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Abstract: The joint analysis of various ordinal variables is necessary in many experimental studies
within research fields such as sociology and psychology. Therefore, the necessary measures of
multiple ordinal dependence must be easy to interpret and facilitate the interpretation of multivariate
models that fit ordinal data. The main objective of this article is to propose a multiple ordinal
correlation measure based on a bivariate correlation measure: Kendall’s tau. A sample version of the
measure is proposed for its estimation. Furthermore, a confidence interval and a multiple ordinal
independence test are proposed. The measure is applied to various simulations, covering a wide
range of multiple ordinal dependency scenarios, in order to illustrate the adequacy of the measure
and the proposed inferential techniques. Finally, the measure is applied to a real-world study based
on a social survey of the levels of life satisfaction and the happiness index of a population.

Keywords: ordinal data; multiple ordinal dependence; Kendall’s tau measure; ordinal logistic
regression; happiness index; life satisfaction

1. Introduction

The presence of ordinal variables is common in studies and experiences based on
structured questionnaires and evaluations by judges and expert observers. Thus, ordinal
data frequently arise in many fields, especially in the social and biomedical sciences.
However, it is also common for the statistical analysis of these variables to be carried out by
applying techniques oriented to the analysis of nominal variables (if the number of ordered
categories is small) or techniques oriented to the analysis of numerical or quantitative
variables (if the number of ordered categories is large). One can suppose that this is due to
the difficulty of interpreting ordinal statistical models, such as ordinal regression models,
and especially the difficulty of transferring statistical and mathematical conclusions to
conclusions in their specific field of study (economic, social, biomedical, etc.). Good
works of presentation, development, and interpretation of techniques for modeling ordinal
variables are presented by Agresti [1] and Fahremeir et al. [2].

This difficulty of interpretation does not arise when bivariate ordinal correlation
measures are applied. The two most popular measures of association for ordinal random
variables are Kendall’s tau [3] and Spearman’s rho [4]. However, to the best of our knowl-
edge, it is necessary to propose new multiple ordinal correlation measures that are easily
interpretable for researchers from different scientific areas. That is, measures describing
the ordinal correlation of a target ordinal variable against a set of explanatory variables
(whether they are ordinals or not). Agresti [5] proposes a generalization of Kendall’s tau
defined in terms of the proportional reduction in prediction errors obtained by predicting
the ordering of pairs of observations on the objective variable based on orderings of the
pairs on the explanatory variables. However, it does not have as simple an interpretation
as bivariate Kendall’s tau. Nagelkerke [6] proposes a general definition of a likelihood-
based coefficient of determination, from which correlation or association measures can be

Mathematics 2021, 9, 1616. https://doi.org/10.3390/math9141616 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8841-1987
https://doi.org/10.3390/math9141616
https://doi.org/10.3390/math9141616
https://doi.org/10.3390/math9141616
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9141616
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9141616?type=check_update&version=3


Mathematics 2021, 9, 1616 2 of 16

constructed. Specifically, Muñoz-Pichardo et al. [7] apply this idea to regression models for
multivariate count data. In the case of continuous numerical variables, the sample multiple
linear correlation coefficient (R2) is available, which can be interpreted as a measure of
linear statistical dependence and a measure of fit of a model.

In the present work, a multiple ordinal correlation measure is proposed that uses the
concept of the Kendall’s tau coefficient as a basis and is constructed following a similar
path to the multiple linear correlation coefficient, considering the adjusted values through
a model of ordinal regression. That is, it is not based on the model, nor on the prediction of
the ordering through the joint ordering of the explanatory variables. The proposed measure
is based on the prediction of the ordering through the ordering of the values fitted by the
model. This model-based strategy of construction of statistical dependency measures can
be applied to many models and types of variables. Once the measure is defined in what
follows, then a methodology is proposed to develop its statistical inference, based on
resampling methods to determine bias, confidence interval, and hypothesis testing. To
illustrate the application of this methodology, simulations of various scenarios are carried
out, from a scenario with statistical ordinal independence to a scenario of almost perfect
ordinal dependence.

To illustrate the adequacy of the proposed measure and its easy interpretation, it is
applied in the field of social studies. In recent years, there is an increasing need to evaluate
the society with a focus on the population and with such essential objectives as happiness
and satisfaction with life. Within this framework of social and scientific interest, a survey
was carried out in the geographical area of Andalusia (southern Spain). Its main objective
was to obtain a personal assessment of the level of happiness, the level of life satisfaction
in general, and certain specific aspects of life (family, education, work, etc.). Hence, the
study determined a happiness index and a level of satisfaction with life in general, in
addition to a life satisfaction profile defined using ordinal measures on various topics or
issues of personal life. The modeling of life satisfaction and the degree of happiness in
relation to other specific aspects of life has been studied by other authors (for example,
refer to the work of Chow [8] on life satisfaction among university students). Multiple
ordinal dependence of the happiness index against the satisfaction profile and the degree
of general satisfaction with the satisfaction profile will allow us to illustrate the adequacy
of the ordinal correlation measure proposed in the present work.

2. Statistical Model: Ordinal Multiple Regression

A large number of parametric ordinal models can be found in the literature. A
possible classification of these models determines three categories [9]: cumulative models,
sequential models, and adjacent-category models. Bürkner and Vuorre [9] indicate that the
adjacent-category models are literally chosen for their mathematical convenience rather
than any quality of interpretation, because it is difficult to envisage a natural process leading
to these models. Fahrmeir et al. [2] argue that, due to its construction, the sequential model
is useful when the categories of the response variable are obtained sequentially, that is,
a category can only be attained provided that the previous borderline category has been
attained. Therefore, we have chosen to apply a cumulative model for the analysis of the
experience presented in the introduction and developed in Section 5. This model is one
that provides the best results in a data set associated with this experience. Furthermore,
the methodological proposal to construct the multiple association measure can be adapted
to the other ordinal regression models.

The cumulative model of ordinal regression [1] consists of relating the logit of the
cumulative probability of the target variable with the linear predictor of the explanatory
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variables. Thus, given the objective variable Y that takes the values 1, 2, . . . , K, the
advantages (odds) and its logarithmic transformation (logits) are considered:

odds(j; x) = Pr[Y≤j |x ]
Pr[Y>j |x ] ,

logit(j; x) = log[odds(j; x)] = β0,j − η
′
x = β0,j − η1x1 − · · · − ηpxp

j = 1, . . . , K− 1.

, (1)

Hence, Agresti [1] calls this a cumulative link model. Thus, the model represents each
logit as a function of the linear predictor of the explanatory or predictive variables. Each
cumulative logit has its own intercept: the

{
β0,j
}

are increasing in j, because Pr[Y ≤ j |x ]
increases in j for x fixed. Furthermore, the model assumes identical effects of the covariates
for each logit. If we denote by γj = exp

(
β0,j
)
, the conditional probability distribution

function that describes the model is given by:

Pr[Y ≤ j |x ] =
γj exp

(
−η

′
x
)

1 + γj exp
(
−η

′x
) , j = 1, . . . , K− 1. Pr[Y ≤ K |x ] = 1. (2)

The model described by the conditional probability distribution is denoted as
OrdMod(Y

∣∣X1, . . . , Xp) . We can easily obtain the probability function:

Pr[Y = 1 |x ] = Pr[Y ≤ 1 |x ], (3)

Pr[Y = j |x ] = Pr[Y ≤ j |x ]− Pr[Y ≤ j− 1 |x ], j = 2, . . . , K. (4)

In the case where the explanatory variables are not significant in the model, that is,
the objective variable is not associated with the explanatory variables, the resulting model,
which can be considered as the base model, has the following cumulative probabilities:

Pr[Y ≤ j] =
γj

1 + γj
, j = 1, · · · , K− 1. Pr[Y ≤ K] = 1. (5)

Consequently, it must be verified that the constants γj, generators of the probabilities
of the base model, must be ordered in the form: 0 ≤ γ1 ≤ . . . ≤ γK−1. In the ordinal
regression model, the generating constants of the conditional ordinal distribution Y |x are
transformed to a function of the covariates:

γj(x) = γj exp
(
−η

′
x
)
= γj exp

(
−η1x1 − · · · − ηpxp

)
. (6)

Thus, for a covariant X1 binary factor (values 0,1), if η1 > 0 then the presence of
that factor leads to a contraction (e−η1) that affects all the generating constants. Similarly,
if η1 < 0 then the presence leads to an expansion of these constants. To facilitate an
interpretation, let us consider the odds ratios (OR) associated with this covariate:

log OR(j; X1) = logit
[
j;
(
1, x2, . . . , xp

)]
− logit

[
j;
(
0, x2, . . . , xp

)]
= −η1, (7)

otherwise,

OR(j; X1) =
odds(j; X1 = 1)
odds(j; X1 = 0)

= exp(−η1). (8)

Consequently, if η1 > 0 (equivalently, associated odds ratio less than 1), then

Pr
[
Y ≤ j

∣∣(1, x2, . . . , xp
) ]

Pr
[
Y > j

∣∣(1, x2, . . . , xp
) ] < Pr

[
Y ≤ j

∣∣(0, x2, . . . , xp
) ]

Pr
[
Y > j

∣∣(0, x2, . . . , xp
) ] , j = 1, . . . , K− 1, (9)

that is, the binary factor X1 is a covariant whose “presence” leads to improve or increase
the objective variable Y. In the opposite direction, the case η1 < 0 can be interpreted.
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Conversely, if X1 is a quantitative or ordinal variable, with η1 > 0, the increase of one unit
in it leads to the increase of the objective variable and vice versa.

The estimators obtained through maximum likelihood, with approximate numerical
methods, allow obtaining the fitted model. Specifically, the collection of parameters that
must be estimated is

{
β0,1 . . . β0,K−1 , η1 . . . ηp

}
. For the study of the significance of the

parameters, the asymptotic likelihood ratio test (LRT) can be applied, as well as the global
significance test of the model. Furthermore, as measures of goodness of fit, measures based
on the likelihood of the model can be considered: the residual deviance statistic and the
Akaike Information Criterion (AIC) [10]. The detailed development of the inference on this
model is collected in the works of Agresti [1], McCullagh [11], and Fahremeir et al. [2].

With such estimators, the model allows “predicting” the values of the target ordinal
variable through the covariates:

ŷ = arg max
j=1...K

P̂r[Y = j |x ]. (10)

This makes it possible to analyze the residuals to evaluate the adjustment and the pre-
dictive capacity of the model OrdMod

(
Y
∣∣X1, . . . , Xp

)
. Following the approach of Agresti

(2010), we consider as a classification or prediction rule the response category that has
the highest estimated probability or mode of the conditional distribution Y|X = x . This
approach may suffer from some problems such as:

Cases in which one outcome is much more likely than the others, this can result in
always or nearly always predicting that category. This problem leads to the absence of
multiple ordinal association.

Cases in which the conditional distribution of the ordinal response variable is bimodal.
For the purpose of defining the measure, it has been chosen to randomize between modal
categories. A detailed study of the problem may be the subject of future work.

Other prediction rules have been proposed for this model (see Agresti [12] and Mar-
shall [13]), but we believe that prediction in the modal category is the most appropriate
rule for defining the measure of association.

3. A Measure of Ordinal Multiple Correlation and Its Inference
3.1. Definition of the Model-Based Multiple Kendall’s Tau

To complete the study of the ordinal regression model, it is necessary to obtain a
measure of the multiple dependency or multiple association between the target ordinal
variable and the collection of explanatory variables included in the model, that is, a measure
similar to the multiple correlation coefficient in the multiple regression model under normal
conditions. The multiple correlation coefficient between a quantitative random variable U
and a quantitative random p-vector V is defined as the maximum correlation between U
and any linear combination of V, β′V [14]:

ρ2(U|V) = max
β∈Rp

ρ2(U, β′V
)
. (11)

Another equivalent way of defining this coefficient is, under normal conditions, the
linear correlation coefficient between U and the random variable U∗ = E[U|V] , with
support identical to U and a function of V:

I f V = v then U∗ = E[U|V = v]. (12)

That is,
ρ2(U|V) = ρ2(U, U∗) (13)

given that,
U∗ = β′OPTV : βOPT = argmax

β∈Rp
ρ2(U, β′V

)
. (14)
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Consequently, two relevant aspects can be highlighted: first, the multiple correlation
coefficient is a measure of the linear dependence between one random variable and a
certain collection of random variables; second, the linear dependence is measured with
respect to the best linear combination that approximates U according to the multiple regres-
sion model [9,10]. As a result, the multiple correlation coefficient is the linear correlation
coefficient between U and its prediction β′V based on the model. It is generally considered
squared since the sign of the correlation is not understandable in the multiple case.

From a sampling perspective, the estimator of the sample multiple correlation coeffi-
cient is obtained as the sample linear correlation coefficient between the observed values
of U and their values adjusted for the model Û = β̂′V with β̂ as the maximum likelihood
estimator of the regression coefficients or parameters of the regression model.

In parallel with the analysis of multiple ordinal dependence, we propose a new
measure based on the ordinal regression model, OrdMod(Y

∣∣X1, . . . , Xp) , and Kendall’s
bivariate ordinal dependence measure or Kendall’s τ coefficient.

The non-parametric correlation coefficient (or measure of association) known as
Kendall’s tau [3] is defined as follows: let (U1, V1) and (U2, V2) be independent two-
dimensional random vectors with the same distribution as (U, V), then

τ(U, V) = Pr[(U1 −U2)(V1 −V2) > 0]− Pr[(U1 −U2)(V1 −V2) < 0]. (15)

That is, the Kendall’s τ coefficient is the probability of agreement minus the probability
of disagreement between the variables. This coefficient can also be defined (see [15]) as the
expected value of the random variable

A = sgn(U1 −U2) sgn(V1 −V2) where sgn(w) =


−1 if w < 0
0 if w = 0
1 if w > 0

. (16)

Its estimation, through a sample {(ui, vi), i = 1 . . . n} is obtained as τ̂ = 2S
n(n−1) , named

Kendall’s sample tau, where S is the number of concordant pairs minus the number of
discordant pairs.

Thus, a measure of multiple ordinal dependence between an ordinal variable Y
and a random p-vector X =

(
X1, . . . , Xp

)′ can be defined as Kendall’s τ coefficient be-
tween Y and the prediction with the best linear combination of X with respect to the
OrdMod(Y

∣∣X1, . . . , Xp) model. In other words, it can be called the model-based multi-
ple Kendall’s tau between Y and X and is denoted by τM(Y, X). That is, τM(Y, X) is the
Kendall’s τ coefficient between the ordinal variable Y, with support {1, . . . , K}, and the or-
dinal variable Y∗ with support identical to Y defined according to OrdMod(Y

∣∣X1, . . . , Xp) ,
that is,

if X = x then Y∗ = mode[Y|X = x], (17)

with mode[Y|X = x] the modal value of conditioned distribution, or equivalently

if X = x then Y∗ = arg max
j=1...K

Pr[Y = j |x ]. (18)

Thus, Y∗ = mode[Y|X] is a function of the random vector X, as in the regression
model under normal conditions, U∗ = E[U|V] is a function of the random vector V. Con-
sequently, τM(Y, X) = τ(Y, Y∗).

Evidently, by the definition of τM(Y, X), 0 ≤ τM(Y, X) ≤ 1. In the case of the or-
dinal independence of Y with respect to the random vector X, the variable Y∗ will be
constant, Y∗ = mode(Y), consequently, by the definition of Kendall’s tau coefficient,
τM(Y, X) = τ(Y, Y∗) = 0. In general, the converse is not true, but this disadvantage is
shared by the multiple linear correlation coefficient. Appendix A illustrates this measure
through a simple example.
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If τM(Y, X) = 1, the relationship is direct and perfect in the sense that,

Yi < Yj whenever Y∗i = mode[Y|X = xi] < Y∗j = mode
[
Y
∣∣X = xj

]
(19)

or
Yi > Yj whenever Y∗i > Y∗j , (20)

that is, perfect concordance or agreement between the target ordinal variable and the
ordinal variable adjusted to the model OrdMod(Y

∣∣X1, . . . , Xp) .
In practice, there will be scenarios where perfect concordance and independence

are absent. In these scenarios, increasing degrees of concordance between Y and Y∗ are
reflected by increasing positive values of τM(Y, X).

Since the ordering of an ordinal variable is arbitrary, we can wonder if the definition
is coherent with respect to a change of variable from Y to K + 1−Y. The answer is positive
since the τM’s Kendall measures the ordinal correlation between the target variable and the
model prediction variable. We can also speculate about the problem of ties that occur often
with ordinal data. Since the τM measure is defined as a bivariate measure, this problem
can be approached identically to the bivariate case (see Agresti [12]).

3.2. Inference: Estimation, Confidence Interval, and Test

Proceeding analogously to the multiple regression model, an estimate of the afore-
mentioned measure via a sample {(yi, xi), i = 1 . . . n} can be the sample Kendall’s tau of
{(yi, ŷi), i = 1 . . . n}, where ŷi are the fitted values of the model,

ŷi = arg max
j=1...K

P̂r[Y = j|xi ]. (21)

With this sample measure of multiple ordinal dependence, τ̂M(Y, X), it is possible to
construct a test on the ordinal non-association of Y with respect to the vector X, that is, a
test on the null hypothesis

H0 : τM(Y, X) = 0. (22)

As noted by Bergsma and Dassios [16], a test of independence based on i.i.d. data
can be obtained by application of the permutation test (or randomization test) to an
estimator of τM. For moderately large sample sizes, it is not appropriate to use an exact
permutation test. As with bootstrapping, a permutation test constructs the sampling
distribution of statistics of the test, under the null hypothesis, by resampling the observed
data through permutations. Specifically, it can be applied to the Monte Carlo approximation
or resampling test, that is, a test of randomly selected permutations. In this case, starting
from the initial sample {(yi, xi), i = 1 . . . n}, a number B of permutations of {1, . . . , n}
is determined,

{pk(1), . . . , pk(n)}, k = 1, 2, . . . , B. (23)

Through this, the B permutated samples are obtained of the form:{(
ypk(i), xi

)
; i = 1 . . . n

}
, k = 1, 2, . . . , B. (24)

The sample multiple Kendall’s tau is calculated for each of the permutated sam-
ples, thus obtaining a collection of values

{
τ̂M(k); k = 1, . . . , B

}
which allows obtaining a

sampling distribution of the measure under the null hypothesis of ordinal independence
between Y and X. This sampling distribution can be used to perform the test, since it is an
approximate distribution to the distribution of the set of all n! permutations. Specifically,
an approximation to the permutation-achieved significance level (ASL) is given by

1
B

#
{

τ̂M(k) ≥ τ̂M(Y, X)
}

. (25)
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Finally, the confidence interval (CI) must be obtained to complete the inference on
the parameter τM(Y, X). Given the difficulty of obtaining an explicit expression and in
accordance with the work of Ruscio [17], the conclusion is that “coverage of bootstrap
CIs was usually as good or better than coverage of analytic CIs”. Furthermore, with the
application of the bootstrap methodology, estimates of the bias and the estimation error of
the estimator τ̂M(Y, X) can be obtained. According to Canty [18], under suitable regularity
conditions, given a theoretical distribution F, an associated functional or parameter θ(F)
and an estimator θ̂ = θ

(
F̂
)

defined on the empirical distribution function F̂ of a random
sample, we can approximate the bias distribution of the estimator (θ̂ − θ) through the
empirical distribution of θ̂∗ − θ̂, where θ̂∗ = θ

(
F̂∗
)

is the estimator defined on the boot-
strap distribution. That is, considering R bootstrap resamples of the original sample, the
estimated bias is (

θ̂
)
= θ̂∗ − θ̂, (26)

with θ̂∗ = 1
R ∑ R

r=1θ̂∗r and
{

θ̂∗r : r = 1 . . . R
}

being the collection of estimates obtained in
the R bootstrap resamples. Similarly, an estimate of the variance of the estimator is

v
(
θ̂
)
=

1
R− 1

R

∑
r=1

(
θ̂∗r − θ̂∗

)2
(27)

and, consequently, its standard error of estimation is v1/2(θ̂).
The boot package [18,19] has implemented various methods of obtaining bootstrap

CIs: basic bootstrap CI (also known as reverse percentile bootstrap CI), percentile bootstrap
CI, studentized bootstrap CI, and bias-corrected and accelerated bootstrap CI (BCa). We
believe that this last method may be the most suitable for our objective. As noted by
Jung et al. [20], to overcome the problems of overcoverage in the bootstrap confidence
intervals based on percentiles [21,22], the BCa method corrects both the bias and the
skewness of the bootstrap estimates of the parameters by incorporating a bias correction
factor and an acceleration factor [18,19]. In the present study, R = 2000 bootstrap resamples
were both generated and analyzed because this value is recommended in the bootstrap
literature [23].

4. Simulation Study

In order to illustrate the adequacy of the proposed multiple ordinal correlation mea-
sure, the situations described below are randomly generated, beginning with the simple
case (p = 1), with a strong association, either positive or negative. Subsequently, the multi-
ple case is analyzed (p = 3), from a strong multiple association to ordinal independence. In
all simulations, the sample size generated is n = 500.

All computations have been performed in R [24].

• Simulation 1: positive association with a single variable. An explanatory variable X1
distributed according to N(0, 1) and an ordinal variable Y, with support {1, 2, . . . , 10}
are generated following the pattern of the conditional distribution described in the
OrdMod(Y|X1) with coefficient η1 = 1 > 0. The base distribution of the ordinal
variable Y is considered a symmetric distribution with probabilities.

{Pr[Y = k]}10
k=1 = {0.05, 0.075, 0.10, 0.125, 0.15, 0.15, 0.125, 0.10, 0.075, 0.05}

To avoid the overfitting of the model and the impossibility of carrying out the calcula-
tions to obtain the estimators, an error is randomly included in 2.5% of cases, in which
the value of Y is generated randomly according to a uniform discrete distribution
with support {1, 2, . . . , 10}. That is, the errors are generated independently of the
explanatory variables (see Appendix B). This generation process is also applied in the
following simulations.

• Simulation 2: negative association with a single variable. Identical to Simulation 1,
with coefficient η1 = −1 < 0.
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• Simulation 3: association with a three-dimensional vector (2.5% error). Three ex-
planatory variables X1, X2, X3 that are independently distributed according to N(0, 1)
are generated and also an ordinal variable Y is generated with support {1, 2, . . . , 10}
following the pattern of the conditional distribution described in the model
OrdMod(Y|X1, X2, X3) with negative and positive coefficients η = (0.8,−1.0, 0.2)′.
This is intended to include positively (X1, X3) and negatively (X2) associated vari-
ables, with both strong (X1, X2) and weak (X3) intensity. The base distribution of Y is
considered to be identical to the base distribution included in the previous simulations,
with the specified error.

• Simulation 4: association with a three-dimensional vector (5% error). Simulation
procedure is identical to that collected in Simulation 3, with error in 5% of the cases.

• Simulation 5: association with a three-dimensional vector (10% error). Simulation
procedure identical to that in Simulation 3, with error in 10% of cases.

• Simulation 6: association with a three-dimensional vector (error 25%). Simulation
procedure identical to that in Simulation 3, with error in 25% of cases.

• Simulation 7: association with a three-dimensional vector (50% error). Simulation
procedure identical to that in Simulation 3, with error in 50% of cases.

• Simulation 8: association with a three-dimensional vector (75% error). Simulation
procedure identical to that in Simulation 3, with error in 75% of cases.

• Simulation 9: association with a three-dimensional vector (90% error). Simulation
procedure identical to that in Simulation 3, with error in 90% of cases.

• Simulation 10: null association or multiple ordinal independence. Three explanatory
variables X1, X2, X3 independently distributed in accordance with N(0, 1) are gen-
erated and an ordinal variable Y is also generated according to a discrete uniform
distribution with support {1, 2, . . . , 10}. That is, it can be considered to be generated
following the ordinal model, including a 100% error.

The results of the simulations are shown in Table 1. For each simulation, the pa-
rameters used are indicated (error and coefficients of the linear predictor), the bivariate
Kendall’s tau coefficients are obtained with their corresponding level of significance (calcu-
lated through the function “cor.test ()” of R-Program [24]) and, finally, the multiple ordinal
correlation coefficients and their significance obtained according to the permutations test
with number of replications Nrep = 2000 are collected. For fitting of the models, the
function polr () of the MASS package [25] is applied.

The proposed measure adequately reflects the multiple ordinal correlation. In the
scenario defined for Simulation 3, the data have been generated according to the multiple
ordinal model, except for a disturbance in 2.5% of the data generated, obtaining an esti-
mate of the multiple Kendall’s tau measure τ̂M(Y, X) = 0.9501, which reflects the almost
functional relationship of the target variable versus the explanatory variables.

From Simulation 4 to the final simulation, there is an increase in the percentage
of data generated that does not respect the model, with a gradual decrease in the mea-
surement (seen in Simulation 4 τ̂M(Y, X) = 0.9397 and Simulation 9 τ̂M(Y, X) = 0.0429).
Finally, in the last scenarios (Simulations 9 and 10), the data of the objective variable
have been generated quasy-independent or independently of the predictor variables, ob-
taining estimates of the measure of multiple ordinal correlation that are practically null
(τ̂M(Y, X) = 0.0429, 0.0297), thus being able to accept the nullity of τM(Y, X) according to
the permutations test (p-value ≈ 0.2715, 0.3095).
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Table 1. Results obtained in the simulations.

Bivariate Kendall’s τ Multiple Kendall’s τ

Simul. Error Variable Coefficient η Estimate p-Value 1 Estimate p-Value 2

1 2.5% X1 1.0 0.8607 0.0000 0.9085 0.0000

2 2.5% X1 −1.0 −0.8963 0.0000 0.9631 0.0000

3 2.5% X1 0.8 0.4141 0.0000 0.9501 0.0000
X2 −1.0 −0.5608 0.0000
X3 0.2 0.0974 0.0021

4 5% X1 0.8 0.4620 0.0000 0.9397 0.0000
X2 −1.0 −0.5331 0.0000
X3 0.2 0.0982 0.0018

5 10% X1 0.8 0.3595 0.0000 0.8291 0.0000
X2 −1.0 −0.4912 0.0000
X3 0.2 0.0742 0.0189

6 25% X1 0.8 0.3392 0.0000 0.6617 0.0000
X2 −1.0 −0.4301 0.0000
X3 0.2 0.0440 0.1629

7 50% X1 0.8 0.2019 0.0000 0.3578 0.0000
X2 −1.0 −0.2557 0.0000
X3 0.2 0.0397 0.0207

8 75% X1 0.8 0.0515 0.1006 0.1678 0.0000
X2 −1.0 −0.1242 0.0001
X3 0.2 0.0034 0.9129

9 90% X1 0.8 0.0298 0.3417 0.0429 0.2715
X2 −1.0 −0.0417 0.1840
X3 0.2 −0.0039 0.8994

10 100% X1 0.0 0.0266 0.3964 0.0297 0.3095
X2 0.0 0.0086 0.7826
X3 0.0 0.0388 0.2157

1 Obtained using the function cor.test () from R-Program. 2 Obtained through the permutations test.

In Scenarios 1 and 2, the data have been generated according to the OrdMod(Y|X1)
model with positive and negative coefficients (η1), respectively. The bivariate Kendall’s tau
coefficient does not coincide with the multiple Kendall’s tau coefficient. This fact is logical
since the former is a measure of the ability to predict the order of Y through the order of
X1, τ(Y, X), while the latter is a measure of the ability to predict the order via the order
of the variable fitted by the model, τ(Y, Y∗). Furthermore, given that the data have been
generated with respect to this model, in both scenarios, the multiple measure is greater
than the bivariate measure in absolute terms.

Table 2 shows the BCa bootstrap confidence intervals for each of the simulations. They
have been obtained from the bootstrap library [15,16], generating R = 2000 bootstrap
resamples. In the estimates of bias and standard error of estimation, the accuracy of the
estimation procedure can be observed: the absolute value of the bias is always less than
0.01, except in Simulation 9, with bias = 0.0208; the values of the std.error are all less than
0.05. To carry out these calculations, problems have arisen in Simulations 1, 2 and 3,
generated with only 2.5% error. That is, only 2.5% of the sample observations differ from
the exact value generated by the model. Consequently, in a large number of bootstrap
resamples, all the observations respect the model exactly. This situation means that the fit
of the ordinal regression model for these resamples cannot be estimated due to overfitting
in the model, or that the results in these simulations are not very stable. However, with
exercising caution in these cases, the general conclusion to be drawn is that the estimation
procedure, except for singular cases, is unbiased and very accurate.
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Table 2. Inference on multiple Kendall’s τ for data sets of simulations.

Multiple Kendall’s τ

Simul. Error Estimate Bias 1 Std. Error 1 95% BCa Bootstrap CI 1 p-Value 2

1 2.5% 0.9085 −0.0001 0.0242 (0.8428, 0.9457) 0.0000
2 2.5% 0.9631 0.0000
3 2.5% 0.9501 0.0000
4 5% 0.9397 −0.0010 0.0143 (0.9046, 0.9642) 0.0000
5 10% 0.8291 −0.0019 0.0277 (0.7728, 0.8795) 0.0000
6 25% 0.6617 0.0022 0.0337 (0.5792, 0.7193) 0.0000
7 50% 0.3578 0.0072 0.0479 (0.2352, 0.4329) 0.0000
8 75% 0.1678 −0.0070 0.0413 (0.0908, 0.2506) 0.0000
9 90% 0.0429 0.0208 0.0452 (−0.0990, 0.1056) 0.2715

10 100% 0.0297 −0.0014 0.0478 (−0.0510, 0.1415) 0.3095
1 Using the function “boot.ci ()” of the “boot” package. 2 Obtained through the permutations test.

5. Application to a Social Study: Happiness Index and Life Satisfaction Level

As presented in the introduction, the data for the study consist of an anonymized data
set obtained through a survey that was carried out in Andalusia (southern Spain) [26]. One
of the objectives of the survey was the analysis of the level of happiness and the degree
of life satisfaction of the population, as well as obtaining an approximation to the main
problems that affect and concern that population. In this survey, the concepts of happiness
and satisfaction with life, that were subjectively considered by the study participants who
were interviewed, were assumed. As the concepts are subjective, consequently, they are not
completely identical for all individuals, in the same way that there is no broad consensus
in the scientific and philosophical fields. Although the concepts have different nuances for
each individual, in a practical sense they coincide fundamentally for everyone, especially
when restricted to a population under the same sociocultural and temporal patterns, which
in our case is the population of Andalusia.

However, since the measures of happiness and life satisfaction are obtained through
a survey, both are measures of the hic et nunc (here and now), filled with a wealth of
sensations that provide spontaneity and possible volatility caused by poor reflection on the
part of the individuals. Specifically, the people interviewed were asked about their overall
satisfaction with life and about other dimensions related to living conditions, work, leisure,
and social relationships. The respondents had to respond on a Likert-type scale of 0 to
10, where 0 is defined as completely dissatisfied and 10 is completely satisfied. Thus, it is
possible to work with a life satisfaction profile through ordinal measurements of nine areas
or aspects of personal life (see Table 3). Similarly, for the level of happiness the Likert-type
scale from 0 to 10 is used, in which 0 is defined as completely unhappy and 10 is completely
happy. Table 3 presents the variables considered.

The number of interviewees who answered all questions associated with the previous
indices is n = 445. A statistical summary is included in Table 3.

The happiness index and the degrees of satisfaction can be considered as ordinal
variables. Therefore, for the analysis of the bivariate correlation, Kendall’s tau measure is
considered. Given that the two target variables are Sgen and Ihap, the bivariate ordinal cor-
relations are obtained using the remaining variables and applying the corrplot library [27].
The results are presented in Table 4. The degrees of satisfaction regarding the various
aspects considered are positively correlated with the two objective variables. Furthermore,
as one might suspect, the two target variables are correlated with each other, with sample
Kendall’s tau equal to 0.568.
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Table 3. Statistical summary of the life satisfaction profile and happiness index.

Degree of Satisfaction with . . . Mean Q1 Median Q3 Min Max

Life satisfaction profile

Sfam: family life 8.54 8 9 10 0 10
Sjob: job situation and work activity
(including housework) 6.98 6 8 8 0 10

Sleis: leisure or recreational activities 7.38 6 8 9 0 10
Sfrie: relationships with close friends 8.13 8 8 9 0 10
Shea: health condition 7.34 6 8 9 0 10
Sphys: physical appearance 7.44 7 8 8 0 10
Seduc: education and professional training 6.86 5 8 9 0 10
Sbeha: their way of being and social
behavior 8.08 7 8 9 3 10

Srela: couple and/or romantic relationships 7.05 6 8 9 0 10

Satisfaction with life in general

Sgen: life in general 7.94 7 8 9 0 10

Happiness Index

Ihap: happiness Index 7.70 7 8 9 0 10

Table 4. Sample bivariate Kendall’s τ measures 1.

Sfam Sjob Sleis Sfrie Shea Sphys Seduc Sbeha Srela Sgen Ihap

Sgen 0.483 0.388 0.384 0.365 0.289 0.335 0.242 0.378 0.395 1 0.568
Ihap 0.429 0.310 0.274 0.264 0.236 0.261 0.175 0.290 0.346 0.568 1

1 All measurements are significant with p < 0.001.

Two ordinal regression models are carried out to determine the dimensions related
to the living conditions that have the most influence over the level of happiness and the
degree of satisfaction with life in general.

First, Ihap is considered as the objective variable and the degrees of satisfaction with
specific aspects of life are considered as explanatory variables: Sfam, Sjob, Sleis, Sfrie, Shea,
Sphys, Seduc, Sbeha, and Srela. To estimate the model, the polr () function from the MASS
package [25] of the R-Program is applied, thus obtaining the results shown in Table 5. Thus,
the significant covariates in the model are the degrees of satisfaction with family, work,
leisure, the way of being, and romantic relationships in addition to the intercepts. All
the coefficients associated with these predictors are positive, that is, they are positively
associated with the happiness index, particularly the degrees of satisfaction Sfam and
Sbeha. A deeper and more extensive interpretation can be made regarding the field of
sociology, but it is not the object of interest in the present study.

The proposed multiple ordinal correlation measure, the multiple Kendall’s tau, at-
tains the value of 0.501, with significance p < 0.001, this latter being obtained through
the permutation test with 2000 permutations generated. That is, the ordinal correlation
was improved through the adjustment of the model, with respect to the bivariate corre-
lations (see Tables 4 and 7). Finally, the BCa method was applied to obtain a confidence
interval. Table 7 shows the results obtained. The estimation of the bias and the stan-
dard error of estimation provides new evidence for the accuracy and unbiasedness of the
estimation method.

The statistical interpretation of the adjusted model, the estimates of its parameters, and
the multiple ordinal correlation measure can lead to an adequate sociological interpretation
of the results toward determining the aspects of people’s lives that most favorably influence
their happiness and evaluating the capacity of the vital aspects considered in explaining
the level of happiness.
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Table 5. Model: Ihap on the life satisfaction profile 1.

Variables Coef. Std. Error t Value p-Value

Sfam 0.569 0.076 7.450 0.000 ***
Sjob 0.133 0.043 3.066 0.002 **
Sleis 0.139 0.048 2.919 0.004 **
Sfrie −0.001 0.065 −0.022 0.982
Shea 0.054 0.047 1.133 0.257

Sphys 0.075 0.064 1.171 0.242
Seduc 0.010 0.042 0.233 0.816
Sbeha 0.326 0.085 3.857 0.000 ***
Srela 0.138 0.030 4.565 0.000 ***

Intercepts
0|2 5.174 0.917 5.644 0.000 ***
2|3 5.628 0.870 6.468 0.000 ***
3|4 6.216 0.834 7.451 0.000 ***
4|5 7.068 0.820 8.623 0.000 ***
5|6 8.442 0.834 10.120 0.000 ***
6|7 9.190 0.846 10.860 0.000 ***
7|8 10.697 0.885 12.085 0.000 ***
8|9 12.645 0.936 13.508 0.000 ***

9|10 14.152 0.970 14.594 0.000 ***
1 Residual deviance: 1348.207; AIC: 1384.207; Multiple Kendall’s tau = 0.501 (p-value < 0.001); *** p-value < 0.001;
** p-value < 0.01.

Similarly, the present study was carried out with consideration of the degree of
satisfaction with life in general, Sgen, as an objective variable. According to the results
of the model (see Table 6), the most relevant aspects are the degrees of satisfaction with
family relationships, work, leisure and free time, physical appearance, the way of being
and acting in society, and sentimental relationships. However, personal health and the
level of professional training did not influence the degree of satisfaction with life.

Table 6. Model: Sgen on the life satisfaction profile 1.

Variables Coef. Std. Error t Value p-Value

Sfam 0.621 0.080 7.773 0.000 ***
Sjob 0.131 0.047 2.799 0.005 **
Sleis 0.222 0.049 4.500 0.000 ***
Sfrie 0.114 0.067 1.693 0.090
Shea 0.020 0.049 0.400 0.689

Sphys 0.146 0.070 2.100 0.036 *
Seduc 0.039 0.042 0.921 0.357
Sbeha 0.524 0.091 5.766 0.000 ***
Srela 0.159 0.032 5.027 0.000 ***

Intercepts
0|2 7.751 1.119 6.929 0.000 ***
2|3 8.864 0.984 9.009 0.000 ***
3|4 9.091 0.970 9.375 0.000 ***
4|5 9.710 0.942 10.312 0.000 ***
5|6 10.915 0.932 11.717 0.000 ***
6|7 12.011 0.948 12.666 0.000 ***
7|8 14.063 1.008 13.947 0.000 ***
8|9 16.779 1.100 15.256 0.000 ***

9|10 19.539 1.180 16.553 0.000 ***
1 Residual deviance: 1057.027; AIC: 1093.027; Multiple Kendall’s tau = 0.599 (p-value < 0.001); *** p-value < 0.001;
** p-value < 0.01; * p-value < 0.05; p-value < 0.10.

The multiple ordinal correlation measure reaches the value 0.599, exceeding the
bivariate ordinal correlations (see Tables 4 and 7). Conclusions that are similar to the
previous case can be obtained with the bias and the standard error of estimation [1].
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Further, as with the previous model, the statistical interpretation of all these results allows
obtaining a relevant sociological interpretation.

Table 7. Multiple ordinal correlation for life satisfaction profile.

Objetive Multiple Kendall’s τ

Variable Estimate Bias 1 Std. Error 1 95% BCa Bootstrap CI 1 p-Value 2

IHap 0.5008 0.0080 0.0382 (0.4030, 0.5614) 0.000
SGen 0.5985 0.0246 0.0299 (0.5263, 0.6342) 0.000

1 Using the function “boot.ci ()” of “boot” package. 2 Obtained through the permutations test.

6. Discussion and Conclusions

In many economic, social, and biomedical studies, data sets containing ordinal vari-
ables are considered as a relevant part of the studies. However, statistical techniques not
suitable for the ordinal scale are applied. This fact may seem strange given the set of ordinal
regression models proposed in the body of literature. One of the reasons that their limited
use may be justified is the difficulty of interpreting the models and their parameters. For
this reason, it may be necessary to propose new parameters and functions that facilitate
their interpretation and the transference of statistical conclusions to conclusions within the
scientific scope of the study in a particular field.

The main contribution of this article is a multiple ordinal correlation measure and the
inferential techniques necessary for its estimation. Important features of this contribution
are considered to be the following. First, the measurement is based on a very intuitive
idea, to measure the bivariate ordinal correlation between the target variable and the
values fitted by an ordinal regression model. Kendall’s tau coefficient is considered as a
bivariate ordinal correlation measure and the cumulative model of ordinal regression is
considered as a model. This intuitive idea, which is used in the definition of the multiple
linear correlation coefficient, leads to easy interpretability of the correlation measure.
Second, its easy interpretation can facilitate its use and the application of ordinal regression
models in many scientific fields. It can also be considered as a measure of the adequacy
of the model. Third, the idea of constructing a measure based on the model broadens
the path, already opened by the multiple linear correlation coefficient, to construct other
measures of multiple correlation and measures of multiple association at different scales
(binary, nominal, ordinal, quantitative discrete, quantitative continuous). Fourth, the
proposed inference methods are also easy to understand and apply. In particular, their
point estimate is a sample version of the population measure. This estimate is almost
unbiased according to the bias estimated through the bootstrap methodology, although its
unbiasedness has not been mathematically demonstrated, to the best of our knowledge.
Furthermore, this bootstrap methodology aids in obtaining confidence intervals with a
computational procedure that is not complex and tedious. Finally, the significance test of
the measure, which can be considered as a multiple ordinal independence test, is obtained
through a permutation test that does not require excessive computation time.

Some aspects that are not in the present study need to be deepened and they should be
the object of study in a future line of research. In the field of measurement inference, the aim
is to obtain confidence intervals and significance tests, exact or asymptotic, which are not
based on resampling techniques. However, the measurement construction methodology
can be applied to other ordinal regression models (cumulative models, sequential models,
and adjacent-category models), as well as with other ordinal correlation measures such as
the Spearman rank correlation coefficient [4]. The methodology can also be extended to
models based on binary and nominal variables through measures of bivariate association, as
proposed in the body of literature. This methodology to construct the multiple association
measure is easily applicable to the other models (for binary, categorical, ordinal, and
continuous data). It is enough to combine two components: statistical model and bivariate
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association measure. Such components should be appropriately in accordance with the
scale of the data and the objective of the study.
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Appendix A

Simple example to illustrate the definition of the multiple Kendall’s tau measure.
Let X1 and X2 be two independent and identically distributed variables with support

{1,2,3} and probabilities {1/3, 1/3, 1/3}, respectively. Let Y be an ordinal random vari-
able with support {1,2,3,4,5}. The following parameters of the model OrdMod(Y|X1, X2)
are considered:

β01 = −1.7, β02 = −0.5, β03 = 0.5, β01 = 1.7, η1 = −0.5, η2 = 0.5. (A1)

Table A1 shows the conditioned probabilities {Pr[Y = j |x ], j = 1, . . . , 5} according to
the model. In addition, the modal value of each conditional distribution is included, that is,
the value of the random variable Y∗ = mode[Y|X = x].

Table A1. A simple example: probability distributions associated with the model (1).

X1 X2 Pr[Y = j |x]

Pr[X = x] Y = 1 Y = 2 Y = 3 Y = 4 Y = 5 Y*

1 1 0.11 0.1545 0.2231 0.2449 0.2231 0.1545 3
2 1 0.11 0.2315 0.2685 0.2311 0.1692 0.0998 2
3 1 0.11 0.3318 0.2906 0.1951 0.1195 0.0630 1
1 2 0.11 0.0998 0.1692 0.2311 0.2685 0.2315 4
2 2 0.11 0.1545 0.2231 0.2449 0.2231 0.1545 3
3 2 0.11 0.2315 0.2685 0.2311 0.1692 0.0998 2
1 3 0.11 0.0630 0.1195 0.1951 0.2906 0.3318 5
2 3 0.11 0.0998 0.1692 0.2311 0.2685 0.2315 4
3 3 0.11 0.1545 0.2231 0.2449 0.2231 0.1545 3

(1) OrdMod(Y|X1, X2) with β01 = −1.7, β02 = −0.5, β03 = 0.5, β01 = 1.7, η1 = −0.5, η2 = 0.5.

Table A2 shows the joint probability distribution of (Y, Y∗) and the marginal distribu-
tion of Y∗, that is,

Pr[Y∗ = j] = ∑
x: mode[Y|X=x]=j

Pr[X = x] (A2)

and,
Pr[Y = k, Y∗ = j] = ∑

x: mode[Y|X=x]=j
Pr[Y = k |x ] Pr[X = x]. (A3)

Table A2. Joint probability distribution of (Y, Y∗).

Pr[Y = k, Y* = j] Y = 1 Y = 2 Y = 3 Y = 4 Y = 5 Marginal of Y*

Y* = 1 0.0369 0.0323 0.0217 0.0133 0.0070 0.1111
Y* = 2 0.0514 0.0597 0.0513 0.0376 0.0222 0.2222
Y* = 3 0.0515 0.0744 0.0816 0.0744 0.0515 0.3333
Y* = 4 0.0222 0.0376 0.0513 0.0597 0.0514 0.2222
Y* = 5 0.0070 0.0133 0.0227 0.0323 0.0369 0.1111

Marginal of Y* 0.1690 0.2172 0.2287 0.2172 0.1690
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The population multiple Kendall’s τM(Y, X) can be obtained as the bivariate Kendall’s
τ of the joint distribution of (Y, Y∗), that is, the population version of tau-b measure (see
Agresti [12]):

τb =
(

Πc−Πd
)

/√
(1−∑k Pr[Y=k]2)(1−∑j Pr[Y∗=j]2)

(A4)

with Πc and Πd concordance and discordance probabilities, respectively. For the joint
probability distribution included in Table A2, we obtain τM(Y, X) = 0.3205.

Finally, in order to illustrate the estimation of this measure through the sample version,
we randomly generated a sample of size 60 according to the probability distribution
associated with the population model OrdMod(Y|X1, X2) with the parameters listed above.
The data set is included in Table A3. Fitting the model with the polr function of the MASS
library package [25] provides the estimates:

η̂1 = −0.8414, η̂2 = 0.6558, β̂01 = −2.2900, β̂02 = −0.8678, β̂03 = 0.3022, β̂04 = 1.4829. (A5)

These estimates allow us to estimate the probabilities of the conditional distributions
and their modal values (fitted values of the model)

Ŷ = arg max
j=1...K

P̂r[Y = j |x ]. (A6)

Table A3. Data set (n = 60).

Y = 1 Y = 2 Y = 3 Y = 4 Y = 5 ^
Y

X1 = 1 X2 = 1 1 2 2 2 1 3
X1 = 1 X2 = 2 0 1 2 2 2 2
X1 = 1 X2 = 3 0 1 1 2 2 1
X1 = 2 X2 = 1 2 2 1 1 1 4
X1 = 2 X2 = 2 1 2 2 2 1 3
X1 = 2 X2 = 3 0 1 2 1 2 2
X1 = 3 X2 = 1 2 2 1 0 0 5
X1 = 3 X2 = 2 2 1 2 1 1 3
X1 = 4 X2 = 3 1 2 2 1 0 3

Finally, the crosstab between observed values and adjusted values (Table A4) allows
us to obtain the sample version of tau-b measure (see Agresti [12]) as an estimate of the
multiple ordinal correlation measure: τ̂M(Y, X) = 0.3243.

Table A4. Joint frequency distribution of
(
Y, Ŷ

)
.

Y = 1 Y = 2 Y = 3 Y = 4 Y = 5 Total

Ŷ = 1 2 2 1 0 0 5
Ŷ = 2 4 3 3 2 2 14
Ŷ = 3 3 7 8 6 4 28
Ŷ = 4 0 1 2 2 2 7
Ŷ = 5 0 1 1 2 2 6

Total 9 14 15 12 10 60

Appendix B

Simulation generation procedure (see Section 4).
Considering a vector of explanatory variables X =

(
X1. . . . , Xp

)′ and the model
OrdMod

(
Y
∣∣X1, . . . , Xp

)
.

For error = e% and X = xi , i = 1, . . . , n (n = 500):

• For j = 1, . . . , K, calculate pj = Pr[Y ≤ j |x ] according to the model
OrdMod

(
Y
∣∣X1, . . . , Xp

)
.
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• Randomly generate u ∈ [0, 1]

– If u ≥ e/100, calculate y = arg max
j=1,...,K

pj. If bimodal distribution, randomize

between modal categories.
– If u < e/100, randomly generate y ∈ {1, 2, . . . , K}.
The error values considered are {2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 100%}. Case

e = 0 is not considered since the data will exactly fit the model and the polr () command of
the MASS package [25] returns an overfitting error.
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