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Abstract: We propose a multi-time generalized Nash equilibrium problem and prove its equivalence
with a multi-time quasi-variational inequality problem. Then, we establish the existence of equilibria.
Furthermore, we demonstrate that our multi-time generalized Nash equilibrium problem can be
applied to solving traffic network problems, the aim of which is to minimize the traffic cost of
each route and to solving a river basin pollution problem. Moreover, we also study the proposed
multi-time generalized Nash equilibrium problem as a projected dynamical system and numerically
illustrate our theoretical results.

Keywords: multi-time generalized Nash equilibrium problem; projected dynamical system; river
basin pollution problem; traffic network equilibrium problem; variational inequality problem

1. Introduction

The concept of an equilibrium problem originated with Cournot [1] in the context
of an oligopolistic economy, but formally it was introduced by Nash [2,3]. Therefore, it
is called a Nash equilibrium problem. Nash equilibrium problems have been extensively
studied and employed as powerful and flexible tools. However, the Nash equilibrium only
deals with the dependency of the payoff function of each player on the strategies of the
other (rival) players. Later, this notion was extended to the generalized Nash equilibrium
by Arrow and Debreu [4], where each player’s strategy set also depends on the strategies of
the other players. Generalized Nash equilibrium problems are important in mathematical
modeling because of their usefulness in the modeling of economic systems [5], routing
problems in communication networks [6], and in engineering applications [7]. The survey
papers [8,9] give a complete overview of the state of the art regarding theoretical results
and numerical methods for solving generalized Nash equilibrium problems. One of the
popular strategies for solving the generalized Nash equilibrium problem is to first bridge
the gap between this problem and well-known variational tools in the literature, and then
to use these well-developed tools to solve it. Instances of such methods are reformulations
of generalized Nash equilibrium problems as suitable variational inequalities and quasi-
variational inequalities.

A variational inequality problem comprises an inequality which must be satisfied for
all the elements of a given (convex) set. The study of variational inequality problems in
traffic analysis was initiated by Smith [10] and Dafermos [11]. They set up the traffic assign-
ment problem in terms of a finite-dimensional variational inequality problem. Presently
variational inequalities constitute an important modeling tool in economics [12,13], op-
timization [14] and game theory [15–17]. A quasi-variational inequality problem is an
extension of the concept of a variational inequality problem, where the feasible set is also
allowed to vary. Such problems have been used to model more complex phenomena. It
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was Bensoussan [18] who first recognized the connection between the generalized Nash
equilibrium and quasi-variational inequality problems, and studied them in Hilbert space.
Thereafter, Harker [17] investigated these problems in Euclidean spaces. Aussel et al. [19]
studied the time-dependent generalized Nash equilibrium problem and reformulated it
as an evolutionary quasi-variational inequality problem. More relevant papers are well
documented in [20–22].

In recent decades the notion of multi-time has frequently been used in optimization
theory and in multi-time control problems. Indeed, several science and engineering
problems can be converted into optimization problems that are defined as m-flow type PDEs
(multi-time evolution systems) and the associated cost functionals are expressed as path-
independent curvilinear integrals or multiple integrals. Udrişte and Ţevy [23] introduced
the basic optimization problems involving path-independent curvilinear integrals and
multiple integrals. Mathematically speaking, these integrals are equivalent, but their
meanings are completely different in real life problems. Thereafter, a systematic study of
multi-time problems was initiated by the research group of Udrişte [24–27]. In this way,
a multi-time parameter of evolution approach in optimization theory started to be used
and this concept has extensively been explored; see [28–30]. Apart from optimization,
the concept of a multi-time parameter of evolution is also used in space theory. A space
coordinate is merely an index numbering degrees of freedom and the time coordinate is
usually the physical time in which the system evolves. In some physical problems, two-
time t = (t1; t2) is used, where t1 means the intrinsic time and t2 the observer time. These
prominent roles of multi-time parameters in different areas of science show the necessity of
some new formulations of this concept. To pursue further explorations and present novel
results involving multi-time parameters, particularly in optimization and noncooperative
games, we formulate the multi-time generalized Nash equilibrium problem (MGNEP),
which is a generalized form of the time-dependent generalized Nash equilibrium problem
studied by Aussel et al. [19], and reformulate it as a multi-time quasi-variational inequality
problem. We also establish the existence of equilibria. To provide an application of the
formulated multi-time generalized Nash equilibrium problems in traffic analysis, we
interpret a traffic network model in terms of such an equilibrium problem for a courier
service company with the intention of minimizing the traffic cost of each route. Moreover,
we also provide an application to solving river basin pollution problems. We formulate
a river basin pollution problem in terms of our multi-time generalized Nash equilibrium
problem, and demonstrate how the industrial factories (agents) situated along a river can
maximize their profit by following the particular norms and restrictions of reducing the
river water pollution imposed by the basin authorities. Finally, we propose a method for
solving the multi-time generalized Nash equilibrium problem via projected dynamical
system theory. To exhibit the utility of our proposed method, we solve the well-known
Nguyen traffic network problem [31] using this method and numerically illustrate our
results.

Our paper is organized as follows: preliminaries and the formulations of the problem
are presented in Section 2. The equivalence of the multi-time generalized Nash equilib-
rium problem with the multi-time quasi-variational inequality problem is established in
Section 3. The existence of equilibria is obtained in Section 4. The applications of multi-time
generalized Nash equilibrium problems in traffic network analysis and to solving river
basin pollution problems are demonstrated in Section 5. Explorations of the multi-time
generalized Nash equilibrium problem as a projected dynamical system, as well as numeri-
cal illustrations regarding the Nguyen traffic network, are presented in Section 6. Section 7
concludes our paper.

2. Preliminaries and Problem Formulations

We start with the formulation of a multi-time generalized Nash equilibrium problem.
To this end, we first introduce important notation and mathematical tools. We consider
a hyperparallelepiped Ωl◦ ,l1 in Rm with the opposite diagonal points l◦ = (l1

◦, l2
◦, . . . , lm

◦ )
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and l1 = (l1
1 , l2

1 , . . . , lm
1 ). Using the product order relation on Rm, we can view this hy-

perparallelepiped as an interval [l◦, l1]m. This interval is sometimes called the planning
horizon of players for preparing their strategies. We denote by t the multi-time parameter
of evolution. It is defined as t = (tα) ∈ Ωl◦ ,l1 , where α = (1, 2, . . . , m). The multi-time
generalized Nash equilibrium problem comprises N players and each player µ controls
the variable xµ(t) ∈ L2(Ωl◦ ,l1 ,Rnµ). This variable is the multi-time-dependent vector of
strategies of the player µ. Let x−µ(t) ∈ L2(Ωl◦ ,l1 ,Rn−nµ) be the vector of strategies set
up by the decision variables of all the players except the player µ at a given multi-time
t ∈ Ωl◦ ,l1 and let x(t) ∈ L2(Ωl◦ ,l1 ,Rn) be the multi-time-dependent vector of strategies of

all players. Here n =
N
∑

µ=1
nµ. When we wish to put the strategy vector of the player µ

under a spotlight, we write the strategy vector x(t) of all the players as

x(t) = (xµ(t), x−µ(t)).

This is still the vector x(t) = (x1(t), x2(t), . . . , xµ−1(t), xµ(t), xµ+1(t), . . . , xN(t)) which
belongs to L2(Ωl◦ ,l1 ,Rn). Please note that the notation (xµ(t), x−µ(t)) does not mean that
the block components of x(t) are reordered in such a way so that xµ(t) becomes the first
block. We hark back to L2(Ωl◦ ,l1 ,Rn) = L2(Ωl◦ ,l1 ,Rnµ)× L2(Ωl◦ ,l1 ,Rn−nµ). Now let K be
a nonempty, closed and convex subset of L2(Ωl◦ ,l1 ,Rn). For any given strategy vector
x−µ(t) of the rival players, we denote the nonempty, closed and convex feasible set (or
strategy set) of the player µ by Kµ(x−µ(t)). This is a subset of L2(Ωl◦ ,l1 ,Rnµ). Each player
has an objective function which is called the cost (or loss, or payoff) function. It depends
on the player’s own variables xµ(t), as well as on those of the rival players x−µ(t). In our
formulation of the multi-time generalized Nash equilibrium problem, we write the total
cost function Fµ : L2(Ωl◦ ,l1 ,Rn)→ R of the player µ as a multiple integral. More precisely,

Fµ(x(t)) =
∫

Ωl◦ ,l1

f µ(xµ(s), x−µ(s))ds,

where f µ(xµ(s), x−µ(s)) is a real-valued continuously differentiable function which denotes
the running cost (loss) function the player µ bears when the rival players have chosen the
strategy x−µ(s) at a given time s ∈ Ωl◦ ,l1 , and ds = ds1 . . . dsm denotes the volume element
of Ωl◦ ,l1 . We use the following notation to denote the value of the function represented by
p(t) at the point q(t):

〈〈p(t), q(t)〉〉 =
∫

Ωl◦ ,l1

〈p(s), q(s)〉ds ∀ p(t), q(t) ∈ L2(Ωl◦ ,l1 ,Rn),

where 〈., .〉 represents the Euclidean inner product. Throughout the paper, the abbreviation
“a.e.” stands for “almost everywhere" and Rp

+ represents the set of non-negative vectors in
the Euclidean space Rp.

Remark 1. In our paper, we do not impose any special structure on the feasible set Kµ(x−µ(t)) of
each player. For studies of generalized Nash equilibrium problems with special structures on the
feasible set of each player, we refer the interested readers to [8,21].

Now we are able to introduce our multi-time generalized Nash equilibrium problem
(MGNEP). For a given strategy vector x−µ(t) of rival players, the aim of a player µ is to
choose a strategy vector xµ(t) such that it solves the following multi-time minimization
problem:

(MGNEP) min
xµ(t)

∫
Ωl◦ ,l1

f µ(xµ(t), x−µ(t))dt,

subject to xµ(t) ∈ Kµ(x−µ(t)).
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Problem (MGNEP) can also be interpreted in the following way.

Definition 1. A strategy vector y(t) ∈ K is said to be a multi-time generalized Nash equilibrium
if and only if for each player µ, we have yµ(t) ∈ Kµ(y−µ(t)) and∫

Ωl◦ ,l1

f µ(yµ(t), y−µ(t))dt ≤
∫

Ωl◦ ,l1

f µ(xµ(t), y−µ(t))dt ∀ xµ(t) ∈ Kµ(y−µ(t)).

Special Case. If m = 1, then Ωl◦ ,l1 is simply the closed real interval [l◦, l1]. Furthermore,
for more convenience, we put l◦ = 0 and l1 = T (which denotes an arbitrary time) and
then Ωl◦ ,l1 = [0, T] (a fixed time interval). Consequently, in this case (MGNEP) reduces to
the time-dependent generalized Nash equilibrium problem, studied by Aussel et al. [19].

To formulate our multi-time quasi-variational inequality problem, we define the
set-valued map Γ : K → 2K by

Γ(x(t)) :=
N

∏
µ=1

Kµ(x−µ(t))

for each x(t) ∈ K. We also let J : L2(Ωl◦ ,l1 ,Rn) → L2(Ωl◦ ,l1 ,Rn) be a single-valued map.
Our multi-time quasi-variational inequality problem is defined as follows:

(MQVIP) to find a vector y(t) ∈ K such that y(t) ∈ Γ(y(t)) and∫
Ωl◦ ,l1

〈J(y(t)), x(t)− y(t)〉dt ≥ 0 ∀ x(t) ∈ Γ(y(t)).

Taking into account the definitions of generalized convexities formulated in [32,33],
we define the following notion of convexity for a multi-time functional H : K → R of
the form H(x(t)) =

∫
Ωl◦ ,l1

h(x(s))ds, where h is a real-valued continuously differentiable

function.

Definition 2. The multi-time functional H is said to be convex on the set K if for all x(s), y(s) ∈ K,
the following inequality holds:∫

Ωl◦ ,l1

h(x(s))ds−
∫

Ωl◦ ,l1

h(y(s))ds ≥
∫

Ωl◦ ,l1

〈
∂h
∂x

(y(s)), x(s)− y(s)
〉

ds.

Next, we recall the following definitions and theorem (compare [34,35]).

Definition 3. The nearest point projection of a point x(t) ∈ L2(Ωl◦ ,l1 ,Rn) onto the set K is
defined by

projK
(

x(t)
)

:= arg min
y(t)∈K

∥∥x(t)− y(t)
∥∥.

Remark 2. For each x(t) ∈ L2(Ωl◦ ,l1 ,Rn), projK(x(t)) enjoys the following property:

〈〈x(t)− projK(x(t)), y(t)− projK(x(t))〉〉 ≤ 0 ∀ y(t) ∈ K.

Definition 4. The polar set K◦ associated with K is defined by

K◦ :=
{

y(t) ∈ L2(Ωl◦ ,l1 ,Rn) : 〈〈y(t), x(t)〉〉 ≤ 0 ∀ x(t) ∈ K
}

.

Definition 5. The tangent cone to the set K at a point x(t) ∈ K is defined by

TK(x(t)) := cl

(⋃
λ>0

K− x(t)
λ

)
,
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where cl denotes the closure operation.

Definition 6. The normal cone of K at a point x(t) is defined by

NK
(

x(t)
)

:=

{
{y(t) ∈ L2(Ωl◦ ,l1 ,Rn) : 〈〈y(t), z(t)− x(t)〉〉 ≤ 0 ∀ z(t) ∈ K}, x(t) ∈ K,
∅, x(t) /∈ K.

Please note that TK
(

x(t)
)
=
[
NK
(

x(t)
)]◦.

Definition 7. A subset D of K is said to be compactly open (respectively, compactly closed) in K if
for any nonempty compact subset L of K, the intersection D ∩ L is open (respectively, closed) in L.

Remark 3. (a) It is evident from the above definition that every open (respectively, closed) set is
compactly open (respectively, compactly closed).

(b) The union or intersection of a finite number of compactly open (respectively, compactly closed)
sets is compactly open (respectively, compactly closed).

(c) If A ⊂ K1 and B ⊂ K2 are compactly open (respectively, compactly closed) in K1 and K2,
respectively, then A× B ⊂ K1 × K2 is compactly open (respectively, compactly closed) in
K1 × K2.

Definition 8. A family {gµ}N
µ=1 of maps gµ : K → L2(Ωl◦ ,l1 ,Rn) is called hemicontinuous if

for all x(t), y(t) ∈ K and λ ∈ [0, 1], the mapping λ 7→
N
∑

µ=1
〈〈gµ(x(t) + λz(t)), zµ(t)〉〉 with

zµ(t) = yµ(t)− xµ(t) is continuous, where zµ(t) is the µth component of z(t).

Theorem 1 ([34]). Assume that S, T : K → 2K are set-valued maps and that the following
hypotheses are satisfied:

1. ∀ x(t) ∈ K, S(x(t)) ⊂ T(x(t)),
2. ∀ x(t) ∈ K, S(x(t)) 6= ∅,
3. ∀ x(t) ∈ K, T(x(t)) is convex,
4. ∀ y(t) ∈ K, S−1({y(t)}) = {x(t) ∈ K : y(t) ∈ S(x(t))} is compactly open,
5. there exists a nonempty, closed and compact subset D of K and y(t) ∈ D such that K \ D ⊂

S−1({y(t)}).
Then there exists x(t) ∈ K such that x(t) ∈ T(x(t)).

3. An Equivalent Form of the Multi-Time Generalized Nash Equilibrium Problem

We begin our analysis by presenting an equivalent form of our multi-time generalized
Nash equilibrium problem in terms of a multi-time quasi-variational inequality problem.
This equivalent formulation turns out to be useful for proving further results in the sequel.
From now onwards, the symbol ∂ f µ

∂xµ (y(t)) stands for the partial derivative of the running
cost function f µ of the player µ with respect to the argument xµ(t) at the strategy vector
y(t) ∈ K.

Theorem 2. Assume that J(x(t)) =
(

∂ f µ

∂xµ (x(t))
)N

µ=1
for each x(t) ∈ K, and that for each

µ ∈ {1, 2, . . . , N} and each x−µ(t), the multi-time cost functional Fµ is convex on K in the
argument xµ(t). Then y(t) ∈ K is a multi-time generalized Nash equilibrium if and only if it is a
solution to (MQVIP).
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Proof. Let y(t) ∈ K be a solution of (MQVIP). We shall first prove that for each µ ∈
{1, 2, . . . , N}, yµ(t) ∈ Kµ(y−µ(t)) satisfies the following inequality:〈

∂ f µ

∂xµ (y(t)), xµ(t)− yµ(t)
〉
≥ 0 ∀ xµ(t) ∈ Kµ(y−µ(t)) and a.e. on Ωl◦ ,l1 . (1)

To this end, suppose on the contrary that this inequality does not hold. Then it follows
that there exists a ν ∈ {1, 2, . . . , N}, and a strategy vector zν(t) ∈ Kν(y−ν(t)) together
with a set G ⊂ Ωl◦ ,l1 of positive measure such that for yν(t) ∈ Kν(y−ν(t)) the following
inequality holds: 〈

∂ f ν

∂xν
(y(t)), zν(t)− yν(t)

〉
< 0 a.e. on G. (2)

Next, we consider the strategy vector h(t) ∈ L2(Ωl◦ ,l1 ,Rn) defined by

h(t) :=


hµ(t) = yµ(t), t ∈ Ωl◦ ,l1 and µ 6= ν,
hµ(t) = zν(t), t ∈ G and µ = ν,
hµ(t) = yν(t), t ∈ Ωl◦ ,l1 \ G and µ = ν.

We have h(t) ∈ Γ(y(t)) and

∫
Ωl◦ ,l1

〈J(y(t)), h(t)− y(t)〉dt =
N

∑
µ=1

∫
Ωl◦ ,l1

〈
∂ f µ

∂xµ (y(t)), hµ(t)− yµ(t)
〉

dt

=
N

∑
µ=1 (µ 6=ν)

∫
Ωl◦ ,l1

〈
∂ f µ

∂xµ (y(t)), hµ(t)− yµ(t)
〉

dt

+
∫

Ωl◦ ,l1

〈
∂ f ν

∂xν
(y(t)), hν(t)− yν(t)

〉
dt

=
∫

G

〈
∂ f ν

∂xν
(y(t)), zν(t)− yν(t)

〉
dt.

(3)

It now follows from Inequalities (2) and (3) that∫
Ωl◦ ,l1

〈J(y(t)), h(t)− y(t)〉dt < 0,

which contradicts the fact that y(t) is a solution to (MQVIP). Thus, inequality (1) holds, as
claimed. Furthermore, for each µ, the convexity of the multi-time cost functional Fµ on the
set K in the argument xµ(t) implies that∫

Ωl◦ ,l1

f µ(xµ(t), y−µ(t))dt−
∫

Ωl◦ ,l1

f µ(yµ(t), y−µ(t))dt

≥
∫

Ωl◦ ,l1

〈
∂ f µ

∂xµ (y(t)), xµ(t)− yµ(t)
〉

dt ∀ xµ(t) ∈ Kµ(y−µ(t)).
(4)

By combining inequalities (1) and (4), we obtain∫
Ωl◦ ,l1

f µ(xµ(t), y−µ(t))dt−
∫

Ωl◦ ,l1

f µ(yµ(t), y−µ(t))dt ≥ 0 ∀ xµ(t) ∈ Kµ(y−µ(t)), (5)

which implies that y(t) is a multi-time generalized Nash equilibrium, as asserted.
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Conversely, let y(t) ∈ K be a multi-time generalized Nash equilibrium. Then we have
inequality (5). Since Kµ(y−µ(t)) is a convex set, for all xµ(t) ∈ Kµ(y−µ(t)) and λ ∈ [0, 1],
inequality (5) can be rewritten as∫

Ωl◦ ,l1

[ f µ(yµ(t) + λ(xµ(t)− yµ(t)), y−µ(t))− f µ(yµ(t), y−µ(t))]dt ≥ 0.

Dividing the above inequality by λ, taking the limit as λ → 0, and using Taylor’s series,
we arrive at ∫

Ωl◦ ,l1

〈
∂ f µ

∂xµ (y(t)), xµ(t)− yµ(t)
〉

dt ≥ 0 ∀ xµ(t) ∈ Kµ(y−µ(t)).

Since by hypothesis, J(y(t)) =
(

∂ f µ

∂xµ (y(t))
)N

µ=1
, we have for any x(t) ∈ Γ(y(t)),

∫
Ωl◦ ,l1

〈J(y(t)), x(t)− y(t)〉dt =
N

∑
µ=1

∫
Ωl◦ ,l1

〈
∂ f µ

∂xµ (y(t)), xµ(t)− yµ(t)
〉

dt ≥ 0.

Since we already have y(t) ∈ Γ(y(t)), it follows that y(t) is a solution to (MQVIP).

Remark 4. The set G
l◦ ,

l◦+l1
2

of positive measure in the converse part of the proof of Theorem 3.1

of [29] should also be simply denoted by G.

4. Existence of Equilibria

Our aim in this section is to establish the existence of multi-time generalized Nash
equilibria. In view of the equivalence of the multi-time generalized Nash equilibrium
problem with the multi-time quasi-variational inequality problem, we can take advantage
of techniques for proving existence results regarding quasi-variational inequality problems,
which were investigated in [34,35]. Throughout this section, for better understanding
of the strategy vector xµ(t) of each player µ ∈ {1, 2, . . . , N} and of the strategy vectors
x−µ(t) of the rival players excluding the player µ, the subset K ⊂ L2(Ωl◦ ,l1 ,Rn)) is given

as K =
N
∏

µ=1
Xµ and X−µ =

N
∏

ν=1, (ν 6=µ)
Xν, where {Xµ}N

µ=1 is a family of nonempty, closed

and convex subsets with each Xµ ⊂ L2(Ωl◦ ,l1 ,Rnµ). With this notation, the entire strategy
vector x(t) ∈ K can be written as x(t) = (xµ(t), x−µ(t)) ∈ Xµ ×X−µ. For all x−µ(t) ∈ X−µ,
the strategy set of each player µ is a subset of Xµ, i.e., Kµ(x−µ(t)) ⊂ Xµ and for each
yµ(t) ∈ Xµ, K−1

µ ({yµ(t)}) ⊂ X−µ.
Using the above mathematical framework, it is not difficult to see that

Γ−1({y(t)}) =
N⋂

µ=1

[Xµ × K−1
µ ({yµ(t)})] ∀ y(t) ∈ K.

We assume that for each µ ∈ {1, 2, . . . , N}, Xµ is compactly open and for all yµ(t) ∈ Xµ,
the set K−1

µ ({yµ(t)}) is compactly open in X−µ. Therefore, Remark 3(b) and (c) yield that
Γ−1({y(t)}) is compactly open for all y(t) ∈ K. Moreover, we also assume that the set
A = {x(t) ∈ K : x(t) ∈ Γ(x(t))} is compactly closed.

Theorem 3. Let y(t) ∈ K be an arbitrary strategy vector, J(y(t)) =
(

∂ f µ

∂xµ (y(t))
)N

µ=1
, and for

each µ ∈ {1, 2, . . . , N} and a given y−µ(t), let the multi-time cost functional Fµ be convex on
the set K in the argument yµ(t). Assume that there exist a nonempty, closed and compact subset
D ⊂ K and ŷ(t) ∈ D such that
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N

∑
µ=1

∫
Ωl◦ ,l1

〈
∂ f µ

∂xµ (ŷ(t)), ŷµ(t)− xµ(t)
〉

dt < 0 ∀ x(t) ∈ K \ D with ŷ(t) ∈ Γ(x(t)). (6)

Then (MQVIP) has a solution.

Proof. First, we define two set-valued maps Γ1, Γ2 : K → 2K as follows: for each x(t) ∈
K, let

Γ1(x(t)) :=

{
y(t) ∈ K :

N

∑
µ=1

∫
Ωl◦ ,l1

〈
∂ f µ

∂xµ (y(t)), yµ(t)− xµ(t)
〉

dt < 0

}
,

Γ2(x(t)) :=

{
y(t) ∈ K :

N

∑
µ=1

∫
Ωl◦ ,l1

〈
∂ f µ

∂xµ (x(t)), yµ(t)− xµ(t)
〉

dt < 0

}
.

Since each multi-time cost functional Fµ is convex on the set K in the arguments of Xµ, we
have, for all x1(t) and x2(t) ∈ K,

∫
Ωl◦ ,l1

f µ(x1(t))dt−
∫

Ωl◦ ,l1

f µ(x2(t))dt ≥
∫

Ωl◦ ,l1

〈
∂ f µ

∂xµ (x2(t)), xµ
1 (t)− xµ

2 (t)
〉

dt. (7)

By interchanging the variables x1(t) and x2(t) in inequality (7), we get∫
Ωl◦ ,l1

f µ(x2(t))dt−
∫

Ωl◦ ,l1

f µ(x1(t))dt ≥
∫

Ωl◦ ,l1

〈
∂ f µ

∂xµ (x1(t)), xµ
2 (t)− xµ

1 (t)
〉

dt. (8)

Adding inequalities (7) and (8), we obtain the inequality∫
Ωl◦ ,l1

〈
∂ f µ

∂xµ (x1(t)), xµ
2 (t)− xµ

1 (t)
〉

dt ≤
∫

Ωl◦ ,l1

〈
∂ f µ

∂xµ (x2(t)), xµ
2 (t)− xµ

1 (t)
〉

dt,

which yields the following inequality:

N

∑
µ=1

∫
Ωl◦ ,l1

〈
∂ f µ

∂xµ (x1(t)), xµ
2 (t)− xµ

1 (t)
〉

dt ≤
N

∑
µ=1

∫
Ωl◦ ,l1

〈
∂ f µ

∂xµ (x2(t)), xµ
2 (t)− xµ

1 (t)
〉

dt. (9)

Inequality (9) implies that Γ1(x(t)) ⊂ Γ2(x(t)) for all x(t) ∈ K. Next, we define two
more set-valued maps S, T : K → 2K as follows:

S(x(t)) :=

{
Γ(x(t)) ∩ Γ1(x(t)), if x(t) ∈ A
Γ(x(t)), if x(t) ∈ K \ A

.

T(x(t)) :=

{
Γ(x(t)) ∩ Γ2(x(t)), if x(t) ∈ A
Γ(x(t)), if x(t) ∈ K \ A

.

Clearly, the point images of the set-valued maps Γ and Γ2, i.e., Γ(x(t)) and Γ2(x(t)),
are convex for all x(t) ∈ K. Therefore, the point images of the set-valued map T, i.e.,
T(x(t)), are also convex for all x(t) ∈ K. Moreover, S(x(t)) ⊂ T(x(t)) for all x(t) ∈ K.
Now, for all y(t) ∈ K, we have
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S−1({y(t)}) = {x(t) ∈ K : y(t) ∈ S(x(t))}
= {x(t) ∈ A : y(t) ∈ Γ(x(t)) ∩ Γ1(x(t))} ∪ {x(t) ∈ K \ A : y(t) ∈ Γ(x(t))}
= [A ∩ (Γ−1({y(t)}) ∩ Γ−1

1 ({y(t)}))] ∪ [K \ A ∩ Γ−1({y(t)})]
= [(A ∩ (Γ−1({y(t)}) ∩ Γ−1

1 ({y(t)}))) ∪ K \ A]

∩ [(A ∩ (Γ−1({y(t)}) ∩ Γ−1
1 ({y(t)}))) ∪ Γ−1({y(t)})]

= [K ∩ ((Γ−1({y(t)}) ∩ Γ−1
1 ({y(t)})) ∪ K \ A)]

∩ [(A ∪ Γ−1({y(t)})) ∩ (Γ−1({y(t)}) ∩ Γ−1
1 ({y(t)}))]

= [(Γ−1({y(t)}) ∩ Γ−1
1 ({y(t)})) ∪ K \ A] ∩ Γ−1({y(t)})

= (Γ−1({y(t)}) ∩ Γ−1
1 ({y(t)})) ∪ (K \ A ∩ Γ−1({y(t)})).

Furthermore, for each y(t) ∈ K, the complement of Γ−1
1 ({y(t)}) in K can be written as

[Γ−1
1 ({y(t)})]c =

{
x(t) ∈ K :

N

∑
µ=1

∫
Ωl◦ ,l1

〈
∂ f µ

∂xµ (y(t)), yµ(t)− xµ(t)
〉

dt ≥ 0

}
,

which is closed in K. Consequently, the set Γ−1
1 ({y(t)}) is open in K. Remark 3(a) implies

that Γ−1
1 ({y(t)}) is compactly open for all y(t) ∈ K. We also note that for all y(t) ∈ K, the

sets Γ−1({y(t)}) and K \ A are compactly open. Hence the set S−1({y(t)}) is now seen to
also be compactly open for each y(t) ∈ K. We now claim that there is a point x̂(t) ∈ A
such that Γ(x̂(t)) ∩ Γ1(x̂(t)) = ∅. Suppose on the contrary that for each x(t) ∈ A, the
set Γ(x(t)) ∩ Γ1(x(t)) 6= ∅. Since we already know that the set Γ(x(t)) is nonempty and
convex for each x(t) ∈ K, it follows that S(x(t)) 6= ∅ for each x(t) ∈ K. Our hypothesis
yields that there exist a nonempty, closed and compact subset D ⊂ K and a point ŷ(t) ∈ D
such that K \ D ⊂ S−1({ŷ(t)}). Thus, all the conditions of Theorem 1 are satisfied and so
we conclude that there exists a point z(t) ∈ K such that z(t) ∈ T(z(t)). The definitions of
the set A and the set-valued map T imply that {x(t) ∈ K : x(t) ∈ T(x(t))} ⊂ A. Hence
z(t) ∈ A, z(t) ∈ Γ(z(t)) ∩ Γ2(z(t)) and consequently, z(t) ∈ Γ2(z(t)). It follows that

N

∑
µ=1

∫
Ωl◦ ,l1

〈
∂ f µ

∂xµ (z(t)), zµ(t)− zµ(t)
〉

dt < 0,

which is impossible. The contradiction we have reached shows that there indeed exists a
point x̂(t) ∈ A such that Γ(x̂(t)) ∩ Γ1(x̂(t)) = ∅, as claimed. That is, x̂(t) ∈ Γ(x̂(t)) and

N

∑
µ=1

∫
Ωl◦ ,l1

〈
∂ f µ

∂xµ (y(t)), yµ(t)− x̂µ(t)
〉

dt ≥ 0 ∀ y(t) ∈ Γ(x̂(t)).

Using the convexity of both Kµ(x̂−µ(t)) and Γ(x̂(t)), we can rewrite the above inequality
as follows:

N

∑
µ=1

∫
Ωl◦ ,l1

〈
∂ f µ

∂xµ (x̂(t) + λ(y(t)− x̂(t))), yµ(t)− x̂µ(t)
〉

dt ≥ 0 ∀ y(t) ∈ Γ(x̂(t)) and λ ∈ [0, 1].

Since ∂ f µ

∂xµ (·) is hemicontinuous, by taking the limit as λ → 0+ in the above inequality,
we obtain

N

∑
µ=1

∫
Ωl◦ ,l1

〈
∂ f µ

∂xµ (x̂(t)), yµ(t)− x̂µ(t)
〉

dt ≥ 0 ∀ y(t) ∈ Γ(x̂(t)).
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Using our hypothesis, we can rewrite the above inequality as follows:

〈〈J(x̂(t)), y(t)− x̂(t)〉〉 ≥ 0 ∀ y(t) ∈ Γ(x̂(t)).

In other words, x̂(t) is a solution to (MQVIP).

5. Applications
5.1. Traffic Network Problem

Motivated by the network equilibrium problems studied by Nagurney et al. [36],
and Daniele [37], in this section we study in more detail our multi-time generalized Nash
equilibrium problem and demonstrate how this concept can apply to traffic network
problems. To this end, we assume that the traffic network is made of M nodes, which
represent the airports, railway stations, crossings, etc., and that the nodes are connected
by the set of directed links L. Furthermore, W represents the set of origin–destination
pairs while V represents the entire set of routes. Let r be a path consisting of a sequence
of links which connect an origin–destination pair of nodes. Let p be the number of paths
in the network. We assume that each route r ∈ V links exactly one origin–destination
pair. The set of all r ∈ V which link a given w ∈ W is denoted by V(w), where |W| = l
and p > l. Let x(t) be the entire traffic flow vector over the multi-time t ∈ Ωl◦ ,l1 and
be an element of L2(Ωl◦ ,l1 ,Rp

+). To emphasize the rth route flow vector in x(t), some-
times we write (xr(t), x−r(t)) in place of x(t). Bear in mind that this is still the vector
x(t) = (x1(t), x2(t), . . . , xr−1(t), xr(t), xr+1(t), . . . , xp(t)). Indeed, xr(t) ∈ L2(Ωl◦ ,l1 ,R+) is

the flow vector over the route r over the multi-time t ∈ Ωl◦ ,l1 and x−r(t) ∈ L2(Ωl◦ ,l1 ,Rp−1
+ )

denotes the flow vector of all the routes excluding the route r. We adhere to the restrictions
that every traffic flow vector x(t) satisfies the multi-time-dependent capacity constraints

η(t) ≤ x(t) ≤ θ(t), a.e. on Ωl◦ ,l1

and the traffic conservation law/demand requirements

φx(t) = ρ(t), a.e. on Ωl◦ ,l1 ,

where η(t), θ(t) ∈ L2(Ωl◦ ,l1 ,Rp
+) are given bounds with η(t) ≤ θ(t) and the function

ρ(t) ∈ L2(Ωl◦ ,l1 ,Rl
+) is the given demand. Here ρ(t) ≥ 0 and φ = φr,w is the pair-route

incidence matrix, the entries of which are 1 if route r links the pair w and 0 otherwise. We
also have

φη(t) ≤ ρ(t) ≤ φθ(t), a.e. on Ωl◦ ,l1 ,

which implies that the set of all feasible flows

K := {x(t) ∈ L2(Ωl◦ ,l1 ,Rp
+) : η(t) ≤ x(t) ≤ θ(t) and φx(t) = ρ(t), a.e. on Ωl◦ ,l1}

is not empty. For any given x−r(t), the nonempty, closed and convex feasible traffic flow
set of each route r is denoted by Kr(x−r(t)). This is a subset of L2(Ωl◦ ,l1 ,R+).

The multi-time cost functional of each route r, Hr : K → R, is defined by the multiple
integral

Hr(x(t)) =
∫

Ωl◦ ,l1

Cr(xr(s), x−r(s))ds,

where Cr(xr(s), x−r(s)) denotes the running cost function of the route r that depends on
both its own variable xr(s) (the flow in the route r) and x−r(s) (the flow in the other routes
except route r). It is assumed to be a real-valued continuously differentiable function. Our
aim is to compute the entire traffic flow vector x(t) ∈ K so as to minimize the cost of each
route r in the time period Ωl◦ ,l1 when the flow vectors of the other routes except that of the
route r, x−r(t), are given, i.e., to solve the following multi-time optimization problem:
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min
xr(t)

∫
Ωl◦ ,l1

Cr(xr(t), x−r(t))dt

subject to xr(t) ∈ Kr(x−r(t)).
(10)

Evidently, an equilibrium of the multi-time optimization problem (10) is a multi-
time generalized Nash equilibrium in the sense of our (MGNEP). To present a realistic
demonstration of the traffic network model that can be reformulated as a multi-time
generalized Nash equilibrium problem (10), we consider a general traffic network structure,
displayed in Figure 1, for a courier service company which wishes to minimize the traffic
cost of routes for delivering packages at their destinations. The traffic network pattern of
Figure 1 comprises 13 nodes and 16 links. We assume that a branch of the courier service
company is situated at a node, say O, which must deliver the packages at the nodes P1 and
P2. Thus, we have two origin–destination pairs w1 = (O, P1) and w2 = (O, P2), which are
respectively connected by the following routes:

w1 :


r1 = (O, a1) ∪ (a1, P1)

r2 = (O, a9) ∪ (a9, a10) ∪ (a10, P1)

r3 = (O, a4) ∪ (a4, a3) ∪ (a3, a2) ∪ (a2, a1) ∪ (a1, P1),

w2 :


r4 = (O, a9) ∪ (a9, a8) ∪ (a8, a7) ∪ (a7, a6) ∪ (a6, a5) ∪ (a5, P2)

r5 = (O, a6) ∪ (a6, a5) ∪ (a5, P2)

r6 = (O, a4) ∪ (a4, P2).

We have explicitly p = 6 paths in the given traffic network. The courier company must
find the entire traffic flow vector to minimize the cost of each route {r1, r2, r3, r4, r5, r6}.
This can be calculated by solving the multi-time optimization problem (10).

Figure 1. Traffic network pattern with 6 routes, i.e., p = 6.

5.2. River Basin Pollution Problem

In this subsection we show how our multi-time generalized Nash equilibrium prob-
lem can be applied to solving the river basin pollution problem [38]. For studies of the
river basin pollution problem, we refer the interested reader to [39–41]. We use the term
time t ∈ Ωl◦ ,l1 as defined in Section 2. We assume that n industrial factories (paper mills,
chemical factories, pharmaceutical manufacturing companies, etc.) are located along a
river. In the sequel we call them industrial agents. Presently, it is a very common scenario
that industrial factories often dump waste garbage, such as dirty water, used chemicals
and oils, sewage, and cafeteria waste, directly into a community water source (river, lake
or stream). Waste dumped contains several contaminants which mix and create pollution
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concentration along the river. We assume that m basin authorities (monitoring stations)
are located along the river. Each basin authority is empowered to set a maximum pol-
lutant concentration level at time t which we denote by χs(t) ∈ L2(Ωl◦ ,l1 ,R+) where
s ∈ {1, 2, . . . , m}. Furthermore, we let e f (t) ∈ L2(Ωl◦ ,l1 ,R+) be the pollutant emission
coefficient for the industrial agent f ∈ {1, 2, . . . , n}. Let x f (t) ∈ L2(Ωl◦ ,l1 ,R+) be the
chosen emitted pollutant concentration level at time t by the industrial agent f and let
x− f (t) ∈ L2(Ωl◦ ,l1 ,Rn−1

+ ) be the chosen emitted pollutant concentration level at time t
by all the industrial agents except the agent f . Furthermore, let x(t) ∈ L2(Ωl◦ ,l1 ,Rn

+) be
the chosen emitted pollutant concentration level at time t by all the industrial agents.
To put the chosen emitted pollutant concentration level x f (t) of the industrial agent f
in focus, we write x(t) as x(t) = (x f (t), x− f (t)). Please note that x(t) is still the vector
x(t) = (x1(t), x2(t), . . . , x f−1(t), x f (t), x f+1(t), . . . , xn(t)). Waste materials, dumped by
the industrial agents into the river, spread, decay and then finally reach the basin author-
ities. Thus, the amount of pollution received by the basin authority s ∈ {1, 2, . . . , m} is

n
∑

f=1
δ

f
s (t)e f (t)x f (t), where δ

f
s (t) is the decay-and-transportation coefficient from the agent

f to the monitoring station s. The basin authorities impose constraints on the pollution, so
that industrial agents control their pollutant emission into the river. Thus, the pollution
constraint set imposed by the authority s is given by

n

∑
f=1

δ
f
s (t)e f (t)x f (t) ≤ χs(t) for s ∈ {1, 2, . . . , m} and a.e. on Ωl◦ ,l1 .

The nonempty set of entire feasible pollution concentration levels is given by

K =

{
x(t) ∈ L2(Ωl◦ ,l1 ,Rn

+) :
n

∑
f=1

δ
f
s (t)e f (t)x f (t) ≤ χs(t) for s ∈ {1, 2, . . . , m}

and a.e. on Ωl◦ ,l1

}
.

We bear in the mind that industrial agents are dependent on each other, at least
because of the finiteness of the amount of dumping pollutants into the river. There-
fore, for any given x− f (t), the nonempty, closed and convex feasible pollution concen-
tration level set of each industrial agent f is denoted by K f (x− f (t)). This is a subset of
L2(Ωl◦ ,l1 ,R+). Each agent wishes to maximize its profit in the time period t, where the

profit is defined by the difference between the revenue [p1 − p2
n
∑

f=1
x f (t)]x f (t) and the cost

[a f (t) + b f (t)x f (t)]x f (t). Here p1 and p2 are economic constants which follow the inverse
demand law and a f (t), b f (t) ∈ L2(Ωl◦ ,l1 ,R+) are the cost coefficient functions. Now, for a
given x− f (t), the aim of the industrial agent f is to choose an emitted pollutant concentra-
tion level x f (t) such that it solves the following multi-time maximization problem:

max
x f (t)

∫
Ωl◦ ,l1

[{(
p1 − p2

n

∑
f=1

x f (t)
)

x f (t)
}
− {(a f (t) + b f (t)x f (t))x f (t)}

]
dt,

subject to x f (t) ∈ K f (x− f (t)).

An equilibrium of the above defined multi-time maximization problem is a multi-time
generalized Nash equilibrium in the sense of our (MGNEP), where

f µ(xµ(t), x−µ(t)) =
[
{(aµ(t) + bµ(t)xµ(t))xµ(t)} −

{(
p1 − p2

n

∑
µ=1

xµ(t)
)

xµ(t)
}]

.
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6. The Multi-Time Generalized Nash Equilibrium Problem as a Projected
Dynamical System

In this section, we investigate our multi-time generalized Nash equilibrium problem
via a projected dynamical system. We also propose a method for finding the equilib-
ria of our multi-time generalized Nash equilibrium problem. Our work is motivated
by [12,20,42]. We also refer the interested reader to the more recent work [29], which deals
with a projected dynamical system pertaining to a single-valued map in the context of a
multi-time variational inequality problem, while the projected dynamical system of this
section pertains to a set-valued map in the context of a multi-time quasi-variational inequal-
ity problem. More precisely, in the present section we consider the following projected
dynamical system (PDS) pertaining to the set-valued map Γ, where x(·) ∈ Γ(x(·)):

dx(·, τ)

dτ
= ΠΓ(x(·,τ))(x(·, τ),−J(x(·, τ))),

x(·, 0) = x◦(·) ∈ Γ(x(·)),
(11)

where J : L2(Ωl◦ ,l1 ,Rn)→ L2(Ωl◦ ,l1 ,Rn) is a Lipschitz continuous vector field and ΠΓ(x(·)) :
L2(Ωl◦ ,l1 ,Rn)× L2(Ωl◦ ,l1 ,Rn)→ L2(Ωl◦ ,l1 ,Rn) is the operator defined by

ΠΓ(x(·))(x(·), v(·)) := lim
δ→0+

projΓ(x(·))(x(·) + δv(·))− x(·)
δ

,

where x(·) ∈ K and v(·) ∈ L2(Ωl◦ ,l1 ,Rn). The characteristics of the times t and τ in (PDS)
are different. Indeed, for all t ∈ Ωl◦ ,l1 , a solution of (MQVIP) specifies the static states of the
underlying system and the static states defined by one or more equilibrium curves when
t varies over the set Ωl◦ ,l1 . On the other hand, τ represents the dynamics of the system
over the interval [0, ∞) until it reaches one of the equilibria on the curves. It is evident that
the solutions of (PDS) lie in the class of absolutely continuous functions with respect to τ,
which take [0, ∞) into Γ(x(·)). Moreover, to avoid any possible confusion between t and
τ, we represent elements of the sets L2(Ωl◦ ,l1 ,Rn) at fixed moments t ∈ Ωl◦ ,l1 by x(·). To
describe the connection of our (MGNEP) with (PDS), we need the following definition,
which is inspired by [42].

Definition 9. y(·) ∈ K is called a critical point of (PDS) if y(·) ∈ Γ(y(·)) and

ΠΓ(y(·))(y(·),−J(y(·))) = 0.

Lemma 1 ([43], Lemma 1.2.8). For each i = {1, 2, . . . , p}, let Hi be a Hilbert space and let
Ci ⊂ Hi be closed and convex, Set C = C1 × C2 × . . .× Cp ⊂ H1 × H2 × . . .× Hp = H and
let x = (x1, x2, . . . , xp) ∈ H. Let projCi denote the metric projection onto Ci. Then the metric
projection projC(x) is given by

projC(x) = (projC1
(x1), projC2

(x2), . . . , projCp
(xp)).

The following propositions concerning each player µ ∈ {1, 2, . . . , N} and the strategies
y−µ(·) ∈ L2(Ωl◦ ,l1 ,Rn−nµ) of the rival players except player µ are direct consequences of
Proposition 2.1 and 2.2 in [42].

Proposition 1. For all yµ(·) ∈ Kµ(y−µ(·)) and vµ(·) ∈ L2(Ωl◦ ,l1 ,Rnµ),
ΠKµ(y−µ(·))(y

µ(·), vµ(·)) exists and ΠKµ(y−µ(·))(y
µ(·), vµ(·)) = projTKµ(y−µ(·))(y

µ(·))(v
µ(·)).

Proposition 2. For each yµ(·) ∈ Kµ(y−µ(·)), there exists nµ(·) ∈ NKµ(y−µ(·))(y
µ(·)) such that

ΠKµ(y−µ(·))(y
µ(·), vµ(·)) = vµ(·)− nµ(·) for all vµ(·) ∈ L2(Ωl◦ ,l1 ,Rnµ).
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The following theorem establishes a strong connection between (MGNEP) and (PDS).

Theorem 4. Assume that J(x(·)) =
(

∂ f µ

∂xµ (x(·))
)N

µ=1
for any x(·) ∈ K, and that for each

µ ∈ {1, 2, . . . , N} and x−µ(·), the multi-time cost functional Fµ is convex on K in the argument
xµ(·). Then y(·) ∈ K is a multi-time generalized Nash equilibrium if and only if it is a critical
point of (PDS).

Proof. Suppose that y(·) ∈ K is a multi-time generalized Nash equilibrium. Then it follows
from Theorem 2 that for each µ ∈ {1, 2, . . . , N}, we have∫

Ωl◦ ,l1

〈
∂ f µ

∂xµ (y(·)), xµ(·)− yµ(·)
〉

dt ≥ 0 ∀ xµ(·) ∈ Kµ(y−µ(·)).

The above inequality can be rewritten as〈〈
∂ f µ

∂xµ (y(·)), xµ(·)− yµ(·)
〉〉
≥ 0 ∀ xµ(·) ∈ Kµ(y−µ(·)),

which leads to the following inclusion:

−∂ f µ

∂xµ (y(·)) ∈ NKµ(y−µ(·))(y
µ(·)).

Proposition 2 now yields

ΠKµ(y−µ(·))

(
yµ(·),−∂ f µ

∂xµ (y(·))
)
= 0. (12)

Since Kµ(y−µ(·)) is convex for each µ ∈ {1, 2, . . . , N}, Lemma 1 implies that

ΠΓ(y(·))(y(·),−J(y(·))) = 0. (13)

Therefore y(·) is indeed a critical point of (PDS), as asserted.
Conversely, assume that y(·) ∈ K is a critical point of (PDS). Then y(·) ∈ Γ(y(·)) and

inequality (13) holds. Consequently, (12) holds too. Proposition 1 implies that

projTKµ(y−µ(·))(y
µ(·))

(
−∂ f µ

∂xµ (y(·))
)
= 0.

In view of Remark 2, the above expression leads to〈〈
−∂ f µ

∂xµ (y(·)), zµ(·)
〉〉
≤ 0 ∀ zµ(·) ∈ TKµ(y−µ(·))(y

µ(·)),

which in turn implies that

−∂ f µ

∂xµ (y(·)) ∈ NKµ(y−µ(·))(y
µ(·)),

which yields that y(·) is a solution of (MQVIP) with J(y(·)) =
(

∂ f µ

∂xµ (y(·))
)N

µ=1
. Thus, the

first part of the proof of Theorem 2 implies that y(·) is a multi-time generalized Nash
equilibrium.

Remark 5. In view of the proof techniques of Theorem 4 and the fact that the normal cone of
a product set is equal to the product of the normal cones ([44], Proposition 6.41), we can write
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(PDS) (11) as a concatenation of the following N dynamical systems (PDS)µ for J(x(·, τ)) =(
∂ f µ

∂xµ (x(·, τ))
)N

µ=1
:

dxµ(·, τ)

dτ
= ΠKµ(x−µ(·,τ))

(
xµ(·, τ),−∂ f µ

∂xµ (x(·, τ))

)
,

xµ(·, 0) = xµ
◦ (·) ∈ Kµ(x−µ(·)).

Numerical Illustrations

In this subsection we turn our attention to demonstrating a method for solving
(MGNEP) by taking advantage of (PDS) (11). Theorem 4 tells us that any point on a
curve of equilibria in the set K is a critical point of (PDS) and vice versa. Please note that the
existence of equilibria has already been established. Next, we take the following discretiza-
tion of Ωl◦ ,l1 : (l1

◦, l2
◦, . . . , lm

◦ ) = (t1
◦, t2
◦, . . . , tm

◦ ) < (t1
1, t2

1, . . . , tm
1 ) < . . . < (t1

i , t2
i , . . . , tm

i ) <

. . . < (t1
n, t2

n, . . . , tm
n ) = (l1

1 , l2
1 , . . . , lm

1 ). Then for each ti = (t1
i , t2

i , . . . , tm
i ), i = {0, 1, . . . , n},

we obtain a sequence of (PDS) on the distinct, nonempty, finite-dimensional and convex sets
Kti . After computing all the critical points of each (PDS), we obtain a sequence of critical
points which by interpolation yields the curves of equilibria. To apply this procedure in
practice, we consider a Nguyen traffic network [31] which comprises 13 nodes, 19 links,
four origin–destination pairs and 24 paths. See Figure 2. Here we use the terminology of
Section 5. Every origin–destination pair of our Nguyen traffic network is connected by six
paths. Let m = 2 and Ωl◦ ,l1 = Ω0,4 = [0, 4]2. The set of feasible flows is given by

K =

{
x(t) ∈ L2(Ω0,4,R24

+ ) : (0, . . . , 0) ≤ (xr(t))24
r=1 ≤ (t1 + t2 + r)24

r=1

and
6

∑
r=1

xr(t) = 6t1 + 6t2 + 21,
12

∑
r=7

xr(t) = 6t1 + 6t2 + 57,

18

∑
r=13

xr(t) = 6t1 + 6t2 + 93,
24

∑
r=19

xr(t) = 6t1 + 6t2 + 129 a.e. on Ω0,4

}
.

To simplify our calculations, we assume the following special structure of the feasible
traffic flow set of each route r ∈ {1, 2, . . . , 24}. This is motivated by Rosen [5].

Kr(x−r(t)) = {x(t) ∈ L2(Ω0,4,R+) : (xr(t), x−r(t)) ∈ K}

and the multi-time cost functional of each route r ∈ {1, 2, . . . , 24} is defined by

Hr(x(t)) =
∫

Ω0,4

(xr(s) + (xr(s))2)ds,

where x(t) = (x1(t), x2(t), . . . , xr−1(t), xr(t), xr+1(t), . . . , x24(t)). It can easily be proven
that for each r ∈ {1, 2, . . . , 24}, the multi-time cost functional Hr(x(t)) is convex in the
argument xr(t) and that there exists a nonempty, closed and compact subset D ⊂ K which
is given by

D =

{
x(t) ∈ L2(Ω0,4,R24

+ ) : (0, . . . , 0) ≤ (xr(t))24
r=1 ≤

(
t1 + t2 +

r
2

)24

r=1

and
6

∑
r=1

xr(t) = 6t1 + 6t2 + 21,
12

∑
r=7

xr(t) = 6t1 + 6t2 + 57,

18

∑
r=13

xr(t) = 6t1 + 6t2 + 93,
24

∑
r=19

xr(t) = 6t1 + 6t2 + 129 a.e. on Ω0,4

}
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such that for ŷ(t) ∈ D, inequality (6) is satisfied. Thus, all the hypotheses of Theorem 3 are
fulfilled. Therefore, for J(y(t)) = (1 + 2yr(t))24

r=1, (MDVIP) has a solution. Consequently,
by Theorem 2, (MGNEP) has a solution too.

Selecting points ti ∈
{(

k
8 , k

8

)
: k ∈ {0, 1, 2, . . . , 32}

}
, we obtain a sequence of (PDS)

defined on the sets

Kti =

{
x(ti) ∈ L2(Ω0,4,R24

+ ) : (0, . . . , 0) ≤ (xr(ti))
24
r=1 ≤ (t1

i + t2
i + r)24

r=1

and
6

∑
r=1

xr(ti) = 6t1
i + 6t2

i + 21,
12

∑
r=7

xr(ti) = 6t1
i + 6t2

i + 57,

18

∑
r=13

xr(ti) = 6t1
i + 6t2

i + 93,
24

∑
r=19

xr(ti) = 6t1
i + 6t2

i + 129 a.e. on Ω0,4

}
.

We have
Kr(x−r(ti)) = {x(ti) ∈ L2(Ω0,4,R+) : (xr(ti), x−r(ti)) ∈ Kti},

and Γ(y(ti)) =
24

∏
r=1

Kr(y−r(ti)).

For calculating the equilibrium, we consider the following system at the points ti: to
find the point y(ti) = (y1(ti), y2(ti), . . . , yr−1(ti), yr(ti), yr+1(ti), . . . , y24(ti)) ∈ Kti such that

−(1 + 2yr(ti)) ∈ NKr(y−r(ti))
(yr(ti)).

Figure 2. The Nguyen traffic network (13 nodes, 19 links, 4 origin–destination pairs).

After a simple calculation, we find the equilibrium points which are given in Tables 1–4.
We then interpolate the points of these tables and finally obtain the curves of equilibria.
They are displayed in Figure 3.
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Table 1. Numerical Results.

ti = {t1
i , t2

i } y1(ti) y2(ti) y3(ti) y4(ti) y5(ti) y6(ti)

{0, 0} 1 2 3 4 5 6

{ 1
8 , 1

8} 1.25 2.25 3.25 4.25 5.25 6.25

{ 1
4 , 1

4} 1.5 2.5 3.5 4.5 5.5 6.5

{ 3
8 , 3

8} 1.75 2.75 3.75 4.75 5.75 6.75

{ 1
2 , 1

2} 2 3 4 5 6 7

{ 5
8 , 5

8} 2.25 3.25 4.25 5.25 6.25 7.25

{ 3
4 , 3

4} 2.5 3.5 4.5 5.5 6.5 7.5

{ 7
8 , 7

8} 2.75 3.75 4.75 5.75 6.75 7.75

{1, 1} 3 4 5 6 7 8

{ 9
8 , 9

8} 3.25 4.25 5.25 6.25 7.25 8.25

{ 5
4 , 5

4} 3.5 4.5 5.5 6.5 7.5 8.5

{ 11
8 , 11

8 } 3.75 4.75 5.75 6.75 7.75 8.75

{ 3
2 , 3

2} 4 5 6 7 8 9

{ 13
8 , 13

8 } 4.25 5.25 6.25 7.25 8.25 9.25

{ 7
4 , 7

4} 4.5 5.5 6.5 7.5 8.5 9.5

{ 15
8 , 15

8 } 4.75 5.75 6.75 7.75 8.75 9.75

{2, 2} 5 6 7 8 9 10

{ 17
8 , 17

8 } 5.25 6.25 7.25 8.25 9.25 10.25

{ 9
4 , 9

4} 5.5 6.5 7.5 8.5 9.5 10.5

{ 19
8 , 19

8 } 5.75 6.75 7.75 8.75 9.75 10.75

{ 5
2 , 5

2} 6 7 8 9 10 11

{ 21
8 , 21

8 } 6.25 7.25 8.25 9.25 10.25 11.25

{ 11
4 , 11

4 } 6.5 7.5 8.5 9.5 10.5 11.5

{ 23
8 , 23

8 } 6.75 7.75 8.75 9.75 10.75 11.75

{3, 3} 7 8 9 10 11 12

{ 25
8 , 25

8 } 7.25 8.25 9.25 10.25 11.25 12.25

{ 13
4 , 13

4 } 7.5 8.5 9.5 10.5 11.5 12.5

{ 27
8 , 27

8 } 7.75 8.75 9.75 10.75 11.75 12.75

{ 7
2 , 7

2} 8 9 10 11 12 13

{ 29
8 , 29

8 } 8.25 9.25 10.25 11.25 12.25 13.25

{ 15
4 , 15

4 } 8.5 9.5 10.5 11.5 12.5 13.5

{ 31
8 , 31

8 } 8.75 9.75 10.75 11.75 12.75 13.75

{4, 4} 9 10 11 12 13 14
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Table 2. Numerical Results.

ti = {t1
i , t2

i } y7(ti) y8(ti) y9(ti) y10(ti) y11(ti) y12(ti)

{0, 0} 7 8 9 10 11 12

{ 1
8 , 1

8} 7.25 8.25 9.25 10.25 11.25 12.25

{ 1
4 , 1

4} 7.5 8.5 9.5 10.5 11.5 12.5

{ 3
8 , 3

8} 7.75 8.75 9.75 10.75 11.75 12.75

{ 1
2 , 1

2} 8 9 10 11 12 13

{ 5
8 , 5

8} 8.25 9.25 10.25 11.25 12.25 13.25

{ 3
4 , 3

4} 8.5 9.5 10.5 11.5 12.5 13.5

{ 7
8 , 7

8} 8.75 9.75 10.75 11.75 12.75 13.75

{1, 1} 9 10 11 12 13 14

{ 9
8 , 9

8} 9.25 10.25 11.25 12.25 13.25 14.25

{ 5
4 , 5

4} 9.5 10.5 11.5 12.5 13.5 14.5

{ 11
8 , 11

8 } 9.75 10.75 11.75 12.75 13.75 14.75

{ 3
2 , 3

2} 10 11 12 13 14 15

{ 13
8 , 13

8 } 10.25 11.25 12.25 13.25 14.25 15.25

{ 7
4 , 7

4} 10.5 11.5 12.5 13.5 14.5 15.5

{ 15
8 , 15

8 } 10.75 11.75 12.75 13.75 14.75 15.75

{2, 2} 11 12 13 14 15 16

{ 17
8 , 17

8 } 11.25 12.25 13.25 14.25 15.25 16.25

{ 9
4 , 9

4} 11.5 12.5 13.5 14.5 15.5 16.5

{ 19
8 , 19

8 } 11.75 12.75 13.75 14.75 15.75 16.75

{ 5
2 , 5

2} 12 13 14 15 16 17

{ 21
8 , 21

8 } 12.25 13.25 14.25 15.25 16.25 17.25

{ 11
4 , 11

4 } 12.5 13.5 14.5 15.5 16.5 17.5

{ 23
8 , 23

8 } 12.75 13.75 14.75 15.75 16.75 17.75

{3, 3} 13 14 15 16 17 18

{ 25
8 , 25

8 } 13.25 14.25 15.25 16.25 17.25 18.25

{ 13
4 , 13

4 } 13.5 14.5 15.5 16.5 17.5 18.5

{ 27
8 , 27

8 } 13.75 14.75 15.75 16.75 17.75 18.75

{ 7
2 , 7

2} 14 15 16 17 18 19

{ 29
8 , 29

8 } 14.25 15.25 16.25 17.25 18.25 19.25

{ 15
4 , 15

4 } 14.5 15.5 16.5 17.5 18.5 19.5

{ 31
8 , 31

8 } 14.75 15.75 16.75 17.75 18.75 19.75

{4, 4} 15 16 17 18 19 20
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Table 3. Numerical Results.

ti = {t1
i , t2

i } y13(ti) y14(ti) y15(ti) y16(ti) y17(ti) y18(ti)

{0, 0} 13 14 15 16 17 18

{ 1
8 , 1

8} 13.25 14.25 15.25 16.25 17.25 18.25

{ 1
4 , 1

4} 13.5 14.5 15.5 16.5 17.5 18.5

{ 3
8 , 3

8} 13.75 14.75 15.75 16.75 17.75 18.75

{ 1
2 , 1

2} 14 15 16 17 18 19

{ 5
8 , 5

8} 14.25 15.25 16.25 17.25 18.25 19.25

{ 3
4 , 3

4} 14.5 15.5 16.5 17.5 18.5 19.5

{ 7
8 , 7

8} 14.75 15.75 16.75 17.75 18.75 19.75

{1, 1} 15 16 17 18 19 20

{ 9
8 , 9

8} 15.25 16.25 17.25 18.25 19.25 20.25

{ 5
4 , 5

4} 15.5 16.5 17.5 18.5 19.5 20.5

{ 11
8 , 11

8 } 15.75 16.75 17.75 18.75 19.75 20.75

{ 3
2 , 3

2} 16 17 18 19 20 21

{ 13
8 , 13

8 } 16.25 17.25 18.25 19.25 20.25 21.25

{ 7
4 , 7

4} 16.5 17.5 18.5 19.5 20.5 21.5

{ 15
8 , 15

8 } 16.75 17.75 18.75 19.75 20.75 21.75

{2, 2} 17 18 19 20 21 22

{ 17
8 , 17

8 } 17.25 18.25 19.25 20.25 21.25 22.25

{ 9
4 , 9

4} 17.5 18.5 19.5 20.5 21.5 22.5

{ 19
8 , 19

8 } 17.75 18.75 19.75 20.75 21.75 22.75

{ 5
2 , 5

2} 18 19 20 21 22 23

{ 21
8 , 21

8 } 18.25 19.25 20.25 21.25 22.25 23.25

{ 11
4 , 11

4 } 18.5 19.5 20.5 21.5 22.5 23.5

{ 23
8 , 23

8 } 18.75 19.75 20.75 21.75 22.75 23.75

{3, 3} 19 20 21 22 23 24

{ 25
8 , 25

8 } 19.25 20.25 21.25 22.25 23.25 24.25

{ 13
4 , 13

4 } 19.5 20.5 21.5 22.5 23.5 24.5

{ 27
8 , 27

8 } 19.75 20.75 21.75 22.75 23.75 24.75

{ 7
2 , 7

2} 20 21 22 23 24 25

{ 29
8 , 29

8 } 20.25 21.25 22.25 23.25 24.25 25.25

{ 15
4 , 15

4 } 20.5 21.5 22.5 23.5 24.5 25.5

{ 31
8 , 31

8 } 20.75 21.75 22.75 23.75 24.75 25.75

{4, 4} 21 22 23 24 25 26
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Table 4. Numerical Results.

ti = {t1
i , t2

i } y19(ti) y20(ti) y21(ti) y22(ti) y23(ti) y24(ti)

{0, 0} 19 20 21 22 23 24

{ 1
8 , 1

8} 19.25 20.25 21.25 22.25 23.25 24.25

{ 1
4 , 1

4} 19.5 20.5 21.5 22.5 23.5 24.5

{ 3
8 , 3

8} 19.75 20.75 21.75 22.75 23.75 24.75

{ 1
2 , 1

2} 20 21 22 23 24 25

{ 5
8 , 5

8} 20.25 21.25 22.25 23.25 24.25 25.25

{ 3
4 , 3

4} 20.5 21.5 22.5 23.5 24.5 25.5

{ 7
8 , 7

8} 20.75 21.75 22.75 23.75 24.75 25.75

{1, 1} 21 22 23 24 25 26

{ 9
8 , 9

8} 21.25 22.25 23.25 24.25 25.25 26.25

{ 5
4 , 5

4} 21.5 22.5 23.5 24.5 25.5 26.5

{ 11
8 , 11

8 } 21.75 22.75 23.75 24.75 25.75 26.75

{ 3
2 , 3

2} 22 23 24 25 26 27

{ 13
8 , 13

8 } 22.25 23.25 24.25 25.25 26.25 27.25

{ 7
4 , 7

4} 22.5 23.5 24.5 25.5 26.5 27.5

{ 15
8 , 15

8 } 22.75 23.75 24.75 25.75 26.75 27.75

{2, 2} 23 24 25 26 27 28

{ 17
8 , 17

8 } 23.25 24.25 25.25 26.25 27.25 28.25

{ 9
4 , 9

4} 23.5 24.5 25.5 26.5 27.5 28.5

{ 19
8 , 19

8 } 23.75 24.75 25.75 26.75 27.75 28.75

{ 5
2 , 5

2} 24 25 26 27 28 29

{ 21
8 , 21

8 } 24.25 25.25 26.25 27.25 28.25 29.25

{ 11
4 , 11

4 } 24.5 25.5 26.5 27.5 28.5 29.5

{ 23
8 , 23

8 } 24.75 25.75 26.75 27.75 28.75 29.75

{3, 3} 25 26 27 28 29 30

{ 25
8 , 25

8 } 25.25 26.25 27.25 28.25 29.25 30.25

{ 13
4 , 13

4 } 25.5 26.5 27.5 28.5 29.5 30.5

{ 27
8 , 27

8 } 25.75 26.75 27.75 28.75 29.75 30.75

{ 7
2 , 7

2} 26 27 28 29 30 31

{ 29
8 , 29

8 } 26.25 27.25 28.25 29.25 30.25 31.25

{ 15
4 , 15

4 } 26.5 27.5 28.5 29.5 30.5 31.5

{ 31
8 , 31

8 } 26.75 27.75 28.75 29.75 30.75 31.75

{4, 4} 27 28 29 30 31 32



Mathematics 2021, 9, 1658 21 of 23

0
0.5

1
1.5

2
2.5

3
3.5

4

0

1

2

3

4

0

10

20

30

 

Time (t
1
)Time (t

2
)

 

N
u
m

e
ri
c
a
l 
S

o
lu

ti
o
n
s

y
1
(t)

y
2
(t)

y
3
(t)

y
4
(t)

y
5
(t)

y
6
(t)

y
7
(t)

y
8
(t)

y
9
(t)

y
10

(t)

y
11

(t)

y
12

(t)

y
13

(t)

y
14

(t)

y
15

(t)

y
16

(t)

y
17

(t)

y
18

(t)

y
19

(t)

y
20

(t)

y
21

(t)

y
22

(t)

y
23

(t)

y
24

(t)

Figure 3. Nguyen traffic network pattern with 24 routes, i.e., p = 24.

7. Conclusions and Further Developments

This paper is a contribution to the field of noncooperative games. Using a multi-
dimensional approach to time, we have first formulated a multi-time generalized Nash
equilibrium problem and a multi-time quasi-variational inequality problem, and then we
have established an equivalence between these two problems. Next, we have proved the ex-
istence of an equilibrium. As applications of our multi-time generalized Nash equilibrium
problem, we have formulated a traffic network model for a courier service company with
the aim of minimizing the traffic cost of routes and a river basin pollution problem in the
terms of such problems. We have also provided a method for finding equilibria using pro-
jected dynamical system theory and have solved the well-known Nguyen traffic network
problem by applying our method to it. Indeed, since the decision maker (the company)
in this problem aims to minimize the total delivery cost, an optimization reformulation is
perhaps more natural than a generalized Nash equilibrium problem (10). Nevertheless,
it can be noted that both the feasible traffic flow set and the cost function of each route
also depend on the traffic flow of other routes in the generalized Nash equilibrium model
(10), but this scenario is not present in an optimization model. In essence, the outcomes of
our generalized Nash equilibrium model (10) provide a new approach to solving traffic
network problems. We also intend to develop more practical theories and experiments to
ascertain that generalized Nash equilibrium models are more efficient than optimization
models when applied to traffic network problems. Moreover, we also intend to further
explore certain aspects of the river basin pollution problem.
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26. Udrişte, C.; Dogaru, O.; Ţevy, I. Null Lagrangian forms and Euler-Lagrange PDEs. J. Math. Study 2008, 1, 143–156.
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