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Abstract: In this work, we study variational problems with time delay and higher-order distributed-
order fractional derivatives dealing with a new fractional operator. This fractional derivative com-
bines two known operators: distributed-order derivatives and derivatives with respect to another
function. The main results of this paper are necessary and sufficient optimality conditions for differ-
ent types of variational problems. Since we are dealing with generalized fractional derivatives, from
this work, some well-known results can be obtained as particular cases.

Keywords: fractional calculus; calculus of variations; Euler–Lagrange equations; isoperimetric
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1. Introduction

Fractional calculus is a mathematical area that deals with the generalization of the
classical notions of derivative and integral to a noninteger order. This fascinating theory
has attracted the interest of the scientific community over the last few decades due to the
fact that it is a powerful tool to deal with the dynamics of complex systems. Its importance
is notable not only in Mathematics but also in Physics [1], Chemistry [2], Biology [3],
Epidemiology [4], Control Theory [5], etc. (for completeness, we also point out that partial
differential equations from classical calculus properly fit in the modeling of real problems;
see, for instance, Refs. [6–8] for models from mathematical biology).

Since the beginning of the fractional calculus in 1695, numerous definitions of frac-
tional integrals and derivatives were introduced by important mathematicians such as
Leibniz, Euler, Fourier, Liouville, Riemann, Letnikov, etc. Many of these fractional deriva-
tives can be related between them by an explicit formula [9,10]. Later on, in 1969, Caputo
introduced the distributed-order fractional integrals and derivatives [11,12]. These opera-
tors can be seen as a new kind of generalization of the classical fractional operators, since
these operators involve a weighted integral of different orders of differentiation. Another
way that allows a generalization of the classical fractional operators is considering the
notions of fractional integrals and derivatives with respect to another function [9,13,14].

The specificity of fractional calculus that can be considered the cause of its success in
applications to real world problems is that the large number of fractional operators allows
researchers to choose the most suitable one to model the problem under investigation.

In the recent paper [15], the authors introduced new notions of fractional derivatives
combining the distributed-order derivatives and fractional derivatives with respect to an
arbitrary smooth function, creating a new type of derivatives: distributed-order fractional
derivatives with arbitrary kernels. In this paper, we are going to deal with these kinds
of generalized fractional derivatives in order to study different types of problems of the
calculus of variations.
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The fractional calculus of variations was initiated by Riewe in 1996 [16,17] with the
deduction of the Euler–Lagrange equation for problems where the Lagrangian depends
on Riemann–Liouville fractional derivatives in order to deal with linear non-conservative
forces. Since then, several authors have developed the fractional calculus of variations
considering different types of fractional derivatives and different types of variational
problems (see, e.g., [18–23] and references therein). For more details on fractional calculus
of variations, we refer to the books [24–26].

It is well known that, in real world problems, delays are important to model certain
processes and dynamical systems [22,27,28]. However, there are still few works in the
literature dedicated to the fractional calculus of variations with time delay. To fill this
gap, we will study in this paper time-delayed variational problems involving distributed-
order fractional derivatives with arbitrary smooth kernels. We will also study variational
problems involving higher-order distributed-order fractional derivatives with arbitrary
smooth kernels.

The paper is organized as follows: in Section 2, we recall the new concepts of
distributed-order fractional derivatives with respect to another function recently intro-
duced in [15] and then we proceed with the extension to the higher-order case. We finalize
Section 2 with the proof of the integration by parts formulae involving the higher-order
distributed-order fractional derivatives with arbitrary smooth kernels. Section 3 is devoted
to the main results of this paper: necessary and sufficient optimality conditions for varia-
tional problems with time delay and higher-order distributed-order fractional derivatives
with arbitrary smooth kernels. In Section 4, we present three examples that illustrate the
applicability of some of our main results. We finalize the paper with concluding remarks
and also mentioning some possibilities for future research.

2. Preliminaries and Notations

We assume that the reader is familiar with the definitions and properties of the Riemann–
Liouville and Caputo fractional operators with respect to another function (cf. [9,13], resp.).

In this paper, we consider variational problems involving the new concepts of distributed-
order fractional derivatives with respect to an arbitrary smooth kernel recently introduced
in [15]. For the reader’s convenience, we recall here the definitions introduced in [15].

Let φ : [0, 1]→ [0, 1] be a continuous function such that∫ 1

0
φ(α)dα > 0.

Definition 1 ([15]). Let x : [a, b] → R be an integrable function and ψ ∈ C1([a, b],R) be an
increasing function such that ψ′(t) 6= 0, for all t ∈ [a, b]. The left and right Riemann–Liouville
distributed-order fractional derivatives of a function x with respect to ψ are defined by:

Dφ(α),ψ
a+ x(t) :=

∫ 1

0
φ(α)Dα,ψ

a+ x(t)dα and Dφ(α),ψ
b− x(t) :=

∫ 1

0
φ(α)Dα,ψ

b− x(t)dα,

where Dα,ψ
a+ and Dα,ψ

b− are the left and right ψ-Riemann–Liouville fractional derivatives of order α,
respectively.

Definition 2 ([15]). Let x, ψ ∈ C1([a, b],R) be two functions such that ψ is increasing and
ψ′(t) 6= 0, for all t ∈ [a, b]. The left and right Caputo distributed-order fractional derivatives of x
with respect to ψ are defined by

CDφ(α),ψ
a+ x(t) :=

∫ 1

0
φ(α)CDα,ψ

a+ x(t)dα and CDφ(α),ψ
b− x(t) :=

∫ 1

0
φ(α)CDα,ψ

b− x(t)dα,

where CDα,ψ
a+ and CDα,ψ

b− are the left and right ψ-Caputo fractional derivatives of order α, respectively.
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Now, we will extend the definitions introduced in [15] to the higher-order case.
In the following, we assume that n ∈ N and φ : [n− 1, n] → [0, 1] is a continuous

function such that ∫ n

n−1
φ(α)dα > 0.

To the best of our knowledge, this is the first work that deals with higher-order
distributed-order fractional derivatives.

Definition 3. Let x : [a, b]→ R be an integrable function and ψ ∈ Cn([a, b],R) be an increasing
function such that ψ′(t) 6= 0, for all t ∈ [a, b]. The left and right Riemann–Liouville distributed-
order fractional derivatives of a function x with respect to the kernel ψ are defined by:

Dφ(α),ψ
a+ x(t) :=

∫ n

n−1
φ(α)Dα,ψ

a+ x(t)dα and Dφ(α),ψ
b− x(t) :=

∫ n

n−1
φ(α)Dα,ψ

b− x(t)dα,

where Dα,ψ
a+ and Dα,ψ

b− are the left and right ψ-Riemann–Liouville fractional derivatives of order
α ∈ [n− 1, n], respectively.

Definition 4. Let x, ψ ∈ Cn([a, b],R) be two functions such that ψ is increasing and ψ′(t) 6= 0,
for all t ∈ [a, b]. The left and right Caputo distributed-order fractional derivatives of x with respect
to ψ are defined by

CDφ(α),ψ
a+ x(t) :=

∫ n

n−1
φ(α)CDα,ψ

a+ x(t)dα and CDφ(α),ψ
b− x(t) :=

∫ n

n−1
φ(α)CDα,ψ

b− x(t)dα,

where CDα,ψ
a+ and CDα,ψ

b− are the left and right ψ-Caputo fractional derivatives of order α ∈ [n− 1, n],
respectively.

In the following, we use the notations

In−φ(α),ψ
a+ x(t) :=

∫ n

n−1
φ(α)In−α,ψ

a+ x(t)dα and In−φ(α),ψ
b− x(t) :=

∫ n

n−1
φ(α)In−α,ψ

b− x(t)dα,

where In−α,ψ
a+ and In−α,ψ

b− are, respectively, the left and right Riemann–Liouville fractional
integrals of order n− α with respect to the kernel ψ. In addition, we fix two functions φ
and ψ satisfying the assumptions above. In order to simplify notation, we will use the
abbreviated symbol

x[m]
ψ (t) :=

(
1

ψ′(t)
d
dt

)m
x(t).

Next, we prove the integration by parts formulae, which are fundamental tools for
the proofs of our main results. In our previous work, we proved a similar result when
the fractional order is between 0 and 1 [15] [Theorem 3.1]. In this paper, we present
a generalization of such result for the case when function φ is defined on the interval
[n− 1, n].

Theorem 1 (Integration by parts formulae). Let x : [a, b]→ R be a continuous function and
y ∈ Cn([a, b],R). Then,

∫ b

a
x(t)CDφ(α),ψ

a+ y(t)dt =
∫ b

a

(
Dφ(α),ψ

b−
x(t)
ψ′(t)

)
ψ′(t)y(t)dt

+

[
n−1

∑
k=0

(
−1

ψ′(t)
d
dt

)k(
In−φ(α),ψ
b−

x(t)
ψ′(t)

)
y[n−k−1]

ψ (t)

]t=b

t=a
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and∫ b

a
x(t)CDφ(α),ψ

b− y(t)dt =
∫ b

a

(
Dφ(α),ψ

a+
x(t)
ψ′(t)

)
ψ′(t)y(t)dt

+

[
n−1

∑
k=0

(−1)n−k
(

1
ψ′(t)

d
dt

)k(
In−φ(α),ψ
a+

x(t)
ψ′(t)

)
y[n−k−1]

ψ (t)

]t=b

t=a

.

Proof. Using the definition of the left ψ-Caputo distributed-order fractional derivative,
we have∫ b

a
x(t)CDφ(α),ψ

a+ y(t)dt =
∫ b

a
x(t)

∫ n

n−1
φ(α)CDα,ψ

a+ y(t)dα dt

=
∫ b

a
x(t)

∫ n

n−1

φ(α)

Γ(n− α)

∫ t

a

(
1

ψ′(s)
d
ds

)n
y(s) · (ψ(t)− ψ(s))n−α−1ψ′(s)dsdα dt

=
∫ b

a
x(t)

∫ n

n−1

φ(α)

Γ(n− α)

∫ t

a

(
1

ψ′(s)
d
ds

)
y[n−1]

ψ (s) · (ψ(t)− ψ(s))n−α−1ψ′(s)dsdα dt

=
∫ n

n−1

φ(α)

Γ(n− α)

∫ b

a
x(t)

∫ t

a

d
ds

y[n−1]
ψ (s) · (ψ(t)− ψ(s))n−α−1dsdt dα.

Applying Dirichlet’s formula, we get

∫ n

n−1

φ(α)

Γ(n− α)

∫ b

a
x(t)

∫ t

a

d
ds

y[n−1]
ψ (s) · (ψ(t)− ψ(s))n−α−1dsdt dα

=
∫ n

n−1

φ(α)

Γ(n− α)

∫ b

a

d
ds

y[n−1]
ψ (s)

∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dtds dα.

Integrating by parts, we have

∫ b

a

d
ds

y[n−1]
ψ (s)

∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt ds

=

[∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt · y[n−1]

ψ (s)
]s=b

s=a

−
∫ b

a
y[n−1]

ψ (s)
d
ds

(∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt

)
ds

=

[∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt · y[n−1]

ψ (s)
]s=b

s=a

+
∫ b

a

(
−1

ψ′(s)
d
ds

)(∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt

)
· d

ds
y[n−2]

ψ (s)ds.

Using integration by parts in the last integral, we obtain

∫ b

a

(
−1

ψ′(s)
d
ds

)(∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt

)
· d

ds
y[n−2]

ψ (s)ds

=

[(
−1

ψ′(s)
d
ds

)(∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt

)
· y[n−2]

ψ (s)
]s=b

s=a

−
∫ b

a
y[n−2]

ψ (s)
d
ds

(
−1

ψ′(s)
d
ds

)(∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt

)
ds

=

[(
−1

ψ′(s)
d
ds

)(∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt

)
· y[n−2]

ψ (s)
]s=b

s=a

+
∫ b

a

(
1

ψ′(s)
d
ds

)2(∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt

)
· d

ds
y[n−3]

ψ (s)ds.
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Since ∫ b

a

(
1

ψ′(s)
d
ds

)2(∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt

)
· d

ds
y[n−3]

ψ (s)ds

=

[(
1

ψ′(s)
d
ds

)2(∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt

)
· y[n−3]

ψ (s)

]s=b

s=a

−
∫ b

a
y[n−3]

ψ (s)
d
ds

[(
1

ψ′(s)
d
ds

)2(∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt

)]
ds

=

[(
1

ψ′(s)
d
ds

)2(∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt

)
· y[n−3]

ψ (s)

]s=b

s=a

+
∫ b

a

(
−1

ψ′(s)
d
ds

)3(∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt

)
· d

ds
y[n−4]

ψ (s)ds,

then we get

∫ b

a

d
ds

y[n−1]
ψ (s)

∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt ds

=

[
2

∑
k=0

(
−1

ψ′(s)
d
ds

)k(∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt

)
· y[n−k−1]

ψ (s)

]s=b

s=a

+
∫ b

a

(
−1

ψ′(s)
d
ds

)3(∫ b

s
x(t)(ψ(t)− ψ(s))n−α−1dt

)
· d

ds
y[n−4]

ψ (s)ds.

Repeating the process of integration by parts n − 3 more times, we prove the for-
mula. Using similar techniques, we deduce the integration by parts formula involving the
operator CDφ(α),ψ

b− .

3. Main Results
3.1. Variational Problems with Time Delay

We begin this section by studying variational problems involving distributed-order
fractional derivatives with time delay. For clarity of presentation, we restrict ourselves to
the case where α ∈ [0, 1], that is, considering the definitions introduced in [15].

Consider two continuous functions φ, ϕ : [0, 1] → [0, 1] satisfying the following
conditions ∫ 1

0
φ(α)dα > 0 and

∫ 1

0
ϕ(α)dα > 0.

In what follows, a, b ∈ R are such that a < b and τ is a fixed real number satisfying
the condition 0 ≤ τ < b− a.

We are now in position to present the first problem under study.

Problem 1 ((Pτ)). Determine a curve x ∈ C1([a − τ, b],R), subject to x(t) = µ(t) for all
t ∈ [a− τ, a], where µ ∈ C1([a− τ, a],R) is a given initial function, that minimizes or maximizes
the following functional:

J (x) :=
∫ b

a
L
(

t, x(t), x(t− τ),C Dφ(α),ψ
a+ x(t),C Dϕ(α),ψ

b− x(t)
)

dt, (1)

where L : [a, b]×R4 → R is assumed to be continuously differentiable with respect to the second,
third, fourth, and fifth variables. We will consider the variational problem (Pτ) with and without
fixed terminal boundary condition, and also with isoperimetric or holonomic constraints.
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Let us fix the following notations: by ∂iL, we denote the partial derivative of L with
respect to its ith-coordinate and

[x]τ(t) :=
(

t, x(t), x(t− τ),C Dφ(α),ψ
a+ x(t),C Dϕ(α),ψ

b− x(t)
)

.

To simplify the presentation of our results, we consider the following conditions:

C−φ [H, i, b− τ] : t→
(

Dφ(α),ψ
(b−τ)−

∂i H[x]τ
ψ′

)
(t) is continuous for all t ∈ [a, b− τ]

C−φ [H, i, b] : t→
(

Dφ(α),ψ
b−

∂i H[x]τ
ψ′

)
(t) is continuous for all t ∈ [b− τ, b]

C+
ϕ [H, i, a] : t→

(
Dϕ(α),ψ

a+
∂i H[x]τ

ψ′

)
(t) is continuous for all t ∈ [a, b− τ]

C+
ϕ [H, i, b− τ] : t→

(
Dϕ(α),ψ
(b−τ)+

∂i H[x]τ
ψ′

)
(t) is continuous for all t ∈ [b− τ, b]

where H is a function and i ∈ N.

Theorem 2 (Fractional Euler–Lagrange equations and natural boundary condition for
problem (Pτ)). Suppose that L satisfies the conditions C−φ [L, 4, b− τ], C+

ϕ [L, 5, a], C−φ [L, 4, b]
and C+

ϕ [L, 5, b− τ]. If x ∈ C1([a− τ, b],R) is an extremizer of functional J , then x satisfies the
following Euler–Lagrange equations

∂2L[x]τ(t) + ∂3L[x]τ(t + τ) +

(
Dφ(α),ψ
(b−τ)−

∂4L[x]τ(t)
ψ′(t)

)
ψ′(t) +

(
Dϕ(α),ψ

a+
∂5L[x]τ(t)

ψ′(t)

)
ψ′(t)

−
∫ 1

0

φ(α)

Γ(1− α)

d
dt

∫ b

b−τ
(ψ(s)− ψ(t))−α∂4L[x]τ(s)dsdα = 0, ∀ t ∈ [a, b− τ]

(2)

and

∂2L[x]τ(t) +
(

Dφ(α),ψ
b−

∂4L[x]τ(t)
ψ′(t)

)
ψ′(t) +

(
Dϕ(α),ψ
(b−τ)+

∂5L[x]τ(t)
ψ′(t)

)
ψ′(t)

+
∫ 1

0

ϕ(α)

Γ(1− α)

d
dt

∫ b−τ

a
(ψ(t)− ψ(s))−α∂5L[x]τ(s)dsdα = 0, ∀ t ∈ [b− τ, b]. (3)

If x(b) is free, then the following natural boundary condition holds:

I1−φ(α),ψ
b−

∂4L[x]τ(b)
ψ′(b)

= I1−ϕ(α),ψ
a+

∂5L[x]τ(b)
ψ′(b)

. (4)

Proof. Consider that h ∈ C1([a− τ, b],R) is an arbitrary function such that h(t) = 0, a−
τ ≤ t ≤ a. Define the function j by j(ε) := J (x + εh), ε ∈ R. Since x is an extremizer of J ,
j′(0) = 0, and we have that

∫ b

a

(
∂2L[x]τ(t) · h(t) + ∂3L[x]τ(t) · h(t− τ) + ∂4L[x]τ(t) ·C Dφ(α),ψ

a+ h(t)

+ ∂5L[x]τ(t) ·C Dϕ(α),ψ
b− h(t)

)
dt = 0. (5)
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Since

∫ b

a
∂3L[x]τ(t) · h(t− τ)dt =

∫ a

a−τ
∂3L[x]τ(t+ τ) · h(t)dt+

∫ b−τ

a
∂3L[x]τ(t+ τ) · h(t)dt,

and h(t) = 0 for t ∈ [a− τ, a], then we get

∫ b

a
∂3L[x]τ(t) · h(t− τ)dt =

∫ b−τ

a
∂3L[x]τ(t + τ) · h(t)dt. (6)

Replacing (6) into (5), we get

∫ b−τ

a

(
∂2L[x]τ(t) + ∂3L[x]τ(t + τ)

)
· h(t)dt +

∫ b

b−τ
∂2L[x]τ(t) · h(t)dt

+
∫ b

a

(
∂4L[x]τ(t) ·C Dφ(α),ψ

a+ h(t) + ∂5L[x]τ(t) ·C Dϕ(α),ψ
b− h(t)

)
dt = 0. (7)

Note that, for all t ∈ [a, b− τ], we have

Dφ(α),ψ
b−

∂4L[x]τ(t)
ψ′(t)

= Dφ(α),ψ
(b−τ)−

∂4L[x]τ(t)
ψ′(t)

−
∫ 1

0

φ(α)

Γ(1− α)

(
1

ψ′(t)
d
dt

) ∫ b

b−τ
(ψ(s)− ψ(t))−α∂4L[x]τ(s)dsdα (8)

and, for all t ∈ [b− τ, b], we have

Dϕ(α),ψ
a+

∂5L[x]τ(t)
ψ′(t)

= Dϕ(α),ψ
(b−τ)+

∂5L[x]τ(t)
ψ′(t)

+
∫ 1

0

ϕ(α)

Γ(1− α)

(
1

ψ′(t)
d
dt

) ∫ b−τ

a
(ψ(t)− ψ(s))−α∂5L[x]τ(s)dsdα = 0. (9)

Using Theorem 1 and (8), we obtain

∫ b

a
∂4L[x]τ(t) ·C Dφ(α),ψ

a+ h(t)dt =
∫ b−τ

a

((
Dφ(α),ψ
(b−τ)−

∂4L[x]τ(t)
ψ′(t)

)
ψ′(t)

−
∫ 1

0

φ(α)

Γ(1− α)

d
dt

∫ b

b−τ
(ψ(s)− ψ(t))−α∂4L[x]τ(s)dsdα

)
h(t)dt

+
∫ b

b−τ

(
Dφ(α),ψ

b−
∂4L[x]τ(t)

ψ′(t)

)
ψ′(t)h(t)dt +

[(
I1−φ(α),ψ
b−

∂4L[x]τ(t)
ψ′(t)

)
h(t)

]t=b

t=a

.

(10)

Once again, by Theorem 1 and (9), we obtain

∫ b

a
∂5L[x]τ(t) ·C Dϕ(α),ψ

b− h(t)dt =
∫ b

b−τ

((
Dϕ(α),ψ
(b−τ)+

∂5L[x]τ(t)
ψ′(t)

)
ψ′(t)

+
∫ 1

0

ϕ(α)

Γ(1− α)

d
dt

∫ b−τ

a
(ψ(t)− ψ(s))−α∂5L[x]τ(s)dsdα

)
h(t)dt

+
∫ b−τ

a

(
Dϕ(α),ψ

a+
∂5L[x]τ(t)

ψ′(t)

)
ψ′(t)h(t)dt−

[(
I1−ϕ(α),ψ
a+

∂5L[x]τ(t)
ψ′(t)

)
h(t)

]t=b

t=a

.

(11)
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Replacing (10) and (11) into (7), we get that

∫ b−τ

a

(
∂2L[x]τ(t) + ∂3L[x]τ(t + τ) +

(
Dφ(α),ψ
(b−τ)−

∂4L[x]τ(t)
ψ′(t)

)
ψ′(t)

−
∫ 1

0

φ(α)

Γ(1− α)

d
dt

∫ b

b−τ
(ψ(s)− ψ(t))−α∂4L[x]τ(s)dsdα +

(
Dϕ(α),ψ

a+
∂5L[x]τ(t)

ψ′(t)

)
ψ′(t)

)
h(t)dt

+
∫ b

b−τ

(
∂2L[x]τ(t) +

(
Dφ(α),ψ

b−
∂4L[x]τ(t)

ψ′(t)

)
ψ′(t) +

(
Dϕ(α),ψ
(b−τ)+

∂5L[x]τ(t)
ψ′(t)

)
ψ′(t)

+
∫ 1

0

ϕ(α)

Γ(1− α)

d
dt

∫ b−τ

a
(ψ(t)− ψ(s))−α∂5L[x]τ(s)dsdα

)
h(t)dt

+

[(
I1−φ(α),ψ
b−

∂4L[x]τ(t)
ψ′(t)

)
h(t)

]t=b

t=a

−
[(

I1−ϕ(α),ψ
a+

∂5L[x]τ(t)
ψ′(t)

)
h(t)

]t=b

t=a

= 0.

(12)

From the arbitrariness of h, we get the desired Equations (2)–(4).

Next, we consider the case where we add to problem (Pτ) an isoperimetric restriction.

Problem 2 ((PIτ )). The isoperimetric problem with a time delay τ can be formulated in the
following way: minimize or maximize the functional J in (1) subject to an integral constraint
of type

I(x) :=
∫ b

a
G[x]τ(t)dt = k, (13)

where k ∈ R is fixed and G : [a, b]×R4 → R is a continuously differentiable function with respect
to the second, third, fourth, and fifth variables.

The following theorem presents necessary conditions for x to be a solution of the
fractional isoperimetric problem (PIτ ) under the assumption that x is not an extremal for G.

Theorem 3 (Necessary optimality conditions for problem (PIτ )—Case I). Let x ∈ C1([a−
τ, b],R) be a curve such that J attains an extremum at x, when subject to the integral con-
straint (13). Assume that x does not satisfy the Euler–Lagrange Equation (2) or (3) with respect
to G. Moreover, suppose that L satisfies the conditions C−φ [L, 4, b− τ], C+

ϕ [L, 5, a], C−φ [L, 4, b]
and C+

ϕ [L, 5, b− τ], and G satisfies the conditions C−φ [G, 4, b− τ], C+
ϕ [G, 5, a], C−φ [G, 4, b] and

C+
ϕ [G, 5, b− τ]. Then, there exists λ ∈ R such that x is a solution of the equations

∂2H[x]τ(t) + ∂3H[x]τ(t + τ) +

(
Dφ(α),ψ
(b−τ)−

∂4H[x]τ(t)
ψ′(t)

)
ψ′(t) +

(
Dϕ(α),ψ

a+
∂5H[x]τ(t)

ψ′(t)

)
ψ′(t)

−
∫ 1

0

φ(α)

Γ(1− α)

d
dt

∫ b

b−τ
(ψ(s)− ψ(t))−α∂4H[x]τ(s)dsdα = 0, ∀ t ∈ [a, b− τ]

(14)

and

∂2H[x]τ(t) +
(

Dφ(α),ψ
b−

∂4H[x]τ(t)
ψ′(t)

)
ψ′(t) +

(
Dϕ(α),ψ
(b−τ)+

∂5H[x]τ(t)
ψ′(t)

)
ψ′(t)

+
∫ 1

0

ϕ(α)

Γ(1− α)

d
dt

∫ b−τ

a
(ψ(t)− ψ(s))−α∂5H[x]τ(s)dsdα = 0, ∀ t ∈ [b− τ, b], (15)

where H := L + λG.
If x(b) is free, then

I1−φ(α),ψ
b−

∂4H[x]τ(b)
ψ′(b)

= I1−ϕ(α),ψ
a+

∂5H[x]τ(b)
ψ′(b)

. (16)

Proof. The proof follows from the ideas presented in Theorem 2 and Theorem 3.3 of [15].
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Now, we present necessary optimality conditions for the case when the solution of the
isoperimetric problem is an extremal for the fractional isoperimetric functional (13).

Theorem 4 (Necessary optimality conditions for fractional problem (PIτ )—Case II). Let x be
a curve such thatJ attains an extremum at x, when subject to the integral constraint (13). Moreover,
suppose that L satisfies the conditions C−φ [L, 4, b− τ], C+

ϕ [L, 5, a], C−φ [L, 4, b] and C+
ϕ [L, 5, b− τ],

and G satisfies the conditions C−φ [G, 4, b− τ], C+
ϕ [G, 5, a], C−φ [G, 4, b] and C+

ϕ [G, 5, b− τ]. Then,
there exists a vector (λ0, λ) ∈ R2 \ {(0, 0)} such that x is a solution of Equations (14) and (15),
with the Hamiltonian H defined as H := λ0L + λG. If x(b) is free, then x must satisfy Equa-
tion (16).

Proof. The result is an immediate consequence of Theorem 3.

In the following, we study variational problems with a holonomic constraint. For this
purpose, we now assume that x is a two-dimensional vector function and L : [a, b] ×
R8 → R is assumed to be continuously differentiable with respect to the ith variable,
with i = 2, . . . , 9.

Problem 3 ((PCτ
)). Consider the variational problem (Pτ) but in the presence of a holonomic

constraint:
g(t, x(t)) = 0, t ∈ [a, b], (17)

where g : [a, b] × R2 → R is a C1 function. The state variable x is a two-dimensional vector
function x = (x1, x2), where x1, x2 ∈ C1([a− τ, b],R). Moreover, the boundary condition

x(t) = µ(t), t ∈ [a− τ, a], (18)

where µ ∈ C1([a− τ, a],R)× C1([a− τ, a],R) is a given function, is imposed.

Theorem 5 (Necessary optimality conditions for problem (PCτ
)). Consider the functional

J (x) =
∫ b

a
L[x]τ(t)dt, (19)

defined on C1([a − τ, b],R) × C1([a − τ, b],R) and subject to the constraints (17) and (18).
Suppose that L satisfies the conditions C−φ [L, i + 5, b − τ], C+

ϕ [L, i + 7, a], C−φ [L, i + 5, b] and
C+

ϕ [L, i + 7, b− τ], with i = 1, 2.
If x is an extremizer of functional J and if

∂3g(t, x(t)) 6= 0, ∀t ∈ [a, b],

then there exists a continuous function λ : [a, b]→ R such that x is a solution of

∂i+1L[x]τ(t) + ∂i+3L[x]τ(t + τ) +

(
Dφ(α),ψ
(b−τ)−

∂i+5L[x]τ(t)
ψ′(t)

)
ψ′(t)

+

(
Dϕ(α),ψ

a+
∂i+7L[x]τ(t)

ψ′(t)

)
ψ′(t)−

∫ 1

0

φ(α)

Γ(1− α)

d
dt

∫ b

b−τ
(ψ(s)− ψ(t))−α∂i+5L[x]τ(s)dsdα

+λ(t) · ∂i+1g(t, x(t)) = 0, ∀t ∈ [a, b− τ], i = 1, 2

(20)

and

∂i+1L[x]τ(t) +
(

Dφ(α),ψ
b−

∂i+5L[x]τ(t)
ψ′(t)

)
ψ′(t) +

(
Dϕ(α),ψ
(b−τ)+

∂i+7L[x]τ(t)
ψ′(t)

)
ψ′(t)

+
∫ 1

0

ϕ(α)

Γ(1− α)

d
dt

∫ b−τ

a
(ψ(t)− ψ(s))−α∂i+7L[x]τ(s)dsdα + λ(t) · ∂i+1g(t, x(t)) = 0,

∀t ∈ [b− τ, b], i = 1, 2.

(21)



Mathematics 2021, 9, 1665 10 of 18

If x(b) is free, then, for i = 1, 2,

I1−φ(α),ψ
b−

∂i+5L[x]τ(b)
ψ′(b)

= I1−ϕ(α),ψ
a+

∂i+7L[x]τ(b)
ψ′(b)

. (22)

Proof. The proof follows combining the ideas from Theorem 2 above with Theorem 3.5
from [15].

Now, we focus our attention on sufficient optimality conditions for all the variational
problems studied previously.

Definition 5. Function f (t, x2, x3, ..., xn) defined on U ⊆ Rn is called convex (resp. concave) if
∂i f (t, x2, x3, ..., xn), i = 2, . . . , n, exist and are continuous, and if

f (t, x2 + h2, x3 + h3, ..., xn + hn)− f (t, x2, x3, ..., xn) ≥ (resp. ≤ )
n

∑
i=2

∂i f (t, x2, x3, ..., xn)hi

for all (t, x2, x3, ..., xn), (t, x2 + h2, x3 + h3, ..., xn + hn) ∈ U.

Theorem 6 (Sufficient optimality conditions for problem (Pτ)). Let L be convex (resp. concave)
in [a, b] × R4. Then, each solution x of the fractional Euler–Lagrange Equations (2) and (3)
minimizes (resp. maximizes) the functional J given in (1), subject to the boundary conditions
x(t) = µ(t), t ∈ [a − τ, a] and x(b) = x(b). If x(b) is free, then each solution x of the
Equations (2)–(4) minimizes (resp. maximizes) J .

Proof. We prove the case when L is convex. The other case is similar. Consider h ∈
C1([a− τ, b],R) an arbitrary function. Since L is convex, we can conclude that

J (x + h)−J (x) ≥
∫ b

a

(
∂2L[x]τ(t) · h(t) + ∂3L[x]τ(t) · h(t− τ)

+ ∂4L[x]τ(t) ·C Dφ(α),ψ
a+ h(t) + ∂5L[x]τ(t) ·C Dϕ(α),ψ

b− h(t)
)

dt.

Using the same techniques used in the proof of Theorem 2, we get

J (x + h)−J (x) ≥
∫ b−τ

a

(
∂2L[x]τ(t) + ∂3L[x]τ(t + τ) +

(
Dφ(α),ψ
(b−τ)−

∂4L[x]τ(t)
ψ′(t)

)
ψ′(t)

−
∫ 1

0

φ(α)

Γ(1− α)

d
dt

∫ b

b−τ
(ψ(s)− ψ(t))−α∂4L[x]τ(s)dsdα +

(
Dϕ(α),ψ

a+
∂5L[x]τ(t)

ψ′(t)

)
ψ′(t)

)
h(t)dt

+
∫ b

b−τ

(
∂2L[x]τ(t) +

(
Dφ(α),ψ

b−
∂4L[x]τ(t)

ψ′(t)

)
ψ′(t) +

(
Dϕ(α),ψ
(b−τ)+

∂5L[x]τ(t)
ψ′(t)

)
ψ′(t)

+
∫ 1

0

ϕ(α)

Γ(1− α)

d
dt

∫ b−τ

a
(ψ(t)− ψ(s))−α∂5L[x]τ(s)dsdα

)
h(t)dt

+

[(
I1−φ(α),ψ
b−

∂4L[x]τ(t)
ψ′(t)

)
h(t)

]t=b

t=a

−
[(

I1−ϕ(α),ψ
a+

∂5L[x]τ(t)
ψ′(t)

)
h(t)

]t=b

t=a

.

(23)
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If x(b) is fixed then h(a) = h(b) = 0, and so from (23) we obtain

J (x + h)−J (x) ≥
∫ b−τ

a

(
∂2L[x]τ(t) + ∂3L[x]τ(t + τ) +

(
Dφ(α),ψ
(b−τ)−

∂4L[x]τ(t)
ψ′(t)

)
ψ′(t)

−
∫ 1

0

φ(α)

Γ(1− α)

d
dt

∫ b

b−τ
(ψ(s)− ψ(t))−α∂4L[x]τ(s)dsdα +

(
Dϕ(α),ψ

a+
∂5L[x]τ(t)

ψ′(t)

)
ψ′(t)

)
h(t)dt

+
∫ b

b−τ

(
∂2L[x]τ(t) +

(
Dφ(α),ψ

b−
∂4L[x]τ(t)

ψ′(t)

)
ψ′(t) +

(
Dϕ(α),ψ
(b−τ)+

∂5L[x]τ(t)
ψ′(t)

)
ψ′(t)

+
∫ 1

0

ϕ(α)

Γ(1− α)

d
dt

∫ b−τ

a
(ψ(t)− ψ(s))−α∂5L[x]τ(s)dsdα

)
h(t)dt.

Since x is a solution of the fractional Euler–Lagrange Equations (2) and (3), then we
conclude that J (x + h)− J (x) ≥ 0. The case when x(b) is free follows by considering
h(t) = 0, t ∈ [a− τ, a] and h(b) non-zero in (23).

Using similar techniques as the ones used in the proof of the last theorem, we can
prove the following two results.

Theorem 7 (Sufficient optimality conditions for problem (PIτ )). Let us assume that, for some
constant λ, the functions L and λG are convex (resp. concave) in [a, b]×R4 and define the function
H as H = L + λG. Then, each solution x of the fractional Equations (14) and (15) minimizes (resp.
maximizes) the functional J given in (1), subject to the restrictions x(t) = µ(t), t ∈ [a− τ, a] and
x(b) = x(b), and the integral constraint (13). If x(b) is free, then each solution x of the fractional
Equations (14)–(16) minimizes (resp. maximizes) J subject to (13).

Theorem 8 (Sufficient optimality conditions for problem (PCτ
)). Consider the functional J

defined in (19), where the Lagrangian function L is convex (resp. concave) in [a, b]×R7. Define
function λ : [a, b]→ R by

λ(t) := − 1
∂3g(t, x(t))

(
∂3L[x]τ(t) + ∂5L[x]τ(t + τ) +

(
Dφ(α),ψ
(b−τ)−

∂7L[x]τ(t)
ψ′(t)

)
ψ′(t)

+

(
Dϕ(α),ψ

a+
∂9L[x]τ(t)

ψ′(t)

)
ψ′(t)−

∫ 1

0

φ(α)

Γ(1− α)

d
dt

∫ b

b−τ
(ψ(s)− ψ(t))−α∂7L[x]τ(s)dsdα

)
,

for t ∈ [a, b− τ], and

λ(t) := − 1
∂3g(t, x(t))

(
∂3L[x]τ(t) +

(
Dφ(α),ψ

b−
∂7L[x]τ(t)

ψ′(t)

)
ψ′(t)

+

(
Dϕ(α),ψ
(b−τ)+

∂9L[x]τ(t)
ψ′(t)

)
ψ′(t) +

∫ 1

0

ϕ(α)

Γ(1− α)

d
dt

∫ b−τ

a
(ψ(t)− ψ(s))−α∂9L[x]τ(s)dsdα

)
,

for t ∈ [b− τ, b], where g is a C1 function, such that ∂3g(t, x(t)) 6= 0 for all t ∈ [a, b]. Then, each
solution x = (x1, x2) of the Equations (20) and (21) minimizes (resp. maximizes) the functional
J , subject to the restrictions x(t) = µ(t), t ∈ [a− τ, a] and x(b) = x(b), and the holonomic
constraint (17). In addition, if x(b) is free, then each solution x of the fractional Equations (20)–(22)
minimizes (resp. maximizes) J subject to (17).
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3.2. Higher-Order Variational Problems

In this section, we consider the general case with respect to fractional orders. Thus,
the distributions φi, ϕi have domain [i− 1, i], i = 1, . . . , n, where n ∈ N is fixed, with∫ i

i−1
φi(α)dα > 0 and

∫ i

i−1
ϕi(α)dα > 0.

The problem is formulated as follows:

Problem 4 ((Pn)). Find a curve x ∈ Cn([a, b],R) for which the functional

J (x) :=
∫ b

a
L
(

t, x(t),C Dφ1(α),ψ
a+ x(t),C Dϕ1(α),ψ

b− x(t), ...,C Dφn(α),ψ
a+ x(t),C Dϕn(α),ψ

b− x(t)
)

dt, (24)

attains a minimum or a maximum value, where L : [a, b] × R2n+1 → R is a continuously
differentiable function. In addition, the following boundary conditions

x(i)(a) = xi
a and x(i)(b) = xi

b, with xi
a, xi

b ∈ R, i = 0, ..., n− 1 (25)

may be assumed.

We will consider the variational problem (Pn) with and without fixed boundary
conditions (25), and also with isoperimetric or holonomic constraints.

As done previously, we use the abbreviations

[x]n(t) :=
(

t, x(t),C Dφ1(α),ψ
a+ x(t),C Dϕ1(α),ψ

b− x(t), ...,C Dφn(α),ψ
a+ x(t),C Dϕn(α),ψ

b− x(t)
)

and

C−φi
[H, j] : t→

(
Dφi(α),ψ

b−
∂j H[x]n

ψ′

)
(t) is continuous for all t ∈ [a, b]

C+
ϕi
[H, j] : t→

(
Dϕi(α),ψ

a+
∂j H[x]n

ψ′

)
(t) is continuous for all t ∈ [a, b]

where H is a function and i, j ∈ N.

Theorem 9 (Fractional Euler–Lagrange equation and natural boundary conditions for
problem (Pn)). Let x ∈ Cn([a, b],R) be an extremizer of functional J defined by (24). If con-
ditions C−φi

[L, 2i + 1] and C+
ϕi
[L, 2i + 2] hold, for all i ∈ {1, ..., n}, then x satisfies the following

Euler–Lagrange equation:

∂2L[x]n(t) + ∑n
i=1

[(
Dφi(α),ψ

b−
∂2i+1L[x]n(t)

ψ′(t)

)
ψ′(t) +

(
Dϕi(α),ψ

a+
∂2i+2L[x]n(t)

ψ′(t)

)
ψ′(t)

]
= 0, (26)

for all t ∈ [a, b]. In addition, if x(i)(a) are free, for i = 0, ..., n− 1, then

n

∑
k=i+1

[((
− 1

ψ′(t)
1
dt

)k−i−1(
Ik−φk(α),ψ
b−

∂2k+1L[x]n(t)
ψ′(t)

)

+ (−1)i+1
(

1
ψ′(t)

1
dt

)k−i−1(
Ik−ϕk(α),ψ
a+

∂2k+2L[x]n(t)
ψ′(t)

))]
= 0, at t = a, (27)
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and if x(i)(b) are free, for i = 0, ..., n− 1, then

n

∑
k=i+1

[((
− 1

ψ′(t)
1
dt

)k−i−1(
Ik−φk(α),ψ
b−

∂2k+1L[x]n(t)
ψ′(t)

)

+ (−1)i+1
(

1
ψ′(t)

1
dt

)k−i−1(
Ik−ϕk(α),ψ
a+

∂2k+2L[x]n(t)
ψ′(t)

))]
= 0, at t = b. (28)

Proof. Let h ∈ Cn([a, b],R) be a function. Observe that, given i ∈ {0, ..., n− 1}, if x(i)(a)
or x(i)(b) are fixed, then we need to assume that h(i)(a) = 0 or h(i)(b) = 0, respectively,
and so (

1
ψ′(t)

d
dt

)i
h(t) = 0, at t = a or t = b,

respectively. Defining j as j(ε) := J (x + εh), ε ∈ R, then j′(0) = 0, and so

∫ b

a

(
∂2L[x]n(t) · h(t) +

n

∑
i=1

(
∂2i+1L[x]n(t) ·C Dφi(α),ψ

a+ h(t)

+ ∂2i+2L[x]n(t) ·C Dϕi(α),ψ
b− h(t)

))
dt = 0.

Using Theorem 1, we obtain, for each i ∈ {1, ..., n},

∫ b

a
∂2i+1L[x]n(t) ·C Dφi(α),ψ

a+ h(t)dt =
∫ b

a

(
Dφi(α),ψ

b−
∂2i+1L[x]n(t)

ψ′(t)

)
ψ′(t)h(t)dt

+
i−1

∑
k=0

[(
− 1

ψ′(t)
1
dt

)k(
Ii−φi(α),ψ
b−

∂2i+1L[x]n(t)
ψ′(t)

)
· h[i−k−1]

ψ (t)

]t=b

t=a

and

∫ b

a
∂2i+2L[x]n(t) ·C Dϕi(α),ψ

b− h(t)dt =
∫ b

a

(
Dϕi(α),ψ

a+
∂2i+2L[x]n(t)

ψ′(t)

)
ψ′(t)h(t)dt

+
i−1

∑
k=0

[
(−1)i−k

(
1

ψ′(t)
1
dt

)k(
Ii−ϕi(α),ψ
a+

∂2i+2L[x]n(t)
ψ′(t)

)
· h[i−k−1]

ψ (t)

]t=b

t=a

.

Therefore,

∫ b

a

(
∂2L[x]n(t) +

n

∑
i=1

[(
Dφi(α),ψ

b−
∂2i+1L[x]n(t)

ψ′(t)

)
ψ′(t)

+

(
Dϕi(α),ψ

a+
∂2i+2L[x]n(t)

ψ′(t)

)
ψ′(t)

])
h(t)dt

+
n

∑
i=1

i−1

∑
k=0

[((
− 1

ψ′(t)
1
dt

)k(
Ii−φi(α),ψ
b−

∂2i+1L[x]n(t)
ψ′(t)

)

+ (−1)i−k
(

1
ψ′(t)

1
dt

)k(
Ii−ϕi(α),ψ
a+

∂2i+2L[x]n(t)
ψ′(t)

))
h[i−k−1]

ψ (t)

]t=b

t=a

= 0.
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Since

n

∑
i=1

i−1

∑
k=0

[((
− 1

ψ′(t)
1
dt

)k(
Ii−φi(α),ψ
b−

∂2i+1L[x]n(t)
ψ′(t)

)

+ (−1)i−k
(

1
ψ′(t)

1
dt

)k(
Ii−ϕi(α),ψ
a+

∂2i+2L[x]n(t)
ψ′(t)

))
h[i−k−1]

ψ (t)

]t=b

t=a

=
n−1

∑
i=0

h[i]ψ (t)
n

∑
k=i+1

[((
− 1

ψ′(t)
1
dt

)k−i−1(
Ik−φk(α),ψ
b−

∂2k+1L[x]n(t)
ψ′(t)

)

+ (−1)i+1
(

1
ψ′(t)

1
dt

)k−i−1(
Ik−ϕk(α),ψ
a+

∂2k+2L[x]n(t)
ψ′(t)

))]t=b

t=a

,

from the arbitrariness of h, we prove (26), (27), and (28).

When in the presence of an isoperimetric or holonomic contraint, similar results are
proven for this new variational problem. To simplify, we will assume that the boundary
conditions (25) hold. In addition, the proofs will be omitted since they follow the same
pattern as the ones presented before.

Problem 5 ( (PI n)). The isoperimetric problem can be formulated as follows: minimize or maximize
the functional J in (24) assuming the boundary conditions (25) and also an integral restriction

I(x) =
∫ b

a
G[x]n(t)dt = k, k ∈ R, (29)

where G : [a, b]×R2n+1 → R is a C1 function.

Theorem 10 (Necessary optimality conditions for problem (PI n)—Case I). Let
x ∈ Cn([a, b],R) be a solution of problem (PI n). Suppose that there exists some t ∈ [a, b]
such that

∂2G[x]n(t) +
n

∑
i=1

[(
Dφi(α),ψ

b−
∂2i+1G[x]n(t)

ψ′(t)

)
ψ′(t) +

(
Dϕi(α),ψ

a+
∂2i+2G[x]n(t)

ψ′(t)

)
ψ′(t)

]
6= 0. (30)

If conditions C−φi
[L, 2i + 1], C+

ϕi
[L, 2i + 2], C−φi

[G, 2i + 1], and C+
ϕi
[G, 2i + 2] hold, for all

i ∈ {1, ..., n}, then there exists a real number λ such that x is a solution of the equation

∂2H[x]n(t) +
n

∑
i=1

[(
Dφi(α),ψ

b−
∂2i+1H[x]n(t)

ψ′(t)

)
ψ′(t) +

(
Dϕi(α),ψ

a+
∂2i+2H[x]n(t)

ψ′(t)

)
ψ′(t)

]
= 0, (31)

for all t ∈ [a, b], where H := L + λG.

Theorem 11 (Necessary optimality conditions for problem (PI n)—Case II). Let
x ∈ Cn([a, b],R) be a solution of problem (PI n). If conditions C−φi

[L, 2i + 1], C+
ϕi
[L, 2i + 2],

C−φi
[G, 2i + 1], and C+

ϕi
[G, 2i + 2] hold, for all i ∈ {1, ..., n}, then there exists a vector (λ0, λ) ∈

R2 \ {(0, 0)} such that x is a solution of Equation (31) for all t ∈ [a, b], with the Hamiltonian H
defined as H := λ0L + λG.

To finish this section, we will study problem (Pn) with a holonomic constraint.

Problem 6 ((PCn)). The objective is to find x ∈ Cn([a, b],R)× Cn([a, b],R) that minimizes or
maximizes the functional

J (x) =
∫ b

a
L[x]n(t)dt, (32)
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defined on Cn([a, b],R)× Cn([a, b],R) and subject a constraint

g(t, x(t)) = 0, t ∈ [a, b], (33)

where g : [a, b]×R2 → R is a Cn function. In addition, boundary conditions

x(i)(a) = x(i)a and x(i)(b) = x(i)b , xi
a, xi

b ∈ R2 for i = 0, ..., n− 1 (34)

are imposed on the variational problem.

Theorem 12 (Necessary optimality conditions for problem (PCn)). Let x be an extremizer of
functionalJ defined by (32) and subject to the constraints (33)–(34). If conditions C−φi

[L, 4i+ j− 1]
and C+

ϕi
[L, 4i + j + 1] hold for all i ∈ {1, ..., n} and j = 1, 2, and if

∂3g(t, x(t)) 6= 0, ∀ t ∈ [a, b],

then there exists a continuous function λ : [a, b]→ R such that x is a solution of

∂j+1L[x]n(t) + ∑n
i=1

[(
Dφi(α),ψ

b−
∂4i+j−1L[x]n(t)

ψ′(t)

)
ψ′(t) +

(
Dϕi(α),ψ

a+
∂4i+j+1L[x]n(t)

ψ′(t)

)
ψ′(t)

]
+λ(t)∂j+1g(t, x(t)) = 0,

(35)

for all t ∈ [a, b] and j = 1, 2.

Remark 1. In a similar way, we can prove that, in case function L is convex (resp. concave), then
the conditions given in Theorems 9–12 are also sufficient conditions to ensure that the candidates of
extremizers are indeed minimizers (resp. maximizers) of the functional.

4. Illustrative Examples

Some illustrative examples are provided to demonstrate the applicability of our results.

Example 1. Suppose we intend to find a function x ∈ C3([0, 1],R), subject to the initial conditions
x(0) = (ψ(1)−ψ(0))5, x′(0) = −5ψ′(0)(ψ(1)−ψ(0))4, x′′(0) = −5ψ′′(0)(ψ(1)−ψ(0))4 +
20(ψ′(0))2(ψ(1)− ψ(0))3, and terminal conditions x(1) = x′(1) = x′′(1) = 0, that extremizes
the functional

J (x) =
∫ 1

0

(
CDφ3(α),ψ

0+ x(t) · (ψ(1)− ψ(t))5ψ′(t)

− x(t) · (ψ(1)− ψ(t))3 − (ψ(1)− ψ(t))2

ln(ψ(1)− ψ(t))
ψ′(t)

)
dt,

where φ3 : [2, 3]→ [0, 1] is defined by

φ3(α) =
Γ(6− α)

5!
.

The Euler–Lagrange equation associated is the following (cf. Theorem 9):

− (ψ(1)− ψ(t))3 − (ψ(1)− ψ(t))2

ln(ψ(1)− ψ(t))
+ Dφ3(α),ψ

1−
(
(ψ(1)− ψ(t))5) = 0.

By ([14] Lemma 14),

Dα,ψ
1−
(
(ψ(1)− ψ(t))5) = 5!

Γ(6− α)
(ψ(1)− ψ(t))5−α,
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and so

Dφ3(α),ψ
1−

(
(ψ(1)− ψ(t))5) = (ψ(1)− ψ(t))3 − (ψ(1)− ψ(t))2

ln(ψ(1)− ψ(t))
,

proving that the function x(t) = (ψ(1)− ψ(t))5, t ∈ [0, 1], is a candidate to be an extremizer of
the proposed problem.

Example 2. We want to find a curve x ∈ C1([−1, 2],R), subject to the condition x(t) = µ(t), t ∈
[−1, 0], where µ ∈ C1([−1, 0],R) is a fixed initial function with µ(0) = (ψ(2)− ψ(0))2, that
minimizes the following functional:

J (x) =
∫ 2

0

((
x(t− 1)− (ψ(2)− ψ(t− 1))2

)2

+

(
CDϕ(α),ψ

2− x(t)− ψ(t)− ψ(2) + (ψ(2)− ψ(t))2

ln(ψ(2)− ψ(t))

)2
)

dt,

where ϕ : [0, 1]→ [0, 1] is defined by

ϕ(α) =
Γ(3− α)

2
.

By Lemma 1 in [13], if x : [−1, 2] → R is defined by x(t) = (ψ(2)− ψ(t))2 if t ∈ [0, 2],
and x(t) = µ(t), if t ∈ [−1, 0], then

CDα,ψ
2− x(t) =

2
Γ(3− α)

(ψ(2)− ψ(t))2−α, t ∈ [0, 2],

and so the distributed-order derivative with respect to ψ is given by

CDϕ(α),ψ
2− x(t) =

∫ 1

0
ϕ(α)CDα,ψ

2− x(t)dα =
ψ(t)− ψ(2) + (ψ(2)− ψ(t))2

ln(ψ(2)− ψ(t))
.

Note that x satisfies the assumptions of Theorem 2 and also the Euler–Lagrange Equations (2) and (3),
as well as the transversality condition (4), proving that x is a candidate to be a local minimizer of
J . Since the Lagrangian function is convex, we conclude by Theorem 6 that x is a minimizer of J .

Example 3. Determine x that minimizes the functional

J (x) =
∫ 1

0

((
CDφ2(α),ψ

0+ x(t)− ψ(t)− ψ(0)− 1
ln(ψ(t)− ψ(0))

)2

+

(
CDϕ2(α),ψ

1− x(t)− ψ(1)− ψ(t)− 1
ln(ψ(1)− ψ(t))

)2
)

dt,

in the class of functions C2([0, 1],R) subject to the boundary conditions x(0) = x′(0) = 0, where
φ2, ϕ2 : [1, 2]→ [0, 1] are defined by

φ2(α) =
Γ(3− α)

2
= ϕ2(α).

Again, by [13, Lemma 1], if x(t) = (ψ(t)− ψ(0))2, t ∈ [0, 1], then

CDα,ψ
0+ x(t) =

2
Γ(3− α)

(ψ(t)− ψ(0))2−α,
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and so
CDφ2(α),ψ

0+ x(t) =
∫ 2

1
φ2(α)

CDα,ψ
0+ x(t)dα =

ψ(t)− ψ(0)− 1
ln(ψ(t)− ψ(0))

.

In addition, observe that

CDα,ψ
1− x(t) = CDα,ψ

1− ((ψ(1)− ψ(t)) + (ψ(0)− ψ(1)))2

= CDα,ψ
1− (ψ(1)− ψ(t))2 =

2
Γ(3− α)

(ψ(1)− ψ(t))2−α,

and therefore

CDϕ2(α),ψ
1− x(t) =

∫ 2

1
ϕ2(α)

CDα,ψ
1− x(t)dα =

ψ(1)− ψ(t)− 1
ln(ψ(1)− ψ(t))

.

We can easily verify that x satisfies assumptions of Theorem 9, the Euler–Lagrange Equation (26),
and the natural boundary condition (28), proving that x is a candidate to be a local minimizer of J .
Since the Lagrangian function is convex, we conclude that x is a minimizer of J .

5. Conclusions and Future Work

In this article, we continue the study started in [15], considering now new problems in
the calculus of variations. Namely, two distinct types are considered: when the Lagrangian
function involves a time delay and derivatives of order greater than 1. Necessary and
sufficient optimization conditions are proved, for the basic problem and when in the
presence of additional constraints to the problem. The study is formulated in the context of
fractional calculus, where the derivative of the state curve is of the fractional type involving
distributed-orders and the kernel involves an arbitrary smooth function.

In the future, we intend to study variational problems of Herglotz type and
some generalizations involving distributed-order fractional derivatives with arbitrary
smooth kernels.
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