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Abstract: Kernel clustering of categorical data is a useful tool to process the separable datasets and
has been employed in many disciplines. Despite recent efforts, existing methods for kernel clustering
remain a significant challenge due to the assumption of feature independence and equal weights. In
this study, we propose a self-expressive kernel subspace clustering algorithm for categorical data
(SKSCC) using the self-expressive kernel density estimation (SKDE) scheme, as well as a new feature-
weighted non-linear similarity measurement. In the SKSCC algorithm, we propose an effective
non-linear optimization method to solve the clustering algorithm’s objective function, which not
only considers the relationship between attributes in a non-linear space but also assigns a weight to
each attribute in the algorithm to measure the degree of correlation. A series of experiments on some
widely used synthetic and real-world datasets demonstrated the better effectiveness and efficiency
of the proposed algorithm compared with other state-of-the-art methods, in terms of non-linear
relationship exploration among attributes.

Keywords: machine learning; categorical data; similarity; feature selection; kernel density estimation;
non-linear optimization; kernel clustering

1. Introduction

One of the goals of clustering is to mine the internal structure and characteristics of
unlabeled data, which is known as unsupervised learning [1,2]. Real-world applications,
i.e., pattern recognition [3], text mining [4], image retrieval [5], and bioinformatics [6],
generate unlabeled data. All of these data are not just numerical data but are increasingly
categorical data, which are flooding into practical applications. Clustering analysis for
categorical data has attracted a great deal of interest from the scientific community. One
example is that political philosophy is often measured as liberal, moderate, or conserva-
tive. Another example is that breast cancer diagnoses based on a mammograms use the
categories normal, benign, probably benign, suspicious, and malignant.

In the past few decades, various clustering algorithms have been proposed [7–11] for
numerical data. However, the attributes of categorical data are discrete, and their attribute
values come from a limited symbol set. Unlike continuous data, categorical data are unable
to produce a mathematical calculation, such as the mean and standard deviation. As a
result, algorithms suitable for continuous data cannot be directly used for categorical data.
To deal with this disadvantage, researchers have developed some clustering algorithms
for categorical data, such as ROCK [12], ScaLable Information Bottleneck (LIMBO) [13,14],
MGR [15], DHCC [16], and k-modes type algorithms [17–23]. However, each of these
algorithms has its own merits and disadvantages. Even state-of-the-art algorithms have
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their shortcomings, and they are not effective for all datasets. For instance, ROCK is a non-
k-mode agglomerative hierarchical clustering method that uses the conventional Jaccard
coefficient to compute the similarity of two samples. However, the Jaccard cannot measure
the specific value of the difference; it can only obtain whether the result is the same or
not. In addition, the time complexity of this algorithm is high, which is quadratic with
the number of objects. LIMBO uses an agglomerative information bottleneck to measure
the entities’ distance, but is not comprehensive enough to extract data clustering features.
The MGR algorithm proposes a mean gain ratio to select cluster attributes. LIMBO and
MGR are based on information theory, meaning that they can quickly take into account
one related variable, but one only, while ignoring other important feature information.
DHCC can analyze multiple correspondence, avoiding a one-to-one similarity calculation.
However, this method is sensitive to strange objects and, compared with agglomerative
approaches, DHCC is a divisive algorithm with less application. The conventional k-modes
algorithm and its variants have been extensively used for categorical data clustering. The
distance of the samples was measured by simple matching coefficient (SMC). However,
these methods only consider the attributes’ mode, while ignoring the statistical information
of the data itself. Meanwhile, they can be trapped into local optima and are sensitive to
initial clusters and modes. Our numerical experiments even showed that the k-modes
algorithm could not identify the optimal clustering results for some particular datasets,
regardless of the selection of the initial centers.

To solve the k-modes type algorithms’ problems, Chen [24] proposed a probabilistic
framework in which the kernel bandwidth was introduced with a soft feature selection
scheme so that the cluster center equals to the smoothed frequency estimator for the
categories. Feature selection is of great significance to data processing in the era of big
data [25,26]. It often involves the process of selecting the most important features represent-
ing an object’s attributes and then building a learning model in tasks clustering. Feature
selection can not only relieve the curse of dimensionality caused by too many attributes
but can also retain relevant features, remove irrelevant features, reduce the difficulty of
learning tasks, and look for the essential features. Based on evaluation criteria, embed-
ded feature selection methods such as CART [27] not only overcome the low efficiency
of the wrapper feature selection method [28–30] but also avoid the disconnection of the
filter feature selection method. Algorithms that take a filter-method approach to feature
selection, such as Chi-Square [31], information gain [32], gain ratio [33], support vector
machine [34,35], ReliefF [36,37], and hybrid ReliefF [38,39], are used in many practical
applications. The embedded feature selection approach uses a learning model, so that
the feature selection process is automatically integrated with the learner training process.
Although several clustering analysis methods employ feature selection [24,40], many of
the current approaches have one or more of the following disadvantages: considering
all features independently, considering all attributes’ importance equally, and lack of an
optimization solution.

The kernel clustering method that increases the sample features’ optimization process
uses the Mercer kernel to map the samples in the input space to the high-dimensional
feature space and clusters in the feature space. The kernel clustering method is widely
used and is considered superior to classical clustering algorithms in performance. It can
distinguish, extract, and enlarge useful features through non-linear mapping, so as to
achieve more accurate clustering. Kernel k-means algorithm [41] makes the sample linearly
separable (or nearly linearly separable) in kernel space by the “kernel” method. Still, the
kernel function is defined for continuous data. Thus it cannot be directly transposed to
categorical data and the algorithm based on the assumption that the original features are
equally important. Some recent self-expressiveness-based methods [42–44] use subspace
self-expressiveness property related to regularization terms. They are also not suitable for
categorical data, and they all involve a linear combination of attributes.

In this paper, we view the task of clustering categorical data from a kernel clustering
approach and propose a non-linear clustering algorithm for categorical data. The algorithm,
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named self-expressive kernel subspace clustering for categorical data (SKSCC), is based
on the kernel density estimation (KDE) and probability-based similarity measurement.
SKSCC not only considers the relationship between attributes in non-linear space but
also gives each attribute a feature weight to measure the correlation degree. KDE has
been employed in the estimation of probability distribution for categorical data [24,45,46].
This work introduces the self-expressive kernel density estimation (SKDE) in which every
attribute has its own bandwidth. It then proposes a new non-linear similarity measurement
method for categorical data in which a weight is added for each attribute to determine
the importance of the attribute. Therefore, the objective function of the derived clustering
algorithm is non-linear. As is commonly accepted, non-linear equations and equalities are
not easy to solve. Therefore, we propose an efficient non-linear optimization method to
solve the objective function of the clustering algorithm.

In summary, the main contributions of our work are as follows:

• We define the self-expressive kernel density estimation approach, in which the sym-
bols can be expressed by probability that is proportional to the kernel bandwidth, and
the cluster center is smoothed to the frequency estimator for the categories;

• We propose a non-linear feature-weighted similarity measurement method that gives
consideration to the relationship between the attributes;

• We put forward a non-linear optimization method in kernel subspace. Furthermore,
we present the SKSCC, an efficient self-expressive kernel subspace clustering algo-
rithm for categorical data that uses feature selection to choose the important attributes;

• A series of experiments on several synthesis and real-world datasets were conducted
to compare the performance of the proposed algorithm. The experimental results
show that the proposed algorithm outperforms other algorithms in terms of non-
linear relationship exploration among attributes and improves the performance and
efficiency of clustering.

The remainder of this paper is organized as follows: Section 2 describes related work.
Section 3 introduces the KDE-based similarity for categorical data. In Section 4, the new
clustering algorithm is elaborated. Experimental results are analyzed in Section 5. Section 6
presents our conclusions.

2. Related Work

The similarity measure of categorical data is the basis of categorical data analysis.
A good clustering algorithm maximizes the similarity within clusters and minimizes the
similarity between clusters. Although many researchers have proposed different methods
to measure the similarity or dissimilarity of categorical data, none of them have been
widely recognized. For numerical data, there are Euclidean distance, vector dot product,
and other similar or different degrees of measurement objects. For categorical data, the
mean and variance are not defined, and the vector dot product operation is meaningless.

In 1998, Huang [17] proposed the conventional k-modes algorithm, which is a non-
weighted feature clustering approach. The k-modes algorithm can be formulated into a
mathematical optimization model as follows:

min J(W, Q) =
k

∑
l=1

n

∑
i=1

wlid(Xi, Ql) (1)

where wli composes a partition matrix and ∑k
l=1 wli = 1, wli ∈ {0, 1}, and Ql =

{ql1, ql2, . . . , qlm} is the cluster center. The algorithm adopted a simple method, called
overlap measure (OM) [19], to measure the distance, as shown in Equations (2) and (3).
The differences between symbols are just equal or unequal (equal is 1, unequal is 0), as
shown in Equation (3).

d(X, Y) =
D

∑
i=1

S(xi, yi) (2)
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where,

S(xi, yi) =

{
1 i f xi = yi

0 i f xi 6= yi.
(3)

This measure method is easy to use and has great computational efficiency, since there
are no involved parameters. However, its defined distances are not always reasonable
in indicating the real dissimilarity because it ignores the valuable information about the
relationship of the correlated attributes. There are some variants of k-mode algorithms,
such as presented in [47,48]. All of these algorithms suppose that features are equally
important for clustering analysis but have seen limited use in real-world practice.

In weighted features clustering algorithms, such as WKM [22], wk-modes [21], and
SCC [24], features are weighted according to their importance to the clustering tasks. In
these algorithms, the features are of different importance. They calculate the similarity
between the two samples by supposing each dimension independently. The mathematical
optimization model of these algorithms can be expressed as follows:

min J(W, Q) =
k

∑
l=1

n

∑
i=1

m

∑
j=1

wliλ
β
l jd(Xi, Ql) (4)

where W is also a partition matrix and ∑k
l=1 wli = 1, wli ∈ {0, 1}, Λ = [λl j] is a weight

matrix, and β is an excitation parameter which is used to control the feature weight.
The algorithm also utilized the OM method to measure the distance, as

Equations (2) and (3). These methods have the advantage of high clustering efficiency.
In addition, feature weighting clustering algorithms assign uniform weight to all the intra-
attribute distances measured on the feature, which is suitable for well-defined distances.
However, the distance measure is not well-defined for categorical data, as evidenced by
the OM distance measurement. To solve this problem, most existing methods focus on
exploring appropriate distance measures and attribute weighted mechanisms, such as
MWKM [23]. These methods are all linear algorithms, in that they are based on the assump-
tion that features are independent of each other, so that the relationship between features is
ignored, which means that a great deal of information between the features is lost.

At present, two methods are mainly used to explore the non-linear relationship
between attributes: deep neural network (DNN) and the kernel method. As we all know,
DNNs need a large amount of data to train. The larger the amount of data, the more
accurate the result. The kernel method uses the Mercer kernel function to implicitly
describe the non-linear relationship between attributes and has been widely studied and
applied because of its simplicity of mathematical expression and the high efficiency of
calculation. Chen et al. [24] proposed a soft subspace clustering approach based on
probabilistic distance. Its mathematical optimization model can be expressed as follows:

min OBJ(Π, W) =
K

∑
k=1

∑
x∈πk

D

∑
d=1

wθ
kdDisd(x, πk) (5)

where W is the weight of the dth dimension for cluster k, x is the data sample and πk is
the kth cluster. Disd(x, πk) denotes the distance of sample x to the kth cluster on the dth
dimension, which is computed by two discrete probabilities. This method also proposes to
define a kernel density function κ(Xd | odl ; λk), as shown in Equation (6), to estimate the
probability, where λk ∈ [0, 1] is the bandwidth for every cluster.

κ(Xd | odl ; λk) =

1− |Od |−1
|Od |

λk Xd = odl
1
|Od |

λk Xd 6= odl
(6)

where |Od| represents the power of Od, which is the number of aggregates, and odl denotes
the lth category in Od, odl ∈ Od.
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Although this method considers the relationship between attributes in non-linear
space, it does not distinguish the importance of attributes. This method also can be seen
as one in which all attributes are independent of each other and all attributes in the same
cluster use the same bandwidth.

3. KDE-Based Similarity for Categorical Data

In this section, we first propose a kernel density estimation (KDE) method for categor-
ical attributes, by which each attribute has its own bandwidth. Then, the distance between
categorical data objects can be expressed by a probabilistic data distribution. Moreover, a
new similarity measure in the kernel subspace is defined to clustering.

3.1. Self-Expressive Kernel Density Estimation (SKDE)

Kernel density estimation method does not use the prior knowledge of the data
distribution and does not attach any assumptions to data distribution. It is used to study
the characteristics of data distribution from the data sample itself and is a non-parametric
probability density estimation method. Unlike the kernel function seen in Equation (6), we
define the kernel density function as follows:

`(Xd | odl ; λd) =

1− |Od |−1
|Od |

λd Xd = odl
1
|Od |

λd Xd 6= odl
(7)

where | Od | represents the power of Od, which is the number of aggregates, and λd
represents the width of the dth attribute.

It can be simply expressed as follows:

`(Xd | odl ; λd) =
1
| Od |

λd + (1− λd)I(Xd = odl) (8)

where, I(·) denotes the indicator function; I(true) = 1 and I( f alse) = 0.
According to the Equation (7), we can obtain:

∑
odl∈Od

`(Xd | odl ; λd) = 1− | Od | −1
| Od |

λd + (| Od | −1)
λd
| Od |

= 1.

The above equation shows that the kernel function we defined satisfies the basic
properties of probability distribution.

We use p̂(odl |λd) to express the kernel probability estimation of p(odl). According to
the basic principle of the SKDE method, we have:

p̂(odl |λd) =
1
N ∑

x∈DB
`(Xd | odl ; λd)

= f (odl)

(
1− | Od | −1

| Od |
λd

)
+ (1− f (odl))

λd
| Od |

=
λd
| Od |

+ (1− λd) f (odl)

(9)

where DB is a sample set, f (odl) is the frequency estimation of odl .
In order to map categorical data to the high-dimensional space through the kernel

function, a symbolic vectorization technique is used, as Definition 1 follows.

Definition 1. We define a data object xid as follows:

xid =
〈

x(1)id , · · · , x(l)id , · · · , x(|Od |)
id

〉
(10)
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where x(l)id denotes the probability of odl ∈ Od with regard to xid, denoted by: x(l)id = Pd(odl |xd),

and satisfies the constraint condition: ∑
|Od |
l=1 x(l)id = 1.

x(l)id can be estimated using the kernel function shown in Equation (8), as follows:

x(l)id = Pd(odl |xd)

de f
= `(odl |xd; λd)

=
1
|Od|

λd + (1− λd)I(Xd = odl).

(11)

3.2. Similarity Measurement Based on Kernel Subspace

The existing mainstream methods fail to consider the relationship between features.
We formally define the non-linear similarity measurement in the kernel subspace as follows:

Definition 2. The similarity measure of kernel subspace is given by:

sim
(
xi, xj

)
= κw

(
xi, xj

)
(12)

where κw(xi, xj) represents the weighted features’ kernel function, denoting the combination of two
sample objects on each attribute.

According to Definition 2, the polynomial kernel function can be expressed as:

• origin polynomial kernel function:

κw
(
xi, xj

)
=
(
xi · xj + 1

)p
=

(
D

∑
d

xidxjd + 1

)p

,

• weighted feature polynomial kernel function:

κw
(
xi, xj

)
=
(
xi · xj + 1

)p
=

(
D

∑
d

wθ
kdxidxjd + 1

)p

.

We introduce a kernel function that originally acts on continuous data to project
categorical data into the kernel space and a weight vector wk = {wkd|d = 1, 2, . . . , D}
for each cluster in the kernel space for original feature selection. The greater the dth
dimension’s contribution to cluster, the more important it is. wkd meets the constraints:{

∀k, d : wkd ≥ 0
∀k : ∑D

d=1 wkd = 1.
(13)

We introduce an index θ(θ 6= 0) for wkd to control the incentive intensity, and suppose
θ as a known constant. The bigger the value of θ, the smoother the weight distribution.

This similarity measure not only uses the kernel method to “kernel” the categorical
data, but also considers the relationship between features in the non-linear space. We also
select features in the mapped kernel space, which distinguishes the importance of features
to the cluster.

4. Proposed Clustering Algorithm

In cluster analysis, the cluster is defined as the sample set with the minimum compact-
ness (or dispersion), in which the compactness is measured by the similarity between the
sample and the cluster center. Combined with the defined non-linear similarity measure-
ment formula of kernel subspace, the kernel subspace clustering optimization objective
function of categorical data can be defined as follows:
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J(Π, W) =
K

∑
k=1

∑
xi∈πk

Sim(xi, vk) =
K

∑
k=1

∑
xi∈πk

κw(xi, vk) (14)

where, vk is the center of the cluster πk, denoted as a D dimension vector vk =
(vk1, . . . , vkd, . . . , vkD). Since a categorical attribute value is represented by a vector by
Definition 1, so the dth dimension’s center of the cluster πk should also be represented
by a vector. Each component vkd represents the dth dimension’s center, denoted as
vkd = <v(1)kd , . . . , v(l)kd , . . . , v(|Od |)

kd , which meets the constraints ∑
|Od |
l=1 v(l)kd = 1, and v(l)kd repre-

sents the probability of odl ∈ Od in the dth dimension.
Therefore, we have:

v(l)kd =
1
|πk| ∑

xi∈πk

`(odl |xd; λd)

=
1
|Od|

λd + (1− λd) fk(odl)

(15)

where fk(odl) denotes the frequency estimation of odl ∈ Od in the dth attribute.

4.1. Non-Linear Optimization in Kernel Subspace

In the process of calculation, the sum function is operated in the kernel function (such
as the polynomial kernel subspace function mentioned above), which makes it difficult to
solve wkd, which, in turn, greatly increases the difficulty of solving the objective function.
Therefore, we propose an efficient optimization method for solving the kernel subspace
clustering optimization objective function. The objective function is transformed into the
form of the existing mainstream methods (such as WKM [22] method) in order to improve
the computational efficiency. The optimization objective defined by Equation (14) is further
analyzed. Theorem 1 shows that for all convex kernel functions, the maximum value of
Equation (14) is equivalent to the maximum value of the function of Equation (16), given by:

J(Π, W) =
K

∑
k=1

∑
xi∈πk

D

∑
d=1

wθ
kdκd(xi, vk) (16)

where κd(xi, vk) represents the mapping function’s inner product of xi and vk in the dth
dimension, that is, the kernel function in the dth dimension. For example, the polynomial
kernel function can be expressed as follows:

κd(xi, vk) = (xidvkd + 1)p. (17)

Theorem 1. When θ ≥ 1, for all convex kernel functions κ(·, ·), the maximum Equation (14) has
the same solution as the maximum Equation (16).

Proof. We define zd as the two input objects’ combination in the dth dimension for similar-
ity measurement in the kernel subspace. When the two input objects are the sample xi and
the cluster center vk, zd represents the combination of xi and vk in the dth dimension. If
we let

f (
D

∑
d=1

wθ
kdzd) = κd(xi, vk),

in which f (·) is the newly defined function, we can obtain f (zd) = κd(xi, vk). We use
mathematical induction to prove

D

∑
d=1

wθ
kd f (zd) ≤ f (

D

∑
d=1

wθ
kdzd).

(1) When D = 1, 2, the inequality clearly holds;
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(2) We suppose that the inequality clearly holds when D = n, then,

n

∑
d=1

wθ
kd f (zd) ≤ f (

n

∑
d=1

wθ
kdzd).

When D = n + 1, let pn = ∑n
d=1 wkd, then, we have:

n+1

∑
d=1

wθ
kd f (zd) = wθ

k(n+1) f (zn+1) +
n

∑
d=1

wθ
kd f (zd)

= wθ
k(n+1) f (zn+1) + pθ

n

n

∑
d=1

(
wkd
pn

)θ

f (zd)

≤ wθ
k(n+1) f (zn+1) + pθ

n f

(
n

∑
d=1

(
wkd
pn

)θ

zd

)

≤ f

(
wθ

k(n+1)zn+1 + pθ
n

n

∑
d=1

(
wkd
pn

)θ

zd

)

= f

(
wθ

k(n+1)zn+1 +
n

∑
d=1

wθ
kdzd

)

= f

(
n+1

∑
d=1

wθ
kdzd

)
.

We can thus obtain
D

∑
d=1

wθ
kd f (zd) ≤ f (

D

∑
d=1

wθ
kdzd).

In particular, when θ = 1, the inequality is Jesson inequality. We acquire f (∑D
d=1 wθ

kdzd)

by stretching the lower bound ∑D
d=1 wθ

kd f (zd) to upper bound. Then, we adjust wkd to
maximize ∑D

d=1 wθ
kd f (zd). Through step-by-step iteration, we finally obtain the maximum

of f (∑D
d=1 wθ

kdzd).
Combining Definition 1 and Theorem 1, the Gaussian kernel function [49] can be

expressed as follows:

κw
(
xi, xj

)
= exp

− D

∑
d=1

wθ
kd

(
xid − xjd

)2

2σ2


= f

(
D

∑
d=1

wθ
kdzd

) (18)

where zd = −‖xid−xjd‖2

2σ2 , ‖ · ‖ is the Euclidean norm, σ2 is variance, and f (x) = exp(x).

4.2. SKSCC Clustering Algorithm

The Gaussian kernel function is the most widely used kernel function, because it has
a better performance for large, as well as small samples and has fewer parameters than
other kernel functions. This paper proposes the SKSCC that takes the Gaussian kernel
function to be the objective function, as shown in Equation (16). We can now transfer the
Equation (16) to Equation (19), as follows:
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J(Π, W) = ∑K

k=1 ∑xi∈πk ∑D
d=1 wθ

kd f (zd)

f (zd) = exp(zd)

zd = −
∑l∈|Od |

[
I(xid=odl)−

λd
|Od |
−(1−λd) fk(odl)

]2

2σ2

(19)

where σ2 is defined as the global variance, and

σ2 =
1

ND

N

∑
i=1

D

∑
d=1

∑
o∈Od

[I(xid = o)− fk(o)]2,

in which N is the number of sample set, and D is the dimension of the attributes.
Equation (19) is a non-linear optimization problem with constraints. Using Lagrange

multipliers, the objective function can be transferred to Equation (20) as follows:
max J(Π, W) = ∑K

k=1 ∑xi∈πk ∑D
d=1 wθ

kd f (zd) + ∑K
k=1 ξk

(
1−∑D

d=1 wkd

)
f (zd) = exp(zd)

zd = −
∑l∈|Od |

[
I(xid=odl)−

λd
|Od |
−(1−λd) fk(odl)

]2

2σ2 .

(20)

In this paper, we use the EM algorithm to optimize max J(Π, W), In other words,
the local optimal value of J can be obtained by the iterative method. According to this
principle, we first set Π = Π̂ to maximize J(Π̂, W), and then obtain the value W, recorded
as Ŵ. Next, we set W = Ŵ and then maximize J(Π, Ŵ) to calculate Π, recorded as Π̂. The
two steps are calculation of Ŵ and clustering, which are detailed as follows:

(1) Weight Computing
We define K independent suboptimal objective functions, as follows:

Jk(wk, λk) = ∑xi∈πk ∑D
d=1 wθ

kd f (zd) + ξk

(
1−∑D

d=1 wkd

)
f (zd) = exp(zd)

zd = −
∑l∈|Od |

[
I(xid=odl)−

λd
|Od |
−(1−λd) fk(odl)

]2

2σ2 .

(21)

Let ∂Jk
∂wkd

= 0, then:
∂Jk

∂wkd
= θwθ−1

kd ∑
xi∈πk

f (zd)− ξk = 0. (22)

Let ∂Jk
∂ξk

= 0, then:

∂Jk
∂ξk

= 1−
D

∑
d=1

wkd = 0. (23)

From Equations (22) and (23), we can obtain the representation of wkd as follows:

wkd =

∑xi∈πk
exp

−∑l∈|Od |
[

I(xid=odl)−
λd
|Od |
−(1−λd) fk(odl)

]2

2σ2

 1
1−θ

∑D
d=1

∑xi∈πk
exp

−∑l∈|Od |
[

I(xid=odl)−
λd
|Od |
−(1−λd) fk(odl)

]2

2σ2

 1
1−θ

. (24)
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(2) Clustering
Cluster can be generated by dividing xi into the cluster with the most similarity. The
algorithm can be expressed as follows:

k = arg max
∀k

κw(xi, vk) = arg max
∀k

(
exp

(
−∑D

d=1 wθ
kdzd

))
zd = −

∑l∈|Od |
[

I(xid=odl)−
λd
|Od |
−(1−λd) fk(odl)

]2

2σ2 .
(25)

In summary, the algorithm is outlined in Algorithm 1. According to the algorithmic
structure, SKSCC can be viewed as an extension to the k-modes clustering algorithm,
by adding step (3) to update the cluster and step (5) to compute the attribute weights,
both of which are proportional to the kernel bandwidth that can be learned by the objects
themselves. Therefore, as the k-modes algorithm, the SKSCC algorithm can also converge
in a finite number of iterations. The time complexity of SKSCC is O(KND).

Algorithm 1 SKSCC clustering algorithm.

Input:
The categorical dataset DB, the number of clusters K, incentive intensity θ;

Output:
Cluster Π and weight set W.

1: Initialization:
iterations’ times t, t = 0;
Set all W to 1

D , that’s W(0) = 1
D ;

Calculate bandwidth λd; d = 1, 2, · · · , D;
Calculate global variance σ2;
Randomly select k objects as the initial cluster center, generating initial datasets, de-
noted as Π(0);

2: repeat
3: let Ŵ = W(t), divide all the samples into clusters using Equation (25), and then get

Π(t+1);
4: Update cluster center: vkd;
5: Update W: set Π̂ = Π(t+1), update weight W using Equation (24), then get W(t+1);
6: t = t + 1;
7: until The clustering set does not change, that is, Π(t) = Π(t+1) .
8: return Π(t) and W(t).

4.3. Optimization of Kernel Bandwidths

In light of the weight calculation formula Equation (24), the weights depend on the
kernel bandwidths, which is the bandwidth optimization problem in the defined SKDE
method. Here, we use the mean integrated squared error (MSE) method, which is a
data-driven method for estimating optimal bandwidth. For the dth attribute, the kernel
probability estimation’s MSE for odl ∈ Od can be expressed as follows:

MSE(odl , λd) = E

[
∑

odl∈Od

( p̂(odl |λd)− p(odl))
2

]
. (26)

According to the definition of kernel function and the properties of expectation,
the bandwidth λd can be obtained. The objective function of the optimal estimation of
bandwidth is as follows:
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`(λd) = ∑
odl∈Od

E

[(
λd
|Od|

+ (1− λd) f (odl)− p(odl)

)2
]

= ∑
odl∈Od

(1− λd)
2E
[

f 2(odl)
]
+

2
[

λd(1− λd)

|Od|
+ (λd − 1)p(odl)

]
E[ f (odl)]+

p2(odl)−
2λd
|Od|

p(odl) +
λ2

d
|Od|2

.

(27)

Because of
f (odl) =

1
N ∑

xi∈DB
I(xid = odl) (28)

where N represents the number of samples.
Then, we have:

E[ f (odl)] = E[I(Xd = odl)] = p(odl). (29)

Due to Var[X] = E
[
X2]− (E[X])2, [I(·)]2 = I(·); then, we have:

Var[ f (odl)] =
1
N

Var[I(xid = odl)] =
1
N

[
p(odl)− p2(odl)

]
.

Therefore, we obtain:

`(λd) =

(
1− 1
|Od|

)
λ2

d +

(
(1− λd)

2

N
− λ2

d

)
σ2

d

where σ2
d = 1−∑odl∈Od

p2(odl).

Let ∂`(λd)
∂λd

= 0, then:

∂`(λd)

∂λd
=

(
1− 1
|Od|

)
2λd +

(
2(1− λd)(−1)

N
− λ2

d

)
σ2

d = 0.

Therefore, we have:

λd =
|Od|σ2

d
|Od|

(
N + σ2

d − Nσ2
d
)
− N

. (30)

We use the frequency distribution of the training samples to estimate p(odl), and we
calculate σ2

d by the standard deviation of the training samples. Hence, we obtain

s2
d = 1− ∑

odl∈Od

f 2(odl). (31)

The kernel bandwidth algorithm is outlined in Algorithm 2. Several properties of the
kernel bandwidth’s optimal estimation are analyzed:

(1) The larger the number of samples N, the smaller the bandwidth.

λ∗d =
|Od|s2

d
|Od|

(
N + σ2

d − Nσ2
d
)
− N

=
s2

d

N
(

∑odl∈Od
f 2(odl)− 1

|Od |

)
+ s2

d

The coefficient of N is ∑odl∈Od
f 2(odl)− 1

|Od |
; its values’ range is [0, 1]. The larger the

number of samples N, the smaller the bandwidths. When N → ∞, the bandwidth
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λd → 0. This is consistent with the effect of bandwidth as the smoothing parameter of
the kernel function.

(2) The larger the data dispersion, the larger the bandwidth.

λ∗d =
|Od|s2

d
|Od|

(
N + σ2

d − Nσ2
d
)
− N

=
s2

d

N − N
|Od |
− (N − 1)s2

d

Let us calculate the derivative of λ∗d with respect to s2
d as follows:

∂λ∗d
∂s2

d
=

N
(

1− 1
|Od |

)
(

N − N
|Od |
− (N − 1)s2

d

)2 .

Because 1− 1
|Od |

> 0, then ∂λ∗d
∂s2

d
> 0; so, λ∗d is the increasing function with respect to s2

d

in the range [0,1). The larger the data dispersion s2
d, the larger the bandwidth λ∗d , that

is to say, the larger the discreteness of an attribute, the larger the kernel bandwidth
corresponding to the attribute. In particular, when an attribute categorical data are
uniformly distributed, the corresponding kernel bandwidth takes the maximum value.

Algorithm 2 The kernel bandwidth calculation algorithm.

Input:
The categorical dataset DB;

Output:
Λ = {λd|d = 1, 2, . . . , D};

1: for d = 1 to D do
2: Compute s2

d using Equation (23);
3: Compute λd using Equation (22);
4: end for

5. Experimental Analysis

Experiments were performed to verify the effectiveness of our proposed SKSCC on
synthetic and real datasets. Comparative experiments were carried out on some current
mainstream categorical clustering algorithms.

5.1. Experimental Setup

In practical applications, the Gaussian kernel function is the most widely used kernel
function, because it is suitable for a variety of samples and has few parameters. Moreover,
the mapping space provided by this type of kernel function isinfinitely dimensional, so
that the data that are not separated in the original space can be directly mapped into
linear separable points. Therefore, we chose the Gaussian kernel to mine the non-linear
relationship between categorical attributes. The parameter defined as

σ2 =
1

ND

N

∑
i=1

D

∑
d=1

∑
o∈Od

(
I(xid = o)− λd

|Od|
− (1− λd) f (odl)

)2
(32)

which is the global variance, and is learned from the data themselves.
We chose three algorithms—k-mode [17], WKM [22], MWKM [23]—for our compar-

ative experiments. WKM introduced attributes-weighting within the framework of the
k-modes algorithm, which is a linear weighting. The MWKM algorithm weights the at-
tributes through the frequency of the mode. All three methods are based on the principle
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of feature independence to calculate the sample similarity (or dissimilarity). These algo-
rithms are selected for comparison with the non-linear similarity measurement SKSCC. The
parameter β is set to 2 in WKM. The parameter β is set to 2 and Ts = Tv = 1 in MWKM.

Synthetic data can control the cluster structure of datasets through the number and
size of clusters, which is conducive for analyzing the performance of the algorithm and its
adaptability to various datasets. For this paper, we first tested on several synthetic datasets
and then carried out experiments on many real datasets. Because the labels are all known,
two external evaluation indices—accuracy and F-score [22]—were selected to evaluate the
clustering performance of the new algorithm. The larger the value of the two indices, the
better the clustering effect. F-score is defined as follows:

F− score =
K

∑
k=1

nk
N

max
1≤i≤K

[
2× R(classk, πi)× P(classk, πi)

R(classk, πi) + P(classk, πi)

]
where classk represents the kth real class in datasets, nk represents the sample number of
classk, and P(classk, πi) and R(classk, πi) separately represent accuracy and recall com-
pared real class classk and cluster πi of clustering results, that is,

P =
TP

TP + FP

R =
TP

TP + FN
where TP represents the number of predicting correct clusters as correct clusters; FN
represents the number of predicting correct clusters as false clusters; FP represents the
number of predicting false clusters as correct clusters.

5.2. Discussion of Parameters

In the kernel space, each attribute is automatically given a weight to measure its
similarity, and the corresponding subspace is found through feature selection.

wθ
kd =

∑xi∈πk
exp

−∑l∈|Od |
[

I(xid=odl)−
λd
|Od |
−(1−λd) fk(odl)

]2

2σ2

 θ
1−θ

∑D
d=1

∑xi∈πk
exp

−∑l∈|Od |
[

I(xid=odl)−
λd
|Od |
−(1−λd) fk(odl)

]2

2σ2

 θ
1−θ

where θ is the incentive intensity, and is the allocation parameter of control weight. Figure 1
shows the change in parameters for the weight of the three attributes in the Breastcancer
dataset. Here, the discreteness of the three attributes is set to increase from attribute 1.
There are four comments for θ.

(1) When θ = 0, wθ
kd is the constant, that is, each attribute will be assigned an equal

weight;
(2) When θ = 1, θ

1−θ → ∞, but all of the weights must meet the restriction ∑D
d=1 wkd = 1,

so when θ → 1+ , the attribute with the minimum deviation of the sample will be
weighted, while the rest of the attributes will be given zero weight; when θ → 1−, the
importance of all attributes tends to be the same;

(3) When 0 < θ < 1, the more discrete the attribute, the greater its weight;
(4) When θ < 0 and θ > 1, the attribute weight is inversely proportional to the dispersion

of data distribution. Considering Theorem 1, we should set θ > 1, but when θ is too
larger, the difference between attribute weights is reduced.
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Figure 1. Analysis of weight with different θ.

5.3. Analysis of Synthetic Data and Results

This study used MATLAB (Version 9.9.0.1495850 R2020b) to generate the synthetic data
in the experiment. First, four multi-dimensional numerical datasets were generated by the
MATLAB function mvnrnd(·), in which the weight of attributes was controlled by setting
the variance of attributes, and the correlation degree between attributes was controlled by
adjusting the parameters of the covariance matrix. The synthesized numerical data were
then discretized by equal width [40] and transformed into categorical data. The synthetic
datasets that contain the correct category labels are presented in Table 1. Four datasets were
used to verify the advantages of SKSCC compared with the current mainstream categorical
clustering methods.

• The covariance of attribute 1 and attribute 2 is set to −2 in DataSet1, which makes
their attributes a negative correlation. The covariance of attribute 1 and attribute 4 is
set to 2, which makes their attributes a positive correlation. The variances are set to be
equal on each attribute;

• DataSet2 and DataSet1 are set to the same clusters, but the number of attributes differs.
Ten attributes are extracted to set their covariance. The variances are set to be equal
on each attribute;

• DataSet3 and DataSet2 are set to the same attributes, but the clusters are different. The
variances are set to be equal in two clusters. Ten attributes are extracted to set their
covariance;

• DataSet4 is set to the most number of attributes and the clusters. Twenty attributes are
extracted to set their covariance in seven clusters. All attributes are set to covariance
in one cluster. A half clusters set the same variances, as well as other half clusters.

Table 1. Data categorized in four synthetic datasets.

Attributes (D) Clusters (K) Samples (N)

Datasets1 6 2 1000
Datasets2 20 2 1000
Datasets3 20 4 1000
Datasets4 40 8 1000

We implemented 100 runs on each algorithm and each dataset, and set θ = 1.5. The
average clustering accuracy reported in Table 2 reflects the overall performance of each
clustering algorithm, and the stability of clustering performance of each algorithm can be



Mathematics 2021, 9, 1680 15 of 22

judged according to the listed variance. The smaller the variance of clustering accuracy, the
better the stability of clustering performance.

Table 2. Comparison of F-score and Accuracy results of four algorithms performed on the four
synthetic datasets.

Index Datasets K-Mode [17] WKM [22] MWKM [23] SKSCC

F-Score

Datasets1 0.9823 ± 0.0000 0.9489 ± 0.0079 0.9738 ± 0.0018 1.0000± 0.0000
Datasets2 0.9762 ± 0.0015 0.9860 ± 0.0000 0.9860 ± 0.0000 0.9940± 0.0000
Datasets3 0.6346 ± 0.0011 0.5766 ± 0.0018 0.6311 ± 0.0009 0.6771± 0.0005
Datasets4 0.5268 ± 0.0008 0.3839 ± 0.0033 0.5367 ± 0.0010 0.6224± 0.0017

Accuracy

Datasets1 0.9823 ± 0.0000 0.9589 ± 0.0038 0.9746 ± 0.0012 1.0000± 0.0000
Datasets2 0.9762 ± 0.0015 0.9860 ± 0.0000 0.9860 ± 0.0000 0.9939± 0.0000
Datasets3 0.6755 ±0.0016 0.6037 ± 0.0024 0.6644 ± 0.0009 0.7033± 0.0004
Datasets4 0.5863 ± 0.0013 0.5053 ± 0.0147 0.5848 ± 0.0014 0.6655± 0.0014

From Table 2, we can see that with the increase in the number of related attributes, the
clustering accuracy of SKSCC is significantly higher than that of other algorithms. This is
because SKSCC employs a “kernel” operation and take into consideration the relationship
between attributes.

5.4. Analysis of Real-World Data and Results

In this part of the experiments, we set out to test and verify the performance of SKSCC
in real-world datasets. We compared the SKSCC algorithm with three other algorithms:
the original k-modes algorithm (k-mode), the weighting algorithm (WKM), and the mixed
weighting algorithm (MWKM).

5.4.1. Real-World Datasets

To carry out the experiments, we obtained 10 datasets from the University of California
Irvine (UCI) Machine Learning Repository [7]. Table 3 lists the details of these 10 datasets.
The Breastcancer, Vote, Mushroom, and Adult+stretch datasets have the same clusters, but
Mushroom dataset has the most samples, and Adult+stretch dataset has the least number
of samples. The Balance and Splice datasets each have the same number of clusters (3), but
the dimensionality of Splice is higher. The Soybeansmall and Car datasets each have the
same number of clusters (4), but different attributes and samples. Dermatology and Zoo
are multi-cluster datasets.

Table 3. Details of 10 DataSets from UCI.

No. UCI Datasets Attributes (D) Clusters (K) Samples (N)

1 Breastcancer 9 2 699
2 Vote 16 2 435
3 Mushroom 21 2 8124
4 Adult+stretch 4 2 20
5 Balance 4 3 625
6 Splice 60 3 3190
7 Soybeansmall 35 4 47
8 Car 6 4 1728
9 Dermatology 33 6 366

10 Zoo 15 7 101

5.4.2. Comparison of Clustering Quality

Because the initial cluster centers can affect the algorithm results, we randomly se-
lected 100 initial centers, and all of the algorithms used the same initial centers in each
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experiment. We implemented 100 runs on each algorithm and each dataset, and set θ = 1.5.
The average values and the errors for F-score and accuracy are presented in Table 4. The
results showed that our proposed method, SKSCC, achieved the best performance in the
comparative experiments on most of the datasets. Because the k-mode [17], WKM [22],
and MWKM [23] algorithms are all based on the mode-type category theory, it is easy for
them to descend to the clustering objective algorithm’s local minimum, causing them to
lose applicability. However, WKM achieved good results on the Car and Splice datasets,
while MWKM achieved high accuracy on the Dermatology dataset.

Table 4. Comparison of clustering results in terms of F-score and accuracy.

Index Datasets K-Mode [17] WKM [22] MWKM [23] SKSCC

F-Score

Breastcancer 0.8637 ± 0.0000 0.7683 ± 0.0005 0.8645 ± 0.0155 0.9660± 0.0000
Vote 0.8610 ± 0.0000 0.8238 ± 0.0073 0.8698 ± 0.0000 0.8749± 0.0000

Mushroom 0.7159 ± 0.0171 0.6645 ± 0.0034 0.7480 ± 0.0202 0.7901± 0.0193
Adult + stretch 0.6691 ± 0.0135 0.6722 ± 0.0159 0.6876 ± 0.0163 0.7537± 0.0085

Balance 0.4882 ± 0.0016 0.4782 ± 0.0022 0.4630 ± 0.0024 0.5672± 0.0017
Splice 0.4155 ± 0.0000 0.5321± 0.0007 0.4313 ± 0.0000 0.5258± 0.0019

Soybeansmall 0.8324 ± 0.0152 0.7336 ± 0.0157 0.8436 ± 0.0175 0.8641± 0.0146
Car 0.4412 ± 0.0018 0.5006± 0.0057 0.4268 ± 0.0012 0.4738 ± 0.0028

Dermatology 0.6476 ± 0.0083 0.5573 ± 0.0136 0.6685± 0.0088 0.6357 ± 0.0034
Zoo 0.7273 ± 0.0090 0.6716 ± 0.0130 0.7417 ± 0.0074 0.7701± 0.0070

Accuracy

Breastcancer 0.8621 ± 0.0000 0.8284 ± 0.0000 0.8659 ± 0.0156 0.9659± 0.0000
Vote 0.8625 ± 0.0000 0.8244 ± 0.0066 0.8681 ± 0.0000 0.8734± 0.0000

Mushroom 0.7536 ± 0.0134 0.8481 ± 0.0157 0.7733 ± 0.0143 0.8194 ± 0.0131
Adult + stretch 0.7150 ± 0.0160 0.7165 ± 0.0168 0.6910 ± 0.0159 0.8620± 0.0086

Balance 0.5251 ± 0.0010 0.4629 ± 0.0033 0.4327 ± 0.0024 0.8722± 0.0321
Splice 0.4237 ± 0.0000 0.6149± 0.0011 0.4314 ± 0.0000 0.5426± 0.0017

Soybeansmall 0.8740 ± 0.0110 0.9423± 0.0039 0.8915 ± 0.0110 0.9085 ± 0.0083
Car 0.4023 ± 0.0013 0.4550± 0.0095 0.3593 ± 0.0000 0.4251 ± 0.0038

Dermatology 0.7085 ± 0.0076 0.9298± 0.0038 0.7367 ± 0.0063 0.6911 ± 0.0048
Zoo 0.7937 ± 0.0066 0.8260± 0.0084 0.7895 ± 0.0073 0.8043 ± 0.0061

Figure 2 shows the distribution of clustering accuracy for all the algorithms when
run 100 times. SKSCC has the best stability. The abscissa represents each algorithm’s
running time, and the ordinate is the F-score value to express the results of each clustering.
SKSCC has the smallest fluctuation among all the algorithms, although WKM has the
best average F-score on the Splice and Car datasets, and MWKM has the best average
F-score on the Dermatology dataset. The clustering results for the k-mode algorithms show
significant contrast, because they consider only the module in the clustering process, which
makes it easy to fall into the local optimum, and the initial cluster center is k randomly
selected objects. This is reflected in the standard deviation of average precision. Because
SKSCC quantizes the module, it avoids the above-mentioned problems and has more stable
performance than the other algorithms.
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Figure 2. Comparison of F-score with different algorithms on different datasets.

5.4.3. Feature Weighting Results

Our SKSCC approach also has a feature selection effect. Using the Breastcancer dataset
as an example, Figure 3 shows the attribute weights generated by the MWKM and SKSCC
algorithms. It does not show the k-mode algorithm or WKM algorithm, because the former
method is not weighted in its features and the latter method calculates the weights based
on mode frequency, which is similar to MWKM algorithm. From Figure 4, we can see
that for SKSCC, A1 and A9 acquire the largest and the smallest weights, respectively, of
the benign class, but MWKM algorithm achieved the opposite results. To test the feature
weighting method’s rationality for the SKSCC, we removed the A1 and A9 features from
the original Breastcancer data in order to form two reduced datasets. The F-score values
of the different clustering algorithms on the Breastcancer dataset with the original and
reduced feature sets are shown in Figure 4. For all the algorithms, the reduced dataset with
the A9 feature removed achieved the highest F-score values, while the reduced dataset with
the A1 feature removed showed decreased F-score values. The results indicate that our
SKSCC algorithm with non-linear similarity measurement does a better job, by considering
the relationship of the attributes, than the other algorithms.
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Figure 3. Weight distributions generated by two algorithms on Breastcancer dataset.
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Figure 4. F-score values of the different clustering algorithms on the Breastcancer dataset with
original and reduced feature sets.

5.4.4. Time Consumption

This paper uses a logarithm of the average time of clustering to compare the actual
average times. The ordinate represents the average time (in MS) of each algorithm running
on the real-world dataset. It can be seen from Figure 5 that k-mode, WKM, and MWKM
algorithms have high clustering efficiency, which is one of the advantages of the module-
based clustering algorithms. Because only the module of the categorical attribute needs to
be considered, the statistical information of the other categorical symbols can be ignored,
which greatly reduces the algorithms’ clustering times.
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Figure 5. F-Score values of the different clustering algorithms on the Breastcancer dataset with
original and reduced feature sets.

6. Conclusions

Kernel clustering with categorical data is a vital direction in application research. In
view of current problems, such as supposing all features independently, considering all
attributes’ importance equally, and finding an optimization solution, this paper proposes
a novel kernel clustering approach for categorical data, that is, a self-expressive kernel
subspace clustering algorithm for categorical data (SKSCC). This paper first defines a kernel
function for self-expression kernel density estimation (SKDE), in which each attribute has
its own bandwidth and can be calculated by the data themselves. We also propose a
novel non-linear similarity measurement method and an efficient non-linear optimization
method (Theorem 1) to solve the objective function of the kernel clustering. Finally, the
SKSCC algorithm is presented for categorical data. Our method not only considers the
relationship between attributes in non-linear space but also gives each attribute a feature
weight to measure the correlation degree in the algorithmic process. The experimental
results indicate that the proposed algorithm outperforms the other algorithms on the
synthetic and UCI datasets.

There are many directions that are of interest for future exploration. We will expand
our approach to other kernel functions and test the performance on more datasets for
various data. Our efforts will also be directed at combining our method with deep learning
to estimate the parameters adaptively.
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