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Abstract: A new finite element method/boundary element method (FEM/BEM) scheme is proposed
for the solution of the 2D magnetic static and quasi-static problems with unbounded domains. The
novelty is an original approach in the treatment of the outer region. The related domain integral
is eliminated at the discrete level by using the finite element approximation of the fundamental
solutions (Green’s functions) at every node of the related mesh. This “FEM-Green” approach replaces
the standard boundary element method. It is simpler to implement because no integration on the
boundary of the domain is required. Then, the method leads to a substantially reduced computational
burden. Moreover, the coupling with finite elements is more natural since it is based on the same
Galerkin approximation. Some examples with open boundary and nonlinear materials are presented
and compared with the standard finite element method.

Keywords: magnetostatics; eddy-currents; Green functions; boundary element-finite element cou-
pling; Poisson problem; nonlinear material

1. Introduction

A large number of electromagnetic problems involve finding fields in the vicinity of
devices embedded in an infinite domain. However, classical volume discretization methods,
such as the finite element method, are inherently inapplicable. Various strategies have
been developed over the years, such as simple truncation of outer boundaries, ballooning,
conformal mappings, infinite elements, hybrid finite element method (FEM)-boundary
element method (BEM) schemes, and others. An excellent review is given in [1]. More
specifically, FEM/BEM methods exploit the flexibility of the FEM for the treatment of
nonhomogeneous and nonlinear materials, and the ability of the BEM to consider open
regions [2]. The FEM is generally based on the Galerkin approximation of a weak or
variational formulation, while the standard BEM is normally deduced from the Green’s
second identity for reducing domain integrals into boundary ones [3].

Instead of this classical BEM approach, in this paper, we propose an alternative so-
called FEM-Green formulation as first described by the author in [4,5]. It is obtained
by using the FEM approximation of fundamental solutions (Green’s functions) [6,7] and
consists of a discrete equivalent of the second Green’s identity. More precisely, the domain
integral of the open domain is naturally canceled by a combination of the Galerkin for-
mulation of the boundary value problem under study, and the one associated with the
fundamental solution for the Dirac delta loading every node of a finite element mesh of
this region. The layer of finite elements that are adjacent to the boundary of the FEM region
is only required with our method. Any extended mesh in some parts of the outer domain
is used for the computation of fields at a postprocessing step.

The implementation of this new scheme is simpler as no boundary integration, either
analytical or numerical (Gaussian quadrature), on the FEM/BEM interface is required and
the coupling with the standard FEM used in the inner part of the problem appears to be ex-
tremely natural. In the two previous papers of the author, the mathematical developments
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were neither presented with a source term nor in the context of magnetic field problems. In-
deed, those problems have their own specificities such as a large difference of permeability
between air and ferromagnetic materials. Moreover, time-harmonic eddy-current problems
are described here by a complex-valued equation, which was not considered before. Thus,
it is worth exploring the applicability of our method to such problems. It is the objective of
the present paper. Therefore, the method is applied to 2D magnetostatic and eddy-current
open boundary problems and some practical examples with open boundary and nonlinear
domains are presented in the last section in order to assess the performance of our method.

2. Mathematical Model Description

Various FEM/BEM hybrid methods are used for the computation of open boundary
problems where the classical BEM formulation is used for the treatment of the open region.
Green’s second identity is normally employed to derive a boundary-only formulation,
avoiding the discretization of the domain. The principle of the proposed method is different
and is based upon a special FEM treatment using the fundamental solution (Green’s
function) of the boundary value problem. This allows for a direct elimination of the domain
integral at the discrete level through a Galerkin approach.

The method is presented in the context of the modified Helmholtz problem describing
time-harmonic two-dimensional quasi-static problems by using magnetic vector potential
(MVP) A and the magnetostatics situation as a particular case. Magnetic vector potential
possesses only a longitudinally directed component denoted as A (also commonly called
magnetic vector potential), so that the magnetostatic vector Poisson equation degenerates
to its scalar counterpart that is stated here below. Since the 2D aspect is not mandatory
for the method, it could be extended to 3D problems. This speculation is valid for scalar
potential problems, e.g., in electrostatics using the scalar electric potential, as it is mostly the
case, or in 3D magnetostatics using a magnetic scalar potential [8]. However, it should be
fully analyzed for magnetic field problems using full MVP. Figure 1 depicts the general 2D
configuration where Ω1 is the open region (air), including the source region Ωs with current
density Js, and Ω2 is the inner region that can be nonhomogeneous and/or nonlinear
and/or with eddy-currents, depending on whether a magnetostatic or an eddy-current
analysis is considered.

Permeability µ and conductivity σ are assumed as essential material properties and
we consider no Dirichlet or Neumann boundary condition for the sake of simplicity in the
mathematical description of the method. The governing equations are:

∇2 A = −µ0 Js in Ω1, (1a)

and
∇2 A− jωσµ A = 0 in Ω2, (1b)

while the following continuity conditions hold on the interface Γint:

A1 = A2 and
1

µ0

∂A
∂n

∣∣∣∣
1
=

1
µ

∂A
∂n

∣∣∣∣
2
. (2)

Potential A and current density Js are represented in phasor form with angular fre-
quency ω in case of a time-harmonic analysis.

2.1. The FEM-Green Formulation

The FEM-Green formulation is applied to the open region Ω1 and is derived from a
finite element mesh. It is first assumed that domain Ω1 is bounded by the interface Γint
and a remote boundary Γ∞ where the homogeneous Dirichlet boundary condition (A = 0)
is considered (Figure 1). The mathematical treatment will show that the domain integral
vanishes so that only a layer of finite elements along the interface Γint is required and there
will be no problem when outer boundary Γ̂∞ extends to infinity.
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Mathematical treatment used here is classical and can be found in many standard books
such as [9]. Consider the well-known Galerkin problem related to Poisson’s Equation (1a):∫

Ω̂1

∇Â · ∇Nj dΩ =
∫

Ω̂s
µ0 Js Nj dΩ ∀ j ∈ Ω̂1\Γ̂∞, Â = 0 on Γ̂∞, (3)

where the Nj’s are the classical interpolation functions defined on finite element meshes
Ω̂1 and Ω̂s of the domains Ω1 and Ωs, respectively (Figure 1). We will assume first-
order triangular elements for the sake of clarity in the presentation of the method. The
approximate solution Â is given by:

Â = ∑
k∈Ω̂1

Nk Âk. (4)

The combination of Equations (3) and (4) leads to a sparse system of linear equations,
of which the matrix entries are of the form:

sjk =
∫

Ω̂1

∇Nj · ∇NkdΩ. (5)

Let us denote

ΦÂ,Σj
=
∫

Ω̂1

∇Â· ∇Nj dΩ = ∑
k∈Ω̂1

sjk Âk ∀ j ∈ Ω̂1. (6)

It is demonstrated in [10] that this term corresponds physically to the inward flux
of ∇Â across the “box” Σj associated with node j in the dual mesh obtained from the
barycentric subdivision of the primal 2D mesh. In particular, at a node j belonging to the
discretization of the interface Γint between Ω1 and Ω2, the quantity ΦÂ,Σj

is interpreted as
the flux through the “cap” Σj, as shown in Figure 2.

However, this interpretation is only valid for first-order elements, and it is not the
case of higher-order elements where it is a mere mathematical equivalent variable. Yet, this
variable obeys a continuity condition across the interface, as will be shown in Section 2.2.
Parameters ΦÂ,Σj

are used here instead of the approximation of the normal derivative that
is normally present in the classical boundary element method [3].



Mathematics 2021, 9, 1662 4 of 11

Mathematics 2021, 9, x FOR PEER REVIEW 4 of 12 
 

 

centric subdivision of the primal 2D mesh. In particular, at a node 𝑗 belonging to the dis-
cretization of the interface Γ௜௡௧ between Ωଵ and Ωଶ, the quantity Φ஺෠,ஊೕ is interpreted as 
the flux through the “cap” Σ௝, as shown in Figure 2. 

 
Figure 2. Typical finite element triangular mesh and barycentric “cap” ∑j for an interface node j. 

However, this interpretation is only valid for first-order elements, and it is not the 
case of higher-order elements where it is a mere mathematical equivalent variable. Yet, 
this variable obeys a continuity condition across the interface, as will be shown in Section 
2.2. Parameters Φ஺෠,ஊೕ are used here instead of the approximation of the normal derivative 
that is normally present in the classical boundary element method [3]. 

As in the standard BEM, the 2D fundamental solution 𝒢௜ = −1/2𝜋 ln 𝑟௜ of Laplace’s 
equation is exploited in order to eliminate the domain integral. Let us recall that it is ob-
tained from the equation ∇ଶ𝒢௜ = −𝛿௜  in  Ωଵ,   with  𝒢௜ = − 12𝜋 ln 𝑟௜  on 𝜕Ωଵ, (7) 

where 𝛿௜ is the Dirac delta function at any point 𝑖 (Figure 1). 
A FEM solution exists [6,7], and is readily derived from the Galerkin problem asso-

ciated with the formulation (7): න ∇𝒢መ௜ · ∇𝑁௝ 𝑑Ω ஐ෡ భ = න 𝛿௜ 𝑁௝ 𝑑Ω ஐ෡ భ       ∀ 𝑗 ∈ Ω෡ଵ\𝜕Ω෢ ଵ,  𝒢መ௜ = 𝒢௜ on 𝜕Ω෢ ଵ, (8) 

where the FEM solution 𝒢መ௜ is interpolated as 𝒢መ௜ = ෍  𝑁௝ 𝒢መ௜,௝௝∈ஐ෡ భ .  (9) 

An illustrative example of the FEM solution 𝒢መ௜ of a Green’s function 𝒢௜ on an arbi-
trary domain Ω is given in Figure 3. 

 
Figure 3. Example of the FEM discretization of a Green’s function on a domain Ω. 

Figure 2. Typical finite element triangular mesh and barycentric “cap” Σj for an interface node j.

As in the standard BEM, the 2D fundamental solution Gi = −1/2π ln ri of Laplace’s
equation is exploited in order to eliminate the domain integral. Let us recall that it is
obtained from the equation

∇2Gi = −δi in Ω1, with Gi = −
1

2π
ln ri on ∂Ω1, (7)

where δi is the Dirac delta function at any point i (Figure 1).
A FEM solution exists [6,7], and is readily derived from the Galerkin problem associ-

ated with the formulation (7):∫
Ω̂1

∇Ĝi · ∇Nj dΩ =
∫

Ω̂1

δi Nj dΩ ∀ j ∈ Ω̂1\ ˆ∂Ω1, Ĝi = Gi on ˆ∂Ω1, (8)

where the FEM solution Ĝi is interpolated as

Ĝi = ∑
j∈Ω̂1

Nj Ĝi,j. (9)

An illustrative example of the FEM solution Ĝi of a Green’s function Gi on an arbitrary
domain Ω is given in Figure 3.
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In the same way as for Â given by (6), we can write the nodal approximation:

ΦĜi ,Σj
=
∫

Ω̂1

∇Ĝi · ∇Nj dΩ = ∑
k∈Ω̂1

sjk Ĝi,k ∀ j ∈ Ω̂1. (10)

Note that ΦĜi ,Σi
= 1, as a consequence of Gauss’s law for any internal node i of the

mesh Ω̂1. If we combine Equations (3)–(6) and (9), a little algebra suffices to show that:
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∫
Ω̂1

∇Â · ∇Ĝi dΩ = ∑
j∈Ω̂1

 ∑
k∈Ω̂1

sjk Âk

 Ĝi,j = ∑
j∈Ω̂1\ ˆ∂Ω1

∫
Ω̂s

µ0 Js Nj dΩ Ĝi,j + ∑
j∈ ˆ∂Ω1

ΦÂ,Σj
Ĝi,j. (11)

By performing integration of the source term, (11) becomes:

∫
Ω̂1

∇Â · ∇Ĝi dΩ = ∑
j∈Ω̂1

 ∑
k∈Ω̂1

sjk Âk

 Ĝi,j = µ0 Js ∑
j∈Ω̂s

∑
∆j∈Ts,j

∣∣∆j
∣∣

3
Ĝi,j + ∑

j∈ ˆ∂Ω1

ΦÂ,Σj
Ĝi,j, (12)

where Ts,j is the set of triangles ∆j of the source region Ω̂s sharing the node j and
∣∣∆j
∣∣

denotes the area of the triangle.
Conversely, using (4), adapted to Ĝi and Equation (10) instead of (6), we can eas-

ily write:

∫
Ω̂1

∇Ĝi · ∇Â dΩ = ∑
j∈Ω̂1

 ∑
k∈Ω̂1

sjk Ĝi,k

Âj = Âi + ∑
j∈ ˆ∂Ω1

ΦĜi ,Σj
Âj. (13)

Now, by equating (12) to (13), we can write the following expression:

Âi + ∑
j∈Γ̂int

ΦĜi ,Σj
Âj = ∑

j∈Γ̂int

Ĝi,j ΦÂ,Σj
+ µ0 Js ∑

j∈Ω̂s

∑
∆j∈Ts,j

∆j

3
Ĝi,j, (14)

where the domain contribution is eliminated as announced previously, and ˆ∂Ω1 has been re-
placed by Γ̂int since it is now licit to extend Γ̂∞ the outer boundary at infinity. Equation (14)
can be regarded as a discrete equivalent of Green’s second identity that has been derived
directly from the Galerkin approach.

Henceforth, it is necessary to write (14) for all the nodes i belonging to the boundary Γ̂int,
in order to derive a consistent linear system of equations. However, due to the singularity
of the Gi function, the boundary condition of the problem (7) must be changed as:

Gi = −
1

2π
ln ri on Γ̂int\{i} and

∂Gi
∂n

= 0 at {i}, (15)

so that the Galerkin formulation (8) is replaced by:∫
Ω̂1

∇Ĝi · ∇Nj dΩ = δij ci ∀ j ∈
(
Ω̂1\Γ̂int

)
∪ {i}, Ĝi = Gi on Γ̂int\{i}, (16)

where δij is the common Kronecker symbol and ci is the classical geometric factor of
standard BEM, i.e., it is equal to the ratio θi/2π, where θi is the internal (with respect to the
FEM region Ω2) angle at node i [3]. It is easy to show that, in the FEM-Green context:

ci = ΦĜi ,Σi
and ci + ∑

j∈Γ̂int\{i}
ΦĜi ,Σj

= 1, (17)

that can again be interpreted as Gauss‘s law at the discrete level. Finally, the FEM-Green
scheme leads to the system of the n simultaneous equations:

∑
j∈Γ̂int

ΦĜi ,Σj
Âj − ∑

j∈Γ̂int

Ĝi,j ΦÂ,Σj
= µ0 Js ∑

j∈Ω̂s

∑
∆j∈Ts,j

∆j

3
Ĝi,j ∀ i ∈ ˆ∂Ω1, (18)

where potential Âj and flux ΦÂ,Σj
values are the unknown parameters along the

interface Γ̂int.
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At this point, the solution of (18) requires the computation of the FEM approximations
Ĝi that is highly time consuming and does not make sense since Ω̂1 is unbounded in the
context of open boundary problems. Then, coefficients ΦĜi ,Σj

and Ĝi are modified by using

the exact fundamental solutions Gi instead of Ĝi. More precisely the following interpolant
should be considered:

Gi,I = ∑
j∈Ω̂1

Nj Gi(j) = − ∑
j∈Ω̂1

Nj
1

2π
ln rij, (19)

where rij is the distance between nodes i and j. However, the infinite value Gi(i) must be
replaced by a value G∗

i,i
that can be derived from the discrete Gauss’s law (17), i.e.,

ĉi = ∑
k 6=i

sik Gi(k) + sii G∗i,i (20a)

and:

ĉi + ∑
j∈Γ̂int\{i}

(
∑
k 6=i

sjk Gi(k) + sji G∗i,i

)
= 1, (20b)

Parameter ĉi can be considered as an estimate of the geometric factor ci described
above. By eliminating this parameter between Equations (20a) and (20b), after some algebra
that we skip for the sake of conciseness, we obtain the expression of G∗

i,i
:

G∗
i,i
=

1−∑j∈Γ̂int
∑k 6=i sjk Gi(k)

∑j∈Γ̂int
sji

. (21)

As outlined above, meshing the whole domain Ω̂1 is not a necessity since the internal
nodes are not involved in (18). In fact, that would not make sense since this outer region is
unbounded. A single layer of finite elements along the boundary ∂Ω1 (in gray in Figure 1)
is sufficient. Any internal mesh of Ω1 is used for field calculation at a postprocessing step.

By comparing with the implementation of the boundary element method, no cumber-
some analytical or numerical (Gaussian quadrature) integration is required to compute
the coefficients ΦGi,I ,Σj , Gi(j) and G∗

i,i
of (18) so that an obvioussignificant reduction of the

computational burden is expected. However, the computational effort to build the linear
system (18) still scales as O

(
n2) as in classical BEM.

Lastly, note that the method can be applied to axisymmetrical problems where the
fundamental solution is based on a complete elliptic integral of the first kind as it was
shown by the author in [5].

2.2. FEM/FEM-Green Coupling

A complete set of equations associated with the hybrid FEM/FEM-Green is necessary
to solve the whole problem. Then, the Galerkin problem related to the finite element
domain Ω2 has now to be derived. By referring again to Figure 1 and Equation (1b), the
governing equation is either:

∇ 1
µ
∇A = 0 in Ω2, (22)

for general nonlinear magnetostatic problems, or

∇2 A− jωσµ A = 0 in Ω2, (23)

in case of time-harmonic eddy-current problems.
The FEM problem is given by the respective Galerkin formulations∫

Ω̂2

1
µ
∇Â · ∇Nj dΩ = 0 ∀ j ∈ Ω̂2\Γ̂int (24)
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and ∫
Ω̂2

(
∇Â · ∇Nj + jωσµ A

)
dΩ = 0 ∀ j ∈ Ω̂2\Γ̂int. (25)

The Galerkin equation written for a node j belonging to the interface Γ̂int in a conven-
tional FEM method would be:∫

Ω̂1

1
µ0
∇Â · ∇Nj dΩ +

∫
Ω̂2

1
µ
∇Â · ∇Nj dΩ =

∫
Ω̂s⊂Ω̂1

Js Nj dΩ. (26)

The right-hand side of (25) vanishes for nodes j that are not adjacent to the source
region Ω̂s. By introducing the expression (6) of ΦÂ,Σj

, Equation (25) becomes:

ΦÂ,Σj
+
∫

Ω̂2

µ0

µ
∇Â · ∇Nj dΩ =

∫
Ω̂s⊂Ω̂1

µ0 Js Nj dΩ ∀ j ∈ Γ̂int. (27)

Finally, a global system of algebraic equations of the whole problem is obtained by an
assembling procedure of Equations (18) and (24), or (25), and (27). It may be expressed as
the partitioned matrix form:

−G1i H1i 0
−Gii Hii 0

1i Sii Si2
0 S2i S22

·
 Φi

^
ui
^
u2

 = b, (28)

where the unknown vector Φi refers to the nodal flux values on Γ̂int, and vectors
^
ui and

^
u2

are related to the nodal potential values on Γ̂int and Ω̂2, respectively. Submatrices H and G
represent the FEM-Green equations with the entries ΦGi,I ,Σj and Gi(j), or G∗

i,i
, respectively.

The submatrix S comes from the FEM contribution and 1i is a unit matrix induced by (27).
As it is the case for most FEM/BEM coupling methods, the global matrix has no particular
structure, i.e., it is neither symmetric, nor positive definite. However, the G submatrices
are symmetric. A general solver must be used for the solution of the system (28), but the
optimization of this specific point has not been investigated in the paper. Finally, vector b
relates to the source excitation Js that appears in the right-hand side of (18) and (27).

3. Numerical Results

The method has been applied to two magnetic problems to estimate the performance
of our numerical scheme. In the first example, a comparison with the classical FEM/BEM
technique and the FEM with a large truncated outer boundary has been carried out to assess
the accuracy of the method. As in previous papers of the author [4,5], all the algorithms
were implemented in the MATLAB® environment on a standard desktop computer. The
LU-decomposition was used for the solution of the involved linear systems. COMSOL
Multiphysics® software has been used for the generation of the various meshes required
by the simulations and also in order to confirm the results obtained by the FEM.

3.1. Example 1–A Nonlinear Magnetostatic Problem

The first example is a 2D nonlinear magnetostatic problem defined on a C-shaped
magnetic circuit Ω2 with an excitation coil Ωs (Js = 107 A/m2) in air region Ω1, as depicted
in Figure 4.

As an illustration, a magnetic field plot obtained by using COMSOL Multiphysics®

is given in Figure 5. As classical FEM is used, the problem is encased in a circular box
with a radius equal to about 15 times the mean size of the device. Magnetic induction
along the line AB crossing the air gap, as shown in Figure 5, is plotted for the three
methods in Figure 6. It is clear that FEM/BEM and FEM/FEM-Green methods are both
in excellent agreement. Table 1 presents the magnetic energy restricted in an arbitrary
rectangular domain of size 0.6 × 0.4 m centered on the origin of the x− y reference frame
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of the geometry and computed at a postprocessing step for both FEM/BEM and FEM/FEM-
Green techniques. The number m of elements of magnetic and coil regions Ω2 ∪Ωs, is taken
as a parameter. Convergence is observed and an extremely good agreement is obtained
between the methods. A value of 74.53 J/m has been obtained with COMSOL in the
same domain, by using a supplementary large external bounding rectangular box of size
10 × 10 m. This result is in coherence with our results.
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As already emphasized in [5], there is a lower computational burden in the FEM-Green
part of the system (28), compared with the equivalent BEM part. However, global CPU
times measured for both methods for the proposed example are not vastly different due to
the important part involved in the solutions of the system at every iteration.

Table 1. Magnetic energy (J/m) in an embedding rectangular box vs. the number m of elements of
the magnetic and coil regions.

m FEM/BEM FEM/FEM-Green

3204 76.33 75.35
4938 74.61 74.33

19,752 74.49 74.42
50,048 74.54 74.86
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3.2. Example 2–Eddy-Currents in a Conducting Magnetic Region

The second example deals with a conducting region Ω2 made of copper (µ = 50× µ0 H/m
and σ = 5.998× 107 S/m) and driven by source currents (Js = 107 A/m2, frequency = 5 Hz)
located in region Ωs, embedded in air region Ω1, as presented in Figure 7.
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Figure 7. Eddy-current problem: mesh and results.

Time-harmonic modified Helmholtz equation is applied to this problem. COMSOL
Multiphysics® solution is also given in Figure 7 where the induced current density is given
by the statement:

Ji = −jωσ A. (29)

Real and imaginary parts of Ji along the line AB crossing the conducting region is
plotted in Figure 8 for FEM and FEM/FEM-Green methods (FEM-BEM is not applied here).

There is an excellent agreement between the results as the symbols ◦ and ∗ match the
curves extremely well. The simulation has been realized with the number of triangular
elements in conducting and source regions equal to 5811 as depicted in Figure 7.
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The losses have also been computed. A total of 9.45 mW/m has been obtained with
the same mesh. This value should be compared with the value 9.42 mW/m computed
with FEM and a circular box with a radius equal to about 100 times the mean size of the
device. Those global quantities are quite similar considering the approximations that have
been adopted.

3.3. Discussion

As a general comment about our method, some simulations have been carried out
with a larger inside/outside interface around the active region, i.e., the magnetic circuit in
the first example, eventually by including the excitation inside the FEM part. The same
tests have been realized with the conducting part in the second example. The results are
extremely close to each other in both cases.

However, we notice experimentally that it seems that a regular mesh with a single
layer of triangle between the active (FEM) and outside parts gives a better accuracy of the
method. Then, some precautions should be taken into account when preparing the mesh
with our method. This is a constraint in our method that should be carefully considered at
the programming stage.

4. Conclusions

The FEM/FEM-Green method presented in this paper has been proposed as an alter-
native to the classical FEM/BEM methods for the treatment of magnetic open boundary
problems. The FEM-Green formulation applied to the open region is obtained by using
the FEM approximation of fundamental solutions that leads to a discrete equivalent of the
second Green’s identity. The coupling with the finite element method used for the inner
domains appears to be natural due to the same Galerkin approach in both mathematical
treatments. Numerical results have pointed out an extremely good agreement between our
technique and the standard hybrid FEM/BEM coupling that has been implemented for the
sake of comparison. The advantages of the FEM-Green approach are an easier implementa-
tion since no particular integration is involved in the computation of the matrix coefficients,
the absence of the somewhat awkward normal derivative of the fundamental solution in
the formulation, and a more natural coupling with FEM. However, a layer of finite element
mesh is required around the inner parts, and it should be carefully taken into account
when programming the method. Our numerical scheme can be theoretically extended to
3D problems in the case of scalar potential applications (electrostatics, magnetostatics with
scalar magnetic potential), and higher-order (e.g., quadratic) elements. In the latter case,
there is no obvious geometrical interpretation of the nodal flux as with linear triangles, but
it remains a representative variable. These aspects should be investigated in future work.
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