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Abstract: This paper focuses on the problems of input-to-state stability (ISS) and stabilization for
nonlinear impulsive positive systems (NIPS). Using the max-separable ISS Lyapunov function
method, a sufficient condition on ISS is given for general NIPS. On that basis, the ISS criteria for
linear impulsive positive systems (LIPS) and affine nonlinear impulsive positive systems (ANIPS)
are given. Through them, ISS properties can be directly judged from the algebraic and differential
characteristics of the systems. Then, utilizing the ISS criteria, state-feedback and impulsive controllers
are designed for LIPS and ANIPS, respectively, which make the systems input-to-state stabilizable.
Lastly, some numerical examples are given to verify the effectiveness of our results.

Keywords: nonlinear positive system; impulsive system; input-to-state stability; max-separable ISS
Lyapunov function

1. Introduction

A positive system is a special kind of dynamical system whose state and output
variables are non-negative whenever and wherever the initial state and the input variables
are non-negative [1]. In recent years, positive systems have been extensively studied and
widely used in many fields, such as biology, chemical industries, economics, and sociology.
There are many interesting research results from these fields [2–6]. In 1979, the concept
of positive systems was first brought forward by Luenberger [7]. On the basis of the tool
of a non-negative matrix, Farina first proposed quadratic diagonal Lyapunov functions
and obtained the necessary and sufficient conditions on asymptotic stability for positive
systems in 2000 [1]. As a result, the study of positive systems was rapidly developed. Both
stability [8] and problems of observer design [9], positive filtering [10] and saturation
control [11], were studied for positive systems.

The impulse phenomenon is common in engineering applications, which can increase
the complexity of system-stability analysis due to the discontinuous system state. In terms
of the impact on system stability, impulses are generally divided into three kinds: distur-
bance, neutral, and stabilizing impulses. Different impulses have different effects on the
system, which may hinder convergence or enhance the stability of the considered system.
Since the impulsive property and positive constraint lead to abundant dynamic behaviors
of an impulsive positive system (IPS), it is necessary and important to investigate the
stability and stabilization analysis of IPS. Zhang [12] first established the sufficient criterion
of stability for IPS by using a linear copositive Lyapunov function. Briat [13] studied the
dwell-time stability and stabilization conditions of linear positive impulsive systems.

Input-to-state stability (ISS) theory plays a vital role in the development of modern
nonlinear control theory, especially in the robust stability theory of nonlinear systems.
The concept of ISS was proposed by Sontag [14]. Subsequently, its various extensions,
such as integral ISS (iISS), finite-time ISS, and stochastic ISS [15–18], were developed.
Many significant results on ISS were reported for various systems, such as continuous
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dynamical, discrete, sampled-data nonlinear, time-delay, switched, and networked control
systems [19–24]. For impulsive systems, the ISS problem was also investigated in [25–27],
with some sufficient conditions provided on the basis of the Lyapunov function method.
In addition, for positive systems, there is little research on ISS [28], especially for NIPS.
ISS is also an effective tool for stabilization design [29–31]. However, for the input-to-
state stabilization study of NIPS, the coexistence of positivity restrictions and impulses
increases the complexity of input-to-state stabilization analysis. In fact, first, because the
state variables of positive systems are always limited in the positive quadrant rather than
the whole state space, many methods for general system establishment are not applicable
or they are applicable but conservative, which brings great challenges to the ISS analysis
for NIPS; second, due to the existence of impulses, the non-negative constraints of the
system may be destroyed.

In this paper, the ISS problem of NIPS is studied for the first time, with some criteria
on ISS and input-to-state stabilization being provided. On the basis of the max-separable
ISS Lyapunov function method, a sufficient condition on ISS for general NIPS is provided
in which the two following situations of NIPS are included: (1) the continuous dynamic
is stable but the impulsive effect is unstable; (2) the impulsive dynamic is stable but the
continuous dynamic is unstable. For LIPS and ANIPS, some ISS criteria are also given.
From them, corresponding ISS properties can be judged directly from the algebraic and
differential characteristics of the systems. On the basis of the ISS criteria for LIPS and
ANIPS, state-feedback and impulsive controllers were designed, respectively, which make
the systems input-to-state stabilizable. Numerical examples are given to verify the validity
of our proposed results.

The remainder of this paper is organized as follows: in Section 2, the impulsive pos-
itive system is formulated, and some notations and definitions are given. In Section 3,
after providing a sufficient condition on ISS for general NIPS by the max-separable ISS Lya-
punov function method, some ISS criteria are also given for LIPS and ANIPS. In Section 4,
for input-to-state stabilization problems, both state-feedback and impulsive controllers
were designed and are outlined for LIPS and ANIPS, respectively. In Section 5, three
numerical examples are provided to illustrate the proposed results, and the conclusion
follows in Section 6.

2. Preliminaries

Notations: Let R, R+, N and N+ denote the sets of all real, non-negative real, and nat-
ural numbers, and natural numbers excluding zero, respectively. Rn and Rn×m denote
the n- and n×m-dimensional real spaces, respectively. Positive orthant Rn

+ in Rn is set
{x = (x1, · · · , xn)T ∈ Rn : xi ≥ 0, ∀i}, where superscript T denotes the transpose. A real
matrix A =

(
aij
)
∈ Rn×n is called a Metzler matrix if and only if its off-diagonal entries

are non-negative: aij ≥ 0, ∀i 6= j. For vectors x, y ∈ Rn, we write: x � y (x ≺ y) if xi > yi
(xi < yi) for i ∈ In =: {1, 2, · · · , n}; x � y (x � y) if xi ≥ yi (xi ≤ yi) for i ∈ In; x > y
(x < y) if x � y (x � y) and x 6= y. 1n ∈ Rn refers to the vector with all elements of it
being 1. The p-norm on Rn is denoted by ‖ · ‖p. When p = 2, p is often omitted. The
max-norm is denoted as ‖ · ‖∞. V := intRn

+ refers to the interior of Rn
+ which means set

{x ∈ Rn
+ : xi > 0, ∀i ∈ In}. Given a vector v ∈ V , the weighted l∞ norm is defined by

‖x‖v
∞ = max1≤i≤n

|xi |
vi

.
A continuous function γ : [0, ∞)→ [0, ∞) is of a class K if γ is strictly increasing and

γ(0) = 0. If γ is also unbounded, then γ is of class K∞. A function β : [0, ∞)× [0, ∞) →
[0, ∞) is of class KL if for fixed t ≥ 0 the function β(·, t) is of class K, and for fixed s ≥ 0
the function β(s, ·) is decreasing with limt→∞ β(s, t) = 0.

In this paper, we consider the following nonlinear impulsive system with disturbance:{
ẋ(t) = f (x(t), w(t)), t ≥ t0, t 6= tk;
x(tk) = h(x(t−k ), w(tk)), k ∈ N+,

(1)
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where x ∈ Rn
+ is the system state, w ∈ Lm

∞ is the disturbance input, Lm
∞ denotes the set

of all measurable and locally essentially bounded disturbance input w ∈ Rm
+ on [t0, ∞)

with norm as follows:
‖w‖E = ess sup

t≥t0

{‖w(t)‖∞}.

f : Rn
+ × Rm

+ → Rn satisfies f (0, 0) = 0; initial data x0 = (x01, · · · , x0n)
T ∈ Rn

+; h :
Rn
+ ×Rm

+ → Rn
+ is a non-negative function with h(0, 0) = 0; disturbance input function

w(·) : [t0, ∞) → U ⊂ Rm
+ is essentially bounded; tk denotes the impulsive jump instant,

and discrete time set {tk}∞
k=1 satisfies t1 < t2 < · · · < tk−1 < tk < · · · and limk→∞ tk → ∞,

where t1 > t0, initial time t0 ≥ 0 and impulsive interval tk − tk−1 are finite. When time
instant t = tk, state variable x immediately “jumps” from x(t−k ) to x(tk) = h(x(t−k ), w(tk)).

For convenience, we introduce some definitions and proposition for system (1) as follows.

Definition 1. For any given constants Ta > 0 and positive integer N0, let Nσ(t, s) denote the
number of impulsive times of impulse sequence σ = {tk}∞

k=1 on interval [s, t), ∀t > s ≥ t0, and let
the following hold [32]:

`[Ta, N0] :=
{

σ :
t− s

Ta
− N0 ≤ Nσ(t, s) ≤ t− s

Ta
+ N0, ∀t ≥ s ≥ t0

}
, (2)

then Ta is called the average impulsive interval of σ, and N0 is called the chatter bound.

Remark 1. For system (1), two kinds of impulses are mainly considered. When system function
f is stable, but impulses could probably destroy stability, we must require that impulses do not
happen too frequently, so the number of impulses is limited to Nσ(t, s) ≤ t−s

Ta
+ N0. When impulse

dynamics x(tk) = h(x(t−k ), w(tk)) are stable with respect to w, but system function f could
potentially destroy stability, so we require more impulses to occur and the value of Ta cannot be too
large; the number of impulses is limited to Nσ(t, s) ≥ t−s

Ta
− N0.

Definition 2. [1] A nonlinear impulsive system (1) is said to be positive if, for any initial condition
x0 � 0, we have x(t) � 0 for any t ≥ t0.

Definition 3. [33] Function f in system (1) is cooperative if the following is true:

∂ fi
∂xj

(x, w) ≥ 0, ∀x ∈ V , ∀w ∈ W , ∀i 6= j,

∂ fi
∂wj

(x, w) ≥ 0, ∀x ∈ Rn
+, ∀w ∈ W

where V := intRn
+,W = intU .

Proposition 1. A nonlinear impulsive system (1) is positive if f is cooperative and h is non-
negative.

Proof. For system (1) with initial condition x0 � 0, according to analysis in [34], because
f is cooperative, one has x(t) � 0 for t ∈ [t0, t1). When t = t1, x(t1) = h(x(t−1 ), w(t1)).
Since h is non-negative, one has x(t1) � 0. For t ∈ [t1, t2), and system (1) with initial state
x(t1) � 0, iteratively, one has x(t) � 0 for t ∈ [t1, t2); generally, for all t ∈ [tk, tk+1)(k ∈ N),
x(t) � 0. So, x(t) � 0 for all t ≥ t0, and system (1) is positive.

In this paper, the ISS properties of nonlinear impulsive positive systems (NIPS) are
considered. For the ISS study of NIPS, the definitions of ISS and max-separable ISS
Lyapunov function are first introduced.
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Definition 4. [28] NIPS (1) is said to be input-to-state stable (ISS) if there exist scalar functions
β ∈ KL and γ ∈ K such that the following is true:

x(t) � β

(
max
i∈In
{x0i}, t− t0

)
1n + γ(‖w‖E)1n.

From the properties of KL functions [35] and Remark 1 in [28], if NIPS (1) is ISS, it is
also ISS in the sense of the l∞, l1 and l2-norm.

Definition 5. For NIPS (1), a locally Lipschitz positive definite radially unbounded function,

V(x) = max
i∈In
{Vi(xi)}, (3)

with function Vi : R+ → R+ is a max-separable ISS Lyapunov function if there are functions α1,
α2, χ of class K and rate coefficients c, d ∈ R such that, for all i ∈ In, the following is true:

α1(xi) ≤ Vi(xi) ≤ α2(xi), (4)

and

V(x) ≥ χ(‖w‖E)⇒ D+V(x) ≤ −cV(x), (5)

V(h(x, w)) ≤ e−dV(x), (6)

where the upper-right Dini derivative D+V(x) is given by the following:

D+V(x) = max
i∈J (x)

{
∂Vj

∂xj
f j(x)

}
, (7)

J (x) denotes the set of indices for which the maximum in (3) is attained, i.e., the following:

J (x) = {j ∈ In|Vj(xj) = V(x)}.

3. ISS of Nonlinear Impulsive Positive Systems

In this section, using the max-separable ISS Lyapunov function method, we state and
prove the following ISS criterion for NIPS.

Theorem 1. For positive system (1) (uniform ISS), if there is a candidate max-separable ISS
Lyapunov function V(x) in the form of (3), system (1) is ISS for all impulse sequences σ ∈
`0[Ta, N0] = {σ ∈ `[Ta, N0] : d

Ta
+ c > 0}.

Proof. Define set Q = {x ∈ Rn
+ | V(x) < χ(‖w‖E)}. The whole proof is performed in

two cases: x0 ∈ Qc and x0 ∈ Q\{0}. Let ť1 ∈ [t0, ∞) denote a time at which the trajectory
enters set Q for the first time.

Case 1. x0 ∈ Qc. In this case, for any t ∈ [t0, ť1), V(x) ≥ χ(‖w‖E). In view of (5), we
have the following:

D+V(x) ≤ −cV(x), t ∈
[
t0, ť1

)
.

From (6), V(x(tk)) ≤ e−dV(x(t−k )). Thus we have the following:

V(x(t)) ≤ e−dN(t,t0)−c(t−t0)V(x(t0)), t ∈
[
t0, ť1

)
. (8)
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From (2) and (8), we obtain that, if d > 0,

V(x(t)) ≤ e−d( t−t0
Ta −N0)−c(t−t0)V(x(t0))

= edN0 e−(
d

Ta +c)(t−t0)V(x(t0)), t ∈
[
t0, ť1

)
;

if d < 0,

V(x(t)) ≤ e−d( t−t0
Ta +N0)−c(t−t0)V(x(t0))

= e−dN0 e−(
d

Ta +c)(t−t0)V(x(t0)), t ∈
[
t0, ť1

)
.

In conclusion, the following holds:

V(x(t)) ≤ M̃e−(
d

Ta +c)(t−t0)V(x(t0)), t ∈
[
t0, ť1

)
,

where M̃ = max{edN0 , e−dN0}.
According to the definition of max-separable ISS Lyapunov function and the properties

of K functions, the following holds:

α1

(
max
i∈In
{xi}

)
= max

i∈In
{α1(xi)} ≤ max

i∈In
{Vi(xi)} = V(x). (9)

Then, we have the following:

α1(max
i∈In
{xi}) ≤ M̃e−(

d
Ta +c)(t−t0)V(x(t0))

≤ M̃e−(
d

Ta +c)(t−t0)α2(max
i∈In
{x0i}), t ∈

[
t0, ť1

)
.

So,

x(t) � α−1
1 (M̃e−(

d
Ta +c)(t−t0)α2(max

i∈In
{x0i}))1n

:= β(max
i∈In
{x0i}, t− t0)1n, t ∈

[
t0, ť1

)
, (10)

where β ∈ KL can be known from Lemma 4.2 in [35].
Let us now turn our attention to interval [ť1, ∞). At ť1, the system state goes into

set Q for the first time. If d ≥ 0, 0 < e−d ≤ 1, from Condition (6), the impulsive effect
is stabilizing or neutral. After time ť1, due to the stabilizing or neutral impulses and
condition (5), system states always stay in set Q, i.e., V(x) < χ(‖w‖E). So, from (9), we
have the following:

x(t) � α−1
1 ◦ χ(‖w‖E)1n := γ1(‖w‖E)1n, t ∈ [ť1, ∞),

where γ1 = α−1
1 ◦ χ ∈ K can be known from Lemma 4.2 in [35]. Combining this with (10),

we obtain the following:

x(t) � β(max
i∈In
{x0i}, t− t0)1n + γ1(‖w‖E)1n, t ∈ [t0, ∞).

Otherwise, if d < 0, the disturbance effect is performed for the impulses. Even if
the system state goes into set Q, it can also go out due to the disturbance effect of the
impulses. Let t̂1 := inf{t > ť1 : V(x(t)) ≥ χ(‖w‖E)} ≤ ∞. From the above result,
V(x(t)) < χ(‖w‖E) holds when t ∈

[
ť1, t̂1

)
. From (9), we obtain the following:

x(t) � α−1
1 ◦ χ(‖w‖E)1n = γ1(‖w‖E)1n, t ∈ [ť1, t̂1). (11)
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Next, let ť2 := min{t > t̂1 : V(x(t)) < χ(‖w‖E)} ≤ ∞. For time t̂1, it is the first time
after ť1 such that V(x(t)) ≥ χ(‖w‖E). From (5), the reason for V(x(t̂1)) ≥ χ(‖w‖E) just
comes from the impulsive effect. So, the t̂1 is also an impulsive instant. Repeating the
argument used to establish (10), with t̂1 in place of t0, we obtain the following:

V(x(t)) ≤ µM̃V(x(t̂1)) ≤ M̃e−(
d

Ta +c)(t−t̂−1 )e−dV(x(t̂−1 ))

≤ M̃e−(
d

Ta +c)(t−t̂−1 )e−dχ(‖w‖E)

≤ M̃e−dχ(‖w‖E), t ∈
[
t̂1, ť2

)
.

From (9), we conclude the following:

α1

(
max
i∈In
{xi}

)
≤ M̃e−dχ(‖w‖E), t ∈ [t̂1, ť2).

So,

x(t) � α−1
1 (M̃e−dχ(‖w‖E))1n := γ2(‖w‖E)1n, t ∈ [t̂1, ť2), (12)

where γ2(·) = α−1
1 (M̃e−dχ(·)) ∈ K can be known from Lemma 4.2 in [35].

From (10), (11) and (12), iteratively, we obtain x(t) � β(maxi∈In{x0i}, t− t0)1n for
t ∈

[
t0, ť1

)
; x(t) � γ1(‖w‖E)1n for t ∈

[
ť1, t̂1

)
∪
[
ť2, t̂2

)
∪ · · · ∪

[
ťk, t̂k

)
∪ · · · ; x(t) �

γ2(‖w‖E)1n for t ∈
[
t̂1, ť2

)
∪
[
t̂2, ť3

)
∪ · · · ∪

[
t̂k, ťk+1

)
∪ · · · . Therefore, the following holds:

x(t) � β(max
i∈In
{x0i}, t− t0)1n + γ(‖w‖E)1n, t ∈ [t0, ∞),

where γ = max{γ1, γ2}.
Case 2. x0 ∈ Q\{0}. In this case, ť1 = t0. When t > t0, from the proof of Case 1, we

obtain the following:

x(t) � β(max
i∈In
{x0i}, t− t0)1n + γ(‖w‖E)1n, t ∈ (t0, ∞).

when t = t0, by the definition of set Q and the definition of γ, we obtain the following:

x(t) � γ(‖w‖E)1n � β(max
i∈In
{x0i}, t− t0)1n + γ(‖w‖E)1n, t ∈ [t0, ∞).

In all, system (1) is ISS for all impulse sequences σ ∈ `0[Ta, N0].

Remark 2. For the study of nonlinear positive systems, the influence of impulses is considered
for the first time. The max-separable Lyapunov function method is combined with the average
dwell-time method for the study of positive systems. Using them, Theorem 1 provides the stability
criteria for NIPS.

Remark 3. System (1) is affected by both impulses and perturbation input. From the above proof,
upper bound γ1(‖w‖E) of the solution introduced by the perturbation input may be continuously
destroyed due to the action of the impulses. Here, under the general premise of the system positivity
requirement, we give a “new upper bound”, which is related to both the impulses and the perturbation
input by discussing the time periods of the impulses in sections.

Remark 4. The “new upper bound” is introduced because of the influence of impulses. By defining
setQ = {x ∈ Rn

+ | V(x) < χ(‖w‖)}, Rn
+ can be divided into two parts: Qc andQ. γ1(‖w‖) :=

α−1
1 ◦ χ(‖w‖) is the “old upper bound”. Without impulses, this bound can be seen as the ultimate

bound of the system states. However, due to the disturbance effect of the impulses (when d < 0), even
if the system states enter set {x : x � γ1(‖w‖)1n}, it may break through the “old upper bound”.
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From our derivation, the “new upper bound” γ = max{γ1, γ2} can be used as an “ultimate bound”
of the system states of the NIPS.

Remark 5. In Theorem 1, two kinds of impulses are mainly considered:
When d < 0, it must necessarily be with c > 0, and the value of Ta cannot be too small for

Theorem 1 to hold. In this case, (5) implies that system dynamics ẋ = f (x, w) are ISS with respect
to w, but impulses can probably destroy ISS, and we must require that impulses do not happen
very often. The number of impulses is limited to the following:

Nσ(t, s) ≤ t− s
Ta

+ N0, ∀ t ≥ s ≥ t0.

When d > 0, (6) implies that the impulse dynamics x(tk) = h(x(t−k ), w(tk)) are ISS with
respect to w. When c < 0, the system dynamics can potentially destroy ISS. So, we must require
more impulses to occur and the value of Ta cannot be too large for Theorem 1 to hold. The number of
impulses is limited to the following:

Nσ(t, s) ≥ t− s
Ta
− N0, ∀ t ≥ s ≥ t0.

Now, consider the NIPS (1) with f (x, w) = Ax + w and h(x, w) = Γx(t−k ), where
A = (aij) ∈ Rn×n, Γ = (γij) ∈ Rn×n

+ are the constant matrices, and the function w :
[t0, ∞) → Rn

+ is the disturbance input. Then, NIPS (1) reduces to a linear impulsive
positive system (LIPS) as follows:{

ẋ(t) = Ax(t) + w(t), t ≥ t0, t 6= tk;
x(tk) = Γx(t−k ), k ∈ N+.

(13)

For LIPS (13), the following proposition can be obtained by the max-separable ISS
Lyapunov function method.

Proposition 2. For the LIPS (13), suppose that A is a Metzler matrix, and that there exist numbers
ε0 ∈ R, ξ0 > 0 and vector v � 0 such that for any i ∈ In, the following holds:

aii +
n

∑
j=1,j 6=i

aij
vj

vi
≤ −ε0, γii +

n

∑
j=1,j 6=i

γij
vj

vi
≤ ξ0,

i.e.,

Av + ε0v � 0, Γv− ξ0v � 0.

Then, system (13) is ISS for all σ ∈ `0[Ta, N0] = {σ(·) ∈ `[Ta, N0] : ln ξ0
Ta
− ε0

2 < 0}.

Proof. See Appendix A.

Consider an affine nonlinear impulsive positive system (ANIPS) as follows:{
ẋ(t) = f (x(t)) + g(x(t))w(t), t ≥ t0, t 6= tk;
x(tk) = h(x(t−k )), k ∈ N+,

(14)

where function w : [t0, ∞)→ Rn
+ is the disturbance input. We first propose some definitions

and assumptions for system (14).
From Definition 3 , continuous vector field f : Rn → Rn, which is C1 on Rn\{0}, is

said to be cooperative if the Jacobian matrix (∂ f /∂x)(a) is Metzler for all a ∈ Rn
+\{0}.

Definition 6. f : Rn → Rn is said to be homogeneous of degree α if for all x ∈ Rn and all real
λ > 0, f (λx) = λα f (x) [36].
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Definition 7. h : Rn → Rn is order-preserving on Rn
+ if h(x) � h(y) for any x, y ∈ Rn

+,
x � y [36].

Assumption 1. (i) f is cooperative, continuous, continuously differentiable on Rn
+ and homoge-

neous of degree 1; (ii) g is continuous on Rn
+, and bounded by M; (iii) h : Rn

+ ×Rm
+ → Rn

+ is
non-negative, order preserving, and homogeneous of degree 1.

Proposition 3. If Assumption 1 holds, and there exist positive number η and vector v � 0
satisfying

h(v)− ηv ≺ 0,

then system (14) is ISS for all σ ∈ `0[Ta, N0] = {σ(·) ∈ `[Ta, N0] : 2 ln η
Ta

v + f (v) ≺ 0}.

Proof. See Appendix B.

4. Input-to-State Stabilization

In this section, on the basis of the ISS criteria provided for LIPS (13) and ANIPS
(14), an input-to-state stabilization problem is considered. For linear and affine nonlinear
impulsive systems, state-feedback and impulsive controllers were designed, respectively.

4.1. Input-To-State Stabilization For LIPS

Consider a linear impulsive system with control input u(t) as follows:{
ẋ(t) = Ax(t) + w(t) + Bu(t), t ≥ t0, t 6= tk;
x(tk) = Γx(t−k ), k ∈ N+,

(15)

where A ∈ Rn×n, w � 0, 0 � B = (bij) ∈ Rn×r, control input u ∈ Rr and Γ � 0.
When control input u ∈ Rr is in a state-feedback form as follows:

u(t) =
{

Kx(t), t ≥ t0, t 6= tk;
0, t = tk, k ∈ N+,

(16)

where K = (kij) ∈ Rr×n is the controller gain matrix to be designed and the closed-loop
system of (15) with a state-feedback controller can be given by the following:{

ẋ(t) = (A + BK)x(t) + w(t), t ≥ t0, t 6= tk;
x(tk) = Γx(t−k ), k ∈ N+.

(17)

Lemma 1. System (17) is a positive system if and only if A + BK is a Metzler matrix, and
Γ � 0 [12].

Lemma 2. For a matrix A ∈ Rn×n, A is Metzler if and only if there exists a constant ς, such that
A + ςI � 0 holds [37] .

Theorem 2. Consider system (17). For a prescribed vector ṽ ∈ Rr
+, if there exist constants ε0 ∈ R,

ξ0 > 0 and ς, vector v ∈ Rn
+ and z ∈ Rn, such that the following holds:

ṽT BTvA + BṽzT + ςI � 0, (18)

(A + 1
ṽT BTv BṽzT)v + ε0v � 0, (19)

Γv− ξ0v � 0, . (20)

then closed-loop system (17) with K = 1
ṽT BTv ṽzT is positive and ISS for all σ ∈ `0[Ta, N0] =

{σ(·) ∈ `[Ta, N0] : − ln ξ0
Ta

+ ε0
2 > 0}.
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Proof. See Appendix C.

When control-input vector u ∈ Rr is of the form

u(t) = Kx(t)δ(t− tk), k ∈ N+, (21)

where K ∈ Rr×n is the control-gain matrix to be designed, function δ(·) denotes the Dirac
impulsive distribution function. The closed-loop system of (15) with impulsive controller
can be given by the following:{

ẋ(t) = Ax(t) + w(t), t ≥ t0, t 6= tk;
x(tk) = (Γ + BK)x(t−k ), k ∈ N+,

(22)

where A ∈ Rn×n is a Metzler matrix, w � 0, B = (bij) ∈ Rn×r and Γ + BK ∈ Rn×n
+ .

Theorem 3. Consider system (22). For a given positive number Ta and a prescribed vector ṽ ∈ Rr
+,

if there exist constants ε0 ∈ R and ξ0 > 0, vectors v ∈ Rn
+ and z ∈ Rn, such that

ṽT BTvΓ + BṽzT � 0, (23)

Av + ε0v � 0, (24)

(Γ + 1
ṽT BTv BṽzT)v− ξ0v � 0, (25)

then closed-loop system (22) with K = 1
ṽT BTv ṽzT is positive and ISS for all σ ∈ `0[Ta, N0] =

{σ(·) ∈ `[Ta, N0] : − ln ξ0
Ta

+ ε0
2 > 0}.

Proof. See Appendix D.

4.2. Input-to-State Stabilization for ANIPS

Consider the affine nonlinear impulsive system with control input u(t):{
ẋ(t) = f (x(t)) + g(x(t))w(t) + Bu(t), t ≥ t0, t 6= tk;
x(tk) = h(x(t−k )), k ∈ N+,

(26)

where w � 0, 0 � B = (bij) ∈ Rn×r, and u ∈ Rr. From Proposition 3, a linear controller
was designed, such that the closed-loop system is positive and ISS.

When control input vector u ∈ Rr is in the form of (16), the closed-loop system of (26)
can be given by the following:{

ẋ(t) = f (x(t)) + g(x(t))w(t) + BKx(t), t ≥ t0, t 6= tk;
x(tk) = h(x(t−k )), k ∈ N+.

(27)

Theorem 4. Consider system (27). For a prescribed vector ṽ ∈ Rr
+, if there exist positive constant

η, vectors v ∈ Rn
+, and z ∈ Rn, such that

h(v)− ηv � 0, (28)

2
ln η

Ta
v + f (v) +

BṽzT

ṽT BTv
v ≺ 0, (29)

and Assumption 1 holds with f (x) being replaced by f (x) + BKx with K = 1
ṽT BTv ṽzT , then the

closed-loop system (27) is positive and ISS for all σ ∈ `0[Ta, N0].

Similar to the proof of Proposition 3, it is straightforward to (28) and (29). Here,
the proof of Theorem 4 is omitted.
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Remark 6. For a feasible solutions of (28) and (29), if function f (x) + BKx in system (27) is
cooperative, then control input u = BKx is admissible, which ensures that closed-loop system (27) is
positive and ISS. Otherwise, we need to adjust parameters ṽ and η to find another feasible solution.

Remark 7. Due to the cooperativeness of f (x) + BKx, the Metzler matrix property of ∂ f (x)
∂x + BK

must hold at positive vector v ∈ Rn
+. So, from Lemma 2, there exists positive constant ς, such that

the following holds:

ṽT BTv
∂ f (x)

∂x
(v) + BṽzT + ςI � 0.

Combining this with (28) and (29) can help us to find a feasible solution.

When control input vector u ∈ Rr is in the form of (21), the closed-loop system of (26)
can be given by the following:{

ẋ(t) = f (x(t)) + g(x(t))w(t), t ≥ t0, t 6= tk;
x(tk) = h(x(t−k )) + BKx(t−k ), k ∈ N+.

(30)

Theorem 5. Consider system (30). For a prescribed vector ṽ ∈ Rr
+, if there exist positive constant

η, vectors v ∈ Rn
+ and z ∈ Rn, such that the following holds:

h(v) +
1

ṽT BTv
BṽzTv− ηv � 0,

2
ln η

Ta
v + f (v) ≺ 0,

and Assumption 1 holds with h(x) being replaced by h(x) + BKx with K = 1
ṽT BTv ṽzT . Then, the

closed-loop system (30) is positive and ISS for all σ ∈ `0[Ta, N0].

Proof. Similar to the proof of Proposition 3, Theorem 5 can straightforwardly be obtained.
Here, the proof is omitted.

5. Numerical Example

In this section, three numerical examples are presented to illustrate the effectiveness
of our proposed theoretical results.

Example 1. Consider the nonlinear dynamical system given by (26) with the following:

f (x) =

 −x1 + 3x2 − 2
√

x2
1 + x2

2

3x1 − 2x2 −
√

x2
1 + x2

2

, g(x) =
[

sin(x1)
cos(x2)

]
and B =

[
0.6 1

0 1

]
,

subject to impulses
h(x(tk)) = Γx(t−k ),

where Γ =

[
1.2 1
1.2 2.5

]
, w is the disturbance input bounded by 1. It is easy to verify that f

is cooperative and homogeneous of degree 1; g is continuous on Rn
+ and bounded by 1; h is non-

negative, order-preserving, and homogeneous of degree 1. For system (26), when w ≡ 1 and u ≡ 0,
the simulation curves of (x1, x2)

T with initial value (40, 50)T are shown in Figure 1. Figure 1
shows that the state is ultimately unbounded.
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Figure 1. State x(t) of corresponding system (26) with w ≡ 1, u ≡ 0 and impulse instants satisfying
tk = tk−1 + 1.6 for any integer k ≥ 1.

Now, we design an impulsive controller to make system (26) input-to-state stabilizable. We
take the impulsive controller in the form of (21) with K = 1

ṽT BTv ṽzT . Then, applying the ga function

in MATLAB when Ta = 1.6, ṽ =

[
1
1

]
and η =

[
2.7183
2.7183

]
, one feasible solution to Theorem 5

can be obtained:

v =

[
0.1437
0.3068

]
and z =

[
−0.2206
−0.0004

]
.

Therefore, the impulsive control gain matrix can be obtained. K =

[
−0.4110 − 0.0007
−0.4110 − 0.0007

]
.

The simulation curves of (x1, x2)
T with initial value (80, 120)T for closed-loop system (30) are

shown in Figure 2, which shows that the state ultimately remains bounded.

0 5 10 15 20 25

time

0

20
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60
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st
at
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x

x
1

x
2

Figure 2. State x(t) of corresponding closed-loop system (30) with w ≡ 1 and impulse instants
satisfying tk = tk−1 + 1.6 for any integer k ≥ 1.
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Example 2. Consider the nonlinear dynamical system given by (26) with the following:

f (x) =

 3x1 + x2 − 3
√

x2
1 + x2

2

x1 − 2x2 −
√

x2
1 + x2

2

, g(x) =
[

sin(x1)
cos(x2)

]
and B =

[
3 5

0.5 0

]
,

subject to the following impulses:
h(x(tk)) = Γx(t−k ),

where Γ =

[
1 0.2
1 2

]
, w is the disturbance input bounded by 1. It is easy to verify that f is

cooperative and homogeneous of degree 1. g is continuous on Rn
+ and bounded by 1. h is non-

negative, order-preserving, and homogeneous of degree 1. For system (26), when w ≡ 1 and u ≡ 0,
the simulation curves of (x1, x2)

T with initial value (40, 50)T are shown in Figure 3. Figure 3
shows that the state is ultimately unbounded.

Now, we design a state-feedback controller to make system (26) input-to-state stabilizable. We
take the state controller in the form of (16) with K = 1

ṽT BTv ṽzT . Then, applying the ga function

in MATLAB when Ta = 1, ṽ =

[
1
1

]
and η =

[
4
4

]
, one feasible solution to Theorem 4 can be

obtained:

v =

[
0.6319
1.0324

]
and z =

[
−4.1649
1.1533

]
.

Therefore, the state control-gain matrix can be obtained. K =

[
−0.7475 0.207
−0.7475 0.207

]
. The

simulation curves of (x1, x2)
T for it with initial value (20, 30)T are shown in Figure 4. Figure 4

shows that the state remains bounded.

0 5 10 15

time

0

50

100

150

st
at

e 
x

x
1

x
2

Figure 3. State x(t) of system (26) with w ≡ 1, u ≡ 0 and impulse instants satisfying tk = tk−1 + 1
for any integer k ≥ 1.



Mathematics 2021, 9, 1663 13 of 20

0 1 2 3 4 5 6

time

0

5

10

15

20

25

30

st
at

e 
x

x
1

x
2

Figure 4. State x(t) of corresponding closed-loop system (27) with w ≡ 1 and impulse instants
satisfying tk = tk−1 + 1 for any integer k ≥ 1.

Example 3. Consider the nonlinear dynamical system given by (26) with the following:

f (x) =

 2x1 + x2 +
√

x2
1 + x2

2

x1 + x2 +
√

x2
1 + x2

2

, g(x) =
[

sin(x1)
cos(x2)

]
and B =

[
1 1

0.5 0.4

]
,

subject to the following impulses:
h(x(tk)) = Γx(t−k ),

where Γ =

[
1.1 0.2
0.5 0.2

]
, w is the disturbance input bounded by 1. It is easy to verify that f is

cooperative and homogeneous of degree 1. g is continuous on Rn
+ and bounded by 1. h is non-

negative, order-preserving, and homogeneous of degree 1. For system (26) with w ≡ 1 and u ≡ 0,
the simulation curves of (x1, x2)

T with initial value (30, 20)T are shown in Figure 5. Figure 5
shows that the state is ultimately unbounded.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

0

100

200

300

400

500

600

700

800

900

1000

st
at

e 
x

x
1

x
2

Figure 5. State x(t) of system (26) with w ≡ 1, u ≡ 0 and impulse instants satisfying tk = tk−1 + 0.15
for any integer k ≥ 1.
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Now, we design an impulsive controller to make system (26) input-to-state stabilizable. We
take the impulsive controller in the form of (21) with K = 1

ṽT BTv ṽzT . Then, applying the ga function

in MATLAB when Ta = 0.15, ṽ =

[
1
1

]
and η =

[
0.3
0.3

]
, one feasible solution to Theorem 5

can be obtained:

v =

[
1.8135
1.5727

]
and z =

[
−2.1381
0.3307

]
.

Therefore, the impulsive control gain matrix can be obtained. K =

[
−0.4240 − 0.0656
−0.4240 − 0.0656

]
.

The simulation curves of (x1, x2)
T for that with initial value (200, 120)T are shown in Figure 6.

Figure 6 shows that the state remains bounded.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time

0

50

100

150

200

250

300

350

st
at

e 
x

x
1

x
2

Figure 6. State x(t) of corresponding closed-loop system (30) with w ≡ 1 and impulse instants
satisfying tk = tk−1 + 0.15 for any integer k ≥ 1.

Remark 8. In Example 1, the continuous dynamics of the system are stable, but the impulsive
effects are unstable. Figure 1 shows that the system is ultimately unbounded. Under the effect of
the impulsive controller, Figure 2 shows that the system state remains bounded. In Example 2,
the continuous dynamics and the impulsive effects of the system are all unstable. Figure 3 shows that
the original impulsive positive system is ultimately unbounded. With our state-feedback controller,
the continuous dynamics of the system is stable such that the whole impulsive system is stable.
Figure 4 verifies it in the aspect of simulation. In Example 3, the continuous dynamics and the
impulsive effects of the system are all unstable. This can be verified from Figure 5. In order to
stabilize the system, an impulsive controller was designed. Figure 6 shows that the states of the
original system with impulsive controller remain bounded.

6. Conclusions

In this paper, the problem of ISS for NIPS was put forward for the first time. On the
basis of the max-separable ISS Lyapunov function method, we introduced a sufficient
condition on ISS for general NIPS. With regard to the NIPS, the following two cases were
included: the continuous dynamics were stable, but the impulsive effects were unstable;
the impulses were stable, while the continuous dynamics were unstable. Then, ISS criteria
of LTPS and ANIPS were given, respectively. Through them, the ISS properties of the
systems were judged directly from the algebraic and differential characteristics of the
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systems. The ISS criteria were also used for the input-to-state stabilization of LIPS and
ANIPS with two kinds of controllers designed: state-feedback and impulsive controllers.
Three numerical examples were given to verify the effectiveness of our proposed results.
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Appendix A

Proof of Proposition 2. Define function V(x) in the following form:

V(x) = max
i∈In
{ xi

vi
}.

From (7), we have the following:

D+V(x) = max
j∈J (x)

1
vj
(Ajx + wj).

Let subscript m denote the index that makes the upper-right Dini derivative of V
maximal. We then obtain the following:

D+V(x) =
1

vm
(Amx + wm)

= amm
xm

vm
+

n

∑
j=1,j 6=m

amj
xj

vj
+

wm

vm

= amm
xm

vm
+

n

∑
j=1,j 6=m

amj
vj

vm

xj

vj
+

wm

vm

≤ amm
xm

vm
+

n

∑
j=1,j 6=m

amj
vj

vm

xm

vm
+

wm

vm

= (amm +
n

∑
j=1,j 6=m

amj
vj

vm
)

xm

vm
+

wm

vm

≤ −ε0
xm

vm
+

wm

vm
.

If we let χ(·) = 1
ε × ·, where ε = ε0

2 , then the following holds:

‖x‖v
∞ ≥ χ(‖w‖E)⇒ D+V ≤ −(ε0 − ε)

xm

vm
= −(ε0 − ε)V = − ε0

2
V.
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From system (13), we have the following:

V(h(x, w)) = V(Γx) = max
j∈J (x)

{
Γjx
vj
} = Γm

vm
x

= γmm
xm

vm
+

n

∑
j=1,j 6=m

γmj
vj

vm

xj

vj

≤ γmm
xm

vm
+

n

∑
j=1,j 6=m

γmj
vj

vm

xm

vm

≤ ξ0
xm

vm
= ξ0V.

From the above, it is easy to see that (4), (5), and (6) hold with the following: c = ε0
2

and d = − ln ξ0. So, V(x) = maxi∈In{
xi
vi
} is a max-separable ISS Lyapunov function for

LTPS (13). From Theorem 1, system (13) is ISS for all σ ∈ `0[Ta, N0] = {σ(·) ∈ `[Ta, N0] :
ln ξ0

Ta
− ε0

2 < 0}.

Appendix B

Proof of Proposition 3. Define function V(x) in the following form:

V(x) = max
i∈In
{ xi

vi
}.

From (7), we have the following:

D+V(x) = max
j∈J (x)

1
vj
( f j(x(t)) + gj(x(t))w).

Let subscript m denote the index that makes the upper-right Dini derivative of V
maximal. Then, by x � ‖x‖v

∞v, we have the following:

D+V(x) ≤ 1
vm

( fm(x(t)) + gm(x(t))w)

≤ 1
vm

(‖x‖v
∞ fm(v) + M‖w‖E).

If we set χ(·) = 2M
max

i=1,...,n
{| fi(v)|}

× ·,

‖x‖v
∞ ≥ χ(‖w‖E)⇒ D+V ≤ fm(v)

2vm
‖x‖v

∞ ≤ −cV,

where c = −min
i∈In
{ fi(v)

2vi
}.

For system (14), we also have the following:

V(h(x, w)) = V(h(x(t))) = max
i∈In
{hi(x(t))

vi
}

≤ 1
vm

(hm(x(t))).

From Assumption 1, h is order-preserving. We then have the following:

V(h(x, w)) ≤ 1
vm

(hm(‖x‖v
∞v)).



Mathematics 2021, 9, 1663 17 of 20

Because h is homogeneous, we have the following:

V(h(x, w)) ≤ 1
vm

(‖x‖v
∞hm(v))

≤ ηm‖x‖v
∞ ≤ ηV.

where η = max
i∈In
{ηi}. In all, for our function V(x) = max

i∈In
{ xi

vi
}, (4), (5) and (6) hold. So, it is

a max-separable ISS Lyapunov function for ANIPS (14). From Theorem 1, system (14) is
ISS for all σ ∈ `0[Ta, N0] = {σ(·) ∈ `[Ta, N0] : 2 ln η

Ta
v + f (v) ≺ 0}.

Appendix C

Proof of Theorem 2. The proof is divided into two parts.

(1) Positivity of system (17).

Since ṽ � 0, B � 0, v � 0, ṽ ∈ Rr, B ∈ Rn×r, v ∈ Rn, it is obtained that ṽT BTv is a
positive constant. From (18), we obtain the following:

A +
1

ṽT BTv
BṽzT +

ς

ṽT BTv
I � 0.

According to Lemma 2, A + 1
ṽT BTv BṽzT is a Metzler matrix. From the definition of K, it can

be obtained that A + BK is a Metzler matrix. Therefore, by Lemma 1, closed-loop system
(17) is positive.

(2) ISS of closed-loop system (17).

Define function V(x) in the following form:

V(x) = max
i∈In
{ xi

vi
}.

From (7), we have the following:

D+V(x) = max
j∈J (x)

1
vj
((Aj + BjK)x + wj).

Let subscript m denote the index that makes the upper-right Dini derivative of V
maximal, we obtain the following:

D+V(x) =
1

vm
((Am + BmK)x + wm)

= (amm +
r

∑
i=1

1
ṽT BTv

bmivizT
m)

xm

vm
+

n

∑
j=1,j 6=m

(amj +
r

∑
i=1

1
ṽT BTv

bmivizT
j )

xj

vj
+

wm

vm

= (amm +
r

∑
i=1

1
ṽT BTv

bmivizT
m)

xm

vm
+

n

∑
j=1,j 6=m

(amj +
r

∑
i=1

1
ṽT BTv

bmivizT
j )

vj

vm

xj

vj
+

wm

vm

≤ (amm +
r

∑
i=1

1
ṽT BTv

bmivizT
m)

xm

vm
+

n

∑
j=1,j 6=m

(amj +
r

∑
i=1

1
ṽT BTv

bmivizT
j )

vj

vm

xm

vm
+

wm

vm

= (amm +
r

∑
i=1

1
ṽT BTv

bmivizT
m +

n

∑
j=1,j 6=m

(amj +
r

∑
i=1

1
ṽT BTv

bmivizT
j )

vj

vm
)

xm

vm
+

wm

vm

≤ −ε0
xm

vm
+

wm

vm
.

If we let χ(·) = 1
ε × ·, where ε = ε0

2 , and the following holds:

‖x‖v
∞ ≥ χ(‖w‖E)⇒ D+V ≤ −(ε0 − ε)

xm

vm
= −(ε0 − ε)V = − ε0

2
V.
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For system (17), by Appendix A, we obtain the following:

V(h(x, w)) ≤ ξ0
xm

vm
= ξ0V.

From the above, it is easy to see that (4), (5), and (6) hold with c = ε0
2 and d = − ln ξ0.

So, V(x) = maxi∈In{
xi
vi
} is a max-separable ISS Lyapunov function for LTPS (17). From

Theorem 2, system (17) is ISS for all σ ∈ `0[Ta, N0] = {σ(·) ∈ `[Ta, N0] : − ln ξ0
Ta

+ ε0
2 >

0}.

Appendix D

Proof of Theorem 3. The proof is divided into two parts.

(1) Positivity of system (22).

Since ṽ � 0, B � 0, v � 0, ṽ ∈ Rr, B ∈ Rn×r, v ∈ Rn, it is obtained that ṽT BTv is a
positive constant. From (23), we obtain the following:

Γ +
1

ṽT BTv
BṽzT � 0,

i.e., Γ + BK � 0. In addition, because A is a Metzler matrix, from Lemma 1, closed-loop
system (22) is positive.

(2) ISS of closed-loop system (22).

Define function V(x) in the form of the following:

V(x) = max
i∈In
{ xi

vi
}.

From (7) and Appendix A, we have the following:

D+V(x) ≤ −ε0
xm

vm
+

wm

vm
.

If we let χ(·) = 1
ε × ·, where ε = ε0

2 ,

‖x‖v
∞ ≥ χ(‖w‖E)⇒ D+V ≤ −(ε0 − ε)

xm

vm
= −(ε0 − ε)V = − ε0

2
V.

For system (22), we also have the following:

V(h(x, w)) = V((Γ + BK)x) = max
j∈J (x)

{
(Γj + BjK)x

vj
} = (Γm

+
BmK)vmx

= (γmm +
r

∑
i=1

1
ṽT BTv

bmivizT
m)

xm

vm
+

n

∑
j=1,j 6=m

(γmj +
r

∑
i=1

1
ṽT BTv

bmivizT
j )

xj

vj

≤ (γmm +
r

∑
i=1

1
ṽT BTv

bmivizT
m)

xm

vm
+

n

∑
j=1,j 6=m

(γmj +
r

∑
i=1

1
ṽT BTv

bmivizT
j )

vj

vm

xj

vj

≤ ξ0
xm

vm
= ξ0V.

From the above, it is easy to see that (4), (5), and (6) hold with c = ε0
2 and d = − ln ξ0.

So, V(x) = maxi∈In{
xi
vi
} is a max-separable ISS Lyapunov function for LTPS (22). From

Theorem 3, system (22) is ISS for all σ ∈ `0[Ta, N0] = {σ(·) ∈ `[Ta, N0] : − ln ξ0
Ta

+ ε0
2 > 0}.
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