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Abstract: This paper proves that the controller design for switched singularly perturbed systems can
be synthesized from the controllers of individual slow–fast subsystems. Under the switching rules of
individual slow–fast subsystems, switched singularly perturbed systems can be stabilized under a
small value of ε. The switching rule is designed on the basis of state transformation of the individual
subsystems.
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1. Introduction

The switched system is an example of a hybrid system. Switched systems represent
a combination of many continuous or discrete systems such that the systems have a
special switching law, and in accordance with this switching rule, the system switches to
each subsystem operation. For example, when certain conditions have been established,
it switches to the relevant subsystem in accordance with the switching rule. In actual
industrial control, economy, and education systems, a system may be constructed with two
or more subsystems, and they can be switched between each other. In the last three decades,
research interest in the problems of stability analysis and stabilization has increased [1–10].

In studying the stability analysis of a switching system, two crucial methods are used
to establish the switching rule: the state variable method and time switching method.
A major result of the state variable method is that when all subsystems have a common
Lyapunov function, many switching strategies exist that ensure the entire system is stable.
However, many switching systems do not have a common Lyapunov function; thus,
the development of a type of restricted switching law that would make a switching system
stable has attracted widespread academic attention.

Du et al. dedicated their research to the problem of the stability of switched systems
with unstable subsystems. By using a novel quasi-time-dependent approach, they devel-
oped a stability analysis criterion for nonlinear switched systems. The presented switching
rule provides fast and slow switching techniques for unstable and stable subsystems, respec-
tively [2]. Furthermore, design difficulties caused by time delays, asynchronous switching,
and nonlinearity for a global stabilization problem were overcome using the Lyapunov–
Razumikhin theorem and multiple Lyapunov–Krasovskii functionals [3]. Wu et al. explored
the optimal linear quadratic regulator of switched systems by adopting an embedding-
transformation method [4]. The sufficient conditions for the almost global stability of
nonlinear switched systems with time-dependent switching were derived in [5], which re-
ported that a minimum dwell time constraint must be satisfied. Moreover, Wang et al.
proposed the persistent dwell time (PDT) switching law for a class of discrete-time singu-
larly perturbed switched systems [6]. For continuous-time switched systems with unknown
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subsystems and infinite-horizon cost functions, Zhang et al. proposed a data-driven opti-
mal scheduling approach [7]. The Lyapunov stability theorem and genetic algorithm were
employed to develop a stabilization and switching law design for switched discrete-time
systems [8]. A unified approach was presented for the control of power electronics convert-
ers to solve the stabilization control problems and tracking control problems [9]. In view of
the state-driven switching law, sufficient stability conditions with delay dependence were
derived for switched time-delay systems [10].

Singular perturbation theory has been extensively investigated in recent decades.
The mathematical models of engineered and physical systems are usually represented by
high-dimensional differential equations. Such high-dimensional systems are called large-
scale systems in the literature. Because of the high-dimensional relationship, the design
of a controller and analysis of the systems’ stability are relatively difficult. A singular
perturbation mode can provide strong and powerful control. In addition, for systems
that can be split into two time scales (slow and fast time scales), the singular perturbation
technique is undoubtedly the optimal method [11,12]. Borisov and Sultanov [13] consid-
ered a singularly perturbed boundary value problem, which arises in Brownian motion,
and complete asymptotic expansions were successfully constructed. Lomov’s regular-
ization method was generalized to examine the asymptotics of the solution to systems
described by singularly perturbed integrodifferential equations with a rapidly oscillating
right-hand side [14]. The optimal controller for a singularly perturbed wind turbine system
was developed through time-scale decomposition with two reduced-order algebraic Riccati
equations corresponding to the slow and fast time scales [15]. Glizer analyzed two types of
singularly perturbed nonlinear time-dependent-controlled system with time delays (multi-
ple point-wise and distributed) in the state variables [16]. Dragan considered a stochastic
optimal control problem modeled using a system of singularly perturbed Itô differential
equations with two fast time scales and derived the asymptotic structure of the stabilizing
solution [17]. Liu et al. [18] investigated the feedback control problem in a discrete-time
singularly perturbed system under information constraints and employed the uniform
quantization method. For an infinite-dimensional system coupling a wave equation with
a linear ordinary differential equation, the singular perturbation method achieved stabil-
ity and Tikhonov results [19]. Finally, Song et al. investigated the sliding-mode control
issue of slow-sampling singularly perturbed systems under a dynamic-event-triggered
mechanism [20].

This paper is unprecedented in its discussion of the combination of singularly per-
turbed systems and switched systems. First, the slow–fast subsystems of each individual
system are decomposed, after which they are used to determine the switching rule by using
the state-variables method. This article also proves that according to the switching rule of
the slow–fast subsystems, it is possible to ensure that the switched singularly perturbed
system is stable under a small ε. Lyapunov-function-based techniques are employed for
the control of switched linear systems.

2. Materials and Methods

Consider the following switched singularly perturbed systems:

.
x1(t) = A11_ix1(t) + A12_ix2(t) + B1_iu(t) (1a)

ε
.
x2(t) = A21_ix1(t) + A22_ix2(t) + B2_iu(t) (1b)

where x1 ∈ Rn1 , x2 ∈ Rn2 , n = (n1 + n2) is the order of the whole system, u ∈ R are
the control and constant matrices with appropriate dimensions, and ε is a small positive
singular perturbation parameter. Finally, i is a switching rule, the values of which are in
the finite set I = {1, 2, . . . , r}.

Furthermore, the subsystems of switched singularly perturbed systems (1) can
be obtained.
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The slow switched singularly perturbed systems are expressed as

.
x1s(t) = A0_ix1s(t) + B0_ius(t) (2a)

and the fast switched singularly perturbed systems are expressed as

ε
.
x2 f (t) = A22_ix2 f + B2_iu f (t) (2b)

where A0_i = A11_i − A12_i A−1
22_i A21_i and B0_i = B1_i − A12_i A−1

22_iB2_i.
The analysis and controller design of switched singularly perturbed systems can

generally be accomplished by first separating the original systems (1) into the slow and fast
subsystems (2a) and (2b), respectively, and then obtaining the composite results for systems
(1). That is, suppose that the subsystem controllers, which are to be designed in accordance
with the slow and fast mode performance specifications, have the following form:

us(t) = Gs_ix1s(t) (3a)

u f (t) = G f _ix2 f (t) (3b)

and the composite control is expressed as

u(t) = G1_ix1(t) + G2_ix2(t) (4)

where G2_i = G f _i, G1_i =
[

I + G f _i A−1
22_iB2_i

]
Gs_i + G f _i A−1

22_i A21_i.
Furthermore, the closed-loop forms of individual systems (1) may be rewritten as[ .

x1(t)
ε

.
x2(t)

]
=

[
F11_i F12_i
F21_i F22_i

][
x1(t)
x2(t)

]
(5)

where F11_i = A11_i + B1_iG1_i, F12_i = A12_i + B1_iG2_i, F21_i = A21_i + B2_iG1_i,
and F22_i = A22_i + B2_iG2_i.

As indicated, no research article has yet discussed the relationships between the state
trajectories of the original systems (1) and reduced systems (2). This is done in the following
theorem. First, let [ .

ζ1(t).
ζ2(t)

]
=

[
In1 − εHiLi −εHi

Li In2

][
x1(t)
x2(t)

]
(6)

where the matrices Li = Li(ε) and H = Hi(ε) respectively satisfy

0 = F22_iLi − εLiF11_i + εLiF12_iLi − F21_i (7a)

ε(F11_i − F12_iLi)Hi − Hi(F22_i + εLiF12_i) + F12_i = 0 (7b)

Theorem 1. Let G2_i be design such that Reλ(A22_i + B2_iG2_i) < 0. There then exists an ε∗ > 0
such that if the composite control

u(t) = G1_ix1(t) + G2_ix2(t) (8)

is applied to system (1), the state and control of the resulting closed-loop individual system, starting
from any bounded initial conditionsx1(t0) and x2(t0), are approximated by

x1(t) = x1s(t) + O(ε), (9a)

x2(t) = −A−1
22_i(A21_i + B2_iGs_i)x1s + x2 f + O(ε), (9b)

u(t) = us(t) + u f (t) + O(ε) (9c)
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for all finite t ≥ t0 and for all ε ∈ (0, ε∗].

Proof. According to the proposed singularly perturbed method, for the slow subsystem
(1a), its fast distribution can be ignored, i.e., x1 f (t)→ 0 . For system (1b), when we consider
ε→ 0 ,

x2s(t) = −A−1
22_i(A21_ix1s(t) + B2_ius(t))

can be derived and substituted into system (1a). This results in the system (2a).

u(t) = us(t) + u f (t) + O(ε)
= Gs_ix1s(t) + G f _ix2 f (t) + O(ε)

= Gs_ix1s(t) + G f _i

(
x2(t)− x2 f (t)

)
+ O(ε)

=
((

I + G f _i A−1
22_iB2_i

)
Gs_i + G f _i A−1

22_i A21_i

)
x1(t) + G f _ix2(t) + O(ε)

= G1_ix1(t) + G2_ix2(t) + O(ε)

Since O(ε)→ 0 , the composite control (8) can be obtained from the controller of
slow-fast subsystems.

This completes the proof. �

The block diagram of the systems is as Figure 1.
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For the nominal switched linear system

.
x(t) = Aix(t) (10)

the stability criterion is described by the following lemma.

Lemma 1. There exists a switching law for switched linear system (10) such that the system is

asymptotically stable if there exist positive numbers αi (1 ≤ i ≤ r) satisfying
r
∑

i=1
αi = 1 such that

.
x(t) =

r
∑

i=1
αi Aix(t) is an asymptotically stable system [21].

Proof. Assume that
.
x(t) =

r
∑

i=1
αi Aix(t) is an asymptotically stable system, it makes the

time derivative of the Lyapunov function for
.
x(t) =

r
∑

i=1
αi Aix(t) negative, i.e., owing to

r
∑

i=1
αi = 1 for any time, there exists at least one individual system with negative Lyapunov

derivative. Thus, the switched linear system (10) is asymptotically stable. �

Since there exists positive numbers αi (1 ≤ i ≤ r) such that
.
x(t) =

r
∑

i=1
αi Aix(t) is an

asymptotically stable system, hence, there exists a Lyapunov function V(x) such that a
switching law is ∂V

∂x Aix < 0.
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In light of Lemma 1, a convex combination of switched singularly perturbed sys-
tems (1) can be written as follows:

.
x1(t) =

r

∑
i=1

αi(A11_ix1(t) + A12_ix2(t) + B1_iu(t)) (11a)

ε
.
x2(t) =

r

∑
i=1

αi(A21_ix1(t) + A22_ix2(t) + B2_iu(t)) (11b)

where
r
∑

i=1
αi = 1.

Furthermore, a convex combination of switched singularly perturbed systems for the
subsystems (11a) and (11b) can be written as follows:

.
x1s(t) =

r

∑
i=1

αi(A0_ix1s(t) + B0_ius(t)) (12a)

ε
.
x2 f (t) =

r

∑
i=1

αi

(
A22_ix2 f + B2_iu f (t)

)
(12b)

Hence, from controller (3), the closed-loop forms of the convex combination subsystem
are as follows:

.
x1s(t) =

r

∑
i=1

αi(A0_i + B0_iGs_i)x1s(t) (13a)

ε
.
x2 f (t) =

r

∑
i=1

αi

(
A22_i + B2_iG f _i

)
x2 f (13b)

and the closed-loop forms of convex combination systems (11) are as follows:

.
x1(t) =

r

∑
i=1

αi[(A11_i + B1_iG1_i)x1(t) + (A12_i + B1_iG2_i)x2(t)] (14a)

ε
.
x2(t) =

r

∑
i=1

αi[(A21_i + B2_iG1_i)x1(t) + (A22_i + B2_iG2_i)x2(t)] (14b)

Theorem 2. The slow and fast switched singularly perturbed systems (13a) and (13b) are asymp-
totically stable if there exist two common positive definite matrices Ps and Pf respectively such that

(A0_i + B0_iGs_i)
T Ps + Ps(A0_i + B0_iGs_i) < 0 (15a)

(A22_i + B2_iG f _i)
T Pf + Pf

(
A22_i + B2_iG f _i

)
< 0 (15b)

for i = 1, 2, . . . , r.

Proof. Following the literature [11], this proof can be easily made. �

Let
Z(t) = TiX((t)) (16)

where Z(t) =
[

zT
1 (t) zT

2 (t)
]T , X(t)) =

[
xT

1 (t) xT
2 (t)

]T Ti =

[
In1 − εMi Ni −εMi

Ni In2

]
,

and assume Ni = F−1
22_iF21_i and Mi = F12_iF−1

22_i.
Hence, the equivalent systems can be written as[ .

z1(t)
ε

.
z2(t)

]
=

[
Γi + O11_i(ε) O12_i(ε)

O21_i(ε) F22_i + O22_i(ε)

][
z1(t)
z2(t)

]
(17)
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where

Γi = F11i − F12i F
−1
22i

F21i , O11_i(ε) = −εF12_iF−1
22_iF21_iΓi

O22_i(ε) = εF−1
22_iF21_iF12_i + ε2F−1

22_iF21_iΓiF12_iF−1
22_i

O12_i(ε) = ε
(

ΓiF12_iF−1
22_i − F12_iF−2

22_iF21_iF12_i

)
− ε2F12_iF−1

22_iF21_iΓiF12_iF−1
22_i

O21_i(ε) = εF−1
22_iF21_iΓi

Furthermore, the closed-loop forms of combination systems (1) may be rewritten as[ .
x1(t)
ε

.
x2(t)

]
=

r

∑
i=1

αi

[
F11_i F12_i
F21_i F22_i

][
x1(t)
x2(t)

]
(18)

Then, the similarly transformed system (18) becomes[ .
z1(t)
ε

.
z2(t)

]
=

r

∑
i=1

αi

[
Γi + O11_i(ε) O12_i(ε)

O21_i(ε) F22_i + O22_i(ε)

][
z1(t)
z2(t)

]
(19)

A sufficient condition for stabilization of the closed-loop switched singularly per-
turbed systems (18) under the composite controller is established in the following theorem.

Theorem 3. Suppose G f _i and Gs_i are determined using Theorem 1. There then exists a switching
law such that the closed-loop switched singularly perturbed system is asymptotically stable for all
ε ∈ (0, ε∗). The ε∗ is obtained using the following LMI procedure:

S1(A0_i + B0_iGs_i)
T + (A0_i + B0_iGs_i)S1 + R1

+S1OT
11_i(ε) + O11_i(ε)S1 + S1OT

21_i(ε)R−1
2 O21_i(ε)S1 < 0

(20a)

S2(A22_i + B2_iG f _i)
T +

(
A22_i + B2_iG f _i

)
S2 + R2

+S2OT
22_i(ε) + O22_i(ε)S2 + S2OT

12_i(ε)R−1
1 O12_iS2 < 0

(20b)

for i = 1, 2, . . . , r, where P1, P2, R1, and R2 are symmetric positive definite matrices, S1 = P−1
1

and S2 = P−1
2 .

Proof. Define the Lyapunov Function as

V(z1, z2) = zT
1 P1z1 + εzT

2 P2z2 (21)

Then,
.

V =
.
zT

1 P1z1 + zT
1 P1

.
z1 + ε

.
zT

2 P2z2 + εzT
2 P2

.
z2

=
r
∑

i=1
αi

{
[(Γi + O11_i(ε)z1 + O12_i(ε)z2]

T P1z1 + zT
1 P1[(Γi + O11_i(ε)η + O12_i(ε)z2]

+[O21_i(ε)z1 + (F22_i + O22_i(ε))z2]
T P2z2 + zT

2 P2[O21_i(ε)z1 + (F22_i + O22_i(ε))z2]
}

=
r
∑

i=1
αi
{

zT
1 [
(
Γi + O11_i(ε))

T P1 + P1(Γi + O11_i(ε))
]
z1

+zT
2 OT

12_i(ε)P1z1 + zT
1 P1O12_i(ε)z1

+zT
2 [
(

F22_i + O22_i(ε))
T P2 + P2(F22_i + O22_i(ε))

]
z2

+zT
1 OT

21_i(ε)P2z2 + zT
2 P2O21_i(ε)z1

}
≤

r
∑

i=1
αi

{
zT

1 [
(

Γi + O11_i(ε))
T P1 + P1(Γi + O11_i(ε)) + P1R1P1 + OT

21_i(ε)R−1
2 O21_i(ε)

]
z1

+zT
2 [
(

F22_i + O22_i(ε))
T P2 + P2(F22_i + O22_i(ε)) + P2R2P2 + OT

12_i(ε)R−1
1 O12_i(ε)

]
z2

}
Define

Φ1 =
r

∑
i=1

αi{zT
1 [
(

Γi + O11_i(ε))
T P1 + P1(Γi + O11_i(ε)) + P1R1P1 + OT

21_i(ε)R−1
2 O21_i(ε)

]
z1} (22)
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And

Φ2 =
r

∑
i=1

αi{zT
2 [
(

F22_i + O22_i(ε))
T P2 + P2(F22_i + O22_i(ε)) + P2R2P2 + OT

12_i(ε)R−1
1 O12_i(ε)

]
z2} (23)

Pre- and post-multiplying (22) by S1 = P−1
1 , we obtain

Φ̃1 =
r

∑
i=1

αizT
1 {[S1ΓT

i + ΓiS1 + R1 + S1OT
11_i(ε) + O11_i(ε)S1+S1OT

21_i(ε)R−1
2 O21_i(ε)S1]}z1 (24)

where Φ̃1 = S1Φ1S1. Applying (20a) to (24) results in

Φ̃1 ≤
r
∑

i=1
αizT

1
(
X1ΓT

i + ΓiX1 + R1 + Q1
)
z1 (25)

If
X1ΓT

i + ΓiX1 + R1 + Q1 < 0

then Φ̃1 in (25) is negative. It is thus discovered that (24) equals (22).
Similarly, pre- and post-multiplying (23) by S2 = P−1

2 , we obtain

Φ̃2 =
r

∑
i=1

αi{zT
2 [S2

(
F22_i + O22_i(ε))

T + (F22_i + O22_i(ε))S2 + R2 + S2OT
12_i(ε)R−1

1 O12_i(ε)S2

]
z2} (26)

where Φ̃2 = S2Φ2S2. Applying (20b) to (26) results in

Φ̃2 ≤
r

∑
i=1

αizT
2

[
S2FT

22_i + F22_iS2 + R2 + Q2

]
z2 (27)

Thus, Φ̃2 < 0 if
S2FT

22_i + F22_iS2 + R2 + Q2 < 0

In fact, (25) is the same as (23). Because Φ̃1 < 0 and Φ̃2 < 0 imply Φ1 < 0 and Φ2 < 0,
.

V < 0.
This completes the proof. �

Remark 1. The switching law of systems (1) can be defined as follows:

∂V(z1, z2)

∂Z

[
Γi + O11_i(ε) O12_i(ε)

O21_i(ε)
ε

F22_i+O22_i(ε)
ε

]
Z(t)= xTTT

i pTi Aix < 0 (28)

where x =
[

xT
1 xT

2
]T , p =

[
p1 0
0 εp2

]
, and Ai =

[
F11_i F12_i

ε−1F21_i ε−1F22_i

]
.

Remark 2. The switching law of subsystems (12) can be defined as follows:[
xT

1s xT
2 f

][ ps 0
0 p f

][
A0_i + B0_iGs_i 0

0 A22_i + B2_iG f _i

][
x1s
x2 f

]
< 0 (29)

Theorem 4. O(ε) approximations of the switching laws for systems (1) and subsystems (12) can
be achieved under the linear state-feedback control expressed in (4).
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Proof.

∂V(z1, z2)
∂Z

[
Γi + O11_i(ε) O12_i(ε)

O21_i(ε)
ε

F22_i+O22_i(ε)
ε

]
Z(t)

= ZT(t)
[

Ps 0
0 εPf

][
Γi + O11_i(ε) O12_i(ε)

O21_i(ε)
ε

F22_i+O22_i(ε)
ε

]
Z(t)

= ZT(t)
[

Ps(Γi + O11_i) Ps(O12_i)
Pf O21_i Pf (F22_i + O22_i)

]
Z(t)

= ZT(t)

[
Ps(A0_i + B0_iGs_i) + O(ε) O(ε)

O(ε) Pf

(
A22_i + B2_iG f _i

)
+ O(ε)

]
Z(t)

This completes the proof. �

3. Example

Consider the switched singularly perturbed system composed of two subsystems
given as follows.

Individual system 1:

.
x1(t) = x1(t) + 160x2(t) + 8u(t) (30a)

ε
.
x2(t) = 3x1(t) + 15x2(t) + 2u(t) (30b)

Individual system 2:

.
x1(t) = x1(t) + 160x2(t) + 8u(t) (30c)

ε
.
x2(t) = 3x1(t)− 10x2(t) + 2u(t) (30d)

Then the slow-fast subsystems of the system (30) are described below.
The slow–fast subsystem of individual system 1:

.
x1s(t) = −31x1s(t)− 13.3333us(t) (31a)

ε
.
x2 f (t) = 15x2 f (t) + 2u f (t) (31b)

The slow–fast subsystem of individual system 2:

.
x1s(t) = 49x1s(t) + 40us(t) (31c)

ε
.
x2 f (t) = −10x2 f (t) + 2u f (t) (31d)

Let Gs_1 = −2.1, Gs2 = −2, and G f _1 = G f _2 = −20, based on the controller (3) for
individual system (31), we can obtain the following controller design.

The controller of slow–fast subsystem for individual system 1:

us(t) = −2.1x1s(t) (32a)

u f (t) = −20x2 f (t) (32b)

The controller of slow–fast subsystem for individual system 2:

us(t) = −2x1s(t) (32c)

u f (t) = −20x2 f (t) (32d)

Furthermore, from the control of switched singularly perturbed system (30), we can
obtain the following composite controller design.
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The composite control (4) of individual system 1, (30a) and (30b), is:

u(t) = −0.5x1(t)− 20x2(t) (33a)

The composite control (4) of individual system 2, (30c) and (30d), is:

u(t) = −4x1(t)− 20x2(t) (33b)

Finally, the switched singularly perturbed systems, (30) and (31), can be stabilized by
the controllers, (33) and (32), respectively.

The trajectories for states of the switched singularly perturbed system (30) and its
slow-fast system (31) during t ∈ [0, 0.5] are shown in Figure 2a,b with initial value[

x1(0) x2(0)
]T

=
[

1 1
]T . The corresponding switching signal is shown in Figure 3.

The solid line is the state of switched singularly perturbed system (30) and the dotted line
is the state of the individual system.
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4. Conclusions

Using the composite state-feedback control method, the stabilization problem is
presented for a class of switched singularly perturbed systems in this paper. The individual
systems are decomposed into slow and fast subsystems. We design controllers for singularly
perturbed switched systems exhibiting two time-scale properties. The switching rule of the
system is proved to be consistent with the switching rule of each independent subsystem.
Advantage is thereby taken of the singularly perturbed nature of the problem to design a
well-conditioned composite feedback control, which is the sum of the slow and fast control
and solves the original ill-conditioned control problem to within a specified order-of-ε
accuracy. Finally, the upper bound regarding ε and the analysis of discrete-time singularly
perturbed switched systems will be highlighted topics for future research.
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