-called minimum vertex cover of the graph). Given an
edge cover, the characteristic function is defined as the maximum number of edges in a
graph without shared vertices.

This paper deals with cooperative games on graphs in which the characteristic function
is defined as the maximum number of independent simple paths of a fixed length. Note
that we are interested in the paths without shared vertices. This feature distinguishes the
current statement from the cooperative game in which the characteristic function is defined
as the number of all simple paths of a fixed length. The latter definition of a game is often
used for determining the centrality of graph vertices.

Here, it will be convenient to use “graph packing” for referring to the coalitions (paths)
included in a corresponding coalition partition. The remainder of this paper is organized as
follows: In Section 2, we define a cooperative packing game. Section 3 considers the graph
packing problem with pairs of connected vertices. In Section 4, these results are extended
to the general case. Section 5 presents the explicit-form solution of the cooperative graph
packing game for several particular graphs.

2. Basic Definitions

Let N = {1, 2, . . . , n} be the set of players. A subset K ⊆ N is called a coalition.
Consider a cooperative game Γ0 = 〈N, v〉, v : 2N → R, v(∅) = 0.

Definition 1. A coalition K is said to be winning if v(K) > 0.

Definition 2. A coalition K is said to be minimal winning if v(K) > 0 and ∀L ⊂ K v(L) = 0.

Definition 3. A coalition partition of the players set N is a set π = {K1, . . . , Kl} satisfying the
following conditions:
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∪l
i=1Ki = N, Ki ∩ Kj = ∅, ∀i, j, i 6= j.

We denote by K(i) an element of a coalition partition π containing player i. Further
analysis will be confined to effective coalition partitions.

Definition 4. An effective coalition partition of the set N is a partition πN in which the number
of minimal winning coalitions is the maximum.

According to this definition, an effective coalition partition has minimal winning
coalitions and players not belonging to the minimal winning coalitions. For the sake of con-
venience, assume that these players act independently, that is, form coalitions of one player.
Therefore, an effective coalition partition can be written as πN = {K1, K2, . . . , Kl , i1, . . . , ir},
where {K1, K2, . . . , Kl} are the minimal winning coalitions, and {i1, . . . , ir} are individual
players acting independently.

Consider an undirected graph G = 〈N, E〉, in which N and E are the sets of players
and edges, respectively. Consider a new cooperative game Γ = 〈N, G, vG〉, defining the
characteristic function vG(K) as the maximum number of minimal winning coalitions:

vG(K) = max{l : πK = {K1, K2, . . . , Kl , {i1}, . . . , {ir}}}, K ⊆ N,

where K1 ∪ . . . ∪ Kl ∪ {i1} ∪ . . . ∪ {ir} = K. A solution of the cooperative game is
an imputation.

Definition 5. An imputation in the cooperative game Γ is a vector x = (x1, x2, . . . , xn), such that

∑
i∈N

xi = vG(N), xi ≥ 0, i ∈ N.

For the given characteristic function, we will adopt the core as an allocation principle.

Definition 6. In the cooperative game with the characteristic function vG(K), the core is the set
of imputations

C = {x : ∑
i∈N

xi = vG(N), ∑
i∈S

xi ≥ vG(S), ∀S ⊂ N}. (1)

This paper deals with cooperative games on graphs in which minimal winning coali-
tions are defined as simple paths of a fixed length d ≥ 2. For a graph G, a sequence of
distinct vertices i1, i2, . . . , ik, k ≥ 2, is a simple path connecting vertices i1 and ik, if for all
h = 1, . . . , k− 1, (ih, ih+1) ∈ G. The length d of a path is the number of edges in it: d = k− 1.
The length of the shortest path connecting vertices i and j is called the distance between i
and j. A graph G is said to be connected if there is a path in G connecting any two vertices
i and j.

Thus, in an effective coalition partition

πN = {K1, K2, . . . , Kl , i1, . . . , ir},

the minimal winning coalitions {K1, K2, . . . , Kl} represent simple paths of a length d in
the graph G, and {i1, . . . , ir} are separate vertices not included in these paths. A set
{K1, K2, . . . , Kl} will henceforth be called graph packing, and the corresponding game on
the graph the packing game.

First, we study packing games in which the minimal winning coalitions are of the
form {i, j}, where {i, j} ∈ E is an edge in the graph G.

3. Graph Packing Game with Pairs of Connected Vertices (Maximum Matching Game)

Consider a cooperative game Γ =< N, G >, where N = {1, 2, . . . , n} denotes the
set of players, and G = (N, E) is a graph with N as the vertex set and E as the edge
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set. The notation GS will also be used for a subgraph of the graph G defined on a vertex
subset S ⊂ N.

We define the characteristic function vG(K) for a coalition K ⊂ N as the maximum
number of edges included in K without shared vertices (also called a maximum cardinality
matching) [20]. This characteristic function is monotonic and superadditive. Let us demon-
strate that vG(K) is not necessarily a convex function. Recall that convexity means that the
inequality v(K1 ∪ K2) + v(k1 ∩ K2) ≥ v(K1) + v(K2) holds for all K1 and K2.

Example 1. Consider N = {1, 2, 3} and E = {{1, 2}, {2, 3}}. For K1 = {1, 2} and K2 = {2, 3},
we have

vG(K1 ∪ K2) + vG(K1 ∩ K2) = vG(1, 2, 3) + vG(2) = 1.

At the same time,
vG(K1) + vG(K2) = 2.

Thus, the function v is not convex.

The vertices of degree 1 in the graph G will be called terminal and the vertices adjacent
to them preterminal. We denote these sets by T(G) and T′(G), respectively. In addition,
an edge connecting terminal and preterminal vertices will be called terminal. By a packing
of the graph G we mean a set of edges U(G) ⊆ E on which vG(N) is achieved. The set of
all packings will be denoted by Λ(G). The set Λ(G) may be non-unique and composed of
several sets.

Example 2. Consider N = {1, 2, 3, 4} and E = {{1, 2}, {2, 3}, {3, 4}}. Then U(G) =
{{1, 2}, {2, 3}} is unique. If E = {{1, 2}, {2, 3}}, there are two such sets:
Λ(G) = {{{1, 2}}, {{2, 3}}}.

The set of vertices forming the edges from a packing U(G) will be denoted by {U(G)}.
We emphasize that the packing game definition implies

vG(N) = |U(G)| = |{U(G)}|
2

, ∀U(G) ∈ Λ.

Let us explore the core’s properties in the graph packing game. First of all, the core
does not necessarily exist.

Lemma 1. Let G be an arbitrary connected graph such that the set of terminal vertices T(G) is
non-empty. Then among all packings, there exists a packing U(G) with the following property:

∀s ∈ T′(G) ∃t ∈ T(G) : (s, t) ∈ U(G). (2)

Proof. Consider an arbitrary packing U(G) ∈ Λ(G). Assume that, in the graph G, there
is a preterminal vertex s without a pair among the terminal vertices in U(G). That is,
(s, t) /∈ U(G), where (s, t) ∈ E, ∀t ∈ T (Figure 1). We take an arbitrary edge (s, t) /∈ U(G);
if s is connected to another non-terminal edge r in U(G), we replace the link (s, r) ∈ U(G)
with a new link (s, t). The new packing will be denoted by U′(G). It is important that
|U(G)| = |U′(G)|. We perform the same procedure for all such vertices s ∈ T′(G), finally
obtaining a packing U′(G) with the property (2).



Mathematics 2021, 9, 1683 5 of 18

Figure 1. Covers of graph G.

Lemma 2. Let G be an arbitrary connected graph such that the set of terminal vertices T(G)
is non-empty. In addition, let Ts = {t ∈ T(G) : (s, t) ∈ E} be the set of all neighbors of
a vertex s ∈ T′(G) in the terminal set, and G′ be a subgraph of G defined on the vertex set
N′ = N \ (s ∪ Ts). Then

vG′(N′) = vG(N)− 1.

Proof. According to Lemma 1, for any s ∈ T′, such that Ts 6= ∅, there exists a packing U(G)
such that (s, t) ∈ U(G), where t ∈ Ts (Figure 2). Then VG(N) = |U(G)|. Let N′ = N \ {s, t}
and U′(G′) be a subset U(G) on N′. Then, |U′(G′)| = |U(G)| − 1 = VG(N)− 1, but U′(G′)
is a set of independent edges in G′, then vG′(N′) ≥ |U′(G′)| = vG(N)− 1.

Let U′(G′) ∈ Λ(G′) be a packing of G′. Then, vG′(N′) = |U′(G′)|. Let U∗(G) =

U′(G′) ∪ (s, t), then |U∗(G)| = |U′(G′)| + 1 = vG′(N′) + 1, but U∗(G) is a set of inde-
pendent edges in G, then VG(N) ≥ |U∗(G)| = vG′(N′) + 1. Consequently, VG(N) =

vG′(N′) + 1.

Figure 2. Terminal vertices in graph.

Lemma 3. Condition (1) for the core is equivalent to

C = {x : ∑
i∈N

xi = vG(N), xi + xj ≥ 1, (i, j) ∈ E, ∀i, j ∈ N}. (3)

Proof. Assume that condition (1) holds for some x. Then the inequality ∑
i∈S

xi ≥ vG(S) is

satisfied for all coalitions S and, particularly, for a coalition S = {i, j} : (i, j) ∈ E, where
vG(i, j) = 1.

Now, assume that an imputation x satisfies (3). Consider an arbitrary coalition S ⊂ N.
Let a packing U(GS) of the graph GS be composed of k edges, that is,

U(GS) = {(i1, i2), . . . , (i2k−1, i2k)}.

Then, vGS(S) = k. However, {U(GS)} = {i1, i2, . . . , i2k−1, i2k} ∈ S and

∑
i∈S

xi ≥
2k

∑
j=1

xij =
k

∑
j=1

(xi2j−1 + xi2j) ≥ k = vG(S)

due to (3). Thus, conditions (1) and (3) are equivalent.
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Remark 1. Notice that the number of constraints in (1) drops from exponential (2n) to at most
quadratic (n2) in (3).

Note that condition (1), like (3), may not hold, meaning that the core is empty. The bal-
ancedness of this cooperative game can be established by solving the linear program-
ming problem,

min ∑
i∈N

xi

s.t. xi + xj ≥ 1, ∀(i, j) ∈ E; (4)

xi ≥ 0, ∀i ∈ N.

If the solution of this problem satisfies ∑
i∈N

xi = vG(N), then the game is balanced;

otherwise, unbalanced.

Lemma 4. If x belongs to the core, then xi ≤ 1, ∀i ∈ N.

Proof. By definition, we have vG(N) = |U(G)| = k, where the cover U(G) is composed
of k edges {(i1, i2), . . . , (i2k−1, i2k)}. According to Lemma 3, xil + xil+1

≥ 1. If at least one
element is xij > 1, then the entire sum becomes

vG(N) =
k

∑
j=1

(xi2j−1 + xi2j) > k, (5)

which contradicts the condition vG(N) = k.

Note that the same contradicting inequality (5) will be derived by assuming xi2j−1 +

xi2j > 1 for some edge (i2j−1, i2j) from the cover U(G). The proof is complete.

Lemma 5. Let the core be non-empty and x belong to the core. In addition, let U(G) ∈ Λ(G)
be some cover. Then for any edge (i, j) ∈ U(G), xi + xj = 1; for all vertices l outside the cover,
xl = 0.

Lemma 5 leads to the following unbalancedness condition for the cover game.

Corollary 1. Let N0 = ∪U(G)∈Λ(G)(N \ {U(G)}) be the set of all vertices that do not simultane-
ously belong to all covers of the graph G. If the subgraph GN0 has at least one edge, then the core in
the cover game is empty.

Proof. Assume that the core is non-empty. Let (i, j) ∈ E be an edge in the subgraph GN0 .
Due to Lemma 5, we obtain xi = xj = 0. However, according to Lemma 3, xi + xj ≥ 1. This
contradiction completes the proof.

Corollary 2. Let the core be non-empty, and let N0 be the set of all vertices that do not simulta-
neously belong to all covers of the graph G (Corollary 1). In addition, let N1 = {i ∈ N \ N0 :
∃j(i, j) ∈ E} be the set of all vertices adjacent to those from N0. Then xi = 1 for all i ∈ N1.

Proof. Let i ∈ N1. According to Lemma 3, we have xi + xj ≥ 1 for an edge (i, j), i ∈ N1, j ∈
N0. On the other hand, due to Lemma 5, xj = 0. Therefore, xi ≥ 1, and by Lemma 4, xi ≤ 1.
This finally yields xi = 1, i ∈ N1.

Corollary 3. Let G be a connected graph and n be an odd number. In addition, let the core be
non-empty and x belong to the core. Then ∃i ∈ N xi = 0, and ∃j ∈ N xj = 1.
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Proof. Since the cover of G is composed of an even number of vertices, the set N0 is
non-empty. For any i ∈ N0, xi = 0. We take a vertex j adjacent to vertex i. According to
Corollary 2, xj = 1.

Lemma 6. Let a graph G have an even number of vertices, n = 2k and vG(N) = k. Then the core
is non-empty. Moreover, x = ( 1

2 , . . . , 1
2 ) belongs to the core.

Proof. Consider a cover U(G). It has the form U(G) = {(i1, i2), . . . , (i2k−1, i2k)}, being
composed of k edges. Letting xi =

1
2 , ∀i ∈ N, we obtain xij + xij+1 = 1

2 + 1
2 = 1 for any

edge of the cover U(G). Due to Lemma 3, x belongs to the core.

Lemma 7. Let G be a connected graph and t be a pendant vertex. In addition, let s : (s, t) ∈ E be
a vertex adjacent to t. If the core in the cover game on the subgraph GN\(s∪t) is non-empty (empty),
then the core in the cover game on the graph GN is non-empty (empty, respectively) as well.

Proof. For a terminal vertex t there exists a cover U(G) such that (s, t) ∈ U(G) (Lemma 1).
Consequently,

vG(N) = |U(G)| = |U(GN\(s∪t))|+ 1 = vG(N \ (s ∪ t)) + 1. (6)

Assume that in the game on the subgraph GN\(s∪t), the core is non-empty, and x =
(x1, . . . , xn−2) belongs to the core. According to Lemma 3, xi + xj ≥ 1 for all edges (i, j) ∈ E.
Since vertex t is connected to vertex s only, the imputation x′ = (x1, . . . , xn−2, 1, 0) satisfies
inequalities (3). Hence, x′ belongs to the core in the game on the graph G.

Now let the game on the subgraph GN\(s∪t) have an empty core. In this game,
the system of inequalities xi + xj ≥ 1, i, j ∈ N \ (s ∪ t), for all edges (i, j) ∈ E will therefore
contradict the condition ∑i∈N\(s∪t) xi = vG(N \ (s ∪ t)). In the game on the graph G, the
core needs to satisfy the additional condition xs + xt ≥ 1, meaning that the system of
inequalities (3) will also contradict

∑
i∈N\(s∪t)

xi + xs + xt = vG(N)

due to (6).
Returning to the linear programming problem (4), we write it as:

min ∑
i∈N

xi

subject to
aij(xi + xj − 1) ≥ 0, ∀(i, j) ∈ N;

xi ≥ 0, ∀i ∈ N.

Here, aij is a corresponding element of the adjacency matrix of the graph G.
Its dual problem has the form

max ∑
(i,j)∈E

eij

s.t. ∑
j:(i,j)∈N

eij ≤ 1, i = 1, . . . , n; (7)

eij ≥ 0, ∀(i, j) ∈ N; eij = 0, ∀(i, j) /∈ E.

In (7), a variable eij ≥ 0 is associated with each edge of the graph (i, j) ∈ E. For any
pairs (i, j) not representing edges, eij = 0. Thus, problem (7) contains |E| non-zero variables.
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Interestingly, problems (4) and (7) always have an admissible solution. Therefore,
their solutions always exist, and their values coincide. (This value is not necessarily an
integer.) At the same time, the maximal packing size represents an integer.

Note that if the constraints of problem (7) involve only integer variables eij ∈ {0, 1},
then the solution of (7) yields the maximal packing of the graph G. In this case, only one
edge is associated with each vertex i : eij = 1.

Theorem 1 ([1]). The graph packing game with vertex pairs is balanced if and only if the dual
linear programming problem (7) has an integer solution. The core of the balanced graph cover game
is the solution of problem (4).

Example 3. Consider a packing game on a graph G = (N, E), where N = {1, 2, 3, 4, 5} and
E{(1, 2), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5)}. The solution of the linear programming problem (7)
is e23 = e45 = 1 (the other variables are eij = 0). Solving problem (4) yields the core x∗ =
(0, 1, 0, 1, 0).

Example 4. Consider a packing game on a graph G = (N, E), where N = {1, 2, 3, 4, 5} and
E{(1, 2), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)}. The solution of the linear programming prob-
lem (7) is e12 = e23 = e15 = 1/2, e34 = 1 (the other variables are e23 = e35 = e45 = 0).
The optimal value is 2.5, meaning that the core is empty. Solving problem (4) yields x∗ =
(1/2, 1/2, 1/2, 1/2, 1/2).

4. Graph Packing Game with Simple Paths of Length d > 2

Now consider a cooperative game Γ =< N, G >, in which the characteristic function
vG(K) for a coalition K ⊂ N is defined as the maximum number of simple paths of a fixed
length d included in K without shared vertices. This characteristic function is monotonic
and superadditive as well.

A set of disjoint simple paths U(G) of a length d, on which vG(N) is achieved, will
be called a packing of a graph G. The set of all packings will be denoted by Λ(G). The set
Λ(G) may be non-unique and composed of several sets.

The set of vertices forming paths from a packing U(G) will be denoted by {U(G)}.
We emphasize that the packing game definition implies

vG(N) = |U(G)| = |{U(G)}|
d

, ∀U(G) ∈ Λ.

Example 5. Consider a packing game on a graph G = (N, E), where N = {1, 2, 3, 4, 5, 6} and
E = {(1, 2), (1, 6), (2, 3), (2, 5), (3, 4), (4, 5), (5, 6)} (Figure 3), and let d = 3. Then the packings
are the coalition partitions {{1, 2, 3}, {4, 5, 6}}, {{1, 6, 5}, {2, 3, 4}}, and {{2, 1, 6}, {3, 4, 5}}.

Figure 3. Graph packing by vertex triplets.

Lemma 8. Let the core be non-empty and x belong to the core. In addition, let U(G) ∈ Λ(G)
be some packing. Then for any path K ∈ U(G), ∑

i∈K
xi = 1; for all vertices j outside the packing,

xj = 0.
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Proof. Let U(G) = {K1, . . . , Kl}. Then vG(N) = |U(G)| = l, and since vG(K) = 1,
the existence condition of the core (1) implies ∑

i∈K
xi ≥ 1. The effectiveness condition has

the form ∑
i∈N

xi = l. On the other hand, ∑
i∈N

xi =
l

∑
j=1

∑
i∈Kj

xi + ∑
i∈N\∪Kj

xi ≥
l

∑
j=1

1 + 0 ≥ l. This

non-strict inequality turns into equality if and only if (∀j ∈ {1, . . . , l})( ∑
i∈Kj

xi = 1) and

(∀i ∈ N\ ∪ Kj)(xi = 0).

Lemma 9. Let the number of vertices in a graph G be a multiple of the packing path length d,
n = k · d, and vG(N) = k. Then the core of G is non-empty, and the point x = ( 1

d , . . . , 1
d ) belongs

to the core.

Proof. Assume that U(G) = {L1, . . . , Lk} is the optimal packing of G composed of k

disjoint paths of the length d. Letting (∀i ∈ N)(xi = 1
d ), we obtain

n
∑

i=1
xi = 1

d · kd =

k = vG(N) (the effectiveness condition holds) and ∑
i∈L

xi =
1
d · d = 1 ≥ 1 (the inequality

constraints over all possible paths L ∈ G are satisfied as equalities). Thus, the point
x = ( 1

d , . . . , 1
d ) belongs to the core of G because it satisfies the appropriate requirements.

Lemma 10. Let L be the set of paths of a fixed length d in the graph G. Then condition (1) for the
core is equivalent to

C = {x| ∑
i∈N

xi = vG(N), ∑
i∈Lj

xi ≥ 1, ∀Lj ∈ L}. (8)

Proof. Assume that condition (1) holds. By the definition of vG, we have vG(Lj) = 1, ∀Lj ∈
L, and consequently, ∑

i∈Lj

xi ≥ vG(Lj) = 1, ∀Lj ∈ L.

Now assume that condition (8) holds. Consider an arbitrary coalition S. If vG(S) = k,
then the coalition S contains k disjoint simple paths {L1, . . . , Lk} of the length d, each

satisfying the inequality ( ∑
i∈Lj

xi ≥ 1). As a result, ∑
i∈S

xi ≥ ∑
i∈{L1,...,Lk}

xi =
k
∑

j=1
∑

i∈Lj

xi ≥

k
∑

j=1
1 = k = vG(S).

Remark 2. Notice that the number of constraints for the core drops from exponential (2n) to at
most (n

d), which is polynomial in n for a fixed d.

We denote by L the set of all simple paths of a fixed length d in the graph G. With each
simple path Lk = {i(k)1 , i(k)2 , . . . , i(k)d+1}, k = 1, . . . , |L|, of the length d in the graph G we
associate a row vector c(k) = (ck1, . . . , ckn), where ckj = 1 for j = i1, . . . , id+1 and ckj = 0 for
other j. We compile the matrix C = (c(1), . . . , c|L|)T from the rows c(1), . . . , c|L|.

Consider the linear programming problem:

min
n

∑
i=1

xi

s.t.
d+1

∑
j=1

xij ≥ 1, ∀Lk ∈ L; (9)

xi ≥ 0, ∀i ∈ N.
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The constraints can be written in the matrix form:

n

∑
j=1

cijxj ≥ 1, ∀i = 1, . . . , |L|; xi ≥ 0 ∀i ∈ N.

With each path Lk, k = 1, . . . , |L|, we associate the variable lk.
For problem (9) , the dual problem is given by:

max
|L|

∑
k=1

lk

s.t.
n

∑
i=1

cijli ≤ 1, j = 1, . . . , n; (10)

li ≥ 0, ∀i = 1, . . . , |L|.

Both problems—the primal (9) and dual (10) problems—have admissible solutions.
Therefore, there exist optimal solutions whose values coincide. Problem (10) contains n
constraints, that is, there are no more than n non-zero variables in the solution.

Theorem 2. The graph packing game with simple paths is balanced if and only if the dual linear
programming problem (10) has an integer optimal solution. The core of the balanced graph packing
game is the solution of the primal problem (9) .

Proof. Notice that the problem of maximum packing of the graph G can be presented as
the integer linear program

max
|L|

∑
k=1

lk

s.t.
n

∑
i=1

cijli ≤ 1, j = 1, . . . , n; (11)

li ∈ {0, 1}, ∀i = 1, . . . , |L|.

So, if the optimal solution of the problem (10) is an integer then it gives some optimal
packing of the graph. with optimal value vG(N). Then, a solution of primal linear
problem (9) x will satisfy the conditions:

d+1

∑
j=1

xij ≥ 1, ∀Lk ∈ L;

and the optimal value be equal to

n

∑
i=1

xi = vG(N).

From Lemma 10, it yields that x is in the core. Hence, the sufficiency of the state-
ment follows.

Now assume that the core is not empty. According to Lemma 10, for x from the

core:
n
∑

i=1
xi = vG(N) and

d+1
∑

j=1
xij ≥ 1, for all simple paths Lk of length d. According to the

conditions of the problem, vG(N) is the maximum packing in the graph G. So, vG(N) is
integer and a packing {Lk, k = 1, . . . , |L|} exists, such that vG(N) = |L|. This packing gives
a corresponding solution of the integer linear program (11) . By the duality property of
linear programming, this solution is an integer optimal solution of the linear program (10).
It proves the necessity of the statement.
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Example 6 (continued). Let N = {1, 2, 3, 4, 5, 6} and the links be described by the graph in
Figure 3. A solution of problems (9) and (10) is x = ( 1

2 , 1
2 , 0, 1

2 , 1
2 , 0). The values of both linear

programming problems coincide, being equal to 2. The solution of the dual problem is indicated by
red edges: the optimal packing is {6, 1, 2} ∪ {3, 4, 5}. Other solutions of (9) are: ( 1

3 , 1
3 , 1

3 , 1
3 , 1

3 , 1
3 ),

(0, 1
2 , 1

2 , 0, 1
2 , 1

2 ), (0, 1, 0, 0, 1, 0).

5. Examples of Graph Packing
5.1. Chain Graphs
5.1.1. Packing by Vertex Pairs. Chain Graph with Odd Number of Vertices

Let N = {1, . . . , 2k + 1} and G = L2k+1 be a chain graph, that is, E = {(1, 2), (2, 3), . . . ,
(2k, 2k+ 1)}. Then vG(N) = k, and there are (k+ 1) packings of the following configuration.
First, all vertices with even numbers are included in all these packings. Second, each vertex
with odd numbers is not included in some packing. According to Lemma 5, xi = 0 for
all odd numbers i. Hence, by Corollary 2 of Lemma 5, xi = 1 for all even numbers i. The
resulting solution satisfies the effectiveness condition:

∑
i∈N

xi = k = vG(N).

Therefore, the core exists and is composed of the unique point (0, 1, 0, . . . , 1, 0) (single-
ton). See Figure 4.

Figure 4. There are three possible packings of L5 by pairs. According to Lemma 8, x1 = x3 = x5 = 0.
Moreover, x1 + x2 = 1, x3 + x4 = 1, so x2 = x4 = 1. There is only unique point in the core:
(0; 1; 0; 1; 0).

5.1.2. Packing by Vertex Pairs. Chain Graph with Even Number of Vertices

Let n = 2k and G = L2k be a chain graph. Then vG(N) = k, and the unique packing
has the form {(1, 2), (3, 4), . . . , (2k − 1, 2k)}. The core of this game is non-empty and
contains an infinite set of points, for example, the straight-line segment connecting the
points (0, 1, . . . , 0, 1) and (1, 0, . . . , 1, 0) (Figure 5).

Figure 5. There is only unique packing of L4 by pairs.

5.1.3. Packing by Vertex Triples

Let n = 3k and G = L3k be a chain graph. Then vG(N) = k, and the packing is
composed of the set {(1, 2, 3), . . . , (3k − 2, 3k − 1, 3k)}. The core is non-empty. For ex-
ample, it contains the convex hull of the points (1, 0, 0, . . . , 1, 0, 0), (0, 1, 0, . . . , 0, 1, 0), and
(0, 0, 1, 0, . . . , 0, 0, 1).

For the chain graph G = L3k+1, vG(N) = k. The packing is composed of the set
{(1, 2, 3), . . . , (3k − 2, 3k − 1, 3k)}. The core is non-empty and contains, for example,
the straight-line segment connecting the points (0, 1, 0, 0, . . . , 1, 0, 0) and (0, 0, 1, 0, . . . , 0, 1, 0).
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For the chain graph G = L3k+2, vG(N) = k. The packing is composed of the set
{(1, 2, 3), . . . , (3k− 2, 3k− 1, 3k)}. The core is composed of the unique point (0, 0, 1, 0, . . . ,
1, 0, 0) (singleton). See Figure 6.

Figure 6. There are three possible packings of L5 by triples. According to Lemma 8, x1 = x2 = x4 =

x5 = 0. Moreover, x1 + x2 + x3 = 1, so x3 = 1. There is only unique point in the core: (0; 0; 1; 0; 0).

5.2. Cycle Graphs
5.2.1. Parking by Vertex Pairs. Cycle Graph with Odd Number of Vertices

Let n = 2k + 1 and G = C2k+1 be a cycle graph, that is, E = {(1, 2), (2, 3), . . . (2k, 2k +
1), (2k + 1, 1)}. Then vG(N) = k, and there are (2k + 1) packings of this graph. First, one
of the vertices is not included in any packing. Second, each vertex from N is not included
in some packing. According to Lemma 5, x1 = . . . = x2k+1 = 0, which contradicts the
effectiveness condition x1 + . . . + x2k+1 = k. Hence, the core of the graph C2k+1 is empty
(see Figure 7).

Figure 7. C5: by “rotating” the packing set, one can see that each vertex is not included in some
packing. So, x1 = . . . = x5 = 0, which contradicts condition x1 + . . . + x5 = 2.

5.2.2. Packing by Vertex Pairs. Cycle Graph with Even Number of Vertices

Let n = 2k and G = C2k be a cycle graph. Then vG(N) = k, and there are two packings
only. According to Lemma 6, the core of the graph G is non-empty: it contains at least the
point B(1/2, . . . , 1/2), but this point is not the only one.

In this case, the system of constraints (3) for the core reduces to x1 + . . . + x2k =
k, x1 + x2 ≥ 1, x2 + x3 ≥ 1, . . . , x2k + x1 ≥ 1. Summing all inequalities and dividing the
resulting expression by 2 gives x1 + . . . + x2k ≥ k. This inequality will not contradict
the equality if and only if it turns into equality. To this effect, all inequalities must hold
as equalities: x1 + x2 = 1, x2 + x3 = 1, . . . , x2k + x1 = 1. Letting x1 = t, t ∈ [0, 1], we
obtain x2 = 1− t, x3 = t, . . . , x2k = 1− t. Hence, the core of the graph C2k has the form
{(t, 1− t, . . . , t, 1− t), t ∈ [0, 1]}. See Figure 8.

Figure 8. Two packings of C6. All vertices are in the packing.
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5.2.3. Packing by Vertex Triples. Cycle Graph

Let n = 3k and G = C3k be a cycle graph of length 3. Then vG(N) = k, and there are
three packings, U1 = {(1, 2, 3), (4, 5, 6), . . . , (3k− 2, 3k− 1, 3k)}, U2 = {(2, 3, 4), (5, 6, 7), . . . ,
(3k− 1, 3k, 1)}, and U3 = {(3, 4, 5), (6, 7, 8), . . . , (3k, 1, 2)}. According to Lemma 8, this case
generates the system of equations x1 + x2 + x3 = 1, x2 + x3 + x4 = 1, . . . , x3k + x1 + x2 = 1.
Its solution is defined by two degrees of freedom: x1, x2, 1− x1 − x2, . . . , x1, x2, 1− x1 − x2,
for example: ( 1

3 , . . . , 1
3) and (1, 0, 0, . . . , 1, 0, 0). The core is non-empty.

Now let C3k+1 and C3k+2 be cycle graphs of some length not representing a multiple
of 3. Then in both cases, vG(N) = k. Some vertex is not included in any packing, and each
vertex is not included in some packing. According to Lemma 8, x1 = . . . = xn = 0, which
contradicts the effectiveness condition x1 + . . . + xn = k. Hence, the core is empty (see
Figure 9).

Figure 9. C4: by “rotating” the packing set, one can see that each vertex is not included in some
packing, so x1 = . . . = x4 = 0, , which contradicts condition x1 + . . . + x4 = 1.

5.2.4. Packing by Vertex Pairs. Hamiltonian Cycle

Let n = 2k + 1 and the graph G contain the Hamiltonian cycle C2k+1. Then vG(N) = k.
We compare the systems of constraints (3) describing the cores for G and C2k+1. In both
cases, the same equality constraint x1 + . . . + x2k+1 = k appears, corresponding to the
effectiveness condition. The system of inequality constraints for G includes all inequality
constraints for C2k+1 plus some additional ones. As mentioned above, the core of C2k+1 is
empty. Therefore, the core of G is empty as well.

5.3. Packing by Vertex Pairs. Trees

Using mathematical induction, we will demonstrate that the core of the tree Tn is
non-empty. Obviously, the core of the trivial graph i is non-empty (equal to 0). The core
of the graph T2 is also non-empty: it coincides with the straight-line segment connecting
the points (1, 0) and (0, 1). Assume that for all trees with at most k vertices, the core is
non-empty. Let G = T2k+1 be a tree with (k + 1) vertices. There are pendant vertices in
G. Removing any of the pendant vertices t and the adjacent one s, we pass to the graph
GN\(s∪t), which is a tree or a forest. According to Lemma 7, the conclusions about the
existence of the core in G and GN\(s∪t) are the same. By the induction hypothesis, the core
of GN\(s∪t) is non-empty. Hence, the core of G is non-empty as well. We can easily describe
the procedure for finding a point from the core. If t ∈ G is a pendant vertex, and s ∈ G is
the adjacent vertex for t, then we pass to the graph GN\(s∪t), letting xt = 0, xs = 1, and
so forth. If the graph splits into connected components, we apply this procedure for each
component separately. See Figure 10.
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Figure 10. Finding a point in the core.

5.4. Packing by Vertex Triplets. Star Graph

Let n ≥ 4 and G be a star graph, that is, E = {(1, 2), (1, 3), . . . , (1, n)}. Then vG(N) = 1,
and there are C2

n−1 packings, each composed of vertex 1 and two elements from the set
N\1. Moreover, some vertices from N\1 are not included in any packing; each vertex from
N\1 is not included in some packing. According to Lemma 8, x2 = . . . = xn = 0 and
consequently, x1 = 1. The point (1, 0, . . . , 0) is the unique one belonging to the core (see
Figure 11).

Figure 11. Star graph, n = 4. When the graph is rotated, each vertex of the graph except vertex 1 is
not included in some packing, so x2 = . . . = x5 = 0. x1 + x2 + x3 = 1 yields x1 = 1.

5.5. Complete Graphs
5.5.1. Packing by Vertex Pairs. Complete Graph with Odd Number of Vertices

Let n = 2k + 1 and G be a complete graph. Then vG(N) = k. The complete graph
contains a Hamiltonian cycle, so that is a subcase of Section 5.2.4. Hence, the core of the
graph K2k+1 is empty.

5.5.2. Packing by Vertex Pairs. Complete Graph with Even Number of Vertices

Let n = 2k, where k ≥ 2 and G are complete graphs. Then vG(N) = k, and by
Lemma 6, the core contains the point (1/2, . . . , 1/2). Consider the system of constraints
(3) describing the core. This system includes the equality x1 + . . . + x2k = k and 2k(2k−1)

2
inequalities of the form xi + xj ≥ 1. Summing all these constraints and dividing the
resulting expression by (2k − 1) gives x1 + . . . + x2k ≥ k. This condition holds only
if all inequality constraints from (3) are equalities, that is, xi + xj = 1, ∀i 6= j. It yields
x1 = . . . = x2k = 1/2. Assuming that xi <

1
2 , we obtain xj >

1
2 , j ∈ N \ i and, consequently,

xj1 + xj2 > 1, j1, j2 ∈ N \ i. Analogously, the case xi >
1
2 . Therefore, the core is composed

of the unique point ( 1
2 , . . . , 1

2 ).

5.5.3. Packing by Vertex Triplets. Complete Graph with Number of Vertices Multiple of 3

Let n = 3k and G be a complete graph. Then vG(N) = k, and the set of packings has
the following configuration. First, all vertices are included in each packing; second, any
vertex triplet i, j, k ∈ N is included in some packing. Consequently, all admissible vertex
triplets i, j, k satisfy the equality xi + xj + xk = 1. This system has the unique solution
( 1

3 , . . . , 1
3 ). For example, from x1 + x3 + x4 = 1, x2 + x3 + x4 = 1 it follows that x1 = x2
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and, in a similar way, x1 = . . . = x3k = 1
3 . So, the core is non-empty and is composed of

the unique point (singleton) ( 1
3 , . . . , 1

3 ).
Now let n = 3k + 1 or n = 3k + 2, and let G be a complete graph. Then in both cases,

vG(N) = k, and the set of optimal packings has the following configuration. First, some
vertices are not included in all packings. Second, each vertex is not included in some
packings. According to Lemma 8, x1 = . . . = xn = 0, which contradicts the effectiveness
condition x1 + . . . + xn = k. Hence, the core is empty.

5.6. Complete Bipartite Graphs
5.6.1. Packing by Vertex Pairs. Same Number of Vertices in Graph Parts

Consider the bipartite graph Km,m. Then vG(N) = m, and there are m! packings, each
composed of all 2m vertices. We renumber the vertices of G so that the graph parts are
composed of the sets {1, 2, . . . , m} and {m + 1, m + 2, . . . , 2m} .

Then, condition (3) , under which a point (x1, x2, . . . , x2m) belongs to the core, reduces to
x1 + . . . + x2m = m, min(x1, . . . , xm) +min(xm+1, . . . , x2m) ≥ 1. However, x1 + . . . + x2m =
(x1 + . . . + xm) + (xm+1 + . . . + x2m) ≥ m ·min(x1, . . . , xm) + m ·min(xm+1, . . . , x2m) ≥
m, and this non-strict inequality must hold as equality. (Otherwise, it will contradict the
effectiveness condition.) The equality is the case if and only if x1 = . . . = xm, xm+1 = . . . =
x2m, and x1 + xm+1 = 1. Hence, the core has the form (t, . . . , t, 1− t, . . . , 1− t), t ∈ [0, 1] (see
Figure 12).

Figure 12. Each vertex is at any packing.

5.6.2. Packing by Vertex Pairs. Different Number of Vertices in Graph Parts

Consider a graph G = Km,p, where m < p. Then vG(N) = m, and there are Am
p

packings of the following configuration. First, all m vertices from the smaller part and some
m vertices from the greater part are included in each packing. Second, each vertex from the
greater part is not included in some packings. According to Lemma 5, the components xi
are 0 for all vertices from the greater part. Due to Corollary 2 of Lemma 5, the components
xi, i = 1, . . . , m, are 1 for all vertices from the smaller part. Consequently, xj = 0, j =
m + 1, . . . , m + p (see Figure 13).
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Figure 13. Each vertex from B is not included in some packings, so x4 = . . . = x7 = 0, and x1 = x2 =

x3 = 1.

5.7. Zachary’s Karate Club Network

Consider the packing game for the well-known Zachary’s karate club network [21].
The graph of this network (Figure 14) describes the relations among 34 karate club members.
There are 77 edges in total. The principal persons of the network are vertices 1 and 34.

Figure 14. Packing by pairs for Zachary’s karate club network.

First, we analyze the packing by pairs case. The primal problem (4) has the solution

x∗ = (1, 1, 1, 1,
1
2

,
1
2

,
1
2

, 0, 0, 0,
1
2

, 0, 0, 0, 0, 0,
1
2

, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1)

and the optimal value is 13.5.
The solution of the dual problem (7) is given by

e1,22 = 1, e2,20 = 1, e3,14 = 1, e4,13 = 1, e5,11 = 1, e6,7 =
1
2

, e6,17 =
1
2

, e7,17 =
1
2

,

e9,31 = 1, e21,34 = 1, e23,33 = 1, e24,28 = 1, e25,26 = 1, e27,30 = 1, e29,32 = 1,
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the other variables being equal to 0. In Figure 14, the packing corresponding to the nonzero
variables is indicated by the red color. The optimal values of both problems are the same
and are equal to 13.5. This game is unbalanced, and the core is empty. This result can be
established directly using the lemmas provided above. There is a pendant vertex 12 in
the graph. According to Lemma 7, we remove vertex 12 and its adjacent vertex 1. (The
conclusions regarding the existence of the core in the original and resulting graphs will
coincide.) The graph obtained by removing vertices 1 and 12 splits into two connected
components, one of which contains five vertices. They are connected by the Hamiltonian
cycle 5-7-17-6-11-5. Hence (see Section 5.2.4), the core of this graph is empty. This means
that the core of the original graph is empty as well.

Now, consider the packing game with paths of length 3 (triplets) for this graph.
The primal problem (9) have the solution:

x∗ = (
1
3

, 1,
1
3

,
2
3

,
1
3

,
1
3

,
1
3

,
1
3

,
2
3

,
1
3

,
1
3

, 0, 0,
1
3

, 0, 0,
1
3

, 0, 0, 0, 0, 0, 0,
1
3

,
1
3

,
1
3

, 0,
1
3

,
1
3

,
2
3

, 0,
1
3

, 1,
1
3
),

and the optimal value is 9 2
3 .

The solution of the dual problems (10) is given by

l1,9,31 = 1, l2,18,20 = 1, l5,7,17 = l5,6,11 = l6,7,17 = l5,7,11 = l6,11,17 =
1
3

,

l4,8,13 = 1, l3,10,14 = 1, l15,16,33 = 1, l24,25,28 = 1, l26,29,32 = 1, l27,30,34 = 1,

the other variables being equal to 0. In Figure 15, the cover corresponding to the nonzero
variables is indicated by the red color. The optimal values of both problems coincide and
are equal to 9 2

3 . This game is also unbalanced, and the core is empty.

Figure 15. Packing by triplets for Zachary’s karate club network.

6. Conclusions

Important aspects in the structural analysis of networks include determining the
centrality of graph vertices and the clustering of graphs, that is, identifying their most
connected components. The centrality of a vertex estimates its significance for the entire
network, in some sense reflected by the characteristic function. For example, if we are
interested in the number of descendants, the characteristic function is the number of all
edges of the graph belonging to a given coalition. If we are interested in the dissemination
of information or the propagation of epidemics through a network, the characteristic
function is the number of simple paths of various lengths in a given coalition.

In this paper, the characteristic function has been defined as the maximum number of
disjoint simple paths of a fixed length. In a sense, this is also a centrality measure for graph
vertices, which describes their significance when covering the network by independent
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paths of a fixed length. Possible applications include the design of telecommunications or
transportation networks.

The corresponding cooperative game has been considered using the core as an op-
timality principle. As has been demonstrated, in this case, the graph packing problem
is solved (and the centrality of graph vertices is determined) by solving primal and dual
linear programming problems of a special form. Even if the game is unbalanced (the core is
empty), the solution of the two linear programming problems always exists, makes sense,
and can be used in practice.

The authors wish to thank the anonymous referees for their valuable suggestions
which have improved the presentation of this paper.

Author Contributions: Conceptualization, S.D. and V.M.; methodology, S.D. and V.M.; software, S.D.
and V.M.; validation, S.D. and V.M.; formal analysis, S.D. and V.M.; investigation, S.D. and V.M.;
resources, S.D. and V.M.; data curation, S.D. and V.M.; writing—original draft preparation, S.D. and
V.M.; writing—review and editing, S.D. and V.M.; visualization, S.D. and V.M.; supervision, S.D. and
V.M.; project administration, S.D. and V.M.; funding acquisition, V.M. All authors have read and
agreed to the published version of the manuscript.

Funding: The work was supported by the Russian Science Foundation (grant no. 17-11-01079).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Deng, X.; Ibaraki, T.; Nagamochi, N. Algorithmic aspects of the core of combinatorial optimization games. Math. Oper. Res. 1999,

24, 751–766. [CrossRef]
2. Deng, X.; Ibaraki, T.; Nagamochi, N. Totally balanced combinatorial optimization games. Math. Program. (Ser. A) 2000, 87, 441C452.

[CrossRef]
3. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W.H. Freeman and Company:

San Francisco, CA, USA, 1979.
4. Owen, G. On the core of linear production games. Math. Program. 1975, 9, 358–370. [CrossRef]
5. Jackson, M.O.; Wolinsky, J. A strategic model of social and economic networks. J. Econ. Theory 1996, 71, 44–74. [CrossRef]
6. Myerson, R.B. Graphs and cooperation in games. Math. Oper. Res. 1977, 2, 225–229. [CrossRef]
7. Hajir, M.; Langar, R.; Gagnon, F. Coalitional games for joint co-tier and cross-tier cooperative spectrum sharing in dense

heterogeneous networks. IEEE Access 2016, 4, 2450–2464. [CrossRef]
8. Mazalov, V.V.; Gusev, V.V. Generating functions and Owen value in cooperative network cover game. Perform. Eval. 2020,

144, 102135. [CrossRef]
9. Hamiache, G. The Owen value values friendship. Int. J. Game Theory 2001, 29, 517–532. [CrossRef]
10. Owen, G. Values of games with a priori unions. In Mathematical Economics and Game Theory; Springer: Berlin/Heidelberg,

Germany, 1977; pp. 76–88.
11. Puente, M.; Gimenez, J. A new procedure to calculate the Owen value. In Proceedings of the 6th International Conference on

Operations Research and Enterprise Systems, Porto, Portugal, 23–25 February 2017; pp. 228–233.
12. Deng, X.; Fang Q.; Sun, X. Finding nucleolus of flow game. J. Comb. Optim. 2009, 18, 64–86. [CrossRef]
13. Gusev, V.V. The vertex cover game: Application to transport networks. Omega 2020, 27, 1–10. [CrossRef]
14. Bietenhader, T.; Okamoto, Y. Core stability of minimum coloring games. Math. Oper. Res. 2006, 31, 418–431. [CrossRef]
15. Fang, Q.; Kong, L.; Zhao, J. Core stability of vertex cover games. Internet Math. 2010, 5, 383–394. [CrossRef]
16. Okamoto, Y. Submodularity of some classes of the combinatorial optimization games. Math. Methods Oper. Res. 2003, 58, 131–139.

[CrossRef]
17. Mazalov, V.V.; Trukhina, L.I. Generating functions and the Myerson vector in communication networks. Discret. Math. Appl. 2014,

24, 295–303. [CrossRef]
18. Avrachenkov, K.E.; Kondratev, A.Y.; Mazalov, V.V.; Rubanov, D.G. Network partitioning algorithm as cooperative games.

Comput. Soc. Netw. 2018, 5, 1–28. [CrossRef] [PubMed]
19. Karakostas, G. A better approximation ratio for the Vertex Cover problem. ACM Trans. Algorithms 2009, 5, 1–8. [CrossRef]
20. Edmonds, J. Paths, trees and flowers. Can. J. Math. 1965, 17, 449–467. [CrossRef]
21. Zachary, W.W. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 1977, 33, 452–473. [CrossRef]

http://doi.org/10.1287/moor.24.3.751
http://dx.doi.org/10.1007/s101070050005
http://dx.doi.org/10.1007/BF01681356
http://dx.doi.org/10.1006/jeth.1996.0108
http://dx.doi.org/10.1287/moor.2.3.225
http://dx.doi.org/10.1109/ACCESS.2016.2562498
http://dx.doi.org/10.1016/j.peva.2020.102135
http://dx.doi.org/10.1007/s001820000055
http://dx.doi.org/10.1007/s10878-008-9138-0
http://dx.doi.org/10.1016/j.omega.2019.08.009
http://dx.doi.org/10.1287/moor.1060.0187
http://dx.doi.org/10.1080/15427951.2008.10129174
http://dx.doi.org/10.1007/s001860300284
http://dx.doi.org/10.1515/dma-2014-0026
http://dx.doi.org/10.1186/s40649-018-0059-5
http://www.ncbi.nlm.nih.gov/pubmed/30416938
http://dx.doi.org/10.1145/1597036.1597045
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.1086/jar.33.4.3629752

	Introduction
	Basic Definitions
	Graph Packing Game with Pairs of Connected Vertices (Maximum Matching Game)
	Graph Packing Game with Simple Paths of Length d>2
	Examples of Graph Packing
	Chain Graphs
	Packing by Vertex Pairs. Chain Graph with Odd Number of Vertices
	Packing by Vertex Pairs. Chain Graph with Even Number of Vertices
	Packing by Vertex Triples

	Cycle Graphs
	Parking by Vertex Pairs. Cycle Graph with Odd Number of Vertices
	Packing by Vertex Pairs. Cycle Graph with Even Number of Vertices
	Packing by Vertex Triples. Cycle Graph
	Packing by Vertex Pairs. Hamiltonian Cycle 

	Packing by Vertex Pairs. Trees
	Packing by Vertex Triplets. Star Graph
	Complete Graphs
	Packing by Vertex Pairs. Complete Graph with Odd Number of Vertices
	Packing by Vertex Pairs. Complete Graph with Even Number of Vertices
	Packing by Vertex Triplets. Complete Graph with Number of Vertices Multiple of 3

	Complete Bipartite Graphs
	Packing by Vertex Pairs. Same Number of Vertices in Graph Parts
	Packing by Vertex Pairs. Different Number of Vertices in Graph Parts

	Zachary's Karate Club Network

	Conclusions
	References

