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Abstract: Discrete time Markov models are used in a wide variety of social sciences. However, these
models possess the memoryless property, which makes them less suitable for certain applications.
Semi-Markov models allow for more flexible sojourn time distributions, which can accommodate
for duration of stay effects. An overview of differences and possible obstacles regarding the use of
Markov and semi-Markov models in manpower planning was first given by Valliant and Milkovich
(1977). We further elaborate on their insights and introduce hybrid semi-Markov models for open
systems with transition-dependent sojourn time distributions. Hybrid semi-Markov models aim to
reduce model complexity in terms of the number of parameters to be estimated by only taking into
account duration of stay effects for those transitions for which it is useful. Prediction equations for
the stock vector are derived and discussed. Furthermore, the insights are illustrated and discussed
based on a real world personnel dataset. The hybrid semi-Markov model is compared with the
Markov and the semi-Markov models by diverse model selection criteria.

Keywords: semi-Markov model; Markov model; hybrid semi-Markov model; manpower planning

1. Introduction

Manpower planning is a key aspect of modern human resources management. The
principal aim of manpower planning is the development of plans dealing with future
human resource requirements. In this way, an effective manpower planning policy can
avoid future shortages and excesses of staff members. Such an imbalance between the
actual and the required staff is highly undesirable because it would lead to higher costs
and/or less profits. Since manpower planning itself is concerned with the description and
prediction of large groups of employees, whose behaviour can be unpredictable at the
individual level, it is only natural to study aggregated data, where statistical patterns may
appear. So, it is no surprise that the use of mathematical models for manpower planning
can be traced back to at least 1779 when Rowe used a career-modeling plan in the Royal
Marines [1].

Since the 1960s and the dawn of the computer age, such models have become an
essential tool for the modern manager. Pioneering work concerning mathematical ap-
proaches for manpower planning was carried out by Vajda [2,3] and Bartholomew [4,5],
whereas Almond and Young [6] were the first to study a real world application of an open
homogeneous Markov chain model. Since then, various other manpower planning model
approaches have been considered. In the work of Vassiliou [7], the non-homogeneous
Markov system was introduced. This idea was expanded upon by Vasilliou et al. [8]. Other
work regarding non-homogeneous discrete time (semi-)Markov models includes the works
of Papadopoulou [9] and Dimitriou et al. [10] as well as continuous time (semi-)Markov
models by McClean et al. [11,12], Papadopoulou et al. [13] and Mehlmann [14]. It is impor-
tant to remark that the scope of those models is not limited to humans [7], as is the case in
manpower planning, but that it can be any biological being or object. Some examples of
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other populations modeled by this class of stochastic processes [15] include ecological mod-
eling [16] and biological Markov population models [17] and financial applications [18]. It
is remarkable that, until recently, discrete time homogeneous semi-Markov models were
somewhat neglected in manpower planning.

One of the assumptions of a Markov model is that the length of time a person stays in
a state Si before going to another state Sj only depends on the state Si itself. Moreover, the
waiting time distribution, often called the sojourn time distribution, exhibits the memory-
less property. Which means that it does not account for possible duration of stay effects. In
this case, the sojourn time distribution is in fact a geometric distribution. However, in prac-
tice those assumptions may pose an unrealistic limitation. An alternative model that may
solve those problems is a semi-Markov model, which can be viewed as a natural extension
of a Markov model. In recent years, the use of discrete time semi-Markov models became
more and more popular in various fields such as reliability and survival analysis [19],
DNA analysis [20,21], disability insurance [22], credit risk [23–26], and wind speed and
tornado modeling [27,28]. Moreover, insights regarding discrete time semi-Markov models
contribute to the use of continuous time semi-Markov models [29].

Markov models and semi-Markov models both have advantages: Markov models
are less complex and more transparent. In the manpower planning context, for example,
this makes a classical Markov model easier to interpret and understand for a manager.
Semi-Markov models, on the other hand, allow capturing duration of stay effects due to
their more general sojourn distributions. This provides motivation to build hybrid models
that incorporate the best of both approaches. In the previous work of Guédon, so-called
hidden hybrid semi-Markov chains are presented that combine Markovian states with
semi-Markovian states [30]. Since it is possible that, for a particular state, some of the
transitions are Markovian while other transitions are semi-Markovian [22], the present
paper introduces the concepts of Markovian transitions and semi-Markovian transitions. In
this way, Markovian and semi-Markovian transitions are a further refinement of Markovian
and semi-Markovian states.

Furthermore, both Markov and semi-Markov models require longitudinal data for
their parameter estimation. In practice, however, longitudinal data are often left trun-
cated or right censored, which may lead to estimation problems [31], especially in a
semi-Markovian context, where more general sojourn time distributions are allowed. Previ-
ous works [11,32] suggest alternative approaches [23,33] to deal with this drawback, such
as restricting the analyses to the items for which there is complete information, artificially
truncating the data or using adapted formulas for the estimation of the parameters.

In this paper, we discuss the advantages and disadvantages of Markov and semi-
Markov manpower planning models in Section 2. In Section 3, we present the so-called
hybrid semi-Markov model, which uses a mix of Markov (geometric) and more general
(Weibull) sojourn time distributions, offering some advantages: the hybrid semi-Markov
model allows for capturing duration of stay effects where useful and reduces the number
of parameters to estimate, where possible. In this way, the hybrid semi-Markov model
enables one to improve on the semi-Markov model in case the amount of available data is
limited. Finally, in Section 4, we use a real world personnel dataset to illustrate our insights.
The hybrid semi-Markov model is compared with the Markov model as well as with the
semi-Markov model based on several criteria.

2. Markov and Semi-Markov Manpower Planning Models

To model a manpower system, one has to account for three different types of flows:
the incoming flows (recruitments), the internal flows between the different personnel cate-
gories and the outgoing flows (wastage). We consider G + 1 states, given by G personnel
categories and one absorbing state W, corresponding to the wastage. First of all, the classi-
cal Markov model [4] will be discussed; afterwards, a semi-Markov model for manpower
planning based on [19] will be proposed. An interesting reference regarding (semi-)Markov
processes is [34]. The discussion on the classical Markov model (in Section 2.1) and the
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semi-Markov model (in Section 2.2) contributes in defining the new hybrid semi-Markov
model in Section 3.

2.1. Markov Model

All models in this section are Markov processes and generalizations thereof, such
as semi-Markov processes. However, all models have their limitations and are subjected
to restrictions. In this setting, one of the assumptions we make is the so-called Markov
property, which states that the probability of reaching a future state is independent of the
past states and only depends on the present state. For a second-order Markov chain, this
probability of entering a state at time t + 1 also depends on the state at time t− 1. To assess
the Markov property, we will use Equation (1) below, which tests a first-order against a
second-order Markov chain. The use of a classical Markov model without meeting the
first-order assumption may lead to false conclusions and incorrect analysis results. An
extensive discussion about the often overlooked need to check for the Markov property
can be found in [35]. For a given stochastic process {Xt}t with G + 1 states {S1, · · · , SG+1}
and data over a time horizon [0, T], we will use the following χ2 goodness of fit test to
verify the first-order assumption, as described in [35,36],

χ2
e = ∑

i∈G
∑
j∈G

∑
l∈G

nij
( p̂ijl − p̂jl)

2

p̂jl
(1)

with index set G = {1, 2, · · · , G, G + 1} and nij = ∑T−1
t=0 ∑m

k=0 nij(t, k) , where nij(t, k) is the
number of persons that are at time t in the state Si with grade seniority k and at time t+ 1 in
state Sj and m is the maximal grade seniority observed in the database. p̂jl is the maximum
likelihood estimator of the transition probability pjl with Nj(t) = ∑i∈G ∑m

k=0 nij(t− 1, k)
being the number of persons in state Sj at time t , where p̂ijl is the maximum likelihood
estimator of the transition probability pijl and where nijl(t, k) is the number of persons that
are at time t in the state Si with grade seniority k at time t + 1 in the state Sj and at time
t + 2 in the state Sl :

p̂jl =
∑T−1

t=0 ∑m
k=0 njl(t, k)

∑T−1
t=0 Nj(t)

. (2)

pjl = Pr(Xt = Sl |Xt−1 = Sj) (3)

p̂ijl =
∑T−2

t=0 ∑m
k=0 nijl(t, k)

∑T−2
t=0 ∑m

k=0 nij(t, k)
. (4)

pijl = Pr(Xt+2 = Sl |Xt+1 = Sj, Xt = Si) (5)

Only non-zero p̂jl are taken into account for computing χ2
e . Under the assumption that

the Markov property is satisfied, i.e., that we are looking for a Markov chain of order 1, the
test statistic χ2

e has a χ2-distribution with (G + 1)3 degrees of freedom. If this assumption
holds, we can proceed with the classical Markov approach, in which transition probabilities
are assumed to be equal for individuals within a category.

The use of time homogeneous Markov chains in manpower planning is well-known
(see, for example, [4]) . Given the G states corresponding to different personnel categories
S1, · · · , SG and a wastage state W = SG+1, one can define a Markov process {Xt}t on
those states with transition probabilities pjl that can be estimated by Equation (2). If we
denote the stock vector at time t by N(t) = (N1(t), N2(t), · · · , NG(t), W(t)), and write
R(t) = (R1(t), R2(t), · · · , RG(t), 0) for the recruitment vector at time t, then we obtain the
prediction equation [4] for the stocks at time t + 1 :

N(t + 1) = N(t) · P + R(t + 1), (6)
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where P is the matrix with elements p̂jl .
Due to their simplicity, time homogeneous Markov chain models are used in a wide

variety of domains and applications. As there are relatively few parameters to estimate in
a time homogeneous Markov chain model, they are not too data demanding. However, on
the other hand, they cannot be used to account for duration of stay effects and they are less
flexible due to the so-called memoryless property, which implies that their sojourn time
distributions are geometrical distributed by construction. This shortcoming is accounted
for in semi-Markov models.

2.2. Semi-Markov Model

Again, consider a system with a finite number of states {S1, · · · , SG, SG+1} and let us
denote the set of indices by G = {1, 2, · · · , G, G + 1}. Furthermore, let Tn and Jn denote,
respectively, the time of the n-th transition and the state occupied after the n-th transition.
A semi-Markov process is equivalent to a Markov renewal process [37] and is completely
determined by an initial distribution δ = (δ1, · · · δG, δG+1) and a discrete semi-Markov
kernel q = (qij(k) : i, j ∈ G, k ∈ N) where

qij(k) = Pr(Jn+1 = Sj, Tn+1 − Tn = k | Jn = Si). (7)

It can be shown that {Jn}n itself is a Markov chain via

p∞
ij = Pr(Jn+1 = Sj | Jn = Si), (8)

i.e., p∞
ij is the probability, starting from Si, that the next state will eventually be Sj, regardless

of the duration time. We write P∞ = (p∞
ij : i, j ∈ G) for the associated transition matrix.

This allows for the following decomposition:

qij(k) = p∞
ij fij(k) (9)

where f = ( fij(k) : i, j ∈ G, k ∈ N) consists of the sojourn time distributions, conditioned
by the next state to be visited:

fij(k) = Pr(Tn+1 − Tn = k | Jn = Si, Jn+1 = Sj) (10)

A few remarks are in order at this point. First of all, only actual transitions are
accounted for, in the sense that transitions to the same state are prohibited, so that p∞

ii = 0
for every i ∈ G. Furthermore, instantaneous transitions are not allowed either: the chain
has to spend at least one unit of time in a state, which corresponds to fij(0) = qij(0) = 0
for every i, j ∈ G.

The main difference in regard to the Markov chain model is the fact that the sojourn
time distributions f can be any discrete distribution, incorporating the possible duration of
stay effects. Note that a Markov chain with transition matrix P = (pij : i, j ∈ G) itself can
be viewed as a semi-Markov chain with geometrically distributed sojourn times for which

qij(k) =

{
pij pk−1

ii if i 6= j and k ∈ N0

0 elsewhere.
(11)

In order to use this framework for a manpower planning model, one starts in the
same way as in the case of a Markov chain model with dividing the population in G + 1
states and determining the corresponding stock vector N(t). In contrast with the Markov
chain model, we incorporate the grade seniority of the employees in our model. Instead
of a vector N(t) consisting of the total number of people in each personnel category at
time t, every entry of N(t) corresponds to a vector of a certain length m containing the
number of employees with seniority l, with 1 ≤ l ≤ m. This disaggregation of the entries
of N(t) results in a matrix, whose columns will be denoted by N(t, k) as in Figure 1. So,



Mathematics 2021, 9, 1681 5 of 13

the first column, N(t, 0), corresponds to the employees with grade seniority 0 at time t,
the second column, N(t, 1), corresponds to the employees with grade seniority 1 at time t,
... up to the m + 1-th column that corresponds to the employees with grade seniority m
at time t , where m is the maximal grade seniority observed in the database. We will call
this matrix the seniority based stock matrix. Note that Ni(t, k) corresponds to the number
of employees in state Si with grade seniority k at time t and that ∑m

k=0 Ni(t, k) = Ni(t) for
each i ∈ G and every t ∈ N. The vectors N(t, k) enable the expression of the prediction
equation for the stock vector as in Theorem 2. An equivalent approach is presented in [8],
where the semi-Markov system is transformed into a Markov system. While the present
paper considers a separate vector N(t, k) for each grade seniority k, in [8], this information
is gathered into one vector.

N(t)=

N(t, 0)

=

N(t, 1)
= ... N(t, m-1)

=

N(t, m)

=

N1(t) →

N2(t) →

...

NG(t) →

NG+1(t) →

N1(t,0)

N2(t,0)

...

NG(t,0)

NG+1(t,0)

N1(t,1)

N2(t,1)

...

NG(t,1)

NG+1(t,1)

...

...

...

...

...

N1(t,m-1)

N2(t,m-1)

...

NG(t,m-1)

NG+1(t,m-1)

N1(t,m)

N2(t,m)

...

NG(t,m)

NG+1(t,m)

Figure 1. The seniority based stock matrix, consisting of columns N(t, k).

Now, we can estimate a discrete semi-Markov kernel q using the maximum likelihood
estimator [19]:

q̂ij(k) =
∑T−1

t=0 nij(t, k)
ni

(12)

where ni = ∑j 6=i ∑T−1
t=0 ∑m

k=0 nji(t, k), i.e., the total number of visits to state i. Furthermore,
we can use this q to calculate the grade seniority transition matrices P(k) = (Pij(k) : i, j ∈
G), the one-step ahead transition matrix for group members with grade seniority k, is
defined by:

Pij(k) = Pr(Jn+1 = j, Tn+1 − Tn = k | Jn = i, Tn+1 − Tn > k− 1) (13)

In practice, P(k) can be calculated in the following way.

Theorem 1. For all k such that ∑h∈G ∑k−1
m=0 qih(m) 6= 1 we have

Pij(k) =
qij(k)

1−∑h∈G ∑k−1
m=0 qih(m)

(14)
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Proof.

Pij(k) = Pr(Jn+1 = j, Tn+1 − Tn = k | Jn = i, Tn+1 − Tn > k− 1)

=
Pr(Jn+1 = j, Tn+1 − Tn = k | Jn = i)

Pr(Tn+1 − Tn > k− 1 | Jn = i)

=
Pr(Jn+1 = j, Tn+1 − Tn = k | Jn = i)
1− Pr(Tn+1 − Tn ≤ k− 1 | Jn = i)

=
qij(k)

1−∑h∈G ∑k−1
m=0 qih(m)

Combining all of the above, we arrive at:

Theorem 2. For a semi-Markov system, the prediction equation for the stock vector at time t + 1
is as follows:

N(t + 1) =
m

∑
k=0

(
N(t, k) · P(k)

)
+ R(t + 1), (15)

where N(t, k) is the stock vector of people with grade seniority k at time t, R(t+ 1) is the recruitment
vector at time t + 1, P(k) is the one-step ahead transition matrix for people with grade seniority k
and m is the maximum of all grade seniorities.

At first glance, it would seem that the semi-Markov model is a preferable model due
to its more flexible sojourn time distributions and its greater generality. However, to build
a semi-Markov model, one has to estimate more parameters, such that a sufficiently long
time series of data may be necessary to avoid problems with overfitting [38]. This may
limit the utility of semi-Markov modeling in manpower planning as a data horizon of, for
example, less than ten years may be insufficient for the realization of some transitions and
so for the required data for estimating the semi-Markov kernel q.

3. Hybrid Semi-Markov Model

In Section 2.2, we note that a Markov chain with transition matrix
P = (pij : i, j ∈ G) can be viewed as a semi-Markov chain, i.e., a semi-Markov chain
can be considered as an extension of a Markov chain, where more general and flexible
sojourn time distributions are allowed. However, in practice, it can be difficult to decide
which approach is more adequate to model the manpower system in question. Due to its
greater generality, the semi-Markov chain may look as the most preferable model at first
sight. However, in practice, the data requirements to result in accurate parameter estimates
may limit the utility of semi-Markov models in manpower planning [38]. For these reasons,
the presented hybrid semi-Markov model examines, for each pair of states (Si, Sj), whether
the transition from Si to Sj can be considered as a Markov transition or should be modeled
as a semi-Markov transition. In order to make an adequate choice for a particular transition
from Si to Sj between a Markov and a semi-Markov approach, one can use a technique
which was introduced in [22] and which is briefly discussed below.

The semi-Markov hypothesis is tested at the level of the sojourn time distributions
fij. A transition from Si to Sj can be considered Markovian if its corresponding sojourn
time fij is geometrically distributed. Under the geometrical hypothesis, the equality
fij(2) = fij(1)(1− fij(1)) holds and a significant deviation of fij(1)(1− fij(1)) − fij(2)
from zero has to be seen as evidence to the contrary, i.e., evidence in favor of a (more
general) sojourn time distribution. The test statistic, as introduced in [22], is given by:

Ŝij =

√nij( f̂ij(1) ∗ (1− f̂ij(1))− f̂ij(2))√
f̂ij(1)(1− f̂ij(1))2(2− f̂ij(1))

(16)
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where nij = ∑T−1
t=0 ∑m

k=0 nij(t, k) denotes the observed total number of transitions from Si to
Sj and where f̂ij(k) is the maximum likelihood estimator of the probability fij(k) (see [19]):

f̂ij(k) =
∑T−1

t=0 nij(t, k)
nij

. (17)

Under the geometrical hypothesis H0, the test statistic Ŝij is asymptotically normally
distributed.

Note that for a system with G + 1 states, this test has to be run (G + 1) ∗ G times
as this test permits us to make a decision about the sojourn time distribution for each fij
individually, which allows for a so-called hybrid semi-Markov model—a semi-Markov
model that incorporates the sojourn time distributions of the classical Markov model
for those pairs (Si, Sj) where geometric sojourn time distributions may be assumed and
that enables the use of more general sojourn time distributions for those pairs (Si, Sj)
where necessary. This approach can be seen as a further generalization of techniques used
in [22,39], where the same criterion was used to make a decision about the sojourn time
distributions at the level of the states instead of the transitions. Since the sojourn time
distribution is determined per pair (Si, Sj), and hence for each possible transition, the
hybrid semi-Markov model is based on transition-dependent sojourn time distributions.
In this way, we can construct a model that unites the best of the Markovian and (pure)
semi-Markovian worlds, as we will only have to estimate extra parameters of the sojourn
time distributions if those parameters might improve the goodness of fit.

Previous studies concerning semi-Markov models often used the discrete Weibull
distribution [19] whenever the geometrical hypothesis is rejected. The choice for the
discrete Weibull distribution is motivated by the fact that the discrete Weibull distribution
can be viewed as a more flexible generalization of the geometric distribution [40]:

CMF dweibull(k, α, β) = 1− α(k+1)β
(18)

CMF geometric(k, p) = 1− (1− p)(k+1) (19)

so geometric(k, p) = dweibull(k, 1− p, 1).
Note that, in the semi-Markov setting, the prediction equation of the stock vector

(Equation (15)) is nothing more than a generalization of the prediction equation of the stock
vector in the Markov setting (Equation (1)), as in the latter case the P(k) are equal for all
k. So, to arrive at the prediction equation for the stock vector of the hybrid semi-Markov
model, one can recycle Equation (15), where Pij(k) will be dependent on k due to the
sojourn time distributions associated with the (Si, Sj) for which the Markov hypothesis
does not hold.

A procedure to decide on whether to use a Markov model, a semi-Markov model or a
hybrid semi-Markov model is graphically represented in Figure 2.
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Divide the personnel
in G states

{S1, · · · SG} and add
a wastage state SG+1

Does the hy-
pothesis of an

order 1 against an
order 2 Markov

chain hold?
Equation (1)

Use a Markov
chain approach

Estimate the
empirical sojourn
time distributions

Test for each tuple
(Si, Sj): does

the geometrical
hypothesis hold?

Equation (16)

Estimate qij as
a Geometric
distribution

Estimate qij
as a Weibull
distribution

Group all qij
in the hybrid
semi-Markov

kernel q = (qij(k))

Calculate the one-
step ahead transi-
tion matrices P(k)

Equation (14)

Calculate the seniority
based stock matrices
N(t, k) (See Figure 1)

Calculate the one-step
ahead stock prediction

Equation (15)

Estimate the recruit-
ment vector R(t + 1)

yes

no

no yes

Figure 2. Decision flowchart for the hybrid semi-Markov model.
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4. Application
4.1. Data Handling

The subject of this research is modeling (a subsystem of) the academic staff of the Vrije
Universiteit Brussel (VUB). An anonymized personnel database including the career paths
of all academic staff at the VUB between 1999 and 2013 was at our disposal for this study.
The aim is to estimate the number of teaching staff in the various grades for the near future.
In our study, we have chosen to avoid left censoring issues: since the analyzed data contain
only a limited number of data lines where left censoring is involved, we did not take into
account the first observed state of an employee in case it was subjected to left censoring.
We corrected for right censoring in computing the estimations of the parameters [41].

After extensive data cleansing, we obtained the career paths of 1585 relevant employ-
ees. Only data from 1999 to 2012 were included to avoid look-ahead bias as we aim to
estimate the number of teaching staff in 2013. Concerning the division of the personnel in
G states, we opted for the common hierarchical academic ranking structure in Belgium as
in Table 1.

Table 1. Personnel categories in our manpower system.

State

S1 Doctor-assistent (lecturer with a PhD)
S2 Docent (assistent professor)
S3 Hoofddocent (associate professor)
S4 Hoogleraar (full professor)

Furthermore, we included an additional state, state S5, which corresponds to wastage
in our system. Contrary to most applications in the literature, we did not consider the
wastage state to be an absorbing state as it regularly happens during academic careers
that people who leave their universities are employed again later on. This happens in
our dataset for 371 cases. The observed transitions between the states in our system are
visualized in Figure 3.
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that people who leave their universities are employed again later on. This happens in
our dataset for 371 cases. The observed transitions between the states in our system are
visualized in Figure 3.

S1 S2 S3 S4

S5

Figure 3. Graph of the states and state transitions.

First of all, the Markov property (Equation (1)) was assessed. Defining the level of
significance at α = 0.05, the null hypothesis states that the Markov property is met. As we
consider five states in our subsystem, it follows that the test statistic χ2

e has a χ2-distribution
with 53 degrees of freedom under the null hypothesis. We obtained χ2

e = 4984.911, which
means that we reject the zero hypothesis at the significance level α = 0.05. These findings
let us conclude that the whole system, consisting of five states, does not satisfy the Markov
property.

Figure 3. Graph of the states and state transitions.

First of all, the Markov property (Equation (1)) was assessed. Defining the level of
significance at α = 0.05, the null hypothesis states that the Markov property is met. As we
consider five states in our subsystem, it follows that the test statistic χ2

e has a χ2-distribution
with 53 degrees of freedom under the null hypothesis. We obtained χ2

e = 4984.911, which
means that we reject the zero hypothesis at the significance level α = 0.05. These find-
ings let us conclude that the whole system, consisting of five states, does not satisfy the
Markov property.
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4.2. Parameter Estimation and Modeling

We now use the same data as in the previous section to estimate the empirical sojourn
time distributions f̂ij according to Equation (17) with the aid of the R package SMM [41]
and apply the test statistic Ŝij (Equation (16)) to each tuple of states (Si, Sj). The results are
summarized in Table 2.

Table 2. Values of test statistic Ŝij.

S1 S2 S3 S4 S5

S1 / 0.12 −0.00 0 −3.76
S2 0.49 / 0.83 0 −1.22
S3 0.17 0.09 / −1.87 −1.68
S4 0 0 0 / −1.10
S5 2.05 1.12 0.08 0 /

Under the geometrical hypothesis H0, these test statistics Ŝij are asymptotically nor-
mally distributed. At a significance level of α = 0.05, we reject the null hypothesis if and
only if |Ŝij| > 1.96. This means we have to reject the geometrical hypothesis for the sojourn
time distributions f15 and f51. Using the R package SMM [41], we estimated all fijs as
parametric distributions: f15 and f51 as Weibull distributions and the other fijs as geometric
distributions. We now consider three different models:

• M, a classical Markov model as in Section 2.1;
• SMW, a semi-Markov model as in Section 2.2, where all fijs are Weibull distributions;
• HSM, the hybrid semi-Markov model as in Section 3 with the fijs as described above.

4.3. Comparison of the Different Models

We used Equation (15) to predict the stock vector in 2013 starting from the stock vector
in 2012 for the three models mentioned above, as a first indication of the performance of
those models. We took the factual recruitment vector for R(t + 1). The forecasts, including
the standard deviations [42], are summarized in Table 3.

Table 3. Model predictions of the stock vector in 2013. The standard deviations are within brackets.

Model Predictions

M SMW HSM Actual Stocks in 2013

S1 235.32 ( 8.01) 191.54 (8.85) 206.22 (8.45) 229
S2 292.77 (7.81) 246.68 (9.81) 298.07 (8.05) 304
S3 97.06 (4.65) 96.94 (6.56) 97.28 (4.68) 96
S4 58.84 (2.86) 64.34 (4.79) 58.89 (2.86) 64

It is immediately obvious, looking at Table 3, that the SMW model is the worst
predictor of the stock vector for the first two personnel categories in the setting above. Other
prediction results are more similar. In what follows, M, SMW and HSM are compared
based on several model selection criteria such as AIC and BIC. Afterwards, we used the
likelihood ratio test statistic to state a final model preference [43].

First, we analyzed the goodness of fit of our different models using the AIC and BIC
according to the formulas below [44],

AIC = 2 n− 2 l(Mi)

BIC = n ln(κ)− 2 l(Mi)
(20)
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where n corresponds to the number of estimated parameters in the model Mi, l(Mi) is
the log-likelihood function for Mi and κ corresponds to the total number of observations,
which is the number of observed transitions in our case.

We obtained the following values for the log-likelihood function:

l(M) = −3723.73,

l(SMW) = −3912.79,

l(HSM) = −3682.55

It is immediately apparent from the equations above that SMW is an unfeasible model,
as it has the most parameters but the worst fit of our three models. We now proceed to
calculate the AIC and BIC of the three models in question. The results are summarized in
Table 4.

Table 4. AIC and BIC values.

Selection Criteria

AIC BIC

M 7487 7624
SMW 7906 8179
HSM 7409 7559

The hybrid semi-Markov model HSM has the lowest BIC and AIC values, which
means that it outperforms both the semi-Markov model SMW and the Markov model M
with regard to the goodness of fit. Furthermore it is remarkable that the semi-Markov
model SMW turns out to be the model with the worst fit of the three models concerning
the AIC, BIC or even the values of the log-likelihood function itself. This may sound
counter-intuitive at first as this model is the most flexible model of the three. We theorize
that this is probably due to the more demanding data requirements needed to estimate a
higher amount of parameters, which can lead to problems with overfitting.

At last, in order to make a final choice between the models above, one can assess the
goodness of fit between the Markov model M and the hybrid semi-Markov model HSM
by means of the likelihood ratio test for nested models as M ⊂ HSM [44]. For two nested
statistical models M1 ⊂ M2, the likelihood ratio test statistic is given by:

λLR = −2[l(M1)− l(M2)] (21)

where l(M1) and l(M2) are the values of the log-likelihood function for M1 and M2,
respectively. This test statistic is, under the zero hypothesis, i.e., that the more simple
model is in fact the true model, asymptotically χ2 distributed with d degrees of freedom,
where d is the number of additional parameters in the more complex model.

We now proceed to use the likelihood ratio test to assess the goodness of fit between
the two remaining models of interest: M and HSM. We arrive at the following value for
the test statistic λLR.

λLR = 82.36 (22)

As HSM adds two additional parameters to M, it follows that the test statistic λLR has
a χ2-distribution with two degrees of freedom under the null hypothesis. We obtained
λLR = 82.36, which means that we reject the zero hypothesis at the significance level
α = 0.05 in favor of the alternative hypothesis, i.e., that HSM is the better model, which is
consistent with the AIC and BIC values in Table 4. Hence, for illustrative purposes, our
three models can be ranked according to their goodness of fit as HSM, M and finally SMW.
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5. Conclusions

In this paper, we use a discrete time semi-Markov framework to model an open
manpower system. At first sight, such a model might appear to be the preferable model as
it is not only a more flexible model in nature but also enables us to account for duration of
stay effects. However, such a model does not always show to be superior in an empirical
context due to the fact that more parameters have to be estimated, which necessitates the
availability of a vast amount of data and which may lead to overfitting in the absence
of enough data. Therefore, we introduce a hybrid semi-Markov model, that is a semi-
Markov model in which Markov sojourn time distributions are used for those transitions
(Si, Sj) where it is not useful to account for duration of stay effects and in which Weibull
distributed sojourn times are used for those transitions (Si, Sj) where the geometrical
hypothesis does not hold. Hence, the hybrid semi-Markov model takes the duration of stay
effect into account only for those transitions where it can contribute to the improvement of
the goodness of fit. In this way, the hybrid semi-Markov combines the best of both worlds
by capturing duration of stay effects where useful and reduces the number of parameters
to estimate, where possible. Finally we used a real world personnel dataset to illustrate our
insights and made a comparison between the Markov model, the semi-Markov model and
the hybrid semi-Markov model.

The authors view the use of this specific dataset as one of the most important limita-
tions of this research, as alternative or richer databases may exhibit other characteristics
which could lead to other model choices. In addition, future research may focus on the
use of other non-Weibull distributions or might explore the possibilities of a hybrid semi-
Markov model in a non-homogeneous context.
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