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1. Introduction and Motivation

One of the important and widely and extensively investigated functions in Analytic
Number Theory is the Riemann Zeta function ζ(s), which is defined

(
for <(s) > 1

)
by

ζ(s) :=



∞
∑

k=1

1
ks =

1
1− 2−s

∞
∑

k=1

1
(2k− 1)s

(
<(s) > 1

)
1

1− 21−s

∞
∑

k=1

(−1)k−1

ks

(
<(s) > 0; s 6= 1

) (1)

and
(
for <(s) 5 1; s 6= 1

)
by its meromorphic continuation (see, for details, [1]).

Elegant single-series representations are known for such zeta values as ζ(2), ζ(3) and
ζ(4), but no such single-series expressions are known for ζ(n) when n = 5. In particular,
the following series for ζ(3):

ζ(3) =
5
2

∞

∑
k=1

(−1)k−1

k3(2k
k )

(2)

played a key role in the celebrated proof of the irrationality of ζ(3) by Apéry [2]. In
fact, as pointed out by Chen and Srivastava [3] [pp. 180–181] (see also [4] [p. 333]), the
representation (2) was derived independently by (among others) Hjortnaes [5], Gosper [6],
and Apéry [2]. With a view to honoring and felicitating Roger Apéry (1916–1994), ζ(3)
is popularly known as the Apéry constant and sums of the type in (2) is referred to as
Apéry-like series.

The computation of infinite series containing reciprocal central binomial coefficients is
a challenging issue and it is currently an active field in number theory and experimental
mathematics. The interest in these series comes from the existence of connections to certain
generating functions of the zeta function, special zeta values and other important constants
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such as the golden ratio. On the other hand, central binomial coefficients are directly
linked to the famous Catalan numbers, which are interesting on their own (see [7] for an
introduction). In addition to (2), some examples of series with reciprocal central binomial
coefficient are recalled here (see [8–10]):

∞

∑
k=1

1

k(2k
k )

=
π

3
√

3
,

∞

∑
k=1

1

k2(2k
k )

=
ζ(2)

3
, (3)

as well as the alternating series

∞

∑
k=1

(−1)k+1

k(2k
k )

=
2 ln α√

5
and

∞

∑
k=1

(−1)k+1

k2(2k
k )

= 2(ln α)2
(

α :=
1 +
√

5
2

)
, (4)

with α being the golden ratio.
The following two series evaluations appeared very recently in [11]:

∞

∑
k=1

F2k

k(2k
k )

= 2π

√
α

25
√

5
and

∞

∑
k=1

L2k

k(2k
k )

= 2πα2
√

α

25
√

5
, (5)

where Fk and Lk are Fibonacci and Lucas numbers, respectively, and the golden ratio α
is given in (4). For further information on series involving reciprocal central binomial
coefficients, one can see also the papers by Boyadzhiev [12], Glasser [13], Rivoal [14] and
Uhl [15].

The goal of this paper is to study two families of Apéry-like series with coefficients
involving Fibonacci (Lucas) numbers. One such family of series is evaluated here in closed
form. The other family of Apéry-like series, in addition, involves harmonic numbers. Here,
we derive an equivalent expression for the series and relate a special case to the Lerch
transcendent (or the Hurwitz–Lerch zeta function) Φ(z, s, a) defined by

Φ(z, s, a) :=
∞

∑
n=0

zn

(n + a)s (6)

(
a ∈ C \Z−0 ; s ∈ C when |z| < 1; <(s) > 1 when |z| = 1

)
,

where Z−0 denotes the set of non-positive integers.

2. The First Set of Main Results

Before stating our first main result, we recall some basic facts about Fibonacci and
Lucas numbers (see [7] for more information). Both of these number sequences satisfy the
second-order recurrence relation:

Gn+1 = Gn + Gn−1,

but they have different initial terms. Fibonacci numbers Fn start with F0 = 0 and F1 = 1;
Lucas numbers Ln have the initial values L0 = 2 and L1 = 1. Their Binet forms are given by

Fn =
αn − βn

α− β
and Ln = αn + βn (n = 0),

where α and β are roots of the quadratic equation x2 − x− 1 = 0, that is,

α =
1 +
√

5
2

and β =
1−
√

5
2

.

Some basic arithmetical properties of the Fibonacci numbers are listed below:

gcd(Fn, Fn+1) = 1 and gcd(Fn, Fn+2) = 1,
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Fmn ≡ 0 (mod Fm) (m, n = 1) and Fm|Fn ⇐⇒ m|n.

The next lemma will be used in proving our next theorem.

Lemma 1. For each j = 0, each of the following congruences holds true:

Fj ≡ 0 (mod 4) ⇐⇒ j ≡ 0 (mod 6)

Fj ≡ 1 (mod 4) ⇐⇒ j ≡ 1, 2, 5 (mod 6)

Fj ≡ 2 (mod 4) ⇐⇒ j ≡ 3 (mod 6)

Fj ≡ 3 (mod 4) ⇐⇒ j ≡ 4 (mod 6). (7)

Proof. This lemma can be proved by applying the principle of mathematical induction.

Theorem 1. For each j = 1, it is asserted that

1√
510F2j

(
∞

∑
k=1

1

k2(2k
k )

[
15k2 + α2j

5k2 − α2j

k−1

∏
m=1

(
1− α2j

5m2

)
− 15k2 + α−2j

5k2 − α−2j

k−1

∏
m=1

(
1− α−2j

5m2

)])

=
∞

∑
n=1

(−1)n−1

25n4 − 5n2L2j + 1

=



1
2 −

π

2
√

5Lj sin
(

π
2
√

5
Lj

) , if j ≡ 0, 3 (mod 6);

1
2 −

π

10Fj cos
(

π
2
√

5
Lj

) , if j ≡ 1, 4, 5 (mod 6);

1
2 + π

10Fj cos
(

π
2
√

5
Lj

) , if j ≡ 2 (mod 6).

(8)

Proof. Our proof of Theorem 1 starts with the following formula [9] (Equatiion (31)), which
holds true for all complex values of x other than an integer:

1
2

∞

∑
k=1

1

k2(2k
k )

3k2 + x2

k2 − x2

k−1

∏
m=1

(
1− x2

m2

)
=

∞

∑
n=1

(−1)n−1

n2 − x2

=
π

2x sin(πx)
− 1

2x2 . (9)

Setting x = αj
√

5
(j = 1) gives

∞

∑
k=1

1

k2(2k
k )

15k2 + α2j

5k2 − α2j

k−1

∏
m=1

(
1− α2j

5m2

)
= 10

∞

∑
n=1

(−1)n−1

5n2 − α2j

=

√
5π

αj sin
(

π αj√
5

) − 5
α2j . (10)

Similarly, with x = βj
√

5
(j = 1), we get

∞

∑
k=1

1

k2(2k
k )

15k2 + β2j

5k2 − β2j

k−1

∏
m=1

(
1− β2j

5m2

)
= 10

∞

∑
n=1

(−1)n−1

5n2 − β2j

=

√
5π

βj sin(πβj/
√

5)
− 5

β2j . (11)
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Now, using the Binet form, we find that

1√
5

(
∞

∑
k=1

1

k2(2k
k )

[
15k2 + α2j

5k2 − α2j

k−1

∏
m=1

(
1− α2j

5m2

)
− 15k2 + α−2j

5k2 − α−2j

k−1

∏
m=1

(
1− α−2j

5m2

)])

= 10F2j

∞

∑
n=1

(−1)n−1

25n4 − 5n2L2j + 1

= π(−1)j+1
αj sin

(
παj
√

5

)
− βj sin

(
πβj
√

5

)
sin
(

παj√
5

)
sin
(

πβj
√

5

) + 5F2j.

Next, we make use of the following relations:

αj
√

5
=

1
2

Fj +
1

2
√

5
Lj and

βj
√

5
= −1

2
Fj +

1
2
√

5
Lj,

so that

sin
(

παj
√

5

)
= sin

(
π

2
√

5
Lj

)
cos
(π

2
Fj

)
+ cos

(
π

2
√

5
Lj

)
sin
(π

2
Fj

)
and

sin
(

πβj
√

5

)
= sin

(
π

2
√

5
Lj

)
cos
(π

2
Fj

)
− cos

(
π

2
√

5
Lj

)
sin
(π

2
Fj

)
.

As

sin
(π

2
n
)
=


0, if n ≡ 0, 2 (mod 4);
1, if n ≡ 1 (mod 4);
−1, if n ≡ 3 (mod 4)

and

cos(
π

2
n) =


0, if n ≡ 1, 3 (mod 4);
1, if n ≡ 0 (mod 4);
−1, if n ≡ 2 (mod 4),

we find from Lemma 1 that

sin
(π

2
Fj

)
=


0, if j ≡ 0, 3 (mod 6);
1, if j ≡ 1, 2, 5 (mod 6);
−1, if j ≡ 4 (mod 6)

and

cos
(π

2
Fj

)
=


0, if j ≡ 1, 2, 4, 5 (mod 6);
1, if j ≡ 0 (mod 6);
−1, if j ≡ 3 (mod 6);

Now, the cases can be treated separately. As a showcase, we consider the case when

j ≡ 0 (mod 6) ⇐⇒ Fj ≡ 0 (mod 4).

Here, we have

sin
(π

2
Fj

)
= 0 and cos

(π

2
Fj

)
= 1,

and

sin
(

παj
√

5

)
= sin

(
πβj
√

5

)
= sin

(
π

2
√

5
Lj

)
,
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so that

10F2j

∞

∑
n=1

(−1)n−1

25n4 − 5n2L2j + 1
= π(−1)j+1

√
5Fj

sin
(

π
2
√

5
Lj

) + 5F2j.

Dividing by 10F2j and using the relation FnLn = F2n establishes the result.
The other cases are treated similarly.

Theorem 2. For each j = 0, the following identity holds true:

1
10

(
∞

∑
k=1

1

k2(2k
k )

[
15k2 + α2j

5k2 − α2j

k−1

∏
m=1

(
1− α2j

5m2

)
+

15k2 + α−2j

5k2 − α−2j

k−1

∏
m=1

(
1− α−2j

5m2

)])

=
∞

∑
n=1

(−1)n−1 10n2 − L2j

25n4 − 5n2L2j + 1

=



π
2
√

5
Lj

sin
(

π
2
√

5
Lj

) − 1
2 L2j, if j ≡ 0, 3 (mod 6);

π
2 Fj

cos
(

π
2
√

5
Lj

) − 1
2 L2j, if j ≡ 1, 4, 5 (mod 6);

−
π
2 Fj

cos
(

π
2
√

5
Lj

) − 1
2 L2j, if j ≡ 2 (mod 6).

(12)

Proof. Theorem 2 can be proved by using the same arguments as in the proof of Theorem 1.

Theorem 3. For each j = 1, it is asserted that

1
10
√

5 F2j

(
∞

∑
k=1

1

k2(2k
k )

[
15k2 − α2j

5k2 + α2j

k−1

∏
m=1

(
1 +

α2j

5m2

)
− 15k2 − α−2j

5k2 + α−2j

k−1

∏
m=1

(
1 +

α−2j

5m2

)])

=
∞

∑
n=1

(−1)n

25n4 + 5n2L2j + 1
(13)

= −1
2
+ (−1)j π

10F2j

Lj sinh
(

π
2 Fj

)
cosh

(
π

2
√

5
Lj

)
+
√

5Fj sinh
(

π
2
√

5
Lj

)
cosh

(
π
2 Fj

)
sinh2

(
π

2
√

5
Lj

)
− sinh2

(
π
2 Fj

) .

Proof. Setting x = iy (i =
√
−1) in (9), we get

1
2

∞

∑
k=1

1

k2(2k
k )

3k2 − y2

k2 + y2

k−1

∏
m=1

(
1 +

y2

m2

)
=

∞

∑
n=1

(−1)n−1

n2 + y2

= − π

2y sinh(πy)
+

1
2y2 . (14)

Now, as in our proof of Theorem 1, we put

y =
αj
√

5
and y =

βj
√

5
(j = 1).

In order to simplify, we use the the following elementary identities:

sinh(A + B) = sinh(A) cosh(B) + cosh(A) sinh(B)

and

sinh(A) + sinh(B) = 2 sinh
(

A + B
2

)
cosh

(
A− B

2

)
.



Mathematics 2021, 9, 1621 6 of 10

The result is

1
10
√

5 F2j

(
∞

∑
k=1

1

k2(2k
k )

[
15k2 − α2j

5k2 + α2j

k−1

∏
m=1

(
1 +

α2j

5m2

)
− 15k2 − α−2j

5k2 + α−2j

k−1

∏
m=1

(
1 +

α−2j

5m2

)])

=
∞

∑
n=1

(−1)n

25n4 + 5n2L2j + 1
(15)

= −1
2
+ (−1)j π

10F2j

Lj sinh
(

π
2 Fj

)
cosh

(
π

2
√

5
Lj

)
+
√

5Fj sinh
(

π
2
√

5
Lj

)
cosh

(
π
2 Fj

)
[
sinh

(
π

2
√

5
Lj

)
cosh

(
π
2 Fj

)]2
−
[
sinh

(
π
2 Fj

)
cosh

(
π

2
√

5
Lj

)]2 .

The denominator in the last expression can be simplified further using

cosh2(A)− sinh2(A) = 1.

For j = 1, we have

1
10
√

5

(
∞

∑
k=1

1

k2(2k
k )

[
15k2 − α2

5k2 + α2

k−1

∏
m=1

(
1 +

α2

5m2

)
− 15k2 − α−2

5k2 + α−2

k−1

∏
m=1

(
1 +

α−2

5m2

)])

=
∞

∑
n=1

(−1)n

25n4 + 15n2 + 1
(16)

= −1
2
− π

10

sinh
(

π
2
)

cosh
(

π
2
√

5

)
+
√

5 sinh
(

π
2
√

5

)
cosh

(
π
2
)

sinh2
(

π
2
√

5

)
− sinh2(π

2
) .

Finally, it is worth mentioning that, upon differentiating (9) and (14) with respect to
the variables x and y, respectively, if we set y = x in the resulting equation, we are led to
the following identities:

∞

∑
k=1

1

k2(2k
k )

k−1

∏
m=1

(
1− x2

m2

)(
8k2x

(k2 − x2)2 −
3k2 + x2

k2 − x2

k−1

∑
m=1

2x
m2 − x2

)

=
∞

∑
n=1

4(−1)n−1 x
(n2 − x2)2 (17)

=
2
x3 − π

sin(πx) + πx cos(πx)
[x sin(πx)]2

and

∞

∑
k=1

1

k2(2k
k )

k−1

∏
m=1

(
1 +

x2

m2

)(
3k2 − x2

k2 + x2

k−1

∑
m=1

2x
m2 + x2 −

8k2x
(k2 + x2)2

)
(18)

=
∞

∑
n=1

4(−1)n x
(n2 + x2)2

= π
sinh(πx) + πx cosh(πx)

[x sinh(πx)]2
− 2

x3 .

Setting x = 1
2 in (17) and noting that

k−1

∑
m=1

1
4m2 − 1

=
1
2

k−1

∑
m=1

(
1

2m− 1
− 1

2m + 1

)
=

1
2

(
2k− 2
2k− 1

)
,
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we can obtain

∞

∑
k=1

1

k2(2k
k )

−24k4 + 12k3 + 26k2 + k + 1
(4k2 − 1)2

k−1

∏
m=1

(
1− 1

4m2

)
= 8

∞

∑
n=1

(−1)n−1

(4n2 − 1)2 = 4− π.

The identities (17) and (18) also allow us to express special cases of the generalized
alternating Mathieu series from [16,17] in an Apéry-like fashion.

3. A Further Main Result

Our Theorem 4 below is concerned with a family of reciprocal series involving Fi-
bonacci (Lucas) numbers and harmonic numbers.

Theorem 4. For each j = 1, each of the following identities holds true:

∞

∑
k=0

(−1)k 22k−j(k+1)

(2k + 1)(2k
k )

hk+1Fj(k+1)

=
∞

∑
k=0

1
(2k + 1)2

(−1)j(k+1)
k+1
∑

m=0
(k+1

m )(−1)jm 2jm Fjm[
22j + 2j Lj + (−1)j

]k+1 (19)

and

∞

∑
k=0

(−1)k 22k−j(k+1)

(2k + 1)(2k
k )

hk+1Lj(k+1)

=
∞

∑
k=0

1
(2k + 1)2

(−1)j(k+1)
k+1
∑

m=0
(k+1

m )(−1)jm 2jm Ljm[
22j + 2jLj + (−1)j

]k+1 , (20)

where

hn =
n

∑
k=0

1
2k− 1

= H2n −
1
2

Hn,

and Hn given by

Hn = 1 +
1
2
+

1
3
+ · · ·+ 1

n
denotes the nth harmonic number. In particular, we have the following relations:

∞

∑
k=0

(−1)k 2k

(2k + 1)(2k
k )

hk+1Fk+1 =
4
5

∞

∑
k=0

1
(4k + 1)2

1
5k =

1
20

Φ
(

1
5

, 2,
1
4

)
(21)

as well as

∞

∑
k=0

(−1)k 2k

(2k + 1)(2k
k )

hk+1Lk+1 =
4
5

∞

∑
k=0

1
(4k + 3)2

1
5k =

1
20

Φ
(

1
5

, 2,
3
4

)
, (22)

where Φ(z, s, a) is the Lerch transcendent (or the Hurwitz–Lerch function) defined by (6).

Proof. The following identity, which is valid for− 1
2 < x < 1, is due to Ramanujan (see [18]

[p. 293, Entry 34]):

∞

∑
k=0

1
(2k + 1)2

(
x

1 + x

)k+1
=

∞

∑
k=0

(−1)k 22k (k!)2 hk+1
(2k + 1)!

xk+1. (23)
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For j = 1, if we first set

x =
(α

2

)j
and x =

(
β

2

)j
,

and then combine the two results according to the Binet form, we get

∞

∑
k=0

1
(2k + 1)2

1√
5

[(
αj

2j + αj

)k+1

−
(

βj

2j + βj

)k+1]

=
∞

∑
k=0

1
(2k + 1)2

1√
5

([
(2α)j + (−1)j]k+1 −

[
(2β)j + (−1)j]k+1

(22j + 2jLj + (−1)j)k+1

)
.

By applying the binomial theorem, we straightforwardly find that

1√
5

([
(2α)j + (−1)j]k+1 −

[
(2β)j + (−1)j]k+1

)
= (−1)j(k+1)

k+1

∑
m=0

(
k + 1

m

)
(−1)jm 2jm Fjm.

As the right-hand side of the last equation is obvious, the proof of the first identity is
completed. If j = 1, then we have

(−1)k+1
k+1

∑
m=0

(
k + 1

m

)
(−1)m 2m Fm =

(−1)k+1
√

5

[
(−
√

5)k+1 − (
√

5)k+1]
= (
√

5)k(1 + (−1)k).

Furthermore, the left-hand side of (23) simplifies to the following form:

∞

∑
k=0

1
(2k + 1)2

(
√

5)k[1 + (−1)k]
5k+1 =

∞

∑
k=0

1
(2k + 1)2 5−

k+2
2
[
1 + (−1)k]

=
∞

∑
k=0

2
(4k + 1)2 5−(k+1).

The Lucas series is similar. This completes our demonstration of Theorem 4.

4. Concluding Remarks and Observations

From the following known series representation of the Lerch transcendent (or the
Hurwitz–Lerch zeta function) Φ(z, s, a) defined by (6):

Φ(z, s, a) =
1

1− z

∞

∑
n=0

(
− z

1− z

)n n

∑
k=0

(−1)k
(

n
k

)
1

(k + a)s

(
s ∈ C; <(z) < 1

2

)
,

we immediately get

∞

∑
k=0

(−1)k 2k

(2k + 1)(2k
k )

hk+1 Fk+1 =
∞

∑
k=0

(−1)k 2−2k
k

∑
m=0

(−1)m ( k
m)

(4m + 1)2 (24)

and
∞

∑
k=0

(−1)k 2k

(2k + 1)(2k
k )

hk+1 Lk+1 =
∞

∑
k=0

(−1)k 2−2k
k

∑
m=0

(−1)m ( k
m)

(4m + 3)2 . (25)
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Moreover, the relation Lk+1 − Fk+1 = 2Fk yields

∞

∑
k=0

(−1)k+1 2k

(2k + 1)(2k
k )

hk+1 Fk =
16
5

∞

∑
k=0

2k + 1
(4k + 1)2(4k + 3)2

1
5k (26)

=
1

40

(
Φ
(

1
5

, 2,
1
4

)
−Φ

(
1
5

, 2,
3
4

))
.

The case j = 2 finally gives

∞

∑
k=0

(−1)k

(2k + 1)(2k
k )

hk+1F2k+2 =
4

29

∞

∑
k=0

1
(2k + 1)2

k+1
∑

m=0
(k+1

m )4m F2m

29k (27)

and

∞

∑
k=0

(−1)k

(2k + 1)(2k
k )

hk+1L2k+2 =
4
29

∞

∑
k=0

1
(2k + 1)2

k+1
∑

m=0
(k+1

m )4m L2m

29k . (28)

It is remarkable that the inner sums on the right-hand sides of (27) and (28), involving
the Fibonacci numbers and the Lucas numbers, respectively, do not seem to possess simple
closed forms. It is possible, however, to express the right-hand sides in terms of the Lerch
transcendent (or the Hurwitz–Lerch zeta function) as follows:

∞

∑
k=0

(−1)k

(2k + 1)(2k
k )

hk+1F2k+2

=
4

29
1 + 4α2
√

5

∞

∑
k=0

1
(2k + 1)2

(1 + 4α2

29

)k

− 4
29

1 + 4β2
√

5

∞

∑
k=0

1
(2k + 1)2

(1 + 4β2

29

)k

=
7 + 2

√
5

29
√

5
Φ

(
7 + 2

√
5

29
, 2,

1
2

)
− 7− 2

√
5

29
√

5
Φ

(
7− 2

√
5

29
, 2,

1
2

)
(29)

and

∞

∑
k=0

(−1)k

(2k + 1)(2k
k )

hk+1L2k+2

=
4(1 + 4α2)

29

∞

∑
k=0

1
(2k + 1)2

(1 + 4α2

29

)k

+
4(1 + 4β2)

29

∞

∑
k=0

1
(2k + 1)2

(1 + 4β2

29

)k

=
7 + 2

√
5

29
Φ

(
7 + 2

√
5

29
, 2,

1
2

)
+

7− 2
√

5
29

Φ

(
7− 2

√
5

29
, 2,

1
2

)
. (30)

We conclude this article by remarking further that the Fibonacci and Lucas numbers, as
well as other widely studied numbers and polynomials, are potentially useful in both pure
and applied mathematical sciences (see, for example, [19–21]). Indeed, at least partially,
the motivation for the results presented in this article can be derived from these as well as
other developments in the literature.
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